xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 	int i;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 
342 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 		struct vsock_sock *vsk;
344 		list_for_each_entry(vsk, &vsock_connected_table[i],
345 				    connected_table)
346 			fn(sk_vsock(vsk));
347 	}
348 
349 	spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352 
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 	struct vsock_sock *vlistener;
356 	struct vsock_sock *vpending;
357 
358 	vlistener = vsock_sk(listener);
359 	vpending = vsock_sk(pending);
360 
361 	sock_hold(pending);
362 	sock_hold(listener);
363 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366 
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vpending = vsock_sk(pending);
370 
371 	list_del_init(&vpending->pending_links);
372 	sock_put(listener);
373 	sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376 
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vconnected;
381 
382 	vlistener = vsock_sk(listener);
383 	vconnected = vsock_sk(connected);
384 
385 	sock_hold(connected);
386 	sock_hold(listener);
387 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390 
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 	if (!transport_local)
394 		return false;
395 
396 	if (remote_cid == VMADDR_CID_LOCAL)
397 		return true;
398 
399 	if (transport_g2h) {
400 		return remote_cid == transport_g2h->get_local_cid();
401 	} else {
402 		return remote_cid == VMADDR_CID_HOST;
403 	}
404 }
405 
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 	if (!vsk->transport)
409 		return;
410 
411 	vsk->transport->destruct(vsk);
412 	module_put(vsk->transport->module);
413 	vsk->transport = NULL;
414 }
415 
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
426  */
427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 	const struct vsock_transport *new_transport;
430 	struct sock *sk = sk_vsock(vsk);
431 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 	int ret;
433 
434 	switch (sk->sk_type) {
435 	case SOCK_DGRAM:
436 		new_transport = transport_dgram;
437 		break;
438 	case SOCK_STREAM:
439 		if (vsock_use_local_transport(remote_cid))
440 			new_transport = transport_local;
441 		else if (remote_cid <= VMADDR_CID_HOST)
442 			new_transport = transport_g2h;
443 		else
444 			new_transport = transport_h2g;
445 		break;
446 	default:
447 		return -ESOCKTNOSUPPORT;
448 	}
449 
450 	if (vsk->transport) {
451 		if (vsk->transport == new_transport)
452 			return 0;
453 
454 		vsk->transport->release(vsk);
455 		vsock_deassign_transport(vsk);
456 	}
457 
458 	/* We increase the module refcnt to prevent the transport unloading
459 	 * while there are open sockets assigned to it.
460 	 */
461 	if (!new_transport || !try_module_get(new_transport->module))
462 		return -ENODEV;
463 
464 	ret = new_transport->init(vsk, psk);
465 	if (ret) {
466 		module_put(new_transport->module);
467 		return ret;
468 	}
469 
470 	vsk->transport = new_transport;
471 
472 	return 0;
473 }
474 EXPORT_SYMBOL_GPL(vsock_assign_transport);
475 
476 bool vsock_find_cid(unsigned int cid)
477 {
478 	if (transport_g2h && cid == transport_g2h->get_local_cid())
479 		return true;
480 
481 	if (transport_h2g && cid == VMADDR_CID_HOST)
482 		return true;
483 
484 	if (transport_local && cid == VMADDR_CID_LOCAL)
485 		return true;
486 
487 	return false;
488 }
489 EXPORT_SYMBOL_GPL(vsock_find_cid);
490 
491 static struct sock *vsock_dequeue_accept(struct sock *listener)
492 {
493 	struct vsock_sock *vlistener;
494 	struct vsock_sock *vconnected;
495 
496 	vlistener = vsock_sk(listener);
497 
498 	if (list_empty(&vlistener->accept_queue))
499 		return NULL;
500 
501 	vconnected = list_entry(vlistener->accept_queue.next,
502 				struct vsock_sock, accept_queue);
503 
504 	list_del_init(&vconnected->accept_queue);
505 	sock_put(listener);
506 	/* The caller will need a reference on the connected socket so we let
507 	 * it call sock_put().
508 	 */
509 
510 	return sk_vsock(vconnected);
511 }
512 
513 static bool vsock_is_accept_queue_empty(struct sock *sk)
514 {
515 	struct vsock_sock *vsk = vsock_sk(sk);
516 	return list_empty(&vsk->accept_queue);
517 }
518 
519 static bool vsock_is_pending(struct sock *sk)
520 {
521 	struct vsock_sock *vsk = vsock_sk(sk);
522 	return !list_empty(&vsk->pending_links);
523 }
524 
525 static int vsock_send_shutdown(struct sock *sk, int mode)
526 {
527 	struct vsock_sock *vsk = vsock_sk(sk);
528 
529 	if (!vsk->transport)
530 		return -ENODEV;
531 
532 	return vsk->transport->shutdown(vsk, mode);
533 }
534 
535 static void vsock_pending_work(struct work_struct *work)
536 {
537 	struct sock *sk;
538 	struct sock *listener;
539 	struct vsock_sock *vsk;
540 	bool cleanup;
541 
542 	vsk = container_of(work, struct vsock_sock, pending_work.work);
543 	sk = sk_vsock(vsk);
544 	listener = vsk->listener;
545 	cleanup = true;
546 
547 	lock_sock(listener);
548 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
549 
550 	if (vsock_is_pending(sk)) {
551 		vsock_remove_pending(listener, sk);
552 
553 		sk_acceptq_removed(listener);
554 	} else if (!vsk->rejected) {
555 		/* We are not on the pending list and accept() did not reject
556 		 * us, so we must have been accepted by our user process.  We
557 		 * just need to drop our references to the sockets and be on
558 		 * our way.
559 		 */
560 		cleanup = false;
561 		goto out;
562 	}
563 
564 	/* We need to remove ourself from the global connected sockets list so
565 	 * incoming packets can't find this socket, and to reduce the reference
566 	 * count.
567 	 */
568 	vsock_remove_connected(vsk);
569 
570 	sk->sk_state = TCP_CLOSE;
571 
572 out:
573 	release_sock(sk);
574 	release_sock(listener);
575 	if (cleanup)
576 		sock_put(sk);
577 
578 	sock_put(sk);
579 	sock_put(listener);
580 }
581 
582 /**** SOCKET OPERATIONS ****/
583 
584 static int __vsock_bind_stream(struct vsock_sock *vsk,
585 			       struct sockaddr_vm *addr)
586 {
587 	static u32 port;
588 	struct sockaddr_vm new_addr;
589 
590 	if (!port)
591 		port = LAST_RESERVED_PORT + 1 +
592 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
593 
594 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
595 
596 	if (addr->svm_port == VMADDR_PORT_ANY) {
597 		bool found = false;
598 		unsigned int i;
599 
600 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
601 			if (port <= LAST_RESERVED_PORT)
602 				port = LAST_RESERVED_PORT + 1;
603 
604 			new_addr.svm_port = port++;
605 
606 			if (!__vsock_find_bound_socket(&new_addr)) {
607 				found = true;
608 				break;
609 			}
610 		}
611 
612 		if (!found)
613 			return -EADDRNOTAVAIL;
614 	} else {
615 		/* If port is in reserved range, ensure caller
616 		 * has necessary privileges.
617 		 */
618 		if (addr->svm_port <= LAST_RESERVED_PORT &&
619 		    !capable(CAP_NET_BIND_SERVICE)) {
620 			return -EACCES;
621 		}
622 
623 		if (__vsock_find_bound_socket(&new_addr))
624 			return -EADDRINUSE;
625 	}
626 
627 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
628 
629 	/* Remove stream sockets from the unbound list and add them to the hash
630 	 * table for easy lookup by its address.  The unbound list is simply an
631 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
632 	 */
633 	__vsock_remove_bound(vsk);
634 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
635 
636 	return 0;
637 }
638 
639 static int __vsock_bind_dgram(struct vsock_sock *vsk,
640 			      struct sockaddr_vm *addr)
641 {
642 	return vsk->transport->dgram_bind(vsk, addr);
643 }
644 
645 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
646 {
647 	struct vsock_sock *vsk = vsock_sk(sk);
648 	int retval;
649 
650 	/* First ensure this socket isn't already bound. */
651 	if (vsock_addr_bound(&vsk->local_addr))
652 		return -EINVAL;
653 
654 	/* Now bind to the provided address or select appropriate values if
655 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
656 	 * like AF_INET prevents binding to a non-local IP address (in most
657 	 * cases), we only allow binding to a local CID.
658 	 */
659 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
660 		return -EADDRNOTAVAIL;
661 
662 	switch (sk->sk_socket->type) {
663 	case SOCK_STREAM:
664 		spin_lock_bh(&vsock_table_lock);
665 		retval = __vsock_bind_stream(vsk, addr);
666 		spin_unlock_bh(&vsock_table_lock);
667 		break;
668 
669 	case SOCK_DGRAM:
670 		retval = __vsock_bind_dgram(vsk, addr);
671 		break;
672 
673 	default:
674 		retval = -EINVAL;
675 		break;
676 	}
677 
678 	return retval;
679 }
680 
681 static void vsock_connect_timeout(struct work_struct *work);
682 
683 static struct sock *__vsock_create(struct net *net,
684 				   struct socket *sock,
685 				   struct sock *parent,
686 				   gfp_t priority,
687 				   unsigned short type,
688 				   int kern)
689 {
690 	struct sock *sk;
691 	struct vsock_sock *psk;
692 	struct vsock_sock *vsk;
693 
694 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
695 	if (!sk)
696 		return NULL;
697 
698 	sock_init_data(sock, sk);
699 
700 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
701 	 * non-NULL. We make sure that our sockets always have a type by
702 	 * setting it here if needed.
703 	 */
704 	if (!sock)
705 		sk->sk_type = type;
706 
707 	vsk = vsock_sk(sk);
708 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
709 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
710 
711 	sk->sk_destruct = vsock_sk_destruct;
712 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
713 	sock_reset_flag(sk, SOCK_DONE);
714 
715 	INIT_LIST_HEAD(&vsk->bound_table);
716 	INIT_LIST_HEAD(&vsk->connected_table);
717 	vsk->listener = NULL;
718 	INIT_LIST_HEAD(&vsk->pending_links);
719 	INIT_LIST_HEAD(&vsk->accept_queue);
720 	vsk->rejected = false;
721 	vsk->sent_request = false;
722 	vsk->ignore_connecting_rst = false;
723 	vsk->peer_shutdown = 0;
724 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
725 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
726 
727 	psk = parent ? vsock_sk(parent) : NULL;
728 	if (parent) {
729 		vsk->trusted = psk->trusted;
730 		vsk->owner = get_cred(psk->owner);
731 		vsk->connect_timeout = psk->connect_timeout;
732 		vsk->buffer_size = psk->buffer_size;
733 		vsk->buffer_min_size = psk->buffer_min_size;
734 		vsk->buffer_max_size = psk->buffer_max_size;
735 	} else {
736 		vsk->trusted = capable(CAP_NET_ADMIN);
737 		vsk->owner = get_current_cred();
738 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
739 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
740 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
741 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
742 	}
743 
744 	return sk;
745 }
746 
747 static void __vsock_release(struct sock *sk, int level)
748 {
749 	if (sk) {
750 		struct sock *pending;
751 		struct vsock_sock *vsk;
752 
753 		vsk = vsock_sk(sk);
754 		pending = NULL;	/* Compiler warning. */
755 
756 		/* The release call is supposed to use lock_sock_nested()
757 		 * rather than lock_sock(), if a sock lock should be acquired.
758 		 */
759 		if (vsk->transport)
760 			vsk->transport->release(vsk);
761 		else if (sk->sk_type == SOCK_STREAM)
762 			vsock_remove_sock(vsk);
763 
764 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
765 		 * version to avoid the warning "possible recursive locking
766 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
767 		 * is the same as lock_sock(sk).
768 		 */
769 		lock_sock_nested(sk, level);
770 		sock_orphan(sk);
771 		sk->sk_shutdown = SHUTDOWN_MASK;
772 
773 		skb_queue_purge(&sk->sk_receive_queue);
774 
775 		/* Clean up any sockets that never were accepted. */
776 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
777 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
778 			sock_put(pending);
779 		}
780 
781 		release_sock(sk);
782 		sock_put(sk);
783 	}
784 }
785 
786 static void vsock_sk_destruct(struct sock *sk)
787 {
788 	struct vsock_sock *vsk = vsock_sk(sk);
789 
790 	vsock_deassign_transport(vsk);
791 
792 	/* When clearing these addresses, there's no need to set the family and
793 	 * possibly register the address family with the kernel.
794 	 */
795 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
796 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
797 
798 	put_cred(vsk->owner);
799 }
800 
801 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
802 {
803 	int err;
804 
805 	err = sock_queue_rcv_skb(sk, skb);
806 	if (err)
807 		kfree_skb(skb);
808 
809 	return err;
810 }
811 
812 struct sock *vsock_create_connected(struct sock *parent)
813 {
814 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
815 			      parent->sk_type, 0);
816 }
817 EXPORT_SYMBOL_GPL(vsock_create_connected);
818 
819 s64 vsock_stream_has_data(struct vsock_sock *vsk)
820 {
821 	return vsk->transport->stream_has_data(vsk);
822 }
823 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
824 
825 s64 vsock_stream_has_space(struct vsock_sock *vsk)
826 {
827 	return vsk->transport->stream_has_space(vsk);
828 }
829 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
830 
831 static int vsock_release(struct socket *sock)
832 {
833 	__vsock_release(sock->sk, 0);
834 	sock->sk = NULL;
835 	sock->state = SS_FREE;
836 
837 	return 0;
838 }
839 
840 static int
841 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
842 {
843 	int err;
844 	struct sock *sk;
845 	struct sockaddr_vm *vm_addr;
846 
847 	sk = sock->sk;
848 
849 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
850 		return -EINVAL;
851 
852 	lock_sock(sk);
853 	err = __vsock_bind(sk, vm_addr);
854 	release_sock(sk);
855 
856 	return err;
857 }
858 
859 static int vsock_getname(struct socket *sock,
860 			 struct sockaddr *addr, int peer)
861 {
862 	int err;
863 	struct sock *sk;
864 	struct vsock_sock *vsk;
865 	struct sockaddr_vm *vm_addr;
866 
867 	sk = sock->sk;
868 	vsk = vsock_sk(sk);
869 	err = 0;
870 
871 	lock_sock(sk);
872 
873 	if (peer) {
874 		if (sock->state != SS_CONNECTED) {
875 			err = -ENOTCONN;
876 			goto out;
877 		}
878 		vm_addr = &vsk->remote_addr;
879 	} else {
880 		vm_addr = &vsk->local_addr;
881 	}
882 
883 	if (!vm_addr) {
884 		err = -EINVAL;
885 		goto out;
886 	}
887 
888 	/* sys_getsockname() and sys_getpeername() pass us a
889 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
890 	 * that macro is defined in socket.c instead of .h, so we hardcode its
891 	 * value here.
892 	 */
893 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
894 	memcpy(addr, vm_addr, sizeof(*vm_addr));
895 	err = sizeof(*vm_addr);
896 
897 out:
898 	release_sock(sk);
899 	return err;
900 }
901 
902 static int vsock_shutdown(struct socket *sock, int mode)
903 {
904 	int err;
905 	struct sock *sk;
906 
907 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
908 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
909 	 * here like the other address families do.  Note also that the
910 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
911 	 * which is what we want.
912 	 */
913 	mode++;
914 
915 	if ((mode & ~SHUTDOWN_MASK) || !mode)
916 		return -EINVAL;
917 
918 	/* If this is a STREAM socket and it is not connected then bail out
919 	 * immediately.  If it is a DGRAM socket then we must first kick the
920 	 * socket so that it wakes up from any sleeping calls, for example
921 	 * recv(), and then afterwards return the error.
922 	 */
923 
924 	sk = sock->sk;
925 	if (sock->state == SS_UNCONNECTED) {
926 		err = -ENOTCONN;
927 		if (sk->sk_type == SOCK_STREAM)
928 			return err;
929 	} else {
930 		sock->state = SS_DISCONNECTING;
931 		err = 0;
932 	}
933 
934 	/* Receive and send shutdowns are treated alike. */
935 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
936 	if (mode) {
937 		lock_sock(sk);
938 		sk->sk_shutdown |= mode;
939 		sk->sk_state_change(sk);
940 		release_sock(sk);
941 
942 		if (sk->sk_type == SOCK_STREAM) {
943 			sock_reset_flag(sk, SOCK_DONE);
944 			vsock_send_shutdown(sk, mode);
945 		}
946 	}
947 
948 	return err;
949 }
950 
951 static __poll_t vsock_poll(struct file *file, struct socket *sock,
952 			       poll_table *wait)
953 {
954 	struct sock *sk;
955 	__poll_t mask;
956 	struct vsock_sock *vsk;
957 
958 	sk = sock->sk;
959 	vsk = vsock_sk(sk);
960 
961 	poll_wait(file, sk_sleep(sk), wait);
962 	mask = 0;
963 
964 	if (sk->sk_err)
965 		/* Signify that there has been an error on this socket. */
966 		mask |= EPOLLERR;
967 
968 	/* INET sockets treat local write shutdown and peer write shutdown as a
969 	 * case of EPOLLHUP set.
970 	 */
971 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
972 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
973 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
974 		mask |= EPOLLHUP;
975 	}
976 
977 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
978 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
979 		mask |= EPOLLRDHUP;
980 	}
981 
982 	if (sock->type == SOCK_DGRAM) {
983 		/* For datagram sockets we can read if there is something in
984 		 * the queue and write as long as the socket isn't shutdown for
985 		 * sending.
986 		 */
987 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
988 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
989 			mask |= EPOLLIN | EPOLLRDNORM;
990 		}
991 
992 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
993 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
994 
995 	} else if (sock->type == SOCK_STREAM) {
996 		const struct vsock_transport *transport = vsk->transport;
997 		lock_sock(sk);
998 
999 		/* Listening sockets that have connections in their accept
1000 		 * queue can be read.
1001 		 */
1002 		if (sk->sk_state == TCP_LISTEN
1003 		    && !vsock_is_accept_queue_empty(sk))
1004 			mask |= EPOLLIN | EPOLLRDNORM;
1005 
1006 		/* If there is something in the queue then we can read. */
1007 		if (transport && transport->stream_is_active(vsk) &&
1008 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1009 			bool data_ready_now = false;
1010 			int ret = transport->notify_poll_in(
1011 					vsk, 1, &data_ready_now);
1012 			if (ret < 0) {
1013 				mask |= EPOLLERR;
1014 			} else {
1015 				if (data_ready_now)
1016 					mask |= EPOLLIN | EPOLLRDNORM;
1017 
1018 			}
1019 		}
1020 
1021 		/* Sockets whose connections have been closed, reset, or
1022 		 * terminated should also be considered read, and we check the
1023 		 * shutdown flag for that.
1024 		 */
1025 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1026 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1027 			mask |= EPOLLIN | EPOLLRDNORM;
1028 		}
1029 
1030 		/* Connected sockets that can produce data can be written. */
1031 		if (sk->sk_state == TCP_ESTABLISHED) {
1032 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1033 				bool space_avail_now = false;
1034 				int ret = transport->notify_poll_out(
1035 						vsk, 1, &space_avail_now);
1036 				if (ret < 0) {
1037 					mask |= EPOLLERR;
1038 				} else {
1039 					if (space_avail_now)
1040 						/* Remove EPOLLWRBAND since INET
1041 						 * sockets are not setting it.
1042 						 */
1043 						mask |= EPOLLOUT | EPOLLWRNORM;
1044 
1045 				}
1046 			}
1047 		}
1048 
1049 		/* Simulate INET socket poll behaviors, which sets
1050 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1051 		 * but local send is not shutdown.
1052 		 */
1053 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1054 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1055 				mask |= EPOLLOUT | EPOLLWRNORM;
1056 
1057 		}
1058 
1059 		release_sock(sk);
1060 	}
1061 
1062 	return mask;
1063 }
1064 
1065 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1066 			       size_t len)
1067 {
1068 	int err;
1069 	struct sock *sk;
1070 	struct vsock_sock *vsk;
1071 	struct sockaddr_vm *remote_addr;
1072 	const struct vsock_transport *transport;
1073 
1074 	if (msg->msg_flags & MSG_OOB)
1075 		return -EOPNOTSUPP;
1076 
1077 	/* For now, MSG_DONTWAIT is always assumed... */
1078 	err = 0;
1079 	sk = sock->sk;
1080 	vsk = vsock_sk(sk);
1081 	transport = vsk->transport;
1082 
1083 	lock_sock(sk);
1084 
1085 	err = vsock_auto_bind(vsk);
1086 	if (err)
1087 		goto out;
1088 
1089 
1090 	/* If the provided message contains an address, use that.  Otherwise
1091 	 * fall back on the socket's remote handle (if it has been connected).
1092 	 */
1093 	if (msg->msg_name &&
1094 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1095 			    &remote_addr) == 0) {
1096 		/* Ensure this address is of the right type and is a valid
1097 		 * destination.
1098 		 */
1099 
1100 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1101 			remote_addr->svm_cid = transport->get_local_cid();
1102 
1103 		if (!vsock_addr_bound(remote_addr)) {
1104 			err = -EINVAL;
1105 			goto out;
1106 		}
1107 	} else if (sock->state == SS_CONNECTED) {
1108 		remote_addr = &vsk->remote_addr;
1109 
1110 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1111 			remote_addr->svm_cid = transport->get_local_cid();
1112 
1113 		/* XXX Should connect() or this function ensure remote_addr is
1114 		 * bound?
1115 		 */
1116 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1117 			err = -EINVAL;
1118 			goto out;
1119 		}
1120 	} else {
1121 		err = -EINVAL;
1122 		goto out;
1123 	}
1124 
1125 	if (!transport->dgram_allow(remote_addr->svm_cid,
1126 				    remote_addr->svm_port)) {
1127 		err = -EINVAL;
1128 		goto out;
1129 	}
1130 
1131 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1132 
1133 out:
1134 	release_sock(sk);
1135 	return err;
1136 }
1137 
1138 static int vsock_dgram_connect(struct socket *sock,
1139 			       struct sockaddr *addr, int addr_len, int flags)
1140 {
1141 	int err;
1142 	struct sock *sk;
1143 	struct vsock_sock *vsk;
1144 	struct sockaddr_vm *remote_addr;
1145 
1146 	sk = sock->sk;
1147 	vsk = vsock_sk(sk);
1148 
1149 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1150 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1151 		lock_sock(sk);
1152 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1153 				VMADDR_PORT_ANY);
1154 		sock->state = SS_UNCONNECTED;
1155 		release_sock(sk);
1156 		return 0;
1157 	} else if (err != 0)
1158 		return -EINVAL;
1159 
1160 	lock_sock(sk);
1161 
1162 	err = vsock_auto_bind(vsk);
1163 	if (err)
1164 		goto out;
1165 
1166 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1167 					 remote_addr->svm_port)) {
1168 		err = -EINVAL;
1169 		goto out;
1170 	}
1171 
1172 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1173 	sock->state = SS_CONNECTED;
1174 
1175 out:
1176 	release_sock(sk);
1177 	return err;
1178 }
1179 
1180 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1181 			       size_t len, int flags)
1182 {
1183 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1184 
1185 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1186 }
1187 
1188 static const struct proto_ops vsock_dgram_ops = {
1189 	.family = PF_VSOCK,
1190 	.owner = THIS_MODULE,
1191 	.release = vsock_release,
1192 	.bind = vsock_bind,
1193 	.connect = vsock_dgram_connect,
1194 	.socketpair = sock_no_socketpair,
1195 	.accept = sock_no_accept,
1196 	.getname = vsock_getname,
1197 	.poll = vsock_poll,
1198 	.ioctl = sock_no_ioctl,
1199 	.listen = sock_no_listen,
1200 	.shutdown = vsock_shutdown,
1201 	.setsockopt = sock_no_setsockopt,
1202 	.getsockopt = sock_no_getsockopt,
1203 	.sendmsg = vsock_dgram_sendmsg,
1204 	.recvmsg = vsock_dgram_recvmsg,
1205 	.mmap = sock_no_mmap,
1206 	.sendpage = sock_no_sendpage,
1207 };
1208 
1209 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1210 {
1211 	const struct vsock_transport *transport = vsk->transport;
1212 
1213 	if (!transport->cancel_pkt)
1214 		return -EOPNOTSUPP;
1215 
1216 	return transport->cancel_pkt(vsk);
1217 }
1218 
1219 static void vsock_connect_timeout(struct work_struct *work)
1220 {
1221 	struct sock *sk;
1222 	struct vsock_sock *vsk;
1223 	int cancel = 0;
1224 
1225 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1226 	sk = sk_vsock(vsk);
1227 
1228 	lock_sock(sk);
1229 	if (sk->sk_state == TCP_SYN_SENT &&
1230 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1231 		sk->sk_state = TCP_CLOSE;
1232 		sk->sk_err = ETIMEDOUT;
1233 		sk->sk_error_report(sk);
1234 		cancel = 1;
1235 	}
1236 	release_sock(sk);
1237 	if (cancel)
1238 		vsock_transport_cancel_pkt(vsk);
1239 
1240 	sock_put(sk);
1241 }
1242 
1243 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1244 				int addr_len, int flags)
1245 {
1246 	int err;
1247 	struct sock *sk;
1248 	struct vsock_sock *vsk;
1249 	const struct vsock_transport *transport;
1250 	struct sockaddr_vm *remote_addr;
1251 	long timeout;
1252 	DEFINE_WAIT(wait);
1253 
1254 	err = 0;
1255 	sk = sock->sk;
1256 	vsk = vsock_sk(sk);
1257 
1258 	lock_sock(sk);
1259 
1260 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1261 	switch (sock->state) {
1262 	case SS_CONNECTED:
1263 		err = -EISCONN;
1264 		goto out;
1265 	case SS_DISCONNECTING:
1266 		err = -EINVAL;
1267 		goto out;
1268 	case SS_CONNECTING:
1269 		/* This continues on so we can move sock into the SS_CONNECTED
1270 		 * state once the connection has completed (at which point err
1271 		 * will be set to zero also).  Otherwise, we will either wait
1272 		 * for the connection or return -EALREADY should this be a
1273 		 * non-blocking call.
1274 		 */
1275 		err = -EALREADY;
1276 		break;
1277 	default:
1278 		if ((sk->sk_state == TCP_LISTEN) ||
1279 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1280 			err = -EINVAL;
1281 			goto out;
1282 		}
1283 
1284 		/* Set the remote address that we are connecting to. */
1285 		memcpy(&vsk->remote_addr, remote_addr,
1286 		       sizeof(vsk->remote_addr));
1287 
1288 		err = vsock_assign_transport(vsk, NULL);
1289 		if (err)
1290 			goto out;
1291 
1292 		transport = vsk->transport;
1293 
1294 		/* The hypervisor and well-known contexts do not have socket
1295 		 * endpoints.
1296 		 */
1297 		if (!transport ||
1298 		    !transport->stream_allow(remote_addr->svm_cid,
1299 					     remote_addr->svm_port)) {
1300 			err = -ENETUNREACH;
1301 			goto out;
1302 		}
1303 
1304 		err = vsock_auto_bind(vsk);
1305 		if (err)
1306 			goto out;
1307 
1308 		sk->sk_state = TCP_SYN_SENT;
1309 
1310 		err = transport->connect(vsk);
1311 		if (err < 0)
1312 			goto out;
1313 
1314 		/* Mark sock as connecting and set the error code to in
1315 		 * progress in case this is a non-blocking connect.
1316 		 */
1317 		sock->state = SS_CONNECTING;
1318 		err = -EINPROGRESS;
1319 	}
1320 
1321 	/* The receive path will handle all communication until we are able to
1322 	 * enter the connected state.  Here we wait for the connection to be
1323 	 * completed or a notification of an error.
1324 	 */
1325 	timeout = vsk->connect_timeout;
1326 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1327 
1328 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1329 		if (flags & O_NONBLOCK) {
1330 			/* If we're not going to block, we schedule a timeout
1331 			 * function to generate a timeout on the connection
1332 			 * attempt, in case the peer doesn't respond in a
1333 			 * timely manner. We hold on to the socket until the
1334 			 * timeout fires.
1335 			 */
1336 			sock_hold(sk);
1337 			schedule_delayed_work(&vsk->connect_work, timeout);
1338 
1339 			/* Skip ahead to preserve error code set above. */
1340 			goto out_wait;
1341 		}
1342 
1343 		release_sock(sk);
1344 		timeout = schedule_timeout(timeout);
1345 		lock_sock(sk);
1346 
1347 		if (signal_pending(current)) {
1348 			err = sock_intr_errno(timeout);
1349 			sk->sk_state = TCP_CLOSE;
1350 			sock->state = SS_UNCONNECTED;
1351 			vsock_transport_cancel_pkt(vsk);
1352 			goto out_wait;
1353 		} else if (timeout == 0) {
1354 			err = -ETIMEDOUT;
1355 			sk->sk_state = TCP_CLOSE;
1356 			sock->state = SS_UNCONNECTED;
1357 			vsock_transport_cancel_pkt(vsk);
1358 			goto out_wait;
1359 		}
1360 
1361 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1362 	}
1363 
1364 	if (sk->sk_err) {
1365 		err = -sk->sk_err;
1366 		sk->sk_state = TCP_CLOSE;
1367 		sock->state = SS_UNCONNECTED;
1368 	} else {
1369 		err = 0;
1370 	}
1371 
1372 out_wait:
1373 	finish_wait(sk_sleep(sk), &wait);
1374 out:
1375 	release_sock(sk);
1376 	return err;
1377 }
1378 
1379 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1380 			bool kern)
1381 {
1382 	struct sock *listener;
1383 	int err;
1384 	struct sock *connected;
1385 	struct vsock_sock *vconnected;
1386 	long timeout;
1387 	DEFINE_WAIT(wait);
1388 
1389 	err = 0;
1390 	listener = sock->sk;
1391 
1392 	lock_sock(listener);
1393 
1394 	if (sock->type != SOCK_STREAM) {
1395 		err = -EOPNOTSUPP;
1396 		goto out;
1397 	}
1398 
1399 	if (listener->sk_state != TCP_LISTEN) {
1400 		err = -EINVAL;
1401 		goto out;
1402 	}
1403 
1404 	/* Wait for children sockets to appear; these are the new sockets
1405 	 * created upon connection establishment.
1406 	 */
1407 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1408 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1409 
1410 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1411 	       listener->sk_err == 0) {
1412 		release_sock(listener);
1413 		timeout = schedule_timeout(timeout);
1414 		finish_wait(sk_sleep(listener), &wait);
1415 		lock_sock(listener);
1416 
1417 		if (signal_pending(current)) {
1418 			err = sock_intr_errno(timeout);
1419 			goto out;
1420 		} else if (timeout == 0) {
1421 			err = -EAGAIN;
1422 			goto out;
1423 		}
1424 
1425 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1426 	}
1427 	finish_wait(sk_sleep(listener), &wait);
1428 
1429 	if (listener->sk_err)
1430 		err = -listener->sk_err;
1431 
1432 	if (connected) {
1433 		sk_acceptq_removed(listener);
1434 
1435 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1436 		vconnected = vsock_sk(connected);
1437 
1438 		/* If the listener socket has received an error, then we should
1439 		 * reject this socket and return.  Note that we simply mark the
1440 		 * socket rejected, drop our reference, and let the cleanup
1441 		 * function handle the cleanup; the fact that we found it in
1442 		 * the listener's accept queue guarantees that the cleanup
1443 		 * function hasn't run yet.
1444 		 */
1445 		if (err) {
1446 			vconnected->rejected = true;
1447 		} else {
1448 			newsock->state = SS_CONNECTED;
1449 			sock_graft(connected, newsock);
1450 		}
1451 
1452 		release_sock(connected);
1453 		sock_put(connected);
1454 	}
1455 
1456 out:
1457 	release_sock(listener);
1458 	return err;
1459 }
1460 
1461 static int vsock_listen(struct socket *sock, int backlog)
1462 {
1463 	int err;
1464 	struct sock *sk;
1465 	struct vsock_sock *vsk;
1466 
1467 	sk = sock->sk;
1468 
1469 	lock_sock(sk);
1470 
1471 	if (sock->type != SOCK_STREAM) {
1472 		err = -EOPNOTSUPP;
1473 		goto out;
1474 	}
1475 
1476 	if (sock->state != SS_UNCONNECTED) {
1477 		err = -EINVAL;
1478 		goto out;
1479 	}
1480 
1481 	vsk = vsock_sk(sk);
1482 
1483 	if (!vsock_addr_bound(&vsk->local_addr)) {
1484 		err = -EINVAL;
1485 		goto out;
1486 	}
1487 
1488 	sk->sk_max_ack_backlog = backlog;
1489 	sk->sk_state = TCP_LISTEN;
1490 
1491 	err = 0;
1492 
1493 out:
1494 	release_sock(sk);
1495 	return err;
1496 }
1497 
1498 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1499 				     const struct vsock_transport *transport,
1500 				     u64 val)
1501 {
1502 	if (val > vsk->buffer_max_size)
1503 		val = vsk->buffer_max_size;
1504 
1505 	if (val < vsk->buffer_min_size)
1506 		val = vsk->buffer_min_size;
1507 
1508 	if (val != vsk->buffer_size &&
1509 	    transport && transport->notify_buffer_size)
1510 		transport->notify_buffer_size(vsk, &val);
1511 
1512 	vsk->buffer_size = val;
1513 }
1514 
1515 static int vsock_stream_setsockopt(struct socket *sock,
1516 				   int level,
1517 				   int optname,
1518 				   char __user *optval,
1519 				   unsigned int optlen)
1520 {
1521 	int err;
1522 	struct sock *sk;
1523 	struct vsock_sock *vsk;
1524 	const struct vsock_transport *transport;
1525 	u64 val;
1526 
1527 	if (level != AF_VSOCK)
1528 		return -ENOPROTOOPT;
1529 
1530 #define COPY_IN(_v)                                       \
1531 	do {						  \
1532 		if (optlen < sizeof(_v)) {		  \
1533 			err = -EINVAL;			  \
1534 			goto exit;			  \
1535 		}					  \
1536 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1537 			err = -EFAULT;					\
1538 			goto exit;					\
1539 		}							\
1540 	} while (0)
1541 
1542 	err = 0;
1543 	sk = sock->sk;
1544 	vsk = vsock_sk(sk);
1545 	transport = vsk->transport;
1546 
1547 	lock_sock(sk);
1548 
1549 	switch (optname) {
1550 	case SO_VM_SOCKETS_BUFFER_SIZE:
1551 		COPY_IN(val);
1552 		vsock_update_buffer_size(vsk, transport, val);
1553 		break;
1554 
1555 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1556 		COPY_IN(val);
1557 		vsk->buffer_max_size = val;
1558 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1559 		break;
1560 
1561 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1562 		COPY_IN(val);
1563 		vsk->buffer_min_size = val;
1564 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1565 		break;
1566 
1567 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1568 		struct __kernel_old_timeval tv;
1569 		COPY_IN(tv);
1570 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1571 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1572 			vsk->connect_timeout = tv.tv_sec * HZ +
1573 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1574 			if (vsk->connect_timeout == 0)
1575 				vsk->connect_timeout =
1576 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1577 
1578 		} else {
1579 			err = -ERANGE;
1580 		}
1581 		break;
1582 	}
1583 
1584 	default:
1585 		err = -ENOPROTOOPT;
1586 		break;
1587 	}
1588 
1589 #undef COPY_IN
1590 
1591 exit:
1592 	release_sock(sk);
1593 	return err;
1594 }
1595 
1596 static int vsock_stream_getsockopt(struct socket *sock,
1597 				   int level, int optname,
1598 				   char __user *optval,
1599 				   int __user *optlen)
1600 {
1601 	int err;
1602 	int len;
1603 	struct sock *sk;
1604 	struct vsock_sock *vsk;
1605 	u64 val;
1606 
1607 	if (level != AF_VSOCK)
1608 		return -ENOPROTOOPT;
1609 
1610 	err = get_user(len, optlen);
1611 	if (err != 0)
1612 		return err;
1613 
1614 #define COPY_OUT(_v)                            \
1615 	do {					\
1616 		if (len < sizeof(_v))		\
1617 			return -EINVAL;		\
1618 						\
1619 		len = sizeof(_v);		\
1620 		if (copy_to_user(optval, &_v, len) != 0)	\
1621 			return -EFAULT;				\
1622 								\
1623 	} while (0)
1624 
1625 	err = 0;
1626 	sk = sock->sk;
1627 	vsk = vsock_sk(sk);
1628 
1629 	switch (optname) {
1630 	case SO_VM_SOCKETS_BUFFER_SIZE:
1631 		val = vsk->buffer_size;
1632 		COPY_OUT(val);
1633 		break;
1634 
1635 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1636 		val = vsk->buffer_max_size;
1637 		COPY_OUT(val);
1638 		break;
1639 
1640 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1641 		val = vsk->buffer_min_size;
1642 		COPY_OUT(val);
1643 		break;
1644 
1645 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1646 		struct __kernel_old_timeval tv;
1647 		tv.tv_sec = vsk->connect_timeout / HZ;
1648 		tv.tv_usec =
1649 		    (vsk->connect_timeout -
1650 		     tv.tv_sec * HZ) * (1000000 / HZ);
1651 		COPY_OUT(tv);
1652 		break;
1653 	}
1654 	default:
1655 		return -ENOPROTOOPT;
1656 	}
1657 
1658 	err = put_user(len, optlen);
1659 	if (err != 0)
1660 		return -EFAULT;
1661 
1662 #undef COPY_OUT
1663 
1664 	return 0;
1665 }
1666 
1667 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1668 				size_t len)
1669 {
1670 	struct sock *sk;
1671 	struct vsock_sock *vsk;
1672 	const struct vsock_transport *transport;
1673 	ssize_t total_written;
1674 	long timeout;
1675 	int err;
1676 	struct vsock_transport_send_notify_data send_data;
1677 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1678 
1679 	sk = sock->sk;
1680 	vsk = vsock_sk(sk);
1681 	transport = vsk->transport;
1682 	total_written = 0;
1683 	err = 0;
1684 
1685 	if (msg->msg_flags & MSG_OOB)
1686 		return -EOPNOTSUPP;
1687 
1688 	lock_sock(sk);
1689 
1690 	/* Callers should not provide a destination with stream sockets. */
1691 	if (msg->msg_namelen) {
1692 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1693 		goto out;
1694 	}
1695 
1696 	/* Send data only if both sides are not shutdown in the direction. */
1697 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1698 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1699 		err = -EPIPE;
1700 		goto out;
1701 	}
1702 
1703 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1704 	    !vsock_addr_bound(&vsk->local_addr)) {
1705 		err = -ENOTCONN;
1706 		goto out;
1707 	}
1708 
1709 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1710 		err = -EDESTADDRREQ;
1711 		goto out;
1712 	}
1713 
1714 	/* Wait for room in the produce queue to enqueue our user's data. */
1715 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1716 
1717 	err = transport->notify_send_init(vsk, &send_data);
1718 	if (err < 0)
1719 		goto out;
1720 
1721 	while (total_written < len) {
1722 		ssize_t written;
1723 
1724 		add_wait_queue(sk_sleep(sk), &wait);
1725 		while (vsock_stream_has_space(vsk) == 0 &&
1726 		       sk->sk_err == 0 &&
1727 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1728 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1729 
1730 			/* Don't wait for non-blocking sockets. */
1731 			if (timeout == 0) {
1732 				err = -EAGAIN;
1733 				remove_wait_queue(sk_sleep(sk), &wait);
1734 				goto out_err;
1735 			}
1736 
1737 			err = transport->notify_send_pre_block(vsk, &send_data);
1738 			if (err < 0) {
1739 				remove_wait_queue(sk_sleep(sk), &wait);
1740 				goto out_err;
1741 			}
1742 
1743 			release_sock(sk);
1744 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1745 			lock_sock(sk);
1746 			if (signal_pending(current)) {
1747 				err = sock_intr_errno(timeout);
1748 				remove_wait_queue(sk_sleep(sk), &wait);
1749 				goto out_err;
1750 			} else if (timeout == 0) {
1751 				err = -EAGAIN;
1752 				remove_wait_queue(sk_sleep(sk), &wait);
1753 				goto out_err;
1754 			}
1755 		}
1756 		remove_wait_queue(sk_sleep(sk), &wait);
1757 
1758 		/* These checks occur both as part of and after the loop
1759 		 * conditional since we need to check before and after
1760 		 * sleeping.
1761 		 */
1762 		if (sk->sk_err) {
1763 			err = -sk->sk_err;
1764 			goto out_err;
1765 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1766 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1767 			err = -EPIPE;
1768 			goto out_err;
1769 		}
1770 
1771 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1772 		if (err < 0)
1773 			goto out_err;
1774 
1775 		/* Note that enqueue will only write as many bytes as are free
1776 		 * in the produce queue, so we don't need to ensure len is
1777 		 * smaller than the queue size.  It is the caller's
1778 		 * responsibility to check how many bytes we were able to send.
1779 		 */
1780 
1781 		written = transport->stream_enqueue(
1782 				vsk, msg,
1783 				len - total_written);
1784 		if (written < 0) {
1785 			err = -ENOMEM;
1786 			goto out_err;
1787 		}
1788 
1789 		total_written += written;
1790 
1791 		err = transport->notify_send_post_enqueue(
1792 				vsk, written, &send_data);
1793 		if (err < 0)
1794 			goto out_err;
1795 
1796 	}
1797 
1798 out_err:
1799 	if (total_written > 0)
1800 		err = total_written;
1801 out:
1802 	release_sock(sk);
1803 	return err;
1804 }
1805 
1806 
1807 static int
1808 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1809 		     int flags)
1810 {
1811 	struct sock *sk;
1812 	struct vsock_sock *vsk;
1813 	const struct vsock_transport *transport;
1814 	int err;
1815 	size_t target;
1816 	ssize_t copied;
1817 	long timeout;
1818 	struct vsock_transport_recv_notify_data recv_data;
1819 
1820 	DEFINE_WAIT(wait);
1821 
1822 	sk = sock->sk;
1823 	vsk = vsock_sk(sk);
1824 	transport = vsk->transport;
1825 	err = 0;
1826 
1827 	lock_sock(sk);
1828 
1829 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1830 		/* Recvmsg is supposed to return 0 if a peer performs an
1831 		 * orderly shutdown. Differentiate between that case and when a
1832 		 * peer has not connected or a local shutdown occured with the
1833 		 * SOCK_DONE flag.
1834 		 */
1835 		if (sock_flag(sk, SOCK_DONE))
1836 			err = 0;
1837 		else
1838 			err = -ENOTCONN;
1839 
1840 		goto out;
1841 	}
1842 
1843 	if (flags & MSG_OOB) {
1844 		err = -EOPNOTSUPP;
1845 		goto out;
1846 	}
1847 
1848 	/* We don't check peer_shutdown flag here since peer may actually shut
1849 	 * down, but there can be data in the queue that a local socket can
1850 	 * receive.
1851 	 */
1852 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1853 		err = 0;
1854 		goto out;
1855 	}
1856 
1857 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1858 	 * is not an error.  We may as well bail out now.
1859 	 */
1860 	if (!len) {
1861 		err = 0;
1862 		goto out;
1863 	}
1864 
1865 	/* We must not copy less than target bytes into the user's buffer
1866 	 * before returning successfully, so we wait for the consume queue to
1867 	 * have that much data to consume before dequeueing.  Note that this
1868 	 * makes it impossible to handle cases where target is greater than the
1869 	 * queue size.
1870 	 */
1871 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1872 	if (target >= transport->stream_rcvhiwat(vsk)) {
1873 		err = -ENOMEM;
1874 		goto out;
1875 	}
1876 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1877 	copied = 0;
1878 
1879 	err = transport->notify_recv_init(vsk, target, &recv_data);
1880 	if (err < 0)
1881 		goto out;
1882 
1883 
1884 	while (1) {
1885 		s64 ready;
1886 
1887 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1888 		ready = vsock_stream_has_data(vsk);
1889 
1890 		if (ready == 0) {
1891 			if (sk->sk_err != 0 ||
1892 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1893 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1894 				finish_wait(sk_sleep(sk), &wait);
1895 				break;
1896 			}
1897 			/* Don't wait for non-blocking sockets. */
1898 			if (timeout == 0) {
1899 				err = -EAGAIN;
1900 				finish_wait(sk_sleep(sk), &wait);
1901 				break;
1902 			}
1903 
1904 			err = transport->notify_recv_pre_block(
1905 					vsk, target, &recv_data);
1906 			if (err < 0) {
1907 				finish_wait(sk_sleep(sk), &wait);
1908 				break;
1909 			}
1910 			release_sock(sk);
1911 			timeout = schedule_timeout(timeout);
1912 			lock_sock(sk);
1913 
1914 			if (signal_pending(current)) {
1915 				err = sock_intr_errno(timeout);
1916 				finish_wait(sk_sleep(sk), &wait);
1917 				break;
1918 			} else if (timeout == 0) {
1919 				err = -EAGAIN;
1920 				finish_wait(sk_sleep(sk), &wait);
1921 				break;
1922 			}
1923 		} else {
1924 			ssize_t read;
1925 
1926 			finish_wait(sk_sleep(sk), &wait);
1927 
1928 			if (ready < 0) {
1929 				/* Invalid queue pair content. XXX This should
1930 				* be changed to a connection reset in a later
1931 				* change.
1932 				*/
1933 
1934 				err = -ENOMEM;
1935 				goto out;
1936 			}
1937 
1938 			err = transport->notify_recv_pre_dequeue(
1939 					vsk, target, &recv_data);
1940 			if (err < 0)
1941 				break;
1942 
1943 			read = transport->stream_dequeue(
1944 					vsk, msg,
1945 					len - copied, flags);
1946 			if (read < 0) {
1947 				err = -ENOMEM;
1948 				break;
1949 			}
1950 
1951 			copied += read;
1952 
1953 			err = transport->notify_recv_post_dequeue(
1954 					vsk, target, read,
1955 					!(flags & MSG_PEEK), &recv_data);
1956 			if (err < 0)
1957 				goto out;
1958 
1959 			if (read >= target || flags & MSG_PEEK)
1960 				break;
1961 
1962 			target -= read;
1963 		}
1964 	}
1965 
1966 	if (sk->sk_err)
1967 		err = -sk->sk_err;
1968 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1969 		err = 0;
1970 
1971 	if (copied > 0)
1972 		err = copied;
1973 
1974 out:
1975 	release_sock(sk);
1976 	return err;
1977 }
1978 
1979 static const struct proto_ops vsock_stream_ops = {
1980 	.family = PF_VSOCK,
1981 	.owner = THIS_MODULE,
1982 	.release = vsock_release,
1983 	.bind = vsock_bind,
1984 	.connect = vsock_stream_connect,
1985 	.socketpair = sock_no_socketpair,
1986 	.accept = vsock_accept,
1987 	.getname = vsock_getname,
1988 	.poll = vsock_poll,
1989 	.ioctl = sock_no_ioctl,
1990 	.listen = vsock_listen,
1991 	.shutdown = vsock_shutdown,
1992 	.setsockopt = vsock_stream_setsockopt,
1993 	.getsockopt = vsock_stream_getsockopt,
1994 	.sendmsg = vsock_stream_sendmsg,
1995 	.recvmsg = vsock_stream_recvmsg,
1996 	.mmap = sock_no_mmap,
1997 	.sendpage = sock_no_sendpage,
1998 };
1999 
2000 static int vsock_create(struct net *net, struct socket *sock,
2001 			int protocol, int kern)
2002 {
2003 	struct vsock_sock *vsk;
2004 	struct sock *sk;
2005 	int ret;
2006 
2007 	if (!sock)
2008 		return -EINVAL;
2009 
2010 	if (protocol && protocol != PF_VSOCK)
2011 		return -EPROTONOSUPPORT;
2012 
2013 	switch (sock->type) {
2014 	case SOCK_DGRAM:
2015 		sock->ops = &vsock_dgram_ops;
2016 		break;
2017 	case SOCK_STREAM:
2018 		sock->ops = &vsock_stream_ops;
2019 		break;
2020 	default:
2021 		return -ESOCKTNOSUPPORT;
2022 	}
2023 
2024 	sock->state = SS_UNCONNECTED;
2025 
2026 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2027 	if (!sk)
2028 		return -ENOMEM;
2029 
2030 	vsk = vsock_sk(sk);
2031 
2032 	if (sock->type == SOCK_DGRAM) {
2033 		ret = vsock_assign_transport(vsk, NULL);
2034 		if (ret < 0) {
2035 			sock_put(sk);
2036 			return ret;
2037 		}
2038 	}
2039 
2040 	vsock_insert_unbound(vsk);
2041 
2042 	return 0;
2043 }
2044 
2045 static const struct net_proto_family vsock_family_ops = {
2046 	.family = AF_VSOCK,
2047 	.create = vsock_create,
2048 	.owner = THIS_MODULE,
2049 };
2050 
2051 static long vsock_dev_do_ioctl(struct file *filp,
2052 			       unsigned int cmd, void __user *ptr)
2053 {
2054 	u32 __user *p = ptr;
2055 	u32 cid = VMADDR_CID_ANY;
2056 	int retval = 0;
2057 
2058 	switch (cmd) {
2059 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2060 		/* To be compatible with the VMCI behavior, we prioritize the
2061 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2062 		 */
2063 		if (transport_g2h)
2064 			cid = transport_g2h->get_local_cid();
2065 		else if (transport_h2g)
2066 			cid = transport_h2g->get_local_cid();
2067 
2068 		if (put_user(cid, p) != 0)
2069 			retval = -EFAULT;
2070 		break;
2071 
2072 	default:
2073 		pr_err("Unknown ioctl %d\n", cmd);
2074 		retval = -EINVAL;
2075 	}
2076 
2077 	return retval;
2078 }
2079 
2080 static long vsock_dev_ioctl(struct file *filp,
2081 			    unsigned int cmd, unsigned long arg)
2082 {
2083 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2084 }
2085 
2086 #ifdef CONFIG_COMPAT
2087 static long vsock_dev_compat_ioctl(struct file *filp,
2088 				   unsigned int cmd, unsigned long arg)
2089 {
2090 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2091 }
2092 #endif
2093 
2094 static const struct file_operations vsock_device_ops = {
2095 	.owner		= THIS_MODULE,
2096 	.unlocked_ioctl	= vsock_dev_ioctl,
2097 #ifdef CONFIG_COMPAT
2098 	.compat_ioctl	= vsock_dev_compat_ioctl,
2099 #endif
2100 	.open		= nonseekable_open,
2101 };
2102 
2103 static struct miscdevice vsock_device = {
2104 	.name		= "vsock",
2105 	.fops		= &vsock_device_ops,
2106 };
2107 
2108 static int __init vsock_init(void)
2109 {
2110 	int err = 0;
2111 
2112 	vsock_init_tables();
2113 
2114 	vsock_proto.owner = THIS_MODULE;
2115 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2116 	err = misc_register(&vsock_device);
2117 	if (err) {
2118 		pr_err("Failed to register misc device\n");
2119 		goto err_reset_transport;
2120 	}
2121 
2122 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2123 	if (err) {
2124 		pr_err("Cannot register vsock protocol\n");
2125 		goto err_deregister_misc;
2126 	}
2127 
2128 	err = sock_register(&vsock_family_ops);
2129 	if (err) {
2130 		pr_err("could not register af_vsock (%d) address family: %d\n",
2131 		       AF_VSOCK, err);
2132 		goto err_unregister_proto;
2133 	}
2134 
2135 	return 0;
2136 
2137 err_unregister_proto:
2138 	proto_unregister(&vsock_proto);
2139 err_deregister_misc:
2140 	misc_deregister(&vsock_device);
2141 err_reset_transport:
2142 	return err;
2143 }
2144 
2145 static void __exit vsock_exit(void)
2146 {
2147 	misc_deregister(&vsock_device);
2148 	sock_unregister(AF_VSOCK);
2149 	proto_unregister(&vsock_proto);
2150 }
2151 
2152 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2153 {
2154 	return vsk->transport;
2155 }
2156 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2157 
2158 int vsock_core_register(const struct vsock_transport *t, int features)
2159 {
2160 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2161 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2162 
2163 	if (err)
2164 		return err;
2165 
2166 	t_h2g = transport_h2g;
2167 	t_g2h = transport_g2h;
2168 	t_dgram = transport_dgram;
2169 	t_local = transport_local;
2170 
2171 	if (features & VSOCK_TRANSPORT_F_H2G) {
2172 		if (t_h2g) {
2173 			err = -EBUSY;
2174 			goto err_busy;
2175 		}
2176 		t_h2g = t;
2177 	}
2178 
2179 	if (features & VSOCK_TRANSPORT_F_G2H) {
2180 		if (t_g2h) {
2181 			err = -EBUSY;
2182 			goto err_busy;
2183 		}
2184 		t_g2h = t;
2185 	}
2186 
2187 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2188 		if (t_dgram) {
2189 			err = -EBUSY;
2190 			goto err_busy;
2191 		}
2192 		t_dgram = t;
2193 	}
2194 
2195 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2196 		if (t_local) {
2197 			err = -EBUSY;
2198 			goto err_busy;
2199 		}
2200 		t_local = t;
2201 	}
2202 
2203 	transport_h2g = t_h2g;
2204 	transport_g2h = t_g2h;
2205 	transport_dgram = t_dgram;
2206 	transport_local = t_local;
2207 
2208 err_busy:
2209 	mutex_unlock(&vsock_register_mutex);
2210 	return err;
2211 }
2212 EXPORT_SYMBOL_GPL(vsock_core_register);
2213 
2214 void vsock_core_unregister(const struct vsock_transport *t)
2215 {
2216 	mutex_lock(&vsock_register_mutex);
2217 
2218 	if (transport_h2g == t)
2219 		transport_h2g = NULL;
2220 
2221 	if (transport_g2h == t)
2222 		transport_g2h = NULL;
2223 
2224 	if (transport_dgram == t)
2225 		transport_dgram = NULL;
2226 
2227 	if (transport_local == t)
2228 		transport_local = NULL;
2229 
2230 	mutex_unlock(&vsock_register_mutex);
2231 }
2232 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2233 
2234 module_init(vsock_init);
2235 module_exit(vsock_exit);
2236 
2237 MODULE_AUTHOR("VMware, Inc.");
2238 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2239 MODULE_VERSION("1.0.2.0-k");
2240 MODULE_LICENSE("GPL v2");
2241