1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Hyper-V transport for vsock
4  *
5  * Hyper-V Sockets supplies a byte-stream based communication mechanism
6  * between the host and the VM. This driver implements the necessary
7  * support in the VM by introducing the new vsock transport.
8  *
9  * Copyright (c) 2017, Microsoft Corporation.
10  */
11 #include <linux/module.h>
12 #include <linux/vmalloc.h>
13 #include <linux/hyperv.h>
14 #include <net/sock.h>
15 #include <net/af_vsock.h>
16 #include <asm/hyperv-tlfs.h>
17 
18 /* Older (VMBUS version 'VERSION_WIN10' or before) Windows hosts have some
19  * stricter requirements on the hv_sock ring buffer size of six 4K pages.
20  * hyperv-tlfs defines HV_HYP_PAGE_SIZE as 4K. Newer hosts don't have this
21  * limitation; but, keep the defaults the same for compat.
22  */
23 #define RINGBUFFER_HVS_RCV_SIZE (HV_HYP_PAGE_SIZE * 6)
24 #define RINGBUFFER_HVS_SND_SIZE (HV_HYP_PAGE_SIZE * 6)
25 #define RINGBUFFER_HVS_MAX_SIZE (HV_HYP_PAGE_SIZE * 64)
26 
27 /* The MTU is 16KB per the host side's design */
28 #define HVS_MTU_SIZE		(1024 * 16)
29 
30 /* How long to wait for graceful shutdown of a connection */
31 #define HVS_CLOSE_TIMEOUT (8 * HZ)
32 
33 struct vmpipe_proto_header {
34 	u32 pkt_type;
35 	u32 data_size;
36 };
37 
38 /* For recv, we use the VMBus in-place packet iterator APIs to directly copy
39  * data from the ringbuffer into the userspace buffer.
40  */
41 struct hvs_recv_buf {
42 	/* The header before the payload data */
43 	struct vmpipe_proto_header hdr;
44 
45 	/* The payload */
46 	u8 data[HVS_MTU_SIZE];
47 };
48 
49 /* We can send up to HVS_MTU_SIZE bytes of payload to the host, but let's use
50  * a smaller size, i.e. HVS_SEND_BUF_SIZE, to maximize concurrency between the
51  * guest and the host processing as one VMBUS packet is the smallest processing
52  * unit.
53  *
54  * Note: the buffer can be eliminated in the future when we add new VMBus
55  * ringbuffer APIs that allow us to directly copy data from userspace buffer
56  * to VMBus ringbuffer.
57  */
58 #define HVS_SEND_BUF_SIZE \
59 		(HV_HYP_PAGE_SIZE - sizeof(struct vmpipe_proto_header))
60 
61 struct hvs_send_buf {
62 	/* The header before the payload data */
63 	struct vmpipe_proto_header hdr;
64 
65 	/* The payload */
66 	u8 data[HVS_SEND_BUF_SIZE];
67 };
68 
69 #define HVS_HEADER_LEN	(sizeof(struct vmpacket_descriptor) + \
70 			 sizeof(struct vmpipe_proto_header))
71 
72 /* See 'prev_indices' in hv_ringbuffer_read(), hv_ringbuffer_write(), and
73  * __hv_pkt_iter_next().
74  */
75 #define VMBUS_PKT_TRAILER_SIZE	(sizeof(u64))
76 
77 #define HVS_PKT_LEN(payload_len)	(HVS_HEADER_LEN + \
78 					 ALIGN((payload_len), 8) + \
79 					 VMBUS_PKT_TRAILER_SIZE)
80 
81 union hvs_service_id {
82 	guid_t	srv_id;
83 
84 	struct {
85 		unsigned int svm_port;
86 		unsigned char b[sizeof(guid_t) - sizeof(unsigned int)];
87 	};
88 };
89 
90 /* Per-socket state (accessed via vsk->trans) */
91 struct hvsock {
92 	struct vsock_sock *vsk;
93 
94 	guid_t vm_srv_id;
95 	guid_t host_srv_id;
96 
97 	struct vmbus_channel *chan;
98 	struct vmpacket_descriptor *recv_desc;
99 
100 	/* The length of the payload not delivered to userland yet */
101 	u32 recv_data_len;
102 	/* The offset of the payload */
103 	u32 recv_data_off;
104 
105 	/* Have we sent the zero-length packet (FIN)? */
106 	bool fin_sent;
107 };
108 
109 /* In the VM, we support Hyper-V Sockets with AF_VSOCK, and the endpoint is
110  * <cid, port> (see struct sockaddr_vm). Note: cid is not really used here:
111  * when we write apps to connect to the host, we can only use VMADDR_CID_ANY
112  * or VMADDR_CID_HOST (both are equivalent) as the remote cid, and when we
113  * write apps to bind() & listen() in the VM, we can only use VMADDR_CID_ANY
114  * as the local cid.
115  *
116  * On the host, Hyper-V Sockets are supported by Winsock AF_HYPERV:
117  * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-
118  * guide/make-integration-service, and the endpoint is <VmID, ServiceId> with
119  * the below sockaddr:
120  *
121  * struct SOCKADDR_HV
122  * {
123  *    ADDRESS_FAMILY Family;
124  *    USHORT Reserved;
125  *    GUID VmId;
126  *    GUID ServiceId;
127  * };
128  * Note: VmID is not used by Linux VM and actually it isn't transmitted via
129  * VMBus, because here it's obvious the host and the VM can easily identify
130  * each other. Though the VmID is useful on the host, especially in the case
131  * of Windows container, Linux VM doesn't need it at all.
132  *
133  * To make use of the AF_VSOCK infrastructure in Linux VM, we have to limit
134  * the available GUID space of SOCKADDR_HV so that we can create a mapping
135  * between AF_VSOCK port and SOCKADDR_HV Service GUID. The rule of writing
136  * Hyper-V Sockets apps on the host and in Linux VM is:
137  *
138  ****************************************************************************
139  * The only valid Service GUIDs, from the perspectives of both the host and *
140  * Linux VM, that can be connected by the other end, must conform to this   *
141  * format: <port>-facb-11e6-bd58-64006a7986d3, and the "port" must be in    *
142  * this range [0, 0x7FFFFFFF].                                              *
143  ****************************************************************************
144  *
145  * When we write apps on the host to connect(), the GUID ServiceID is used.
146  * When we write apps in Linux VM to connect(), we only need to specify the
147  * port and the driver will form the GUID and use that to request the host.
148  *
149  * From the perspective of Linux VM:
150  * 1. the local ephemeral port (i.e. the local auto-bound port when we call
151  * connect() without explicit bind()) is generated by __vsock_bind_stream(),
152  * and the range is [1024, 0xFFFFFFFF).
153  * 2. the remote ephemeral port (i.e. the auto-generated remote port for
154  * a connect request initiated by the host's connect()) is generated by
155  * hvs_remote_addr_init() and the range is [0x80000000, 0xFFFFFFFF).
156  */
157 
158 #define MAX_LISTEN_PORT			((u32)0x7FFFFFFF)
159 #define MAX_VM_LISTEN_PORT		MAX_LISTEN_PORT
160 #define MAX_HOST_LISTEN_PORT		MAX_LISTEN_PORT
161 #define MIN_HOST_EPHEMERAL_PORT		(MAX_HOST_LISTEN_PORT + 1)
162 
163 /* 00000000-facb-11e6-bd58-64006a7986d3 */
164 static const guid_t srv_id_template =
165 	GUID_INIT(0x00000000, 0xfacb, 0x11e6, 0xbd, 0x58,
166 		  0x64, 0x00, 0x6a, 0x79, 0x86, 0xd3);
167 
168 static bool is_valid_srv_id(const guid_t *id)
169 {
170 	return !memcmp(&id->b[4], &srv_id_template.b[4], sizeof(guid_t) - 4);
171 }
172 
173 static unsigned int get_port_by_srv_id(const guid_t *svr_id)
174 {
175 	return *((unsigned int *)svr_id);
176 }
177 
178 static void hvs_addr_init(struct sockaddr_vm *addr, const guid_t *svr_id)
179 {
180 	unsigned int port = get_port_by_srv_id(svr_id);
181 
182 	vsock_addr_init(addr, VMADDR_CID_ANY, port);
183 }
184 
185 static void hvs_remote_addr_init(struct sockaddr_vm *remote,
186 				 struct sockaddr_vm *local)
187 {
188 	static u32 host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
189 	struct sock *sk;
190 
191 	vsock_addr_init(remote, VMADDR_CID_ANY, VMADDR_PORT_ANY);
192 
193 	while (1) {
194 		/* Wrap around ? */
195 		if (host_ephemeral_port < MIN_HOST_EPHEMERAL_PORT ||
196 		    host_ephemeral_port == VMADDR_PORT_ANY)
197 			host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
198 
199 		remote->svm_port = host_ephemeral_port++;
200 
201 		sk = vsock_find_connected_socket(remote, local);
202 		if (!sk) {
203 			/* Found an available ephemeral port */
204 			return;
205 		}
206 
207 		/* Release refcnt got in vsock_find_connected_socket */
208 		sock_put(sk);
209 	}
210 }
211 
212 static void hvs_set_channel_pending_send_size(struct vmbus_channel *chan)
213 {
214 	set_channel_pending_send_size(chan,
215 				      HVS_PKT_LEN(HVS_SEND_BUF_SIZE));
216 
217 	virt_mb();
218 }
219 
220 static bool hvs_channel_readable(struct vmbus_channel *chan)
221 {
222 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
223 
224 	/* 0-size payload means FIN */
225 	return readable >= HVS_PKT_LEN(0);
226 }
227 
228 static int hvs_channel_readable_payload(struct vmbus_channel *chan)
229 {
230 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
231 
232 	if (readable > HVS_PKT_LEN(0)) {
233 		/* At least we have 1 byte to read. We don't need to return
234 		 * the exact readable bytes: see vsock_stream_recvmsg() ->
235 		 * vsock_stream_has_data().
236 		 */
237 		return 1;
238 	}
239 
240 	if (readable == HVS_PKT_LEN(0)) {
241 		/* 0-size payload means FIN */
242 		return 0;
243 	}
244 
245 	/* No payload or FIN */
246 	return -1;
247 }
248 
249 static size_t hvs_channel_writable_bytes(struct vmbus_channel *chan)
250 {
251 	u32 writeable = hv_get_bytes_to_write(&chan->outbound);
252 	size_t ret;
253 
254 	/* The ringbuffer mustn't be 100% full, and we should reserve a
255 	 * zero-length-payload packet for the FIN: see hv_ringbuffer_write()
256 	 * and hvs_shutdown().
257 	 */
258 	if (writeable <= HVS_PKT_LEN(1) + HVS_PKT_LEN(0))
259 		return 0;
260 
261 	ret = writeable - HVS_PKT_LEN(1) - HVS_PKT_LEN(0);
262 
263 	return round_down(ret, 8);
264 }
265 
266 static int hvs_send_data(struct vmbus_channel *chan,
267 			 struct hvs_send_buf *send_buf, size_t to_write)
268 {
269 	send_buf->hdr.pkt_type = 1;
270 	send_buf->hdr.data_size = to_write;
271 	return vmbus_sendpacket(chan, &send_buf->hdr,
272 				sizeof(send_buf->hdr) + to_write,
273 				0, VM_PKT_DATA_INBAND, 0);
274 }
275 
276 static void hvs_channel_cb(void *ctx)
277 {
278 	struct sock *sk = (struct sock *)ctx;
279 	struct vsock_sock *vsk = vsock_sk(sk);
280 	struct hvsock *hvs = vsk->trans;
281 	struct vmbus_channel *chan = hvs->chan;
282 
283 	if (hvs_channel_readable(chan))
284 		sk->sk_data_ready(sk);
285 
286 	if (hv_get_bytes_to_write(&chan->outbound) > 0)
287 		sk->sk_write_space(sk);
288 }
289 
290 static void hvs_do_close_lock_held(struct vsock_sock *vsk,
291 				   bool cancel_timeout)
292 {
293 	struct sock *sk = sk_vsock(vsk);
294 
295 	sock_set_flag(sk, SOCK_DONE);
296 	vsk->peer_shutdown = SHUTDOWN_MASK;
297 	if (vsock_stream_has_data(vsk) <= 0)
298 		sk->sk_state = TCP_CLOSING;
299 	sk->sk_state_change(sk);
300 	if (vsk->close_work_scheduled &&
301 	    (!cancel_timeout || cancel_delayed_work(&vsk->close_work))) {
302 		vsk->close_work_scheduled = false;
303 		vsock_remove_sock(vsk);
304 
305 		/* Release the reference taken while scheduling the timeout */
306 		sock_put(sk);
307 	}
308 }
309 
310 static void hvs_close_connection(struct vmbus_channel *chan)
311 {
312 	struct sock *sk = get_per_channel_state(chan);
313 
314 	lock_sock(sk);
315 	hvs_do_close_lock_held(vsock_sk(sk), true);
316 	release_sock(sk);
317 
318 	/* Release the refcnt for the channel that's opened in
319 	 * hvs_open_connection().
320 	 */
321 	sock_put(sk);
322 }
323 
324 static void hvs_open_connection(struct vmbus_channel *chan)
325 {
326 	guid_t *if_instance, *if_type;
327 	unsigned char conn_from_host;
328 
329 	struct sockaddr_vm addr;
330 	struct sock *sk, *new = NULL;
331 	struct vsock_sock *vnew = NULL;
332 	struct hvsock *hvs = NULL;
333 	struct hvsock *hvs_new = NULL;
334 	int rcvbuf;
335 	int ret;
336 	int sndbuf;
337 
338 	if_type = &chan->offermsg.offer.if_type;
339 	if_instance = &chan->offermsg.offer.if_instance;
340 	conn_from_host = chan->offermsg.offer.u.pipe.user_def[0];
341 
342 	/* The host or the VM should only listen on a port in
343 	 * [0, MAX_LISTEN_PORT]
344 	 */
345 	if (!is_valid_srv_id(if_type) ||
346 	    get_port_by_srv_id(if_type) > MAX_LISTEN_PORT)
347 		return;
348 
349 	hvs_addr_init(&addr, conn_from_host ? if_type : if_instance);
350 	sk = vsock_find_bound_socket(&addr);
351 	if (!sk)
352 		return;
353 
354 	lock_sock(sk);
355 	if ((conn_from_host && sk->sk_state != TCP_LISTEN) ||
356 	    (!conn_from_host && sk->sk_state != TCP_SYN_SENT))
357 		goto out;
358 
359 	if (conn_from_host) {
360 		if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog)
361 			goto out;
362 
363 		new = vsock_create_connected(sk);
364 		if (!new)
365 			goto out;
366 
367 		new->sk_state = TCP_SYN_SENT;
368 		vnew = vsock_sk(new);
369 		hvs_new = vnew->trans;
370 		hvs_new->chan = chan;
371 	} else {
372 		hvs = vsock_sk(sk)->trans;
373 		hvs->chan = chan;
374 	}
375 
376 	set_channel_read_mode(chan, HV_CALL_DIRECT);
377 
378 	/* Use the socket buffer sizes as hints for the VMBUS ring size. For
379 	 * server side sockets, 'sk' is the parent socket and thus, this will
380 	 * allow the child sockets to inherit the size from the parent. Keep
381 	 * the mins to the default value and align to page size as per VMBUS
382 	 * requirements.
383 	 * For the max, the socket core library will limit the socket buffer
384 	 * size that can be set by the user, but, since currently, the hv_sock
385 	 * VMBUS ring buffer is physically contiguous allocation, restrict it
386 	 * further.
387 	 * Older versions of hv_sock host side code cannot handle bigger VMBUS
388 	 * ring buffer size. Use the version number to limit the change to newer
389 	 * versions.
390 	 */
391 	if (vmbus_proto_version < VERSION_WIN10_V5) {
392 		sndbuf = RINGBUFFER_HVS_SND_SIZE;
393 		rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
394 	} else {
395 		sndbuf = max_t(int, sk->sk_sndbuf, RINGBUFFER_HVS_SND_SIZE);
396 		sndbuf = min_t(int, sndbuf, RINGBUFFER_HVS_MAX_SIZE);
397 		sndbuf = ALIGN(sndbuf, HV_HYP_PAGE_SIZE);
398 		rcvbuf = max_t(int, sk->sk_rcvbuf, RINGBUFFER_HVS_RCV_SIZE);
399 		rcvbuf = min_t(int, rcvbuf, RINGBUFFER_HVS_MAX_SIZE);
400 		rcvbuf = ALIGN(rcvbuf, HV_HYP_PAGE_SIZE);
401 	}
402 
403 	ret = vmbus_open(chan, sndbuf, rcvbuf, NULL, 0, hvs_channel_cb,
404 			 conn_from_host ? new : sk);
405 	if (ret != 0) {
406 		if (conn_from_host) {
407 			hvs_new->chan = NULL;
408 			sock_put(new);
409 		} else {
410 			hvs->chan = NULL;
411 		}
412 		goto out;
413 	}
414 
415 	set_per_channel_state(chan, conn_from_host ? new : sk);
416 
417 	/* This reference will be dropped by hvs_close_connection(). */
418 	sock_hold(conn_from_host ? new : sk);
419 	vmbus_set_chn_rescind_callback(chan, hvs_close_connection);
420 
421 	/* Set the pending send size to max packet size to always get
422 	 * notifications from the host when there is enough writable space.
423 	 * The host is optimized to send notifications only when the pending
424 	 * size boundary is crossed, and not always.
425 	 */
426 	hvs_set_channel_pending_send_size(chan);
427 
428 	if (conn_from_host) {
429 		new->sk_state = TCP_ESTABLISHED;
430 		sk_acceptq_added(sk);
431 
432 		hvs_addr_init(&vnew->local_addr, if_type);
433 		hvs_remote_addr_init(&vnew->remote_addr, &vnew->local_addr);
434 
435 		hvs_new->vm_srv_id = *if_type;
436 		hvs_new->host_srv_id = *if_instance;
437 
438 		vsock_insert_connected(vnew);
439 
440 		vsock_enqueue_accept(sk, new);
441 	} else {
442 		sk->sk_state = TCP_ESTABLISHED;
443 		sk->sk_socket->state = SS_CONNECTED;
444 
445 		vsock_insert_connected(vsock_sk(sk));
446 	}
447 
448 	sk->sk_state_change(sk);
449 
450 out:
451 	/* Release refcnt obtained when we called vsock_find_bound_socket() */
452 	sock_put(sk);
453 
454 	release_sock(sk);
455 }
456 
457 static u32 hvs_get_local_cid(void)
458 {
459 	return VMADDR_CID_ANY;
460 }
461 
462 static int hvs_sock_init(struct vsock_sock *vsk, struct vsock_sock *psk)
463 {
464 	struct hvsock *hvs;
465 	struct sock *sk = sk_vsock(vsk);
466 
467 	hvs = kzalloc(sizeof(*hvs), GFP_KERNEL);
468 	if (!hvs)
469 		return -ENOMEM;
470 
471 	vsk->trans = hvs;
472 	hvs->vsk = vsk;
473 	sk->sk_sndbuf = RINGBUFFER_HVS_SND_SIZE;
474 	sk->sk_rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
475 	return 0;
476 }
477 
478 static int hvs_connect(struct vsock_sock *vsk)
479 {
480 	union hvs_service_id vm, host;
481 	struct hvsock *h = vsk->trans;
482 
483 	vm.srv_id = srv_id_template;
484 	vm.svm_port = vsk->local_addr.svm_port;
485 	h->vm_srv_id = vm.srv_id;
486 
487 	host.srv_id = srv_id_template;
488 	host.svm_port = vsk->remote_addr.svm_port;
489 	h->host_srv_id = host.srv_id;
490 
491 	return vmbus_send_tl_connect_request(&h->vm_srv_id, &h->host_srv_id);
492 }
493 
494 static void hvs_shutdown_lock_held(struct hvsock *hvs, int mode)
495 {
496 	struct vmpipe_proto_header hdr;
497 
498 	if (hvs->fin_sent || !hvs->chan)
499 		return;
500 
501 	/* It can't fail: see hvs_channel_writable_bytes(). */
502 	(void)hvs_send_data(hvs->chan, (struct hvs_send_buf *)&hdr, 0);
503 	hvs->fin_sent = true;
504 }
505 
506 static int hvs_shutdown(struct vsock_sock *vsk, int mode)
507 {
508 	struct sock *sk = sk_vsock(vsk);
509 
510 	if (!(mode & SEND_SHUTDOWN))
511 		return 0;
512 
513 	lock_sock(sk);
514 	hvs_shutdown_lock_held(vsk->trans, mode);
515 	release_sock(sk);
516 	return 0;
517 }
518 
519 static void hvs_close_timeout(struct work_struct *work)
520 {
521 	struct vsock_sock *vsk =
522 		container_of(work, struct vsock_sock, close_work.work);
523 	struct sock *sk = sk_vsock(vsk);
524 
525 	sock_hold(sk);
526 	lock_sock(sk);
527 	if (!sock_flag(sk, SOCK_DONE))
528 		hvs_do_close_lock_held(vsk, false);
529 
530 	vsk->close_work_scheduled = false;
531 	release_sock(sk);
532 	sock_put(sk);
533 }
534 
535 /* Returns true, if it is safe to remove socket; false otherwise */
536 static bool hvs_close_lock_held(struct vsock_sock *vsk)
537 {
538 	struct sock *sk = sk_vsock(vsk);
539 
540 	if (!(sk->sk_state == TCP_ESTABLISHED ||
541 	      sk->sk_state == TCP_CLOSING))
542 		return true;
543 
544 	if ((sk->sk_shutdown & SHUTDOWN_MASK) != SHUTDOWN_MASK)
545 		hvs_shutdown_lock_held(vsk->trans, SHUTDOWN_MASK);
546 
547 	if (sock_flag(sk, SOCK_DONE))
548 		return true;
549 
550 	/* This reference will be dropped by the delayed close routine */
551 	sock_hold(sk);
552 	INIT_DELAYED_WORK(&vsk->close_work, hvs_close_timeout);
553 	vsk->close_work_scheduled = true;
554 	schedule_delayed_work(&vsk->close_work, HVS_CLOSE_TIMEOUT);
555 	return false;
556 }
557 
558 static void hvs_release(struct vsock_sock *vsk)
559 {
560 	struct sock *sk = sk_vsock(vsk);
561 	bool remove_sock;
562 
563 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
564 	remove_sock = hvs_close_lock_held(vsk);
565 	release_sock(sk);
566 	if (remove_sock)
567 		vsock_remove_sock(vsk);
568 }
569 
570 static void hvs_destruct(struct vsock_sock *vsk)
571 {
572 	struct hvsock *hvs = vsk->trans;
573 	struct vmbus_channel *chan = hvs->chan;
574 
575 	if (chan)
576 		vmbus_hvsock_device_unregister(chan);
577 
578 	kfree(hvs);
579 }
580 
581 static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)
582 {
583 	return -EOPNOTSUPP;
584 }
585 
586 static int hvs_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
587 			     size_t len, int flags)
588 {
589 	return -EOPNOTSUPP;
590 }
591 
592 static int hvs_dgram_enqueue(struct vsock_sock *vsk,
593 			     struct sockaddr_vm *remote, struct msghdr *msg,
594 			     size_t dgram_len)
595 {
596 	return -EOPNOTSUPP;
597 }
598 
599 static bool hvs_dgram_allow(u32 cid, u32 port)
600 {
601 	return false;
602 }
603 
604 static int hvs_update_recv_data(struct hvsock *hvs)
605 {
606 	struct hvs_recv_buf *recv_buf;
607 	u32 payload_len;
608 
609 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
610 	payload_len = recv_buf->hdr.data_size;
611 
612 	if (payload_len > HVS_MTU_SIZE)
613 		return -EIO;
614 
615 	if (payload_len == 0)
616 		hvs->vsk->peer_shutdown |= SEND_SHUTDOWN;
617 
618 	hvs->recv_data_len = payload_len;
619 	hvs->recv_data_off = 0;
620 
621 	return 0;
622 }
623 
624 static ssize_t hvs_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
625 				  size_t len, int flags)
626 {
627 	struct hvsock *hvs = vsk->trans;
628 	bool need_refill = !hvs->recv_desc;
629 	struct hvs_recv_buf *recv_buf;
630 	u32 to_read;
631 	int ret;
632 
633 	if (flags & MSG_PEEK)
634 		return -EOPNOTSUPP;
635 
636 	if (need_refill) {
637 		hvs->recv_desc = hv_pkt_iter_first(hvs->chan);
638 		ret = hvs_update_recv_data(hvs);
639 		if (ret)
640 			return ret;
641 	}
642 
643 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
644 	to_read = min_t(u32, len, hvs->recv_data_len);
645 	ret = memcpy_to_msg(msg, recv_buf->data + hvs->recv_data_off, to_read);
646 	if (ret != 0)
647 		return ret;
648 
649 	hvs->recv_data_len -= to_read;
650 	if (hvs->recv_data_len == 0) {
651 		hvs->recv_desc = hv_pkt_iter_next(hvs->chan, hvs->recv_desc);
652 		if (hvs->recv_desc) {
653 			ret = hvs_update_recv_data(hvs);
654 			if (ret)
655 				return ret;
656 		}
657 	} else {
658 		hvs->recv_data_off += to_read;
659 	}
660 
661 	return to_read;
662 }
663 
664 static ssize_t hvs_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg,
665 				  size_t len)
666 {
667 	struct hvsock *hvs = vsk->trans;
668 	struct vmbus_channel *chan = hvs->chan;
669 	struct hvs_send_buf *send_buf;
670 	ssize_t to_write, max_writable;
671 	ssize_t ret = 0;
672 	ssize_t bytes_written = 0;
673 
674 	BUILD_BUG_ON(sizeof(*send_buf) != HV_HYP_PAGE_SIZE);
675 
676 	send_buf = kmalloc(sizeof(*send_buf), GFP_KERNEL);
677 	if (!send_buf)
678 		return -ENOMEM;
679 
680 	/* Reader(s) could be draining data from the channel as we write.
681 	 * Maximize bandwidth, by iterating until the channel is found to be
682 	 * full.
683 	 */
684 	while (len) {
685 		max_writable = hvs_channel_writable_bytes(chan);
686 		if (!max_writable)
687 			break;
688 		to_write = min_t(ssize_t, len, max_writable);
689 		to_write = min_t(ssize_t, to_write, HVS_SEND_BUF_SIZE);
690 		/* memcpy_from_msg is safe for loop as it advances the offsets
691 		 * within the message iterator.
692 		 */
693 		ret = memcpy_from_msg(send_buf->data, msg, to_write);
694 		if (ret < 0)
695 			goto out;
696 
697 		ret = hvs_send_data(hvs->chan, send_buf, to_write);
698 		if (ret < 0)
699 			goto out;
700 
701 		bytes_written += to_write;
702 		len -= to_write;
703 	}
704 out:
705 	/* If any data has been sent, return that */
706 	if (bytes_written)
707 		ret = bytes_written;
708 	kfree(send_buf);
709 	return ret;
710 }
711 
712 static s64 hvs_stream_has_data(struct vsock_sock *vsk)
713 {
714 	struct hvsock *hvs = vsk->trans;
715 	s64 ret;
716 
717 	if (hvs->recv_data_len > 0)
718 		return 1;
719 
720 	switch (hvs_channel_readable_payload(hvs->chan)) {
721 	case 1:
722 		ret = 1;
723 		break;
724 	case 0:
725 		vsk->peer_shutdown |= SEND_SHUTDOWN;
726 		ret = 0;
727 		break;
728 	default: /* -1 */
729 		ret = 0;
730 		break;
731 	}
732 
733 	return ret;
734 }
735 
736 static s64 hvs_stream_has_space(struct vsock_sock *vsk)
737 {
738 	struct hvsock *hvs = vsk->trans;
739 
740 	return hvs_channel_writable_bytes(hvs->chan);
741 }
742 
743 static u64 hvs_stream_rcvhiwat(struct vsock_sock *vsk)
744 {
745 	return HVS_MTU_SIZE + 1;
746 }
747 
748 static bool hvs_stream_is_active(struct vsock_sock *vsk)
749 {
750 	struct hvsock *hvs = vsk->trans;
751 
752 	return hvs->chan != NULL;
753 }
754 
755 static bool hvs_stream_allow(u32 cid, u32 port)
756 {
757 	/* The host's port range [MIN_HOST_EPHEMERAL_PORT, 0xFFFFFFFF) is
758 	 * reserved as ephemeral ports, which are used as the host's ports
759 	 * when the host initiates connections.
760 	 *
761 	 * Perform this check in the guest so an immediate error is produced
762 	 * instead of a timeout.
763 	 */
764 	if (port > MAX_HOST_LISTEN_PORT)
765 		return false;
766 
767 	if (cid == VMADDR_CID_HOST)
768 		return true;
769 
770 	return false;
771 }
772 
773 static
774 int hvs_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *readable)
775 {
776 	struct hvsock *hvs = vsk->trans;
777 
778 	*readable = hvs_channel_readable(hvs->chan);
779 	return 0;
780 }
781 
782 static
783 int hvs_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *writable)
784 {
785 	*writable = hvs_stream_has_space(vsk) > 0;
786 
787 	return 0;
788 }
789 
790 static
791 int hvs_notify_recv_init(struct vsock_sock *vsk, size_t target,
792 			 struct vsock_transport_recv_notify_data *d)
793 {
794 	return 0;
795 }
796 
797 static
798 int hvs_notify_recv_pre_block(struct vsock_sock *vsk, size_t target,
799 			      struct vsock_transport_recv_notify_data *d)
800 {
801 	return 0;
802 }
803 
804 static
805 int hvs_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target,
806 				struct vsock_transport_recv_notify_data *d)
807 {
808 	return 0;
809 }
810 
811 static
812 int hvs_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target,
813 				 ssize_t copied, bool data_read,
814 				 struct vsock_transport_recv_notify_data *d)
815 {
816 	return 0;
817 }
818 
819 static
820 int hvs_notify_send_init(struct vsock_sock *vsk,
821 			 struct vsock_transport_send_notify_data *d)
822 {
823 	return 0;
824 }
825 
826 static
827 int hvs_notify_send_pre_block(struct vsock_sock *vsk,
828 			      struct vsock_transport_send_notify_data *d)
829 {
830 	return 0;
831 }
832 
833 static
834 int hvs_notify_send_pre_enqueue(struct vsock_sock *vsk,
835 				struct vsock_transport_send_notify_data *d)
836 {
837 	return 0;
838 }
839 
840 static
841 int hvs_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written,
842 				 struct vsock_transport_send_notify_data *d)
843 {
844 	return 0;
845 }
846 
847 static struct vsock_transport hvs_transport = {
848 	.get_local_cid            = hvs_get_local_cid,
849 
850 	.init                     = hvs_sock_init,
851 	.destruct                 = hvs_destruct,
852 	.release                  = hvs_release,
853 	.connect                  = hvs_connect,
854 	.shutdown                 = hvs_shutdown,
855 
856 	.dgram_bind               = hvs_dgram_bind,
857 	.dgram_dequeue            = hvs_dgram_dequeue,
858 	.dgram_enqueue            = hvs_dgram_enqueue,
859 	.dgram_allow              = hvs_dgram_allow,
860 
861 	.stream_dequeue           = hvs_stream_dequeue,
862 	.stream_enqueue           = hvs_stream_enqueue,
863 	.stream_has_data          = hvs_stream_has_data,
864 	.stream_has_space         = hvs_stream_has_space,
865 	.stream_rcvhiwat          = hvs_stream_rcvhiwat,
866 	.stream_is_active         = hvs_stream_is_active,
867 	.stream_allow             = hvs_stream_allow,
868 
869 	.notify_poll_in           = hvs_notify_poll_in,
870 	.notify_poll_out          = hvs_notify_poll_out,
871 	.notify_recv_init         = hvs_notify_recv_init,
872 	.notify_recv_pre_block    = hvs_notify_recv_pre_block,
873 	.notify_recv_pre_dequeue  = hvs_notify_recv_pre_dequeue,
874 	.notify_recv_post_dequeue = hvs_notify_recv_post_dequeue,
875 	.notify_send_init         = hvs_notify_send_init,
876 	.notify_send_pre_block    = hvs_notify_send_pre_block,
877 	.notify_send_pre_enqueue  = hvs_notify_send_pre_enqueue,
878 	.notify_send_post_enqueue = hvs_notify_send_post_enqueue,
879 
880 };
881 
882 static int hvs_probe(struct hv_device *hdev,
883 		     const struct hv_vmbus_device_id *dev_id)
884 {
885 	struct vmbus_channel *chan = hdev->channel;
886 
887 	hvs_open_connection(chan);
888 
889 	/* Always return success to suppress the unnecessary error message
890 	 * in vmbus_probe(): on error the host will rescind the device in
891 	 * 30 seconds and we can do cleanup at that time in
892 	 * vmbus_onoffer_rescind().
893 	 */
894 	return 0;
895 }
896 
897 static int hvs_remove(struct hv_device *hdev)
898 {
899 	struct vmbus_channel *chan = hdev->channel;
900 
901 	vmbus_close(chan);
902 
903 	return 0;
904 }
905 
906 /* This isn't really used. See vmbus_match() and vmbus_probe() */
907 static const struct hv_vmbus_device_id id_table[] = {
908 	{},
909 };
910 
911 static struct hv_driver hvs_drv = {
912 	.name		= "hv_sock",
913 	.hvsock		= true,
914 	.id_table	= id_table,
915 	.probe		= hvs_probe,
916 	.remove		= hvs_remove,
917 };
918 
919 static int __init hvs_init(void)
920 {
921 	int ret;
922 
923 	if (vmbus_proto_version < VERSION_WIN10)
924 		return -ENODEV;
925 
926 	ret = vmbus_driver_register(&hvs_drv);
927 	if (ret != 0)
928 		return ret;
929 
930 	ret = vsock_core_init(&hvs_transport);
931 	if (ret) {
932 		vmbus_driver_unregister(&hvs_drv);
933 		return ret;
934 	}
935 
936 	return 0;
937 }
938 
939 static void __exit hvs_exit(void)
940 {
941 	vsock_core_exit();
942 	vmbus_driver_unregister(&hvs_drv);
943 }
944 
945 module_init(hvs_init);
946 module_exit(hvs_exit);
947 
948 MODULE_DESCRIPTION("Hyper-V Sockets");
949 MODULE_VERSION("1.0.0");
950 MODULE_LICENSE("GPL");
951 MODULE_ALIAS_NETPROTO(PF_VSOCK);
952