1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the SS_LISTEN state. When a connection 40 * request is received (the second kind of socket mentioned above), we create a 41 * new socket and refer to it as a pending socket. These pending sockets are 42 * placed on the pending connection list of the listener socket. When future 43 * packets are received for the address the listener socket is bound to, we 44 * check if the source of the packet is from one that has an existing pending 45 * connection. If it does, we process the packet for the pending socket. When 46 * that socket reaches the connected state, it is removed from the listener 47 * socket's pending list and enqueued in the listener socket's accept queue. 48 * Callers of accept(2) will accept connected sockets from the listener socket's 49 * accept queue. If the socket cannot be accepted for some reason then it is 50 * marked rejected. Once the connection is accepted, it is owned by the user 51 * process and the responsibility for cleanup falls with that user process. 52 * 53 * - It is possible that these pending sockets will never reach the connected 54 * state; in fact, we may never receive another packet after the connection 55 * request. Because of this, we must schedule a cleanup function to run in the 56 * future, after some amount of time passes where a connection should have been 57 * established. This function ensures that the socket is off all lists so it 58 * cannot be retrieved, then drops all references to the socket so it is cleaned 59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 60 * function will also cleanup rejected sockets, those that reach the connected 61 * state but leave it before they have been accepted. 62 * 63 * - Sockets created by user action will be cleaned up when the user process 64 * calls close(2), causing our release implementation to be called. Our release 65 * implementation will perform some cleanup then drop the last reference so our 66 * sk_destruct implementation is invoked. Our sk_destruct implementation will 67 * perform additional cleanup that's common for both types of sockets. 68 * 69 * - A socket's reference count is what ensures that the structure won't be 70 * freed. Each entry in a list (such as the "global" bound and connected tables 71 * and the listener socket's pending list and connected queue) ensures a 72 * reference. When we defer work until process context and pass a socket as our 73 * argument, we must ensure the reference count is increased to ensure the 74 * socket isn't freed before the function is run; the deferred function will 75 * then drop the reference. 76 */ 77 78 #include <linux/types.h> 79 #include <linux/bitops.h> 80 #include <linux/cred.h> 81 #include <linux/init.h> 82 #include <linux/io.h> 83 #include <linux/kernel.h> 84 #include <linux/kmod.h> 85 #include <linux/list.h> 86 #include <linux/miscdevice.h> 87 #include <linux/module.h> 88 #include <linux/mutex.h> 89 #include <linux/net.h> 90 #include <linux/poll.h> 91 #include <linux/skbuff.h> 92 #include <linux/smp.h> 93 #include <linux/socket.h> 94 #include <linux/stddef.h> 95 #include <linux/unistd.h> 96 #include <linux/wait.h> 97 #include <linux/workqueue.h> 98 #include <net/sock.h> 99 #include <net/af_vsock.h> 100 101 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 102 static void vsock_sk_destruct(struct sock *sk); 103 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 104 105 /* Protocol family. */ 106 static struct proto vsock_proto = { 107 .name = "AF_VSOCK", 108 .owner = THIS_MODULE, 109 .obj_size = sizeof(struct vsock_sock), 110 }; 111 112 /* The default peer timeout indicates how long we will wait for a peer response 113 * to a control message. 114 */ 115 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 116 117 #define SS_LISTEN 255 118 119 static const struct vsock_transport *transport; 120 static DEFINE_MUTEX(vsock_register_mutex); 121 122 /**** EXPORTS ****/ 123 124 /* Get the ID of the local context. This is transport dependent. */ 125 126 int vm_sockets_get_local_cid(void) 127 { 128 return transport->get_local_cid(); 129 } 130 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 131 132 /**** UTILS ****/ 133 134 /* Each bound VSocket is stored in the bind hash table and each connected 135 * VSocket is stored in the connected hash table. 136 * 137 * Unbound sockets are all put on the same list attached to the end of the hash 138 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 139 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 140 * represents the list that addr hashes to). 141 * 142 * Specifically, we initialize the vsock_bind_table array to a size of 143 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 144 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 145 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 146 * mods with VSOCK_HASH_SIZE to ensure this. 147 */ 148 #define VSOCK_HASH_SIZE 251 149 #define MAX_PORT_RETRIES 24 150 151 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 152 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 153 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 154 155 /* XXX This can probably be implemented in a better way. */ 156 #define VSOCK_CONN_HASH(src, dst) \ 157 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 158 #define vsock_connected_sockets(src, dst) \ 159 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 160 #define vsock_connected_sockets_vsk(vsk) \ 161 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 162 163 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 164 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 165 static DEFINE_SPINLOCK(vsock_table_lock); 166 167 /* Autobind this socket to the local address if necessary. */ 168 static int vsock_auto_bind(struct vsock_sock *vsk) 169 { 170 struct sock *sk = sk_vsock(vsk); 171 struct sockaddr_vm local_addr; 172 173 if (vsock_addr_bound(&vsk->local_addr)) 174 return 0; 175 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 176 return __vsock_bind(sk, &local_addr); 177 } 178 179 static void vsock_init_tables(void) 180 { 181 int i; 182 183 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 184 INIT_LIST_HEAD(&vsock_bind_table[i]); 185 186 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 187 INIT_LIST_HEAD(&vsock_connected_table[i]); 188 } 189 190 static void __vsock_insert_bound(struct list_head *list, 191 struct vsock_sock *vsk) 192 { 193 sock_hold(&vsk->sk); 194 list_add(&vsk->bound_table, list); 195 } 196 197 static void __vsock_insert_connected(struct list_head *list, 198 struct vsock_sock *vsk) 199 { 200 sock_hold(&vsk->sk); 201 list_add(&vsk->connected_table, list); 202 } 203 204 static void __vsock_remove_bound(struct vsock_sock *vsk) 205 { 206 list_del_init(&vsk->bound_table); 207 sock_put(&vsk->sk); 208 } 209 210 static void __vsock_remove_connected(struct vsock_sock *vsk) 211 { 212 list_del_init(&vsk->connected_table); 213 sock_put(&vsk->sk); 214 } 215 216 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 217 { 218 struct vsock_sock *vsk; 219 220 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 221 if (addr->svm_port == vsk->local_addr.svm_port) 222 return sk_vsock(vsk); 223 224 return NULL; 225 } 226 227 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 228 struct sockaddr_vm *dst) 229 { 230 struct vsock_sock *vsk; 231 232 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 233 connected_table) { 234 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 235 dst->svm_port == vsk->local_addr.svm_port) { 236 return sk_vsock(vsk); 237 } 238 } 239 240 return NULL; 241 } 242 243 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 244 { 245 return !list_empty(&vsk->bound_table); 246 } 247 248 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 249 { 250 return !list_empty(&vsk->connected_table); 251 } 252 253 static void vsock_insert_unbound(struct vsock_sock *vsk) 254 { 255 spin_lock_bh(&vsock_table_lock); 256 __vsock_insert_bound(vsock_unbound_sockets, vsk); 257 spin_unlock_bh(&vsock_table_lock); 258 } 259 260 void vsock_insert_connected(struct vsock_sock *vsk) 261 { 262 struct list_head *list = vsock_connected_sockets( 263 &vsk->remote_addr, &vsk->local_addr); 264 265 spin_lock_bh(&vsock_table_lock); 266 __vsock_insert_connected(list, vsk); 267 spin_unlock_bh(&vsock_table_lock); 268 } 269 EXPORT_SYMBOL_GPL(vsock_insert_connected); 270 271 void vsock_remove_bound(struct vsock_sock *vsk) 272 { 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_remove_bound(vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 EXPORT_SYMBOL_GPL(vsock_remove_bound); 278 279 void vsock_remove_connected(struct vsock_sock *vsk) 280 { 281 spin_lock_bh(&vsock_table_lock); 282 __vsock_remove_connected(vsk); 283 spin_unlock_bh(&vsock_table_lock); 284 } 285 EXPORT_SYMBOL_GPL(vsock_remove_connected); 286 287 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 288 { 289 struct sock *sk; 290 291 spin_lock_bh(&vsock_table_lock); 292 sk = __vsock_find_bound_socket(addr); 293 if (sk) 294 sock_hold(sk); 295 296 spin_unlock_bh(&vsock_table_lock); 297 298 return sk; 299 } 300 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 301 302 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 303 struct sockaddr_vm *dst) 304 { 305 struct sock *sk; 306 307 spin_lock_bh(&vsock_table_lock); 308 sk = __vsock_find_connected_socket(src, dst); 309 if (sk) 310 sock_hold(sk); 311 312 spin_unlock_bh(&vsock_table_lock); 313 314 return sk; 315 } 316 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 317 318 static bool vsock_in_bound_table(struct vsock_sock *vsk) 319 { 320 bool ret; 321 322 spin_lock_bh(&vsock_table_lock); 323 ret = __vsock_in_bound_table(vsk); 324 spin_unlock_bh(&vsock_table_lock); 325 326 return ret; 327 } 328 329 static bool vsock_in_connected_table(struct vsock_sock *vsk) 330 { 331 bool ret; 332 333 spin_lock_bh(&vsock_table_lock); 334 ret = __vsock_in_connected_table(vsk); 335 spin_unlock_bh(&vsock_table_lock); 336 337 return ret; 338 } 339 340 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 341 { 342 int i; 343 344 spin_lock_bh(&vsock_table_lock); 345 346 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 347 struct vsock_sock *vsk; 348 list_for_each_entry(vsk, &vsock_connected_table[i], 349 connected_table) 350 fn(sk_vsock(vsk)); 351 } 352 353 spin_unlock_bh(&vsock_table_lock); 354 } 355 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 356 357 void vsock_add_pending(struct sock *listener, struct sock *pending) 358 { 359 struct vsock_sock *vlistener; 360 struct vsock_sock *vpending; 361 362 vlistener = vsock_sk(listener); 363 vpending = vsock_sk(pending); 364 365 sock_hold(pending); 366 sock_hold(listener); 367 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 368 } 369 EXPORT_SYMBOL_GPL(vsock_add_pending); 370 371 void vsock_remove_pending(struct sock *listener, struct sock *pending) 372 { 373 struct vsock_sock *vpending = vsock_sk(pending); 374 375 list_del_init(&vpending->pending_links); 376 sock_put(listener); 377 sock_put(pending); 378 } 379 EXPORT_SYMBOL_GPL(vsock_remove_pending); 380 381 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 382 { 383 struct vsock_sock *vlistener; 384 struct vsock_sock *vconnected; 385 386 vlistener = vsock_sk(listener); 387 vconnected = vsock_sk(connected); 388 389 sock_hold(connected); 390 sock_hold(listener); 391 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 392 } 393 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 394 395 static struct sock *vsock_dequeue_accept(struct sock *listener) 396 { 397 struct vsock_sock *vlistener; 398 struct vsock_sock *vconnected; 399 400 vlistener = vsock_sk(listener); 401 402 if (list_empty(&vlistener->accept_queue)) 403 return NULL; 404 405 vconnected = list_entry(vlistener->accept_queue.next, 406 struct vsock_sock, accept_queue); 407 408 list_del_init(&vconnected->accept_queue); 409 sock_put(listener); 410 /* The caller will need a reference on the connected socket so we let 411 * it call sock_put(). 412 */ 413 414 return sk_vsock(vconnected); 415 } 416 417 static bool vsock_is_accept_queue_empty(struct sock *sk) 418 { 419 struct vsock_sock *vsk = vsock_sk(sk); 420 return list_empty(&vsk->accept_queue); 421 } 422 423 static bool vsock_is_pending(struct sock *sk) 424 { 425 struct vsock_sock *vsk = vsock_sk(sk); 426 return !list_empty(&vsk->pending_links); 427 } 428 429 static int vsock_send_shutdown(struct sock *sk, int mode) 430 { 431 return transport->shutdown(vsock_sk(sk), mode); 432 } 433 434 void vsock_pending_work(struct work_struct *work) 435 { 436 struct sock *sk; 437 struct sock *listener; 438 struct vsock_sock *vsk; 439 bool cleanup; 440 441 vsk = container_of(work, struct vsock_sock, dwork.work); 442 sk = sk_vsock(vsk); 443 listener = vsk->listener; 444 cleanup = true; 445 446 lock_sock(listener); 447 lock_sock(sk); 448 449 if (vsock_is_pending(sk)) { 450 vsock_remove_pending(listener, sk); 451 } else if (!vsk->rejected) { 452 /* We are not on the pending list and accept() did not reject 453 * us, so we must have been accepted by our user process. We 454 * just need to drop our references to the sockets and be on 455 * our way. 456 */ 457 cleanup = false; 458 goto out; 459 } 460 461 listener->sk_ack_backlog--; 462 463 /* We need to remove ourself from the global connected sockets list so 464 * incoming packets can't find this socket, and to reduce the reference 465 * count. 466 */ 467 if (vsock_in_connected_table(vsk)) 468 vsock_remove_connected(vsk); 469 470 sk->sk_state = SS_FREE; 471 472 out: 473 release_sock(sk); 474 release_sock(listener); 475 if (cleanup) 476 sock_put(sk); 477 478 sock_put(sk); 479 sock_put(listener); 480 } 481 EXPORT_SYMBOL_GPL(vsock_pending_work); 482 483 /**** SOCKET OPERATIONS ****/ 484 485 static int __vsock_bind_stream(struct vsock_sock *vsk, 486 struct sockaddr_vm *addr) 487 { 488 static u32 port = LAST_RESERVED_PORT + 1; 489 struct sockaddr_vm new_addr; 490 491 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 492 493 if (addr->svm_port == VMADDR_PORT_ANY) { 494 bool found = false; 495 unsigned int i; 496 497 for (i = 0; i < MAX_PORT_RETRIES; i++) { 498 if (port <= LAST_RESERVED_PORT) 499 port = LAST_RESERVED_PORT + 1; 500 501 new_addr.svm_port = port++; 502 503 if (!__vsock_find_bound_socket(&new_addr)) { 504 found = true; 505 break; 506 } 507 } 508 509 if (!found) 510 return -EADDRNOTAVAIL; 511 } else { 512 /* If port is in reserved range, ensure caller 513 * has necessary privileges. 514 */ 515 if (addr->svm_port <= LAST_RESERVED_PORT && 516 !capable(CAP_NET_BIND_SERVICE)) { 517 return -EACCES; 518 } 519 520 if (__vsock_find_bound_socket(&new_addr)) 521 return -EADDRINUSE; 522 } 523 524 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 525 526 /* Remove stream sockets from the unbound list and add them to the hash 527 * table for easy lookup by its address. The unbound list is simply an 528 * extra entry at the end of the hash table, a trick used by AF_UNIX. 529 */ 530 __vsock_remove_bound(vsk); 531 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 532 533 return 0; 534 } 535 536 static int __vsock_bind_dgram(struct vsock_sock *vsk, 537 struct sockaddr_vm *addr) 538 { 539 return transport->dgram_bind(vsk, addr); 540 } 541 542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 543 { 544 struct vsock_sock *vsk = vsock_sk(sk); 545 u32 cid; 546 int retval; 547 548 /* First ensure this socket isn't already bound. */ 549 if (vsock_addr_bound(&vsk->local_addr)) 550 return -EINVAL; 551 552 /* Now bind to the provided address or select appropriate values if 553 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 554 * like AF_INET prevents binding to a non-local IP address (in most 555 * cases), we only allow binding to the local CID. 556 */ 557 cid = transport->get_local_cid(); 558 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 559 return -EADDRNOTAVAIL; 560 561 switch (sk->sk_socket->type) { 562 case SOCK_STREAM: 563 spin_lock_bh(&vsock_table_lock); 564 retval = __vsock_bind_stream(vsk, addr); 565 spin_unlock_bh(&vsock_table_lock); 566 break; 567 568 case SOCK_DGRAM: 569 retval = __vsock_bind_dgram(vsk, addr); 570 break; 571 572 default: 573 retval = -EINVAL; 574 break; 575 } 576 577 return retval; 578 } 579 580 struct sock *__vsock_create(struct net *net, 581 struct socket *sock, 582 struct sock *parent, 583 gfp_t priority, 584 unsigned short type, 585 int kern) 586 { 587 struct sock *sk; 588 struct vsock_sock *psk; 589 struct vsock_sock *vsk; 590 591 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 592 if (!sk) 593 return NULL; 594 595 sock_init_data(sock, sk); 596 597 /* sk->sk_type is normally set in sock_init_data, but only if sock is 598 * non-NULL. We make sure that our sockets always have a type by 599 * setting it here if needed. 600 */ 601 if (!sock) 602 sk->sk_type = type; 603 604 vsk = vsock_sk(sk); 605 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 606 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 607 608 sk->sk_destruct = vsock_sk_destruct; 609 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 610 sk->sk_state = 0; 611 sock_reset_flag(sk, SOCK_DONE); 612 613 INIT_LIST_HEAD(&vsk->bound_table); 614 INIT_LIST_HEAD(&vsk->connected_table); 615 vsk->listener = NULL; 616 INIT_LIST_HEAD(&vsk->pending_links); 617 INIT_LIST_HEAD(&vsk->accept_queue); 618 vsk->rejected = false; 619 vsk->sent_request = false; 620 vsk->ignore_connecting_rst = false; 621 vsk->peer_shutdown = 0; 622 623 psk = parent ? vsock_sk(parent) : NULL; 624 if (parent) { 625 vsk->trusted = psk->trusted; 626 vsk->owner = get_cred(psk->owner); 627 vsk->connect_timeout = psk->connect_timeout; 628 } else { 629 vsk->trusted = capable(CAP_NET_ADMIN); 630 vsk->owner = get_current_cred(); 631 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 632 } 633 634 if (transport->init(vsk, psk) < 0) { 635 sk_free(sk); 636 return NULL; 637 } 638 639 if (sock) 640 vsock_insert_unbound(vsk); 641 642 return sk; 643 } 644 EXPORT_SYMBOL_GPL(__vsock_create); 645 646 static void __vsock_release(struct sock *sk) 647 { 648 if (sk) { 649 struct sk_buff *skb; 650 struct sock *pending; 651 struct vsock_sock *vsk; 652 653 vsk = vsock_sk(sk); 654 pending = NULL; /* Compiler warning. */ 655 656 if (vsock_in_bound_table(vsk)) 657 vsock_remove_bound(vsk); 658 659 if (vsock_in_connected_table(vsk)) 660 vsock_remove_connected(vsk); 661 662 transport->release(vsk); 663 664 lock_sock(sk); 665 sock_orphan(sk); 666 sk->sk_shutdown = SHUTDOWN_MASK; 667 668 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 669 kfree_skb(skb); 670 671 /* Clean up any sockets that never were accepted. */ 672 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 673 __vsock_release(pending); 674 sock_put(pending); 675 } 676 677 release_sock(sk); 678 sock_put(sk); 679 } 680 } 681 682 static void vsock_sk_destruct(struct sock *sk) 683 { 684 struct vsock_sock *vsk = vsock_sk(sk); 685 686 transport->destruct(vsk); 687 688 /* When clearing these addresses, there's no need to set the family and 689 * possibly register the address family with the kernel. 690 */ 691 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 692 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 693 694 put_cred(vsk->owner); 695 } 696 697 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 698 { 699 int err; 700 701 err = sock_queue_rcv_skb(sk, skb); 702 if (err) 703 kfree_skb(skb); 704 705 return err; 706 } 707 708 s64 vsock_stream_has_data(struct vsock_sock *vsk) 709 { 710 return transport->stream_has_data(vsk); 711 } 712 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 713 714 s64 vsock_stream_has_space(struct vsock_sock *vsk) 715 { 716 return transport->stream_has_space(vsk); 717 } 718 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 719 720 static int vsock_release(struct socket *sock) 721 { 722 __vsock_release(sock->sk); 723 sock->sk = NULL; 724 sock->state = SS_FREE; 725 726 return 0; 727 } 728 729 static int 730 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 731 { 732 int err; 733 struct sock *sk; 734 struct sockaddr_vm *vm_addr; 735 736 sk = sock->sk; 737 738 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 739 return -EINVAL; 740 741 lock_sock(sk); 742 err = __vsock_bind(sk, vm_addr); 743 release_sock(sk); 744 745 return err; 746 } 747 748 static int vsock_getname(struct socket *sock, 749 struct sockaddr *addr, int *addr_len, int peer) 750 { 751 int err; 752 struct sock *sk; 753 struct vsock_sock *vsk; 754 struct sockaddr_vm *vm_addr; 755 756 sk = sock->sk; 757 vsk = vsock_sk(sk); 758 err = 0; 759 760 lock_sock(sk); 761 762 if (peer) { 763 if (sock->state != SS_CONNECTED) { 764 err = -ENOTCONN; 765 goto out; 766 } 767 vm_addr = &vsk->remote_addr; 768 } else { 769 vm_addr = &vsk->local_addr; 770 } 771 772 if (!vm_addr) { 773 err = -EINVAL; 774 goto out; 775 } 776 777 /* sys_getsockname() and sys_getpeername() pass us a 778 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 779 * that macro is defined in socket.c instead of .h, so we hardcode its 780 * value here. 781 */ 782 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 783 memcpy(addr, vm_addr, sizeof(*vm_addr)); 784 *addr_len = sizeof(*vm_addr); 785 786 out: 787 release_sock(sk); 788 return err; 789 } 790 791 static int vsock_shutdown(struct socket *sock, int mode) 792 { 793 int err; 794 struct sock *sk; 795 796 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 797 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 798 * here like the other address families do. Note also that the 799 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 800 * which is what we want. 801 */ 802 mode++; 803 804 if ((mode & ~SHUTDOWN_MASK) || !mode) 805 return -EINVAL; 806 807 /* If this is a STREAM socket and it is not connected then bail out 808 * immediately. If it is a DGRAM socket then we must first kick the 809 * socket so that it wakes up from any sleeping calls, for example 810 * recv(), and then afterwards return the error. 811 */ 812 813 sk = sock->sk; 814 if (sock->state == SS_UNCONNECTED) { 815 err = -ENOTCONN; 816 if (sk->sk_type == SOCK_STREAM) 817 return err; 818 } else { 819 sock->state = SS_DISCONNECTING; 820 err = 0; 821 } 822 823 /* Receive and send shutdowns are treated alike. */ 824 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 825 if (mode) { 826 lock_sock(sk); 827 sk->sk_shutdown |= mode; 828 sk->sk_state_change(sk); 829 release_sock(sk); 830 831 if (sk->sk_type == SOCK_STREAM) { 832 sock_reset_flag(sk, SOCK_DONE); 833 vsock_send_shutdown(sk, mode); 834 } 835 } 836 837 return err; 838 } 839 840 static unsigned int vsock_poll(struct file *file, struct socket *sock, 841 poll_table *wait) 842 { 843 struct sock *sk; 844 unsigned int mask; 845 struct vsock_sock *vsk; 846 847 sk = sock->sk; 848 vsk = vsock_sk(sk); 849 850 poll_wait(file, sk_sleep(sk), wait); 851 mask = 0; 852 853 if (sk->sk_err) 854 /* Signify that there has been an error on this socket. */ 855 mask |= POLLERR; 856 857 /* INET sockets treat local write shutdown and peer write shutdown as a 858 * case of POLLHUP set. 859 */ 860 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 861 ((sk->sk_shutdown & SEND_SHUTDOWN) && 862 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 863 mask |= POLLHUP; 864 } 865 866 if (sk->sk_shutdown & RCV_SHUTDOWN || 867 vsk->peer_shutdown & SEND_SHUTDOWN) { 868 mask |= POLLRDHUP; 869 } 870 871 if (sock->type == SOCK_DGRAM) { 872 /* For datagram sockets we can read if there is something in 873 * the queue and write as long as the socket isn't shutdown for 874 * sending. 875 */ 876 if (!skb_queue_empty(&sk->sk_receive_queue) || 877 (sk->sk_shutdown & RCV_SHUTDOWN)) { 878 mask |= POLLIN | POLLRDNORM; 879 } 880 881 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 882 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 883 884 } else if (sock->type == SOCK_STREAM) { 885 lock_sock(sk); 886 887 /* Listening sockets that have connections in their accept 888 * queue can be read. 889 */ 890 if (sk->sk_state == SS_LISTEN 891 && !vsock_is_accept_queue_empty(sk)) 892 mask |= POLLIN | POLLRDNORM; 893 894 /* If there is something in the queue then we can read. */ 895 if (transport->stream_is_active(vsk) && 896 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 897 bool data_ready_now = false; 898 int ret = transport->notify_poll_in( 899 vsk, 1, &data_ready_now); 900 if (ret < 0) { 901 mask |= POLLERR; 902 } else { 903 if (data_ready_now) 904 mask |= POLLIN | POLLRDNORM; 905 906 } 907 } 908 909 /* Sockets whose connections have been closed, reset, or 910 * terminated should also be considered read, and we check the 911 * shutdown flag for that. 912 */ 913 if (sk->sk_shutdown & RCV_SHUTDOWN || 914 vsk->peer_shutdown & SEND_SHUTDOWN) { 915 mask |= POLLIN | POLLRDNORM; 916 } 917 918 /* Connected sockets that can produce data can be written. */ 919 if (sk->sk_state == SS_CONNECTED) { 920 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 921 bool space_avail_now = false; 922 int ret = transport->notify_poll_out( 923 vsk, 1, &space_avail_now); 924 if (ret < 0) { 925 mask |= POLLERR; 926 } else { 927 if (space_avail_now) 928 /* Remove POLLWRBAND since INET 929 * sockets are not setting it. 930 */ 931 mask |= POLLOUT | POLLWRNORM; 932 933 } 934 } 935 } 936 937 /* Simulate INET socket poll behaviors, which sets 938 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 939 * but local send is not shutdown. 940 */ 941 if (sk->sk_state == SS_UNCONNECTED) { 942 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 943 mask |= POLLOUT | POLLWRNORM; 944 945 } 946 947 release_sock(sk); 948 } 949 950 return mask; 951 } 952 953 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 954 size_t len) 955 { 956 int err; 957 struct sock *sk; 958 struct vsock_sock *vsk; 959 struct sockaddr_vm *remote_addr; 960 961 if (msg->msg_flags & MSG_OOB) 962 return -EOPNOTSUPP; 963 964 /* For now, MSG_DONTWAIT is always assumed... */ 965 err = 0; 966 sk = sock->sk; 967 vsk = vsock_sk(sk); 968 969 lock_sock(sk); 970 971 err = vsock_auto_bind(vsk); 972 if (err) 973 goto out; 974 975 976 /* If the provided message contains an address, use that. Otherwise 977 * fall back on the socket's remote handle (if it has been connected). 978 */ 979 if (msg->msg_name && 980 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 981 &remote_addr) == 0) { 982 /* Ensure this address is of the right type and is a valid 983 * destination. 984 */ 985 986 if (remote_addr->svm_cid == VMADDR_CID_ANY) 987 remote_addr->svm_cid = transport->get_local_cid(); 988 989 if (!vsock_addr_bound(remote_addr)) { 990 err = -EINVAL; 991 goto out; 992 } 993 } else if (sock->state == SS_CONNECTED) { 994 remote_addr = &vsk->remote_addr; 995 996 if (remote_addr->svm_cid == VMADDR_CID_ANY) 997 remote_addr->svm_cid = transport->get_local_cid(); 998 999 /* XXX Should connect() or this function ensure remote_addr is 1000 * bound? 1001 */ 1002 if (!vsock_addr_bound(&vsk->remote_addr)) { 1003 err = -EINVAL; 1004 goto out; 1005 } 1006 } else { 1007 err = -EINVAL; 1008 goto out; 1009 } 1010 1011 if (!transport->dgram_allow(remote_addr->svm_cid, 1012 remote_addr->svm_port)) { 1013 err = -EINVAL; 1014 goto out; 1015 } 1016 1017 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1018 1019 out: 1020 release_sock(sk); 1021 return err; 1022 } 1023 1024 static int vsock_dgram_connect(struct socket *sock, 1025 struct sockaddr *addr, int addr_len, int flags) 1026 { 1027 int err; 1028 struct sock *sk; 1029 struct vsock_sock *vsk; 1030 struct sockaddr_vm *remote_addr; 1031 1032 sk = sock->sk; 1033 vsk = vsock_sk(sk); 1034 1035 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1036 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1037 lock_sock(sk); 1038 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1039 VMADDR_PORT_ANY); 1040 sock->state = SS_UNCONNECTED; 1041 release_sock(sk); 1042 return 0; 1043 } else if (err != 0) 1044 return -EINVAL; 1045 1046 lock_sock(sk); 1047 1048 err = vsock_auto_bind(vsk); 1049 if (err) 1050 goto out; 1051 1052 if (!transport->dgram_allow(remote_addr->svm_cid, 1053 remote_addr->svm_port)) { 1054 err = -EINVAL; 1055 goto out; 1056 } 1057 1058 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1059 sock->state = SS_CONNECTED; 1060 1061 out: 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1067 size_t len, int flags) 1068 { 1069 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1070 } 1071 1072 static const struct proto_ops vsock_dgram_ops = { 1073 .family = PF_VSOCK, 1074 .owner = THIS_MODULE, 1075 .release = vsock_release, 1076 .bind = vsock_bind, 1077 .connect = vsock_dgram_connect, 1078 .socketpair = sock_no_socketpair, 1079 .accept = sock_no_accept, 1080 .getname = vsock_getname, 1081 .poll = vsock_poll, 1082 .ioctl = sock_no_ioctl, 1083 .listen = sock_no_listen, 1084 .shutdown = vsock_shutdown, 1085 .setsockopt = sock_no_setsockopt, 1086 .getsockopt = sock_no_getsockopt, 1087 .sendmsg = vsock_dgram_sendmsg, 1088 .recvmsg = vsock_dgram_recvmsg, 1089 .mmap = sock_no_mmap, 1090 .sendpage = sock_no_sendpage, 1091 }; 1092 1093 static void vsock_connect_timeout(struct work_struct *work) 1094 { 1095 struct sock *sk; 1096 struct vsock_sock *vsk; 1097 1098 vsk = container_of(work, struct vsock_sock, dwork.work); 1099 sk = sk_vsock(vsk); 1100 1101 lock_sock(sk); 1102 if (sk->sk_state == SS_CONNECTING && 1103 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1104 sk->sk_state = SS_UNCONNECTED; 1105 sk->sk_err = ETIMEDOUT; 1106 sk->sk_error_report(sk); 1107 } 1108 release_sock(sk); 1109 1110 sock_put(sk); 1111 } 1112 1113 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1114 int addr_len, int flags) 1115 { 1116 int err; 1117 struct sock *sk; 1118 struct vsock_sock *vsk; 1119 struct sockaddr_vm *remote_addr; 1120 long timeout; 1121 DEFINE_WAIT(wait); 1122 1123 err = 0; 1124 sk = sock->sk; 1125 vsk = vsock_sk(sk); 1126 1127 lock_sock(sk); 1128 1129 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1130 switch (sock->state) { 1131 case SS_CONNECTED: 1132 err = -EISCONN; 1133 goto out; 1134 case SS_DISCONNECTING: 1135 err = -EINVAL; 1136 goto out; 1137 case SS_CONNECTING: 1138 /* This continues on so we can move sock into the SS_CONNECTED 1139 * state once the connection has completed (at which point err 1140 * will be set to zero also). Otherwise, we will either wait 1141 * for the connection or return -EALREADY should this be a 1142 * non-blocking call. 1143 */ 1144 err = -EALREADY; 1145 break; 1146 default: 1147 if ((sk->sk_state == SS_LISTEN) || 1148 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1149 err = -EINVAL; 1150 goto out; 1151 } 1152 1153 /* The hypervisor and well-known contexts do not have socket 1154 * endpoints. 1155 */ 1156 if (!transport->stream_allow(remote_addr->svm_cid, 1157 remote_addr->svm_port)) { 1158 err = -ENETUNREACH; 1159 goto out; 1160 } 1161 1162 /* Set the remote address that we are connecting to. */ 1163 memcpy(&vsk->remote_addr, remote_addr, 1164 sizeof(vsk->remote_addr)); 1165 1166 err = vsock_auto_bind(vsk); 1167 if (err) 1168 goto out; 1169 1170 sk->sk_state = SS_CONNECTING; 1171 1172 err = transport->connect(vsk); 1173 if (err < 0) 1174 goto out; 1175 1176 /* Mark sock as connecting and set the error code to in 1177 * progress in case this is a non-blocking connect. 1178 */ 1179 sock->state = SS_CONNECTING; 1180 err = -EINPROGRESS; 1181 } 1182 1183 /* The receive path will handle all communication until we are able to 1184 * enter the connected state. Here we wait for the connection to be 1185 * completed or a notification of an error. 1186 */ 1187 timeout = vsk->connect_timeout; 1188 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1189 1190 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1191 if (flags & O_NONBLOCK) { 1192 /* If we're not going to block, we schedule a timeout 1193 * function to generate a timeout on the connection 1194 * attempt, in case the peer doesn't respond in a 1195 * timely manner. We hold on to the socket until the 1196 * timeout fires. 1197 */ 1198 sock_hold(sk); 1199 INIT_DELAYED_WORK(&vsk->dwork, 1200 vsock_connect_timeout); 1201 schedule_delayed_work(&vsk->dwork, timeout); 1202 1203 /* Skip ahead to preserve error code set above. */ 1204 goto out_wait; 1205 } 1206 1207 release_sock(sk); 1208 timeout = schedule_timeout(timeout); 1209 lock_sock(sk); 1210 1211 if (signal_pending(current)) { 1212 err = sock_intr_errno(timeout); 1213 goto out_wait_error; 1214 } else if (timeout == 0) { 1215 err = -ETIMEDOUT; 1216 goto out_wait_error; 1217 } 1218 1219 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1220 } 1221 1222 if (sk->sk_err) { 1223 err = -sk->sk_err; 1224 goto out_wait_error; 1225 } else 1226 err = 0; 1227 1228 out_wait: 1229 finish_wait(sk_sleep(sk), &wait); 1230 out: 1231 release_sock(sk); 1232 return err; 1233 1234 out_wait_error: 1235 sk->sk_state = SS_UNCONNECTED; 1236 sock->state = SS_UNCONNECTED; 1237 goto out_wait; 1238 } 1239 1240 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1241 { 1242 struct sock *listener; 1243 int err; 1244 struct sock *connected; 1245 struct vsock_sock *vconnected; 1246 long timeout; 1247 DEFINE_WAIT(wait); 1248 1249 err = 0; 1250 listener = sock->sk; 1251 1252 lock_sock(listener); 1253 1254 if (sock->type != SOCK_STREAM) { 1255 err = -EOPNOTSUPP; 1256 goto out; 1257 } 1258 1259 if (listener->sk_state != SS_LISTEN) { 1260 err = -EINVAL; 1261 goto out; 1262 } 1263 1264 /* Wait for children sockets to appear; these are the new sockets 1265 * created upon connection establishment. 1266 */ 1267 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1268 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1269 1270 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1271 listener->sk_err == 0) { 1272 release_sock(listener); 1273 timeout = schedule_timeout(timeout); 1274 lock_sock(listener); 1275 1276 if (signal_pending(current)) { 1277 err = sock_intr_errno(timeout); 1278 goto out_wait; 1279 } else if (timeout == 0) { 1280 err = -EAGAIN; 1281 goto out_wait; 1282 } 1283 1284 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1285 } 1286 1287 if (listener->sk_err) 1288 err = -listener->sk_err; 1289 1290 if (connected) { 1291 listener->sk_ack_backlog--; 1292 1293 lock_sock(connected); 1294 vconnected = vsock_sk(connected); 1295 1296 /* If the listener socket has received an error, then we should 1297 * reject this socket and return. Note that we simply mark the 1298 * socket rejected, drop our reference, and let the cleanup 1299 * function handle the cleanup; the fact that we found it in 1300 * the listener's accept queue guarantees that the cleanup 1301 * function hasn't run yet. 1302 */ 1303 if (err) { 1304 vconnected->rejected = true; 1305 release_sock(connected); 1306 sock_put(connected); 1307 goto out_wait; 1308 } 1309 1310 newsock->state = SS_CONNECTED; 1311 sock_graft(connected, newsock); 1312 release_sock(connected); 1313 sock_put(connected); 1314 } 1315 1316 out_wait: 1317 finish_wait(sk_sleep(listener), &wait); 1318 out: 1319 release_sock(listener); 1320 return err; 1321 } 1322 1323 static int vsock_listen(struct socket *sock, int backlog) 1324 { 1325 int err; 1326 struct sock *sk; 1327 struct vsock_sock *vsk; 1328 1329 sk = sock->sk; 1330 1331 lock_sock(sk); 1332 1333 if (sock->type != SOCK_STREAM) { 1334 err = -EOPNOTSUPP; 1335 goto out; 1336 } 1337 1338 if (sock->state != SS_UNCONNECTED) { 1339 err = -EINVAL; 1340 goto out; 1341 } 1342 1343 vsk = vsock_sk(sk); 1344 1345 if (!vsock_addr_bound(&vsk->local_addr)) { 1346 err = -EINVAL; 1347 goto out; 1348 } 1349 1350 sk->sk_max_ack_backlog = backlog; 1351 sk->sk_state = SS_LISTEN; 1352 1353 err = 0; 1354 1355 out: 1356 release_sock(sk); 1357 return err; 1358 } 1359 1360 static int vsock_stream_setsockopt(struct socket *sock, 1361 int level, 1362 int optname, 1363 char __user *optval, 1364 unsigned int optlen) 1365 { 1366 int err; 1367 struct sock *sk; 1368 struct vsock_sock *vsk; 1369 u64 val; 1370 1371 if (level != AF_VSOCK) 1372 return -ENOPROTOOPT; 1373 1374 #define COPY_IN(_v) \ 1375 do { \ 1376 if (optlen < sizeof(_v)) { \ 1377 err = -EINVAL; \ 1378 goto exit; \ 1379 } \ 1380 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1381 err = -EFAULT; \ 1382 goto exit; \ 1383 } \ 1384 } while (0) 1385 1386 err = 0; 1387 sk = sock->sk; 1388 vsk = vsock_sk(sk); 1389 1390 lock_sock(sk); 1391 1392 switch (optname) { 1393 case SO_VM_SOCKETS_BUFFER_SIZE: 1394 COPY_IN(val); 1395 transport->set_buffer_size(vsk, val); 1396 break; 1397 1398 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1399 COPY_IN(val); 1400 transport->set_max_buffer_size(vsk, val); 1401 break; 1402 1403 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1404 COPY_IN(val); 1405 transport->set_min_buffer_size(vsk, val); 1406 break; 1407 1408 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1409 struct timeval tv; 1410 COPY_IN(tv); 1411 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1412 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1413 vsk->connect_timeout = tv.tv_sec * HZ + 1414 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1415 if (vsk->connect_timeout == 0) 1416 vsk->connect_timeout = 1417 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1418 1419 } else { 1420 err = -ERANGE; 1421 } 1422 break; 1423 } 1424 1425 default: 1426 err = -ENOPROTOOPT; 1427 break; 1428 } 1429 1430 #undef COPY_IN 1431 1432 exit: 1433 release_sock(sk); 1434 return err; 1435 } 1436 1437 static int vsock_stream_getsockopt(struct socket *sock, 1438 int level, int optname, 1439 char __user *optval, 1440 int __user *optlen) 1441 { 1442 int err; 1443 int len; 1444 struct sock *sk; 1445 struct vsock_sock *vsk; 1446 u64 val; 1447 1448 if (level != AF_VSOCK) 1449 return -ENOPROTOOPT; 1450 1451 err = get_user(len, optlen); 1452 if (err != 0) 1453 return err; 1454 1455 #define COPY_OUT(_v) \ 1456 do { \ 1457 if (len < sizeof(_v)) \ 1458 return -EINVAL; \ 1459 \ 1460 len = sizeof(_v); \ 1461 if (copy_to_user(optval, &_v, len) != 0) \ 1462 return -EFAULT; \ 1463 \ 1464 } while (0) 1465 1466 err = 0; 1467 sk = sock->sk; 1468 vsk = vsock_sk(sk); 1469 1470 switch (optname) { 1471 case SO_VM_SOCKETS_BUFFER_SIZE: 1472 val = transport->get_buffer_size(vsk); 1473 COPY_OUT(val); 1474 break; 1475 1476 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1477 val = transport->get_max_buffer_size(vsk); 1478 COPY_OUT(val); 1479 break; 1480 1481 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1482 val = transport->get_min_buffer_size(vsk); 1483 COPY_OUT(val); 1484 break; 1485 1486 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1487 struct timeval tv; 1488 tv.tv_sec = vsk->connect_timeout / HZ; 1489 tv.tv_usec = 1490 (vsk->connect_timeout - 1491 tv.tv_sec * HZ) * (1000000 / HZ); 1492 COPY_OUT(tv); 1493 break; 1494 } 1495 default: 1496 return -ENOPROTOOPT; 1497 } 1498 1499 err = put_user(len, optlen); 1500 if (err != 0) 1501 return -EFAULT; 1502 1503 #undef COPY_OUT 1504 1505 return 0; 1506 } 1507 1508 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1509 size_t len) 1510 { 1511 struct sock *sk; 1512 struct vsock_sock *vsk; 1513 ssize_t total_written; 1514 long timeout; 1515 int err; 1516 struct vsock_transport_send_notify_data send_data; 1517 1518 DEFINE_WAIT(wait); 1519 1520 sk = sock->sk; 1521 vsk = vsock_sk(sk); 1522 total_written = 0; 1523 err = 0; 1524 1525 if (msg->msg_flags & MSG_OOB) 1526 return -EOPNOTSUPP; 1527 1528 lock_sock(sk); 1529 1530 /* Callers should not provide a destination with stream sockets. */ 1531 if (msg->msg_namelen) { 1532 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1533 goto out; 1534 } 1535 1536 /* Send data only if both sides are not shutdown in the direction. */ 1537 if (sk->sk_shutdown & SEND_SHUTDOWN || 1538 vsk->peer_shutdown & RCV_SHUTDOWN) { 1539 err = -EPIPE; 1540 goto out; 1541 } 1542 1543 if (sk->sk_state != SS_CONNECTED || 1544 !vsock_addr_bound(&vsk->local_addr)) { 1545 err = -ENOTCONN; 1546 goto out; 1547 } 1548 1549 if (!vsock_addr_bound(&vsk->remote_addr)) { 1550 err = -EDESTADDRREQ; 1551 goto out; 1552 } 1553 1554 /* Wait for room in the produce queue to enqueue our user's data. */ 1555 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1556 1557 err = transport->notify_send_init(vsk, &send_data); 1558 if (err < 0) 1559 goto out; 1560 1561 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1562 1563 while (total_written < len) { 1564 ssize_t written; 1565 1566 while (vsock_stream_has_space(vsk) == 0 && 1567 sk->sk_err == 0 && 1568 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1569 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1570 1571 /* Don't wait for non-blocking sockets. */ 1572 if (timeout == 0) { 1573 err = -EAGAIN; 1574 goto out_wait; 1575 } 1576 1577 err = transport->notify_send_pre_block(vsk, &send_data); 1578 if (err < 0) 1579 goto out_wait; 1580 1581 release_sock(sk); 1582 timeout = schedule_timeout(timeout); 1583 lock_sock(sk); 1584 if (signal_pending(current)) { 1585 err = sock_intr_errno(timeout); 1586 goto out_wait; 1587 } else if (timeout == 0) { 1588 err = -EAGAIN; 1589 goto out_wait; 1590 } 1591 1592 prepare_to_wait(sk_sleep(sk), &wait, 1593 TASK_INTERRUPTIBLE); 1594 } 1595 1596 /* These checks occur both as part of and after the loop 1597 * conditional since we need to check before and after 1598 * sleeping. 1599 */ 1600 if (sk->sk_err) { 1601 err = -sk->sk_err; 1602 goto out_wait; 1603 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1604 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1605 err = -EPIPE; 1606 goto out_wait; 1607 } 1608 1609 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1610 if (err < 0) 1611 goto out_wait; 1612 1613 /* Note that enqueue will only write as many bytes as are free 1614 * in the produce queue, so we don't need to ensure len is 1615 * smaller than the queue size. It is the caller's 1616 * responsibility to check how many bytes we were able to send. 1617 */ 1618 1619 written = transport->stream_enqueue( 1620 vsk, msg, 1621 len - total_written); 1622 if (written < 0) { 1623 err = -ENOMEM; 1624 goto out_wait; 1625 } 1626 1627 total_written += written; 1628 1629 err = transport->notify_send_post_enqueue( 1630 vsk, written, &send_data); 1631 if (err < 0) 1632 goto out_wait; 1633 1634 } 1635 1636 out_wait: 1637 if (total_written > 0) 1638 err = total_written; 1639 finish_wait(sk_sleep(sk), &wait); 1640 out: 1641 release_sock(sk); 1642 return err; 1643 } 1644 1645 1646 static int 1647 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1648 int flags) 1649 { 1650 struct sock *sk; 1651 struct vsock_sock *vsk; 1652 int err; 1653 size_t target; 1654 ssize_t copied; 1655 long timeout; 1656 struct vsock_transport_recv_notify_data recv_data; 1657 1658 DEFINE_WAIT(wait); 1659 1660 sk = sock->sk; 1661 vsk = vsock_sk(sk); 1662 err = 0; 1663 1664 lock_sock(sk); 1665 1666 if (sk->sk_state != SS_CONNECTED) { 1667 /* Recvmsg is supposed to return 0 if a peer performs an 1668 * orderly shutdown. Differentiate between that case and when a 1669 * peer has not connected or a local shutdown occured with the 1670 * SOCK_DONE flag. 1671 */ 1672 if (sock_flag(sk, SOCK_DONE)) 1673 err = 0; 1674 else 1675 err = -ENOTCONN; 1676 1677 goto out; 1678 } 1679 1680 if (flags & MSG_OOB) { 1681 err = -EOPNOTSUPP; 1682 goto out; 1683 } 1684 1685 /* We don't check peer_shutdown flag here since peer may actually shut 1686 * down, but there can be data in the queue that a local socket can 1687 * receive. 1688 */ 1689 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1690 err = 0; 1691 goto out; 1692 } 1693 1694 /* It is valid on Linux to pass in a zero-length receive buffer. This 1695 * is not an error. We may as well bail out now. 1696 */ 1697 if (!len) { 1698 err = 0; 1699 goto out; 1700 } 1701 1702 /* We must not copy less than target bytes into the user's buffer 1703 * before returning successfully, so we wait for the consume queue to 1704 * have that much data to consume before dequeueing. Note that this 1705 * makes it impossible to handle cases where target is greater than the 1706 * queue size. 1707 */ 1708 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1709 if (target >= transport->stream_rcvhiwat(vsk)) { 1710 err = -ENOMEM; 1711 goto out; 1712 } 1713 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1714 copied = 0; 1715 1716 err = transport->notify_recv_init(vsk, target, &recv_data); 1717 if (err < 0) 1718 goto out; 1719 1720 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1721 1722 while (1) { 1723 s64 ready = vsock_stream_has_data(vsk); 1724 1725 if (ready < 0) { 1726 /* Invalid queue pair content. XXX This should be 1727 * changed to a connection reset in a later change. 1728 */ 1729 1730 err = -ENOMEM; 1731 goto out_wait; 1732 } else if (ready > 0) { 1733 ssize_t read; 1734 1735 err = transport->notify_recv_pre_dequeue( 1736 vsk, target, &recv_data); 1737 if (err < 0) 1738 break; 1739 1740 read = transport->stream_dequeue( 1741 vsk, msg, 1742 len - copied, flags); 1743 if (read < 0) { 1744 err = -ENOMEM; 1745 break; 1746 } 1747 1748 copied += read; 1749 1750 err = transport->notify_recv_post_dequeue( 1751 vsk, target, read, 1752 !(flags & MSG_PEEK), &recv_data); 1753 if (err < 0) 1754 goto out_wait; 1755 1756 if (read >= target || flags & MSG_PEEK) 1757 break; 1758 1759 target -= read; 1760 } else { 1761 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN) 1762 || (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1763 break; 1764 } 1765 /* Don't wait for non-blocking sockets. */ 1766 if (timeout == 0) { 1767 err = -EAGAIN; 1768 break; 1769 } 1770 1771 err = transport->notify_recv_pre_block( 1772 vsk, target, &recv_data); 1773 if (err < 0) 1774 break; 1775 1776 release_sock(sk); 1777 timeout = schedule_timeout(timeout); 1778 lock_sock(sk); 1779 1780 if (signal_pending(current)) { 1781 err = sock_intr_errno(timeout); 1782 break; 1783 } else if (timeout == 0) { 1784 err = -EAGAIN; 1785 break; 1786 } 1787 1788 prepare_to_wait(sk_sleep(sk), &wait, 1789 TASK_INTERRUPTIBLE); 1790 } 1791 } 1792 1793 if (sk->sk_err) 1794 err = -sk->sk_err; 1795 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1796 err = 0; 1797 1798 if (copied > 0) { 1799 /* We only do these additional bookkeeping/notification steps 1800 * if we actually copied something out of the queue pair 1801 * instead of just peeking ahead. 1802 */ 1803 1804 if (!(flags & MSG_PEEK)) { 1805 /* If the other side has shutdown for sending and there 1806 * is nothing more to read, then modify the socket 1807 * state. 1808 */ 1809 if (vsk->peer_shutdown & SEND_SHUTDOWN) { 1810 if (vsock_stream_has_data(vsk) <= 0) { 1811 sk->sk_state = SS_UNCONNECTED; 1812 sock_set_flag(sk, SOCK_DONE); 1813 sk->sk_state_change(sk); 1814 } 1815 } 1816 } 1817 err = copied; 1818 } 1819 1820 out_wait: 1821 finish_wait(sk_sleep(sk), &wait); 1822 out: 1823 release_sock(sk); 1824 return err; 1825 } 1826 1827 static const struct proto_ops vsock_stream_ops = { 1828 .family = PF_VSOCK, 1829 .owner = THIS_MODULE, 1830 .release = vsock_release, 1831 .bind = vsock_bind, 1832 .connect = vsock_stream_connect, 1833 .socketpair = sock_no_socketpair, 1834 .accept = vsock_accept, 1835 .getname = vsock_getname, 1836 .poll = vsock_poll, 1837 .ioctl = sock_no_ioctl, 1838 .listen = vsock_listen, 1839 .shutdown = vsock_shutdown, 1840 .setsockopt = vsock_stream_setsockopt, 1841 .getsockopt = vsock_stream_getsockopt, 1842 .sendmsg = vsock_stream_sendmsg, 1843 .recvmsg = vsock_stream_recvmsg, 1844 .mmap = sock_no_mmap, 1845 .sendpage = sock_no_sendpage, 1846 }; 1847 1848 static int vsock_create(struct net *net, struct socket *sock, 1849 int protocol, int kern) 1850 { 1851 if (!sock) 1852 return -EINVAL; 1853 1854 if (protocol && protocol != PF_VSOCK) 1855 return -EPROTONOSUPPORT; 1856 1857 switch (sock->type) { 1858 case SOCK_DGRAM: 1859 sock->ops = &vsock_dgram_ops; 1860 break; 1861 case SOCK_STREAM: 1862 sock->ops = &vsock_stream_ops; 1863 break; 1864 default: 1865 return -ESOCKTNOSUPPORT; 1866 } 1867 1868 sock->state = SS_UNCONNECTED; 1869 1870 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1871 } 1872 1873 static const struct net_proto_family vsock_family_ops = { 1874 .family = AF_VSOCK, 1875 .create = vsock_create, 1876 .owner = THIS_MODULE, 1877 }; 1878 1879 static long vsock_dev_do_ioctl(struct file *filp, 1880 unsigned int cmd, void __user *ptr) 1881 { 1882 u32 __user *p = ptr; 1883 int retval = 0; 1884 1885 switch (cmd) { 1886 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1887 if (put_user(transport->get_local_cid(), p) != 0) 1888 retval = -EFAULT; 1889 break; 1890 1891 default: 1892 pr_err("Unknown ioctl %d\n", cmd); 1893 retval = -EINVAL; 1894 } 1895 1896 return retval; 1897 } 1898 1899 static long vsock_dev_ioctl(struct file *filp, 1900 unsigned int cmd, unsigned long arg) 1901 { 1902 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1903 } 1904 1905 #ifdef CONFIG_COMPAT 1906 static long vsock_dev_compat_ioctl(struct file *filp, 1907 unsigned int cmd, unsigned long arg) 1908 { 1909 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1910 } 1911 #endif 1912 1913 static const struct file_operations vsock_device_ops = { 1914 .owner = THIS_MODULE, 1915 .unlocked_ioctl = vsock_dev_ioctl, 1916 #ifdef CONFIG_COMPAT 1917 .compat_ioctl = vsock_dev_compat_ioctl, 1918 #endif 1919 .open = nonseekable_open, 1920 }; 1921 1922 static struct miscdevice vsock_device = { 1923 .name = "vsock", 1924 .fops = &vsock_device_ops, 1925 }; 1926 1927 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1928 { 1929 int err = mutex_lock_interruptible(&vsock_register_mutex); 1930 1931 if (err) 1932 return err; 1933 1934 if (transport) { 1935 err = -EBUSY; 1936 goto err_busy; 1937 } 1938 1939 /* Transport must be the owner of the protocol so that it can't 1940 * unload while there are open sockets. 1941 */ 1942 vsock_proto.owner = owner; 1943 transport = t; 1944 1945 vsock_init_tables(); 1946 1947 vsock_device.minor = MISC_DYNAMIC_MINOR; 1948 err = misc_register(&vsock_device); 1949 if (err) { 1950 pr_err("Failed to register misc device\n"); 1951 return -ENOENT; 1952 } 1953 1954 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1955 if (err) { 1956 pr_err("Cannot register vsock protocol\n"); 1957 goto err_misc_deregister; 1958 } 1959 1960 err = sock_register(&vsock_family_ops); 1961 if (err) { 1962 pr_err("could not register af_vsock (%d) address family: %d\n", 1963 AF_VSOCK, err); 1964 goto err_unregister_proto; 1965 } 1966 1967 mutex_unlock(&vsock_register_mutex); 1968 return 0; 1969 1970 err_unregister_proto: 1971 proto_unregister(&vsock_proto); 1972 err_misc_deregister: 1973 misc_deregister(&vsock_device); 1974 transport = NULL; 1975 err_busy: 1976 mutex_unlock(&vsock_register_mutex); 1977 return err; 1978 } 1979 EXPORT_SYMBOL_GPL(__vsock_core_init); 1980 1981 void vsock_core_exit(void) 1982 { 1983 mutex_lock(&vsock_register_mutex); 1984 1985 misc_deregister(&vsock_device); 1986 sock_unregister(AF_VSOCK); 1987 proto_unregister(&vsock_proto); 1988 1989 /* We do not want the assignment below re-ordered. */ 1990 mb(); 1991 transport = NULL; 1992 1993 mutex_unlock(&vsock_register_mutex); 1994 } 1995 EXPORT_SYMBOL_GPL(vsock_core_exit); 1996 1997 MODULE_AUTHOR("VMware, Inc."); 1998 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 1999 MODULE_VERSION("1.0.1.0-k"); 2000 MODULE_LICENSE("GPL v2"); 2001