1 /*
2  * Hyper-V transport for vsock
3  *
4  * Hyper-V Sockets supplies a byte-stream based communication mechanism
5  * between the host and the VM. This driver implements the necessary
6  * support in the VM by introducing the new vsock transport.
7  *
8  * Copyright (c) 2017, Microsoft Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  */
20 #include <linux/module.h>
21 #include <linux/vmalloc.h>
22 #include <linux/hyperv.h>
23 #include <net/sock.h>
24 #include <net/af_vsock.h>
25 
26 /* Older (VMBUS version 'VERSION_WIN10' or before) Windows hosts have some
27  * stricter requirements on the hv_sock ring buffer size of six 4K pages. Newer
28  * hosts don't have this limitation; but, keep the defaults the same for compat.
29  */
30 #define PAGE_SIZE_4K		4096
31 #define RINGBUFFER_HVS_RCV_SIZE (PAGE_SIZE_4K * 6)
32 #define RINGBUFFER_HVS_SND_SIZE (PAGE_SIZE_4K * 6)
33 #define RINGBUFFER_HVS_MAX_SIZE (PAGE_SIZE_4K * 64)
34 
35 /* The MTU is 16KB per the host side's design */
36 #define HVS_MTU_SIZE		(1024 * 16)
37 
38 /* How long to wait for graceful shutdown of a connection */
39 #define HVS_CLOSE_TIMEOUT (8 * HZ)
40 
41 struct vmpipe_proto_header {
42 	u32 pkt_type;
43 	u32 data_size;
44 };
45 
46 /* For recv, we use the VMBus in-place packet iterator APIs to directly copy
47  * data from the ringbuffer into the userspace buffer.
48  */
49 struct hvs_recv_buf {
50 	/* The header before the payload data */
51 	struct vmpipe_proto_header hdr;
52 
53 	/* The payload */
54 	u8 data[HVS_MTU_SIZE];
55 };
56 
57 /* We can send up to HVS_MTU_SIZE bytes of payload to the host, but let's use
58  * a smaller size, i.e. HVS_SEND_BUF_SIZE, to maximize concurrency between the
59  * guest and the host processing as one VMBUS packet is the smallest processing
60  * unit.
61  *
62  * Note: the buffer can be eliminated in the future when we add new VMBus
63  * ringbuffer APIs that allow us to directly copy data from userspace buffer
64  * to VMBus ringbuffer.
65  */
66 #define HVS_SEND_BUF_SIZE (PAGE_SIZE_4K - sizeof(struct vmpipe_proto_header))
67 
68 struct hvs_send_buf {
69 	/* The header before the payload data */
70 	struct vmpipe_proto_header hdr;
71 
72 	/* The payload */
73 	u8 data[HVS_SEND_BUF_SIZE];
74 };
75 
76 #define HVS_HEADER_LEN	(sizeof(struct vmpacket_descriptor) + \
77 			 sizeof(struct vmpipe_proto_header))
78 
79 /* See 'prev_indices' in hv_ringbuffer_read(), hv_ringbuffer_write(), and
80  * __hv_pkt_iter_next().
81  */
82 #define VMBUS_PKT_TRAILER_SIZE	(sizeof(u64))
83 
84 #define HVS_PKT_LEN(payload_len)	(HVS_HEADER_LEN + \
85 					 ALIGN((payload_len), 8) + \
86 					 VMBUS_PKT_TRAILER_SIZE)
87 
88 union hvs_service_id {
89 	uuid_le	srv_id;
90 
91 	struct {
92 		unsigned int svm_port;
93 		unsigned char b[sizeof(uuid_le) - sizeof(unsigned int)];
94 	};
95 };
96 
97 /* Per-socket state (accessed via vsk->trans) */
98 struct hvsock {
99 	struct vsock_sock *vsk;
100 
101 	uuid_le vm_srv_id;
102 	uuid_le host_srv_id;
103 
104 	struct vmbus_channel *chan;
105 	struct vmpacket_descriptor *recv_desc;
106 
107 	/* The length of the payload not delivered to userland yet */
108 	u32 recv_data_len;
109 	/* The offset of the payload */
110 	u32 recv_data_off;
111 
112 	/* Have we sent the zero-length packet (FIN)? */
113 	bool fin_sent;
114 };
115 
116 /* In the VM, we support Hyper-V Sockets with AF_VSOCK, and the endpoint is
117  * <cid, port> (see struct sockaddr_vm). Note: cid is not really used here:
118  * when we write apps to connect to the host, we can only use VMADDR_CID_ANY
119  * or VMADDR_CID_HOST (both are equivalent) as the remote cid, and when we
120  * write apps to bind() & listen() in the VM, we can only use VMADDR_CID_ANY
121  * as the local cid.
122  *
123  * On the host, Hyper-V Sockets are supported by Winsock AF_HYPERV:
124  * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-
125  * guide/make-integration-service, and the endpoint is <VmID, ServiceId> with
126  * the below sockaddr:
127  *
128  * struct SOCKADDR_HV
129  * {
130  *    ADDRESS_FAMILY Family;
131  *    USHORT Reserved;
132  *    GUID VmId;
133  *    GUID ServiceId;
134  * };
135  * Note: VmID is not used by Linux VM and actually it isn't transmitted via
136  * VMBus, because here it's obvious the host and the VM can easily identify
137  * each other. Though the VmID is useful on the host, especially in the case
138  * of Windows container, Linux VM doesn't need it at all.
139  *
140  * To make use of the AF_VSOCK infrastructure in Linux VM, we have to limit
141  * the available GUID space of SOCKADDR_HV so that we can create a mapping
142  * between AF_VSOCK port and SOCKADDR_HV Service GUID. The rule of writing
143  * Hyper-V Sockets apps on the host and in Linux VM is:
144  *
145  ****************************************************************************
146  * The only valid Service GUIDs, from the perspectives of both the host and *
147  * Linux VM, that can be connected by the other end, must conform to this   *
148  * format: <port>-facb-11e6-bd58-64006a7986d3, and the "port" must be in    *
149  * this range [0, 0x7FFFFFFF].                                              *
150  ****************************************************************************
151  *
152  * When we write apps on the host to connect(), the GUID ServiceID is used.
153  * When we write apps in Linux VM to connect(), we only need to specify the
154  * port and the driver will form the GUID and use that to request the host.
155  *
156  * From the perspective of Linux VM:
157  * 1. the local ephemeral port (i.e. the local auto-bound port when we call
158  * connect() without explicit bind()) is generated by __vsock_bind_stream(),
159  * and the range is [1024, 0xFFFFFFFF).
160  * 2. the remote ephemeral port (i.e. the auto-generated remote port for
161  * a connect request initiated by the host's connect()) is generated by
162  * hvs_remote_addr_init() and the range is [0x80000000, 0xFFFFFFFF).
163  */
164 
165 #define MAX_LISTEN_PORT			((u32)0x7FFFFFFF)
166 #define MAX_VM_LISTEN_PORT		MAX_LISTEN_PORT
167 #define MAX_HOST_LISTEN_PORT		MAX_LISTEN_PORT
168 #define MIN_HOST_EPHEMERAL_PORT		(MAX_HOST_LISTEN_PORT + 1)
169 
170 /* 00000000-facb-11e6-bd58-64006a7986d3 */
171 static const uuid_le srv_id_template =
172 	UUID_LE(0x00000000, 0xfacb, 0x11e6, 0xbd, 0x58,
173 		0x64, 0x00, 0x6a, 0x79, 0x86, 0xd3);
174 
175 static bool is_valid_srv_id(const uuid_le *id)
176 {
177 	return !memcmp(&id->b[4], &srv_id_template.b[4], sizeof(uuid_le) - 4);
178 }
179 
180 static unsigned int get_port_by_srv_id(const uuid_le *svr_id)
181 {
182 	return *((unsigned int *)svr_id);
183 }
184 
185 static void hvs_addr_init(struct sockaddr_vm *addr, const uuid_le *svr_id)
186 {
187 	unsigned int port = get_port_by_srv_id(svr_id);
188 
189 	vsock_addr_init(addr, VMADDR_CID_ANY, port);
190 }
191 
192 static void hvs_remote_addr_init(struct sockaddr_vm *remote,
193 				 struct sockaddr_vm *local)
194 {
195 	static u32 host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
196 	struct sock *sk;
197 
198 	vsock_addr_init(remote, VMADDR_CID_ANY, VMADDR_PORT_ANY);
199 
200 	while (1) {
201 		/* Wrap around ? */
202 		if (host_ephemeral_port < MIN_HOST_EPHEMERAL_PORT ||
203 		    host_ephemeral_port == VMADDR_PORT_ANY)
204 			host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
205 
206 		remote->svm_port = host_ephemeral_port++;
207 
208 		sk = vsock_find_connected_socket(remote, local);
209 		if (!sk) {
210 			/* Found an available ephemeral port */
211 			return;
212 		}
213 
214 		/* Release refcnt got in vsock_find_connected_socket */
215 		sock_put(sk);
216 	}
217 }
218 
219 static void hvs_set_channel_pending_send_size(struct vmbus_channel *chan)
220 {
221 	set_channel_pending_send_size(chan,
222 				      HVS_PKT_LEN(HVS_SEND_BUF_SIZE));
223 
224 	/* See hvs_stream_has_space(): we must make sure the host has seen
225 	 * the new pending send size, before we can re-check the writable
226 	 * bytes.
227 	 */
228 	virt_mb();
229 }
230 
231 static void hvs_clear_channel_pending_send_size(struct vmbus_channel *chan)
232 {
233 	set_channel_pending_send_size(chan, 0);
234 
235 	/* Ditto */
236 	virt_mb();
237 }
238 
239 static bool hvs_channel_readable(struct vmbus_channel *chan)
240 {
241 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
242 
243 	/* 0-size payload means FIN */
244 	return readable >= HVS_PKT_LEN(0);
245 }
246 
247 static int hvs_channel_readable_payload(struct vmbus_channel *chan)
248 {
249 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
250 
251 	if (readable > HVS_PKT_LEN(0)) {
252 		/* At least we have 1 byte to read. We don't need to return
253 		 * the exact readable bytes: see vsock_stream_recvmsg() ->
254 		 * vsock_stream_has_data().
255 		 */
256 		return 1;
257 	}
258 
259 	if (readable == HVS_PKT_LEN(0)) {
260 		/* 0-size payload means FIN */
261 		return 0;
262 	}
263 
264 	/* No payload or FIN */
265 	return -1;
266 }
267 
268 static size_t hvs_channel_writable_bytes(struct vmbus_channel *chan)
269 {
270 	u32 writeable = hv_get_bytes_to_write(&chan->outbound);
271 	size_t ret;
272 
273 	/* The ringbuffer mustn't be 100% full, and we should reserve a
274 	 * zero-length-payload packet for the FIN: see hv_ringbuffer_write()
275 	 * and hvs_shutdown().
276 	 */
277 	if (writeable <= HVS_PKT_LEN(1) + HVS_PKT_LEN(0))
278 		return 0;
279 
280 	ret = writeable - HVS_PKT_LEN(1) - HVS_PKT_LEN(0);
281 
282 	return round_down(ret, 8);
283 }
284 
285 static int hvs_send_data(struct vmbus_channel *chan,
286 			 struct hvs_send_buf *send_buf, size_t to_write)
287 {
288 	send_buf->hdr.pkt_type = 1;
289 	send_buf->hdr.data_size = to_write;
290 	return vmbus_sendpacket(chan, &send_buf->hdr,
291 				sizeof(send_buf->hdr) + to_write,
292 				0, VM_PKT_DATA_INBAND, 0);
293 }
294 
295 static void hvs_channel_cb(void *ctx)
296 {
297 	struct sock *sk = (struct sock *)ctx;
298 	struct vsock_sock *vsk = vsock_sk(sk);
299 	struct hvsock *hvs = vsk->trans;
300 	struct vmbus_channel *chan = hvs->chan;
301 
302 	if (hvs_channel_readable(chan))
303 		sk->sk_data_ready(sk);
304 
305 	/* See hvs_stream_has_space(): when we reach here, the writable bytes
306 	 * may be already less than HVS_PKT_LEN(HVS_SEND_BUF_SIZE).
307 	 */
308 	if (hv_get_bytes_to_write(&chan->outbound) > 0)
309 		sk->sk_write_space(sk);
310 }
311 
312 static void hvs_do_close_lock_held(struct vsock_sock *vsk,
313 				   bool cancel_timeout)
314 {
315 	struct sock *sk = sk_vsock(vsk);
316 
317 	sock_set_flag(sk, SOCK_DONE);
318 	vsk->peer_shutdown = SHUTDOWN_MASK;
319 	if (vsock_stream_has_data(vsk) <= 0)
320 		sk->sk_state = TCP_CLOSING;
321 	sk->sk_state_change(sk);
322 	if (vsk->close_work_scheduled &&
323 	    (!cancel_timeout || cancel_delayed_work(&vsk->close_work))) {
324 		vsk->close_work_scheduled = false;
325 		vsock_remove_sock(vsk);
326 
327 		/* Release the reference taken while scheduling the timeout */
328 		sock_put(sk);
329 	}
330 }
331 
332 static void hvs_close_connection(struct vmbus_channel *chan)
333 {
334 	struct sock *sk = get_per_channel_state(chan);
335 
336 	lock_sock(sk);
337 	hvs_do_close_lock_held(vsock_sk(sk), true);
338 	release_sock(sk);
339 }
340 
341 static void hvs_open_connection(struct vmbus_channel *chan)
342 {
343 	uuid_le *if_instance, *if_type;
344 	unsigned char conn_from_host;
345 
346 	struct sockaddr_vm addr;
347 	struct sock *sk, *new = NULL;
348 	struct vsock_sock *vnew = NULL;
349 	struct hvsock *hvs = NULL;
350 	struct hvsock *hvs_new = NULL;
351 	int rcvbuf;
352 	int ret;
353 	int sndbuf;
354 
355 	if_type = &chan->offermsg.offer.if_type;
356 	if_instance = &chan->offermsg.offer.if_instance;
357 	conn_from_host = chan->offermsg.offer.u.pipe.user_def[0];
358 
359 	/* The host or the VM should only listen on a port in
360 	 * [0, MAX_LISTEN_PORT]
361 	 */
362 	if (!is_valid_srv_id(if_type) ||
363 	    get_port_by_srv_id(if_type) > MAX_LISTEN_PORT)
364 		return;
365 
366 	hvs_addr_init(&addr, conn_from_host ? if_type : if_instance);
367 	sk = vsock_find_bound_socket(&addr);
368 	if (!sk)
369 		return;
370 
371 	lock_sock(sk);
372 	if ((conn_from_host && sk->sk_state != TCP_LISTEN) ||
373 	    (!conn_from_host && sk->sk_state != TCP_SYN_SENT))
374 		goto out;
375 
376 	if (conn_from_host) {
377 		if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog)
378 			goto out;
379 
380 		new = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
381 				     sk->sk_type, 0);
382 		if (!new)
383 			goto out;
384 
385 		new->sk_state = TCP_SYN_SENT;
386 		vnew = vsock_sk(new);
387 		hvs_new = vnew->trans;
388 		hvs_new->chan = chan;
389 	} else {
390 		hvs = vsock_sk(sk)->trans;
391 		hvs->chan = chan;
392 	}
393 
394 	set_channel_read_mode(chan, HV_CALL_DIRECT);
395 
396 	/* Use the socket buffer sizes as hints for the VMBUS ring size. For
397 	 * server side sockets, 'sk' is the parent socket and thus, this will
398 	 * allow the child sockets to inherit the size from the parent. Keep
399 	 * the mins to the default value and align to page size as per VMBUS
400 	 * requirements.
401 	 * For the max, the socket core library will limit the socket buffer
402 	 * size that can be set by the user, but, since currently, the hv_sock
403 	 * VMBUS ring buffer is physically contiguous allocation, restrict it
404 	 * further.
405 	 * Older versions of hv_sock host side code cannot handle bigger VMBUS
406 	 * ring buffer size. Use the version number to limit the change to newer
407 	 * versions.
408 	 */
409 	if (vmbus_proto_version < VERSION_WIN10_V5) {
410 		sndbuf = RINGBUFFER_HVS_SND_SIZE;
411 		rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
412 	} else {
413 		sndbuf = max_t(int, sk->sk_sndbuf, RINGBUFFER_HVS_SND_SIZE);
414 		sndbuf = min_t(int, sndbuf, RINGBUFFER_HVS_MAX_SIZE);
415 		sndbuf = ALIGN(sndbuf, PAGE_SIZE);
416 		rcvbuf = max_t(int, sk->sk_rcvbuf, RINGBUFFER_HVS_RCV_SIZE);
417 		rcvbuf = min_t(int, rcvbuf, RINGBUFFER_HVS_MAX_SIZE);
418 		rcvbuf = ALIGN(rcvbuf, PAGE_SIZE);
419 	}
420 
421 	ret = vmbus_open(chan, sndbuf, rcvbuf, NULL, 0, hvs_channel_cb,
422 			 conn_from_host ? new : sk);
423 	if (ret != 0) {
424 		if (conn_from_host) {
425 			hvs_new->chan = NULL;
426 			sock_put(new);
427 		} else {
428 			hvs->chan = NULL;
429 		}
430 		goto out;
431 	}
432 
433 	set_per_channel_state(chan, conn_from_host ? new : sk);
434 	vmbus_set_chn_rescind_callback(chan, hvs_close_connection);
435 
436 	if (conn_from_host) {
437 		new->sk_state = TCP_ESTABLISHED;
438 		sk->sk_ack_backlog++;
439 
440 		hvs_addr_init(&vnew->local_addr, if_type);
441 		hvs_remote_addr_init(&vnew->remote_addr, &vnew->local_addr);
442 
443 		hvs_new->vm_srv_id = *if_type;
444 		hvs_new->host_srv_id = *if_instance;
445 
446 		vsock_insert_connected(vnew);
447 
448 		vsock_enqueue_accept(sk, new);
449 	} else {
450 		sk->sk_state = TCP_ESTABLISHED;
451 		sk->sk_socket->state = SS_CONNECTED;
452 
453 		vsock_insert_connected(vsock_sk(sk));
454 	}
455 
456 	sk->sk_state_change(sk);
457 
458 out:
459 	/* Release refcnt obtained when we called vsock_find_bound_socket() */
460 	sock_put(sk);
461 
462 	release_sock(sk);
463 }
464 
465 static u32 hvs_get_local_cid(void)
466 {
467 	return VMADDR_CID_ANY;
468 }
469 
470 static int hvs_sock_init(struct vsock_sock *vsk, struct vsock_sock *psk)
471 {
472 	struct hvsock *hvs;
473 	struct sock *sk = sk_vsock(vsk);
474 
475 	hvs = kzalloc(sizeof(*hvs), GFP_KERNEL);
476 	if (!hvs)
477 		return -ENOMEM;
478 
479 	vsk->trans = hvs;
480 	hvs->vsk = vsk;
481 	sk->sk_sndbuf = RINGBUFFER_HVS_SND_SIZE;
482 	sk->sk_rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
483 	return 0;
484 }
485 
486 static int hvs_connect(struct vsock_sock *vsk)
487 {
488 	union hvs_service_id vm, host;
489 	struct hvsock *h = vsk->trans;
490 
491 	vm.srv_id = srv_id_template;
492 	vm.svm_port = vsk->local_addr.svm_port;
493 	h->vm_srv_id = vm.srv_id;
494 
495 	host.srv_id = srv_id_template;
496 	host.svm_port = vsk->remote_addr.svm_port;
497 	h->host_srv_id = host.srv_id;
498 
499 	return vmbus_send_tl_connect_request(&h->vm_srv_id, &h->host_srv_id);
500 }
501 
502 static void hvs_shutdown_lock_held(struct hvsock *hvs, int mode)
503 {
504 	struct vmpipe_proto_header hdr;
505 
506 	if (hvs->fin_sent || !hvs->chan)
507 		return;
508 
509 	/* It can't fail: see hvs_channel_writable_bytes(). */
510 	(void)hvs_send_data(hvs->chan, (struct hvs_send_buf *)&hdr, 0);
511 	hvs->fin_sent = true;
512 }
513 
514 static int hvs_shutdown(struct vsock_sock *vsk, int mode)
515 {
516 	struct sock *sk = sk_vsock(vsk);
517 
518 	if (!(mode & SEND_SHUTDOWN))
519 		return 0;
520 
521 	lock_sock(sk);
522 	hvs_shutdown_lock_held(vsk->trans, mode);
523 	release_sock(sk);
524 	return 0;
525 }
526 
527 static void hvs_close_timeout(struct work_struct *work)
528 {
529 	struct vsock_sock *vsk =
530 		container_of(work, struct vsock_sock, close_work.work);
531 	struct sock *sk = sk_vsock(vsk);
532 
533 	sock_hold(sk);
534 	lock_sock(sk);
535 	if (!sock_flag(sk, SOCK_DONE))
536 		hvs_do_close_lock_held(vsk, false);
537 
538 	vsk->close_work_scheduled = false;
539 	release_sock(sk);
540 	sock_put(sk);
541 }
542 
543 /* Returns true, if it is safe to remove socket; false otherwise */
544 static bool hvs_close_lock_held(struct vsock_sock *vsk)
545 {
546 	struct sock *sk = sk_vsock(vsk);
547 
548 	if (!(sk->sk_state == TCP_ESTABLISHED ||
549 	      sk->sk_state == TCP_CLOSING))
550 		return true;
551 
552 	if ((sk->sk_shutdown & SHUTDOWN_MASK) != SHUTDOWN_MASK)
553 		hvs_shutdown_lock_held(vsk->trans, SHUTDOWN_MASK);
554 
555 	if (sock_flag(sk, SOCK_DONE))
556 		return true;
557 
558 	/* This reference will be dropped by the delayed close routine */
559 	sock_hold(sk);
560 	INIT_DELAYED_WORK(&vsk->close_work, hvs_close_timeout);
561 	vsk->close_work_scheduled = true;
562 	schedule_delayed_work(&vsk->close_work, HVS_CLOSE_TIMEOUT);
563 	return false;
564 }
565 
566 static void hvs_release(struct vsock_sock *vsk)
567 {
568 	struct sock *sk = sk_vsock(vsk);
569 	bool remove_sock;
570 
571 	lock_sock(sk);
572 	remove_sock = hvs_close_lock_held(vsk);
573 	release_sock(sk);
574 	if (remove_sock)
575 		vsock_remove_sock(vsk);
576 }
577 
578 static void hvs_destruct(struct vsock_sock *vsk)
579 {
580 	struct hvsock *hvs = vsk->trans;
581 	struct vmbus_channel *chan = hvs->chan;
582 
583 	if (chan)
584 		vmbus_hvsock_device_unregister(chan);
585 
586 	kfree(hvs);
587 }
588 
589 static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)
590 {
591 	return -EOPNOTSUPP;
592 }
593 
594 static int hvs_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
595 			     size_t len, int flags)
596 {
597 	return -EOPNOTSUPP;
598 }
599 
600 static int hvs_dgram_enqueue(struct vsock_sock *vsk,
601 			     struct sockaddr_vm *remote, struct msghdr *msg,
602 			     size_t dgram_len)
603 {
604 	return -EOPNOTSUPP;
605 }
606 
607 static bool hvs_dgram_allow(u32 cid, u32 port)
608 {
609 	return false;
610 }
611 
612 static int hvs_update_recv_data(struct hvsock *hvs)
613 {
614 	struct hvs_recv_buf *recv_buf;
615 	u32 payload_len;
616 
617 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
618 	payload_len = recv_buf->hdr.data_size;
619 
620 	if (payload_len > HVS_MTU_SIZE)
621 		return -EIO;
622 
623 	if (payload_len == 0)
624 		hvs->vsk->peer_shutdown |= SEND_SHUTDOWN;
625 
626 	hvs->recv_data_len = payload_len;
627 	hvs->recv_data_off = 0;
628 
629 	return 0;
630 }
631 
632 static ssize_t hvs_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
633 				  size_t len, int flags)
634 {
635 	struct hvsock *hvs = vsk->trans;
636 	bool need_refill = !hvs->recv_desc;
637 	struct hvs_recv_buf *recv_buf;
638 	u32 to_read;
639 	int ret;
640 
641 	if (flags & MSG_PEEK)
642 		return -EOPNOTSUPP;
643 
644 	if (need_refill) {
645 		hvs->recv_desc = hv_pkt_iter_first(hvs->chan);
646 		ret = hvs_update_recv_data(hvs);
647 		if (ret)
648 			return ret;
649 	}
650 
651 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
652 	to_read = min_t(u32, len, hvs->recv_data_len);
653 	ret = memcpy_to_msg(msg, recv_buf->data + hvs->recv_data_off, to_read);
654 	if (ret != 0)
655 		return ret;
656 
657 	hvs->recv_data_len -= to_read;
658 	if (hvs->recv_data_len == 0) {
659 		hvs->recv_desc = hv_pkt_iter_next(hvs->chan, hvs->recv_desc);
660 		if (hvs->recv_desc) {
661 			ret = hvs_update_recv_data(hvs);
662 			if (ret)
663 				return ret;
664 		}
665 	} else {
666 		hvs->recv_data_off += to_read;
667 	}
668 
669 	return to_read;
670 }
671 
672 static ssize_t hvs_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg,
673 				  size_t len)
674 {
675 	struct hvsock *hvs = vsk->trans;
676 	struct vmbus_channel *chan = hvs->chan;
677 	struct hvs_send_buf *send_buf;
678 	ssize_t to_write, max_writable;
679 	ssize_t ret = 0;
680 	ssize_t bytes_written = 0;
681 
682 	BUILD_BUG_ON(sizeof(*send_buf) != PAGE_SIZE_4K);
683 
684 	send_buf = kmalloc(sizeof(*send_buf), GFP_KERNEL);
685 	if (!send_buf)
686 		return -ENOMEM;
687 
688 	/* Reader(s) could be draining data from the channel as we write.
689 	 * Maximize bandwidth, by iterating until the channel is found to be
690 	 * full.
691 	 */
692 	while (len) {
693 		max_writable = hvs_channel_writable_bytes(chan);
694 		if (!max_writable)
695 			break;
696 		to_write = min_t(ssize_t, len, max_writable);
697 		to_write = min_t(ssize_t, to_write, HVS_SEND_BUF_SIZE);
698 		/* memcpy_from_msg is safe for loop as it advances the offsets
699 		 * within the message iterator.
700 		 */
701 		ret = memcpy_from_msg(send_buf->data, msg, to_write);
702 		if (ret < 0)
703 			goto out;
704 
705 		ret = hvs_send_data(hvs->chan, send_buf, to_write);
706 		if (ret < 0)
707 			goto out;
708 
709 		bytes_written += to_write;
710 		len -= to_write;
711 	}
712 out:
713 	/* If any data has been sent, return that */
714 	if (bytes_written)
715 		ret = bytes_written;
716 	kfree(send_buf);
717 	return ret;
718 }
719 
720 static s64 hvs_stream_has_data(struct vsock_sock *vsk)
721 {
722 	struct hvsock *hvs = vsk->trans;
723 	s64 ret;
724 
725 	if (hvs->recv_data_len > 0)
726 		return 1;
727 
728 	switch (hvs_channel_readable_payload(hvs->chan)) {
729 	case 1:
730 		ret = 1;
731 		break;
732 	case 0:
733 		vsk->peer_shutdown |= SEND_SHUTDOWN;
734 		ret = 0;
735 		break;
736 	default: /* -1 */
737 		ret = 0;
738 		break;
739 	}
740 
741 	return ret;
742 }
743 
744 static s64 hvs_stream_has_space(struct vsock_sock *vsk)
745 {
746 	struct hvsock *hvs = vsk->trans;
747 	struct vmbus_channel *chan = hvs->chan;
748 	s64 ret;
749 
750 	ret = hvs_channel_writable_bytes(chan);
751 	if (ret > 0)  {
752 		hvs_clear_channel_pending_send_size(chan);
753 	} else {
754 		/* See hvs_channel_cb() */
755 		hvs_set_channel_pending_send_size(chan);
756 
757 		/* Re-check the writable bytes to avoid race */
758 		ret = hvs_channel_writable_bytes(chan);
759 		if (ret > 0)
760 			hvs_clear_channel_pending_send_size(chan);
761 	}
762 
763 	return ret;
764 }
765 
766 static u64 hvs_stream_rcvhiwat(struct vsock_sock *vsk)
767 {
768 	return HVS_MTU_SIZE + 1;
769 }
770 
771 static bool hvs_stream_is_active(struct vsock_sock *vsk)
772 {
773 	struct hvsock *hvs = vsk->trans;
774 
775 	return hvs->chan != NULL;
776 }
777 
778 static bool hvs_stream_allow(u32 cid, u32 port)
779 {
780 	/* The host's port range [MIN_HOST_EPHEMERAL_PORT, 0xFFFFFFFF) is
781 	 * reserved as ephemeral ports, which are used as the host's ports
782 	 * when the host initiates connections.
783 	 *
784 	 * Perform this check in the guest so an immediate error is produced
785 	 * instead of a timeout.
786 	 */
787 	if (port > MAX_HOST_LISTEN_PORT)
788 		return false;
789 
790 	if (cid == VMADDR_CID_HOST)
791 		return true;
792 
793 	return false;
794 }
795 
796 static
797 int hvs_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *readable)
798 {
799 	struct hvsock *hvs = vsk->trans;
800 
801 	*readable = hvs_channel_readable(hvs->chan);
802 	return 0;
803 }
804 
805 static
806 int hvs_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *writable)
807 {
808 	*writable = hvs_stream_has_space(vsk) > 0;
809 
810 	return 0;
811 }
812 
813 static
814 int hvs_notify_recv_init(struct vsock_sock *vsk, size_t target,
815 			 struct vsock_transport_recv_notify_data *d)
816 {
817 	return 0;
818 }
819 
820 static
821 int hvs_notify_recv_pre_block(struct vsock_sock *vsk, size_t target,
822 			      struct vsock_transport_recv_notify_data *d)
823 {
824 	return 0;
825 }
826 
827 static
828 int hvs_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target,
829 				struct vsock_transport_recv_notify_data *d)
830 {
831 	return 0;
832 }
833 
834 static
835 int hvs_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target,
836 				 ssize_t copied, bool data_read,
837 				 struct vsock_transport_recv_notify_data *d)
838 {
839 	return 0;
840 }
841 
842 static
843 int hvs_notify_send_init(struct vsock_sock *vsk,
844 			 struct vsock_transport_send_notify_data *d)
845 {
846 	return 0;
847 }
848 
849 static
850 int hvs_notify_send_pre_block(struct vsock_sock *vsk,
851 			      struct vsock_transport_send_notify_data *d)
852 {
853 	return 0;
854 }
855 
856 static
857 int hvs_notify_send_pre_enqueue(struct vsock_sock *vsk,
858 				struct vsock_transport_send_notify_data *d)
859 {
860 	return 0;
861 }
862 
863 static
864 int hvs_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written,
865 				 struct vsock_transport_send_notify_data *d)
866 {
867 	return 0;
868 }
869 
870 static void hvs_set_buffer_size(struct vsock_sock *vsk, u64 val)
871 {
872 	/* Ignored. */
873 }
874 
875 static void hvs_set_min_buffer_size(struct vsock_sock *vsk, u64 val)
876 {
877 	/* Ignored. */
878 }
879 
880 static void hvs_set_max_buffer_size(struct vsock_sock *vsk, u64 val)
881 {
882 	/* Ignored. */
883 }
884 
885 static u64 hvs_get_buffer_size(struct vsock_sock *vsk)
886 {
887 	return -ENOPROTOOPT;
888 }
889 
890 static u64 hvs_get_min_buffer_size(struct vsock_sock *vsk)
891 {
892 	return -ENOPROTOOPT;
893 }
894 
895 static u64 hvs_get_max_buffer_size(struct vsock_sock *vsk)
896 {
897 	return -ENOPROTOOPT;
898 }
899 
900 static struct vsock_transport hvs_transport = {
901 	.get_local_cid            = hvs_get_local_cid,
902 
903 	.init                     = hvs_sock_init,
904 	.destruct                 = hvs_destruct,
905 	.release                  = hvs_release,
906 	.connect                  = hvs_connect,
907 	.shutdown                 = hvs_shutdown,
908 
909 	.dgram_bind               = hvs_dgram_bind,
910 	.dgram_dequeue            = hvs_dgram_dequeue,
911 	.dgram_enqueue            = hvs_dgram_enqueue,
912 	.dgram_allow              = hvs_dgram_allow,
913 
914 	.stream_dequeue           = hvs_stream_dequeue,
915 	.stream_enqueue           = hvs_stream_enqueue,
916 	.stream_has_data          = hvs_stream_has_data,
917 	.stream_has_space         = hvs_stream_has_space,
918 	.stream_rcvhiwat          = hvs_stream_rcvhiwat,
919 	.stream_is_active         = hvs_stream_is_active,
920 	.stream_allow             = hvs_stream_allow,
921 
922 	.notify_poll_in           = hvs_notify_poll_in,
923 	.notify_poll_out          = hvs_notify_poll_out,
924 	.notify_recv_init         = hvs_notify_recv_init,
925 	.notify_recv_pre_block    = hvs_notify_recv_pre_block,
926 	.notify_recv_pre_dequeue  = hvs_notify_recv_pre_dequeue,
927 	.notify_recv_post_dequeue = hvs_notify_recv_post_dequeue,
928 	.notify_send_init         = hvs_notify_send_init,
929 	.notify_send_pre_block    = hvs_notify_send_pre_block,
930 	.notify_send_pre_enqueue  = hvs_notify_send_pre_enqueue,
931 	.notify_send_post_enqueue = hvs_notify_send_post_enqueue,
932 
933 	.set_buffer_size          = hvs_set_buffer_size,
934 	.set_min_buffer_size      = hvs_set_min_buffer_size,
935 	.set_max_buffer_size      = hvs_set_max_buffer_size,
936 	.get_buffer_size          = hvs_get_buffer_size,
937 	.get_min_buffer_size      = hvs_get_min_buffer_size,
938 	.get_max_buffer_size      = hvs_get_max_buffer_size,
939 };
940 
941 static int hvs_probe(struct hv_device *hdev,
942 		     const struct hv_vmbus_device_id *dev_id)
943 {
944 	struct vmbus_channel *chan = hdev->channel;
945 
946 	hvs_open_connection(chan);
947 
948 	/* Always return success to suppress the unnecessary error message
949 	 * in vmbus_probe(): on error the host will rescind the device in
950 	 * 30 seconds and we can do cleanup at that time in
951 	 * vmbus_onoffer_rescind().
952 	 */
953 	return 0;
954 }
955 
956 static int hvs_remove(struct hv_device *hdev)
957 {
958 	struct vmbus_channel *chan = hdev->channel;
959 
960 	vmbus_close(chan);
961 
962 	return 0;
963 }
964 
965 /* This isn't really used. See vmbus_match() and vmbus_probe() */
966 static const struct hv_vmbus_device_id id_table[] = {
967 	{},
968 };
969 
970 static struct hv_driver hvs_drv = {
971 	.name		= "hv_sock",
972 	.hvsock		= true,
973 	.id_table	= id_table,
974 	.probe		= hvs_probe,
975 	.remove		= hvs_remove,
976 };
977 
978 static int __init hvs_init(void)
979 {
980 	int ret;
981 
982 	if (vmbus_proto_version < VERSION_WIN10)
983 		return -ENODEV;
984 
985 	ret = vmbus_driver_register(&hvs_drv);
986 	if (ret != 0)
987 		return ret;
988 
989 	ret = vsock_core_init(&hvs_transport);
990 	if (ret) {
991 		vmbus_driver_unregister(&hvs_drv);
992 		return ret;
993 	}
994 
995 	return 0;
996 }
997 
998 static void __exit hvs_exit(void)
999 {
1000 	vsock_core_exit();
1001 	vmbus_driver_unregister(&hvs_drv);
1002 }
1003 
1004 module_init(hvs_init);
1005 module_exit(hvs_exit);
1006 
1007 MODULE_DESCRIPTION("Hyper-V Sockets");
1008 MODULE_VERSION("1.0.0");
1009 MODULE_LICENSE("GPL");
1010 MODULE_ALIAS_NETPROTO(PF_VSOCK);
1011