xref: /openbmc/linux/net/wireless/lib80211_crypt_wep.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * lib80211 crypt: host-based WEP encryption implementation for lib80211
3  *
4  * Copyright (c) 2002-2004, Jouni Malinen <j@w1.fi>
5  * Copyright (c) 2008, John W. Linville <linville@tuxdriver.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation. See README and COPYING for
10  * more details.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/scatterlist.h>
19 #include <linux/skbuff.h>
20 #include <linux/mm.h>
21 #include <asm/string.h>
22 
23 #include <net/lib80211.h>
24 
25 #include <linux/crypto.h>
26 #include <linux/crc32.h>
27 
28 MODULE_AUTHOR("Jouni Malinen");
29 MODULE_DESCRIPTION("lib80211 crypt: WEP");
30 MODULE_LICENSE("GPL");
31 
32 struct lib80211_wep_data {
33 	u32 iv;
34 #define WEP_KEY_LEN 13
35 	u8 key[WEP_KEY_LEN + 1];
36 	u8 key_len;
37 	u8 key_idx;
38 	struct crypto_cipher *tx_tfm;
39 	struct crypto_cipher *rx_tfm;
40 };
41 
42 static void *lib80211_wep_init(int keyidx)
43 {
44 	struct lib80211_wep_data *priv;
45 
46 	priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
47 	if (priv == NULL)
48 		goto fail;
49 	priv->key_idx = keyidx;
50 
51 	priv->tx_tfm = crypto_alloc_cipher("arc4", 0, CRYPTO_ALG_ASYNC);
52 	if (IS_ERR(priv->tx_tfm)) {
53 		priv->tx_tfm = NULL;
54 		goto fail;
55 	}
56 
57 	priv->rx_tfm = crypto_alloc_cipher("arc4", 0, CRYPTO_ALG_ASYNC);
58 	if (IS_ERR(priv->rx_tfm)) {
59 		priv->rx_tfm = NULL;
60 		goto fail;
61 	}
62 	/* start WEP IV from a random value */
63 	get_random_bytes(&priv->iv, 4);
64 
65 	return priv;
66 
67       fail:
68 	if (priv) {
69 		crypto_free_cipher(priv->tx_tfm);
70 		crypto_free_cipher(priv->rx_tfm);
71 		kfree(priv);
72 	}
73 	return NULL;
74 }
75 
76 static void lib80211_wep_deinit(void *priv)
77 {
78 	struct lib80211_wep_data *_priv = priv;
79 	if (_priv) {
80 		crypto_free_cipher(_priv->tx_tfm);
81 		crypto_free_cipher(_priv->rx_tfm);
82 	}
83 	kfree(priv);
84 }
85 
86 /* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */
87 static int lib80211_wep_build_iv(struct sk_buff *skb, int hdr_len,
88 			       u8 *key, int keylen, void *priv)
89 {
90 	struct lib80211_wep_data *wep = priv;
91 	u32 klen;
92 	u8 *pos;
93 
94 	if (skb_headroom(skb) < 4 || skb->len < hdr_len)
95 		return -1;
96 
97 	pos = skb_push(skb, 4);
98 	memmove(pos, pos + 4, hdr_len);
99 	pos += hdr_len;
100 
101 	klen = 3 + wep->key_len;
102 
103 	wep->iv++;
104 
105 	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
106 	 * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
107 	 * can be used to speedup attacks, so avoid using them. */
108 	if ((wep->iv & 0xff00) == 0xff00) {
109 		u8 B = (wep->iv >> 16) & 0xff;
110 		if (B >= 3 && B < klen)
111 			wep->iv += 0x0100;
112 	}
113 
114 	/* Prepend 24-bit IV to RC4 key and TX frame */
115 	*pos++ = (wep->iv >> 16) & 0xff;
116 	*pos++ = (wep->iv >> 8) & 0xff;
117 	*pos++ = wep->iv & 0xff;
118 	*pos++ = wep->key_idx << 6;
119 
120 	return 0;
121 }
122 
123 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
124  * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
125  * so the payload length increases with 8 bytes.
126  *
127  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
128  */
129 static int lib80211_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
130 {
131 	struct lib80211_wep_data *wep = priv;
132 	u32 crc, klen, len;
133 	u8 *pos, *icv;
134 	u8 key[WEP_KEY_LEN + 3];
135 	int i;
136 
137 	/* other checks are in lib80211_wep_build_iv */
138 	if (skb_tailroom(skb) < 4)
139 		return -1;
140 
141 	/* add the IV to the frame */
142 	if (lib80211_wep_build_iv(skb, hdr_len, NULL, 0, priv))
143 		return -1;
144 
145 	/* Copy the IV into the first 3 bytes of the key */
146 	skb_copy_from_linear_data_offset(skb, hdr_len, key, 3);
147 
148 	/* Copy rest of the WEP key (the secret part) */
149 	memcpy(key + 3, wep->key, wep->key_len);
150 
151 	len = skb->len - hdr_len - 4;
152 	pos = skb->data + hdr_len + 4;
153 	klen = 3 + wep->key_len;
154 
155 	/* Append little-endian CRC32 over only the data and encrypt it to produce ICV */
156 	crc = ~crc32_le(~0, pos, len);
157 	icv = skb_put(skb, 4);
158 	icv[0] = crc;
159 	icv[1] = crc >> 8;
160 	icv[2] = crc >> 16;
161 	icv[3] = crc >> 24;
162 
163 	crypto_cipher_setkey(wep->tx_tfm, key, klen);
164 
165 	for (i = 0; i < len + 4; i++)
166 		crypto_cipher_encrypt_one(wep->tx_tfm, pos + i, pos + i);
167 
168 	return 0;
169 }
170 
171 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
172  * the frame: IV (4 bytes), encrypted payload (including SNAP header),
173  * ICV (4 bytes). len includes both IV and ICV.
174  *
175  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
176  * failure. If frame is OK, IV and ICV will be removed.
177  */
178 static int lib80211_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
179 {
180 	struct lib80211_wep_data *wep = priv;
181 	u32 crc, klen, plen;
182 	u8 key[WEP_KEY_LEN + 3];
183 	u8 keyidx, *pos, icv[4];
184 	int i;
185 
186 	if (skb->len < hdr_len + 8)
187 		return -1;
188 
189 	pos = skb->data + hdr_len;
190 	key[0] = *pos++;
191 	key[1] = *pos++;
192 	key[2] = *pos++;
193 	keyidx = *pos++ >> 6;
194 	if (keyidx != wep->key_idx)
195 		return -1;
196 
197 	klen = 3 + wep->key_len;
198 
199 	/* Copy rest of the WEP key (the secret part) */
200 	memcpy(key + 3, wep->key, wep->key_len);
201 
202 	/* Apply RC4 to data and compute CRC32 over decrypted data */
203 	plen = skb->len - hdr_len - 8;
204 
205 	crypto_cipher_setkey(wep->rx_tfm, key, klen);
206 	for (i = 0; i < plen + 4; i++)
207 		crypto_cipher_decrypt_one(wep->rx_tfm, pos + i, pos + i);
208 
209 	crc = ~crc32_le(~0, pos, plen);
210 	icv[0] = crc;
211 	icv[1] = crc >> 8;
212 	icv[2] = crc >> 16;
213 	icv[3] = crc >> 24;
214 	if (memcmp(icv, pos + plen, 4) != 0) {
215 		/* ICV mismatch - drop frame */
216 		return -2;
217 	}
218 
219 	/* Remove IV and ICV */
220 	memmove(skb->data + 4, skb->data, hdr_len);
221 	skb_pull(skb, 4);
222 	skb_trim(skb, skb->len - 4);
223 
224 	return 0;
225 }
226 
227 static int lib80211_wep_set_key(void *key, int len, u8 * seq, void *priv)
228 {
229 	struct lib80211_wep_data *wep = priv;
230 
231 	if (len < 0 || len > WEP_KEY_LEN)
232 		return -1;
233 
234 	memcpy(wep->key, key, len);
235 	wep->key_len = len;
236 
237 	return 0;
238 }
239 
240 static int lib80211_wep_get_key(void *key, int len, u8 * seq, void *priv)
241 {
242 	struct lib80211_wep_data *wep = priv;
243 
244 	if (len < wep->key_len)
245 		return -1;
246 
247 	memcpy(key, wep->key, wep->key_len);
248 
249 	return wep->key_len;
250 }
251 
252 static void lib80211_wep_print_stats(struct seq_file *m, void *priv)
253 {
254 	struct lib80211_wep_data *wep = priv;
255 	seq_printf(m, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len);
256 }
257 
258 static struct lib80211_crypto_ops lib80211_crypt_wep = {
259 	.name = "WEP",
260 	.init = lib80211_wep_init,
261 	.deinit = lib80211_wep_deinit,
262 	.encrypt_mpdu = lib80211_wep_encrypt,
263 	.decrypt_mpdu = lib80211_wep_decrypt,
264 	.encrypt_msdu = NULL,
265 	.decrypt_msdu = NULL,
266 	.set_key = lib80211_wep_set_key,
267 	.get_key = lib80211_wep_get_key,
268 	.print_stats = lib80211_wep_print_stats,
269 	.extra_mpdu_prefix_len = 4,	/* IV */
270 	.extra_mpdu_postfix_len = 4,	/* ICV */
271 	.owner = THIS_MODULE,
272 };
273 
274 static int __init lib80211_crypto_wep_init(void)
275 {
276 	return lib80211_register_crypto_ops(&lib80211_crypt_wep);
277 }
278 
279 static void __exit lib80211_crypto_wep_exit(void)
280 {
281 	lib80211_unregister_crypto_ops(&lib80211_crypt_wep);
282 }
283 
284 module_init(lib80211_crypto_wep_init);
285 module_exit(lib80211_crypto_wep_exit);
286