xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision daabfbca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 static const struct vsock_transport *transport_single;
130 static DEFINE_MUTEX(vsock_register_mutex);
131 
132 /**** UTILS ****/
133 
134 /* Each bound VSocket is stored in the bind hash table and each connected
135  * VSocket is stored in the connected hash table.
136  *
137  * Unbound sockets are all put on the same list attached to the end of the hash
138  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
139  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140  * represents the list that addr hashes to).
141  *
142  * Specifically, we initialize the vsock_bind_table array to a size of
143  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
146  * mods with VSOCK_HASH_SIZE to ensure this.
147  */
148 #define MAX_PORT_RETRIES        24
149 
150 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
151 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
152 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
153 
154 /* XXX This can probably be implemented in a better way. */
155 #define VSOCK_CONN_HASH(src, dst)				\
156 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
157 #define vsock_connected_sockets(src, dst)		\
158 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
159 #define vsock_connected_sockets_vsk(vsk)				\
160 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
161 
162 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
163 EXPORT_SYMBOL_GPL(vsock_bind_table);
164 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
165 EXPORT_SYMBOL_GPL(vsock_connected_table);
166 DEFINE_SPINLOCK(vsock_table_lock);
167 EXPORT_SYMBOL_GPL(vsock_table_lock);
168 
169 /* Autobind this socket to the local address if necessary. */
170 static int vsock_auto_bind(struct vsock_sock *vsk)
171 {
172 	struct sock *sk = sk_vsock(vsk);
173 	struct sockaddr_vm local_addr;
174 
175 	if (vsock_addr_bound(&vsk->local_addr))
176 		return 0;
177 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
178 	return __vsock_bind(sk, &local_addr);
179 }
180 
181 static int __init vsock_init_tables(void)
182 {
183 	int i;
184 
185 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
186 		INIT_LIST_HEAD(&vsock_bind_table[i]);
187 
188 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
189 		INIT_LIST_HEAD(&vsock_connected_table[i]);
190 	return 0;
191 }
192 
193 static void __vsock_insert_bound(struct list_head *list,
194 				 struct vsock_sock *vsk)
195 {
196 	sock_hold(&vsk->sk);
197 	list_add(&vsk->bound_table, list);
198 }
199 
200 static void __vsock_insert_connected(struct list_head *list,
201 				     struct vsock_sock *vsk)
202 {
203 	sock_hold(&vsk->sk);
204 	list_add(&vsk->connected_table, list);
205 }
206 
207 static void __vsock_remove_bound(struct vsock_sock *vsk)
208 {
209 	list_del_init(&vsk->bound_table);
210 	sock_put(&vsk->sk);
211 }
212 
213 static void __vsock_remove_connected(struct vsock_sock *vsk)
214 {
215 	list_del_init(&vsk->connected_table);
216 	sock_put(&vsk->sk);
217 }
218 
219 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
220 {
221 	struct vsock_sock *vsk;
222 
223 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
224 		if (addr->svm_port == vsk->local_addr.svm_port)
225 			return sk_vsock(vsk);
226 
227 	return NULL;
228 }
229 
230 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
231 						  struct sockaddr_vm *dst)
232 {
233 	struct vsock_sock *vsk;
234 
235 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
236 			    connected_table) {
237 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
238 		    dst->svm_port == vsk->local_addr.svm_port) {
239 			return sk_vsock(vsk);
240 		}
241 	}
242 
243 	return NULL;
244 }
245 
246 static void vsock_insert_unbound(struct vsock_sock *vsk)
247 {
248 	spin_lock_bh(&vsock_table_lock);
249 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
250 	spin_unlock_bh(&vsock_table_lock);
251 }
252 
253 void vsock_insert_connected(struct vsock_sock *vsk)
254 {
255 	struct list_head *list = vsock_connected_sockets(
256 		&vsk->remote_addr, &vsk->local_addr);
257 
258 	spin_lock_bh(&vsock_table_lock);
259 	__vsock_insert_connected(list, vsk);
260 	spin_unlock_bh(&vsock_table_lock);
261 }
262 EXPORT_SYMBOL_GPL(vsock_insert_connected);
263 
264 void vsock_remove_bound(struct vsock_sock *vsk)
265 {
266 	spin_lock_bh(&vsock_table_lock);
267 	if (__vsock_in_bound_table(vsk))
268 		__vsock_remove_bound(vsk);
269 	spin_unlock_bh(&vsock_table_lock);
270 }
271 EXPORT_SYMBOL_GPL(vsock_remove_bound);
272 
273 void vsock_remove_connected(struct vsock_sock *vsk)
274 {
275 	spin_lock_bh(&vsock_table_lock);
276 	if (__vsock_in_connected_table(vsk))
277 		__vsock_remove_connected(vsk);
278 	spin_unlock_bh(&vsock_table_lock);
279 }
280 EXPORT_SYMBOL_GPL(vsock_remove_connected);
281 
282 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
283 {
284 	struct sock *sk;
285 
286 	spin_lock_bh(&vsock_table_lock);
287 	sk = __vsock_find_bound_socket(addr);
288 	if (sk)
289 		sock_hold(sk);
290 
291 	spin_unlock_bh(&vsock_table_lock);
292 
293 	return sk;
294 }
295 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
296 
297 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
298 					 struct sockaddr_vm *dst)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_connected_socket(src, dst);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
312 
313 void vsock_remove_sock(struct vsock_sock *vsk)
314 {
315 	vsock_remove_bound(vsk);
316 	vsock_remove_connected(vsk);
317 }
318 EXPORT_SYMBOL_GPL(vsock_remove_sock);
319 
320 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
321 {
322 	int i;
323 
324 	spin_lock_bh(&vsock_table_lock);
325 
326 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
327 		struct vsock_sock *vsk;
328 		list_for_each_entry(vsk, &vsock_connected_table[i],
329 				    connected_table)
330 			fn(sk_vsock(vsk));
331 	}
332 
333 	spin_unlock_bh(&vsock_table_lock);
334 }
335 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
336 
337 void vsock_add_pending(struct sock *listener, struct sock *pending)
338 {
339 	struct vsock_sock *vlistener;
340 	struct vsock_sock *vpending;
341 
342 	vlistener = vsock_sk(listener);
343 	vpending = vsock_sk(pending);
344 
345 	sock_hold(pending);
346 	sock_hold(listener);
347 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
348 }
349 EXPORT_SYMBOL_GPL(vsock_add_pending);
350 
351 void vsock_remove_pending(struct sock *listener, struct sock *pending)
352 {
353 	struct vsock_sock *vpending = vsock_sk(pending);
354 
355 	list_del_init(&vpending->pending_links);
356 	sock_put(listener);
357 	sock_put(pending);
358 }
359 EXPORT_SYMBOL_GPL(vsock_remove_pending);
360 
361 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
362 {
363 	struct vsock_sock *vlistener;
364 	struct vsock_sock *vconnected;
365 
366 	vlistener = vsock_sk(listener);
367 	vconnected = vsock_sk(connected);
368 
369 	sock_hold(connected);
370 	sock_hold(listener);
371 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
372 }
373 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
374 
375 static struct sock *vsock_dequeue_accept(struct sock *listener)
376 {
377 	struct vsock_sock *vlistener;
378 	struct vsock_sock *vconnected;
379 
380 	vlistener = vsock_sk(listener);
381 
382 	if (list_empty(&vlistener->accept_queue))
383 		return NULL;
384 
385 	vconnected = list_entry(vlistener->accept_queue.next,
386 				struct vsock_sock, accept_queue);
387 
388 	list_del_init(&vconnected->accept_queue);
389 	sock_put(listener);
390 	/* The caller will need a reference on the connected socket so we let
391 	 * it call sock_put().
392 	 */
393 
394 	return sk_vsock(vconnected);
395 }
396 
397 static bool vsock_is_accept_queue_empty(struct sock *sk)
398 {
399 	struct vsock_sock *vsk = vsock_sk(sk);
400 	return list_empty(&vsk->accept_queue);
401 }
402 
403 static bool vsock_is_pending(struct sock *sk)
404 {
405 	struct vsock_sock *vsk = vsock_sk(sk);
406 	return !list_empty(&vsk->pending_links);
407 }
408 
409 static int vsock_send_shutdown(struct sock *sk, int mode)
410 {
411 	struct vsock_sock *vsk = vsock_sk(sk);
412 
413 	return vsk->transport->shutdown(vsk, mode);
414 }
415 
416 static void vsock_pending_work(struct work_struct *work)
417 {
418 	struct sock *sk;
419 	struct sock *listener;
420 	struct vsock_sock *vsk;
421 	bool cleanup;
422 
423 	vsk = container_of(work, struct vsock_sock, pending_work.work);
424 	sk = sk_vsock(vsk);
425 	listener = vsk->listener;
426 	cleanup = true;
427 
428 	lock_sock(listener);
429 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
430 
431 	if (vsock_is_pending(sk)) {
432 		vsock_remove_pending(listener, sk);
433 
434 		sk_acceptq_removed(listener);
435 	} else if (!vsk->rejected) {
436 		/* We are not on the pending list and accept() did not reject
437 		 * us, so we must have been accepted by our user process.  We
438 		 * just need to drop our references to the sockets and be on
439 		 * our way.
440 		 */
441 		cleanup = false;
442 		goto out;
443 	}
444 
445 	/* We need to remove ourself from the global connected sockets list so
446 	 * incoming packets can't find this socket, and to reduce the reference
447 	 * count.
448 	 */
449 	vsock_remove_connected(vsk);
450 
451 	sk->sk_state = TCP_CLOSE;
452 
453 out:
454 	release_sock(sk);
455 	release_sock(listener);
456 	if (cleanup)
457 		sock_put(sk);
458 
459 	sock_put(sk);
460 	sock_put(listener);
461 }
462 
463 /**** SOCKET OPERATIONS ****/
464 
465 static int __vsock_bind_stream(struct vsock_sock *vsk,
466 			       struct sockaddr_vm *addr)
467 {
468 	static u32 port;
469 	struct sockaddr_vm new_addr;
470 
471 	if (!port)
472 		port = LAST_RESERVED_PORT + 1 +
473 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
474 
475 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
476 
477 	if (addr->svm_port == VMADDR_PORT_ANY) {
478 		bool found = false;
479 		unsigned int i;
480 
481 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
482 			if (port <= LAST_RESERVED_PORT)
483 				port = LAST_RESERVED_PORT + 1;
484 
485 			new_addr.svm_port = port++;
486 
487 			if (!__vsock_find_bound_socket(&new_addr)) {
488 				found = true;
489 				break;
490 			}
491 		}
492 
493 		if (!found)
494 			return -EADDRNOTAVAIL;
495 	} else {
496 		/* If port is in reserved range, ensure caller
497 		 * has necessary privileges.
498 		 */
499 		if (addr->svm_port <= LAST_RESERVED_PORT &&
500 		    !capable(CAP_NET_BIND_SERVICE)) {
501 			return -EACCES;
502 		}
503 
504 		if (__vsock_find_bound_socket(&new_addr))
505 			return -EADDRINUSE;
506 	}
507 
508 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
509 
510 	/* Remove stream sockets from the unbound list and add them to the hash
511 	 * table for easy lookup by its address.  The unbound list is simply an
512 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
513 	 */
514 	__vsock_remove_bound(vsk);
515 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
516 
517 	return 0;
518 }
519 
520 static int __vsock_bind_dgram(struct vsock_sock *vsk,
521 			      struct sockaddr_vm *addr)
522 {
523 	return vsk->transport->dgram_bind(vsk, addr);
524 }
525 
526 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
527 {
528 	struct vsock_sock *vsk = vsock_sk(sk);
529 	u32 cid;
530 	int retval;
531 
532 	/* First ensure this socket isn't already bound. */
533 	if (vsock_addr_bound(&vsk->local_addr))
534 		return -EINVAL;
535 
536 	/* Now bind to the provided address or select appropriate values if
537 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
538 	 * like AF_INET prevents binding to a non-local IP address (in most
539 	 * cases), we only allow binding to the local CID.
540 	 */
541 	cid = vsk->transport->get_local_cid();
542 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
543 		return -EADDRNOTAVAIL;
544 
545 	switch (sk->sk_socket->type) {
546 	case SOCK_STREAM:
547 		spin_lock_bh(&vsock_table_lock);
548 		retval = __vsock_bind_stream(vsk, addr);
549 		spin_unlock_bh(&vsock_table_lock);
550 		break;
551 
552 	case SOCK_DGRAM:
553 		retval = __vsock_bind_dgram(vsk, addr);
554 		break;
555 
556 	default:
557 		retval = -EINVAL;
558 		break;
559 	}
560 
561 	return retval;
562 }
563 
564 static void vsock_connect_timeout(struct work_struct *work);
565 
566 struct sock *__vsock_create(struct net *net,
567 			    struct socket *sock,
568 			    struct sock *parent,
569 			    gfp_t priority,
570 			    unsigned short type,
571 			    int kern)
572 {
573 	struct sock *sk;
574 	struct vsock_sock *psk;
575 	struct vsock_sock *vsk;
576 
577 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
578 	if (!sk)
579 		return NULL;
580 
581 	sock_init_data(sock, sk);
582 
583 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
584 	 * non-NULL. We make sure that our sockets always have a type by
585 	 * setting it here if needed.
586 	 */
587 	if (!sock)
588 		sk->sk_type = type;
589 
590 	vsk = vsock_sk(sk);
591 	vsk->transport = transport_single;
592 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
593 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
594 
595 	sk->sk_destruct = vsock_sk_destruct;
596 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
597 	sock_reset_flag(sk, SOCK_DONE);
598 
599 	INIT_LIST_HEAD(&vsk->bound_table);
600 	INIT_LIST_HEAD(&vsk->connected_table);
601 	vsk->listener = NULL;
602 	INIT_LIST_HEAD(&vsk->pending_links);
603 	INIT_LIST_HEAD(&vsk->accept_queue);
604 	vsk->rejected = false;
605 	vsk->sent_request = false;
606 	vsk->ignore_connecting_rst = false;
607 	vsk->peer_shutdown = 0;
608 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
609 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
610 
611 	psk = parent ? vsock_sk(parent) : NULL;
612 	if (parent) {
613 		vsk->trusted = psk->trusted;
614 		vsk->owner = get_cred(psk->owner);
615 		vsk->connect_timeout = psk->connect_timeout;
616 	} else {
617 		vsk->trusted = capable(CAP_NET_ADMIN);
618 		vsk->owner = get_current_cred();
619 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
620 	}
621 
622 	if (vsk->transport->init(vsk, psk) < 0) {
623 		sk_free(sk);
624 		return NULL;
625 	}
626 
627 	if (sock)
628 		vsock_insert_unbound(vsk);
629 
630 	return sk;
631 }
632 EXPORT_SYMBOL_GPL(__vsock_create);
633 
634 static void __vsock_release(struct sock *sk, int level)
635 {
636 	if (sk) {
637 		struct sock *pending;
638 		struct vsock_sock *vsk;
639 
640 		vsk = vsock_sk(sk);
641 		pending = NULL;	/* Compiler warning. */
642 
643 		/* The release call is supposed to use lock_sock_nested()
644 		 * rather than lock_sock(), if a sock lock should be acquired.
645 		 */
646 		vsk->transport->release(vsk);
647 
648 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
649 		 * version to avoid the warning "possible recursive locking
650 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
651 		 * is the same as lock_sock(sk).
652 		 */
653 		lock_sock_nested(sk, level);
654 		sock_orphan(sk);
655 		sk->sk_shutdown = SHUTDOWN_MASK;
656 
657 		skb_queue_purge(&sk->sk_receive_queue);
658 
659 		/* Clean up any sockets that never were accepted. */
660 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
661 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
662 			sock_put(pending);
663 		}
664 
665 		release_sock(sk);
666 		sock_put(sk);
667 	}
668 }
669 
670 static void vsock_sk_destruct(struct sock *sk)
671 {
672 	struct vsock_sock *vsk = vsock_sk(sk);
673 
674 	vsk->transport->destruct(vsk);
675 
676 	/* When clearing these addresses, there's no need to set the family and
677 	 * possibly register the address family with the kernel.
678 	 */
679 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
680 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
681 
682 	put_cred(vsk->owner);
683 }
684 
685 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
686 {
687 	int err;
688 
689 	err = sock_queue_rcv_skb(sk, skb);
690 	if (err)
691 		kfree_skb(skb);
692 
693 	return err;
694 }
695 
696 s64 vsock_stream_has_data(struct vsock_sock *vsk)
697 {
698 	return vsk->transport->stream_has_data(vsk);
699 }
700 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
701 
702 s64 vsock_stream_has_space(struct vsock_sock *vsk)
703 {
704 	return vsk->transport->stream_has_space(vsk);
705 }
706 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
707 
708 static int vsock_release(struct socket *sock)
709 {
710 	__vsock_release(sock->sk, 0);
711 	sock->sk = NULL;
712 	sock->state = SS_FREE;
713 
714 	return 0;
715 }
716 
717 static int
718 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
719 {
720 	int err;
721 	struct sock *sk;
722 	struct sockaddr_vm *vm_addr;
723 
724 	sk = sock->sk;
725 
726 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
727 		return -EINVAL;
728 
729 	lock_sock(sk);
730 	err = __vsock_bind(sk, vm_addr);
731 	release_sock(sk);
732 
733 	return err;
734 }
735 
736 static int vsock_getname(struct socket *sock,
737 			 struct sockaddr *addr, int peer)
738 {
739 	int err;
740 	struct sock *sk;
741 	struct vsock_sock *vsk;
742 	struct sockaddr_vm *vm_addr;
743 
744 	sk = sock->sk;
745 	vsk = vsock_sk(sk);
746 	err = 0;
747 
748 	lock_sock(sk);
749 
750 	if (peer) {
751 		if (sock->state != SS_CONNECTED) {
752 			err = -ENOTCONN;
753 			goto out;
754 		}
755 		vm_addr = &vsk->remote_addr;
756 	} else {
757 		vm_addr = &vsk->local_addr;
758 	}
759 
760 	if (!vm_addr) {
761 		err = -EINVAL;
762 		goto out;
763 	}
764 
765 	/* sys_getsockname() and sys_getpeername() pass us a
766 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
767 	 * that macro is defined in socket.c instead of .h, so we hardcode its
768 	 * value here.
769 	 */
770 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
771 	memcpy(addr, vm_addr, sizeof(*vm_addr));
772 	err = sizeof(*vm_addr);
773 
774 out:
775 	release_sock(sk);
776 	return err;
777 }
778 
779 static int vsock_shutdown(struct socket *sock, int mode)
780 {
781 	int err;
782 	struct sock *sk;
783 
784 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
785 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
786 	 * here like the other address families do.  Note also that the
787 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
788 	 * which is what we want.
789 	 */
790 	mode++;
791 
792 	if ((mode & ~SHUTDOWN_MASK) || !mode)
793 		return -EINVAL;
794 
795 	/* If this is a STREAM socket and it is not connected then bail out
796 	 * immediately.  If it is a DGRAM socket then we must first kick the
797 	 * socket so that it wakes up from any sleeping calls, for example
798 	 * recv(), and then afterwards return the error.
799 	 */
800 
801 	sk = sock->sk;
802 	if (sock->state == SS_UNCONNECTED) {
803 		err = -ENOTCONN;
804 		if (sk->sk_type == SOCK_STREAM)
805 			return err;
806 	} else {
807 		sock->state = SS_DISCONNECTING;
808 		err = 0;
809 	}
810 
811 	/* Receive and send shutdowns are treated alike. */
812 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
813 	if (mode) {
814 		lock_sock(sk);
815 		sk->sk_shutdown |= mode;
816 		sk->sk_state_change(sk);
817 		release_sock(sk);
818 
819 		if (sk->sk_type == SOCK_STREAM) {
820 			sock_reset_flag(sk, SOCK_DONE);
821 			vsock_send_shutdown(sk, mode);
822 		}
823 	}
824 
825 	return err;
826 }
827 
828 static __poll_t vsock_poll(struct file *file, struct socket *sock,
829 			       poll_table *wait)
830 {
831 	struct sock *sk;
832 	__poll_t mask;
833 	struct vsock_sock *vsk;
834 
835 	sk = sock->sk;
836 	vsk = vsock_sk(sk);
837 
838 	poll_wait(file, sk_sleep(sk), wait);
839 	mask = 0;
840 
841 	if (sk->sk_err)
842 		/* Signify that there has been an error on this socket. */
843 		mask |= EPOLLERR;
844 
845 	/* INET sockets treat local write shutdown and peer write shutdown as a
846 	 * case of EPOLLHUP set.
847 	 */
848 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
849 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
850 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
851 		mask |= EPOLLHUP;
852 	}
853 
854 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
855 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
856 		mask |= EPOLLRDHUP;
857 	}
858 
859 	if (sock->type == SOCK_DGRAM) {
860 		/* For datagram sockets we can read if there is something in
861 		 * the queue and write as long as the socket isn't shutdown for
862 		 * sending.
863 		 */
864 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
865 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
866 			mask |= EPOLLIN | EPOLLRDNORM;
867 		}
868 
869 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
870 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
871 
872 	} else if (sock->type == SOCK_STREAM) {
873 		const struct vsock_transport *transport = vsk->transport;
874 		lock_sock(sk);
875 
876 		/* Listening sockets that have connections in their accept
877 		 * queue can be read.
878 		 */
879 		if (sk->sk_state == TCP_LISTEN
880 		    && !vsock_is_accept_queue_empty(sk))
881 			mask |= EPOLLIN | EPOLLRDNORM;
882 
883 		/* If there is something in the queue then we can read. */
884 		if (transport->stream_is_active(vsk) &&
885 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
886 			bool data_ready_now = false;
887 			int ret = transport->notify_poll_in(
888 					vsk, 1, &data_ready_now);
889 			if (ret < 0) {
890 				mask |= EPOLLERR;
891 			} else {
892 				if (data_ready_now)
893 					mask |= EPOLLIN | EPOLLRDNORM;
894 
895 			}
896 		}
897 
898 		/* Sockets whose connections have been closed, reset, or
899 		 * terminated should also be considered read, and we check the
900 		 * shutdown flag for that.
901 		 */
902 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
903 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
904 			mask |= EPOLLIN | EPOLLRDNORM;
905 		}
906 
907 		/* Connected sockets that can produce data can be written. */
908 		if (sk->sk_state == TCP_ESTABLISHED) {
909 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
910 				bool space_avail_now = false;
911 				int ret = transport->notify_poll_out(
912 						vsk, 1, &space_avail_now);
913 				if (ret < 0) {
914 					mask |= EPOLLERR;
915 				} else {
916 					if (space_avail_now)
917 						/* Remove EPOLLWRBAND since INET
918 						 * sockets are not setting it.
919 						 */
920 						mask |= EPOLLOUT | EPOLLWRNORM;
921 
922 				}
923 			}
924 		}
925 
926 		/* Simulate INET socket poll behaviors, which sets
927 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
928 		 * but local send is not shutdown.
929 		 */
930 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
931 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
932 				mask |= EPOLLOUT | EPOLLWRNORM;
933 
934 		}
935 
936 		release_sock(sk);
937 	}
938 
939 	return mask;
940 }
941 
942 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
943 			       size_t len)
944 {
945 	int err;
946 	struct sock *sk;
947 	struct vsock_sock *vsk;
948 	struct sockaddr_vm *remote_addr;
949 	const struct vsock_transport *transport;
950 
951 	if (msg->msg_flags & MSG_OOB)
952 		return -EOPNOTSUPP;
953 
954 	/* For now, MSG_DONTWAIT is always assumed... */
955 	err = 0;
956 	sk = sock->sk;
957 	vsk = vsock_sk(sk);
958 	transport = vsk->transport;
959 
960 	lock_sock(sk);
961 
962 	err = vsock_auto_bind(vsk);
963 	if (err)
964 		goto out;
965 
966 
967 	/* If the provided message contains an address, use that.  Otherwise
968 	 * fall back on the socket's remote handle (if it has been connected).
969 	 */
970 	if (msg->msg_name &&
971 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
972 			    &remote_addr) == 0) {
973 		/* Ensure this address is of the right type and is a valid
974 		 * destination.
975 		 */
976 
977 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
978 			remote_addr->svm_cid = transport->get_local_cid();
979 
980 		if (!vsock_addr_bound(remote_addr)) {
981 			err = -EINVAL;
982 			goto out;
983 		}
984 	} else if (sock->state == SS_CONNECTED) {
985 		remote_addr = &vsk->remote_addr;
986 
987 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
988 			remote_addr->svm_cid = transport->get_local_cid();
989 
990 		/* XXX Should connect() or this function ensure remote_addr is
991 		 * bound?
992 		 */
993 		if (!vsock_addr_bound(&vsk->remote_addr)) {
994 			err = -EINVAL;
995 			goto out;
996 		}
997 	} else {
998 		err = -EINVAL;
999 		goto out;
1000 	}
1001 
1002 	if (!transport->dgram_allow(remote_addr->svm_cid,
1003 				    remote_addr->svm_port)) {
1004 		err = -EINVAL;
1005 		goto out;
1006 	}
1007 
1008 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1009 
1010 out:
1011 	release_sock(sk);
1012 	return err;
1013 }
1014 
1015 static int vsock_dgram_connect(struct socket *sock,
1016 			       struct sockaddr *addr, int addr_len, int flags)
1017 {
1018 	int err;
1019 	struct sock *sk;
1020 	struct vsock_sock *vsk;
1021 	struct sockaddr_vm *remote_addr;
1022 
1023 	sk = sock->sk;
1024 	vsk = vsock_sk(sk);
1025 
1026 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1027 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1028 		lock_sock(sk);
1029 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1030 				VMADDR_PORT_ANY);
1031 		sock->state = SS_UNCONNECTED;
1032 		release_sock(sk);
1033 		return 0;
1034 	} else if (err != 0)
1035 		return -EINVAL;
1036 
1037 	lock_sock(sk);
1038 
1039 	err = vsock_auto_bind(vsk);
1040 	if (err)
1041 		goto out;
1042 
1043 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1044 					 remote_addr->svm_port)) {
1045 		err = -EINVAL;
1046 		goto out;
1047 	}
1048 
1049 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1050 	sock->state = SS_CONNECTED;
1051 
1052 out:
1053 	release_sock(sk);
1054 	return err;
1055 }
1056 
1057 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1058 			       size_t len, int flags)
1059 {
1060 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1061 
1062 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1063 }
1064 
1065 static const struct proto_ops vsock_dgram_ops = {
1066 	.family = PF_VSOCK,
1067 	.owner = THIS_MODULE,
1068 	.release = vsock_release,
1069 	.bind = vsock_bind,
1070 	.connect = vsock_dgram_connect,
1071 	.socketpair = sock_no_socketpair,
1072 	.accept = sock_no_accept,
1073 	.getname = vsock_getname,
1074 	.poll = vsock_poll,
1075 	.ioctl = sock_no_ioctl,
1076 	.listen = sock_no_listen,
1077 	.shutdown = vsock_shutdown,
1078 	.setsockopt = sock_no_setsockopt,
1079 	.getsockopt = sock_no_getsockopt,
1080 	.sendmsg = vsock_dgram_sendmsg,
1081 	.recvmsg = vsock_dgram_recvmsg,
1082 	.mmap = sock_no_mmap,
1083 	.sendpage = sock_no_sendpage,
1084 };
1085 
1086 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1087 {
1088 	const struct vsock_transport *transport = vsk->transport;
1089 
1090 	if (!transport->cancel_pkt)
1091 		return -EOPNOTSUPP;
1092 
1093 	return transport->cancel_pkt(vsk);
1094 }
1095 
1096 static void vsock_connect_timeout(struct work_struct *work)
1097 {
1098 	struct sock *sk;
1099 	struct vsock_sock *vsk;
1100 	int cancel = 0;
1101 
1102 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1103 	sk = sk_vsock(vsk);
1104 
1105 	lock_sock(sk);
1106 	if (sk->sk_state == TCP_SYN_SENT &&
1107 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1108 		sk->sk_state = TCP_CLOSE;
1109 		sk->sk_err = ETIMEDOUT;
1110 		sk->sk_error_report(sk);
1111 		cancel = 1;
1112 	}
1113 	release_sock(sk);
1114 	if (cancel)
1115 		vsock_transport_cancel_pkt(vsk);
1116 
1117 	sock_put(sk);
1118 }
1119 
1120 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1121 				int addr_len, int flags)
1122 {
1123 	int err;
1124 	struct sock *sk;
1125 	struct vsock_sock *vsk;
1126 	const struct vsock_transport *transport;
1127 	struct sockaddr_vm *remote_addr;
1128 	long timeout;
1129 	DEFINE_WAIT(wait);
1130 
1131 	err = 0;
1132 	sk = sock->sk;
1133 	vsk = vsock_sk(sk);
1134 	transport = vsk->transport;
1135 
1136 	lock_sock(sk);
1137 
1138 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1139 	switch (sock->state) {
1140 	case SS_CONNECTED:
1141 		err = -EISCONN;
1142 		goto out;
1143 	case SS_DISCONNECTING:
1144 		err = -EINVAL;
1145 		goto out;
1146 	case SS_CONNECTING:
1147 		/* This continues on so we can move sock into the SS_CONNECTED
1148 		 * state once the connection has completed (at which point err
1149 		 * will be set to zero also).  Otherwise, we will either wait
1150 		 * for the connection or return -EALREADY should this be a
1151 		 * non-blocking call.
1152 		 */
1153 		err = -EALREADY;
1154 		break;
1155 	default:
1156 		if ((sk->sk_state == TCP_LISTEN) ||
1157 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1158 			err = -EINVAL;
1159 			goto out;
1160 		}
1161 
1162 		/* The hypervisor and well-known contexts do not have socket
1163 		 * endpoints.
1164 		 */
1165 		if (!transport->stream_allow(remote_addr->svm_cid,
1166 					     remote_addr->svm_port)) {
1167 			err = -ENETUNREACH;
1168 			goto out;
1169 		}
1170 
1171 		/* Set the remote address that we are connecting to. */
1172 		memcpy(&vsk->remote_addr, remote_addr,
1173 		       sizeof(vsk->remote_addr));
1174 
1175 		err = vsock_auto_bind(vsk);
1176 		if (err)
1177 			goto out;
1178 
1179 		sk->sk_state = TCP_SYN_SENT;
1180 
1181 		err = transport->connect(vsk);
1182 		if (err < 0)
1183 			goto out;
1184 
1185 		/* Mark sock as connecting and set the error code to in
1186 		 * progress in case this is a non-blocking connect.
1187 		 */
1188 		sock->state = SS_CONNECTING;
1189 		err = -EINPROGRESS;
1190 	}
1191 
1192 	/* The receive path will handle all communication until we are able to
1193 	 * enter the connected state.  Here we wait for the connection to be
1194 	 * completed or a notification of an error.
1195 	 */
1196 	timeout = vsk->connect_timeout;
1197 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1198 
1199 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1200 		if (flags & O_NONBLOCK) {
1201 			/* If we're not going to block, we schedule a timeout
1202 			 * function to generate a timeout on the connection
1203 			 * attempt, in case the peer doesn't respond in a
1204 			 * timely manner. We hold on to the socket until the
1205 			 * timeout fires.
1206 			 */
1207 			sock_hold(sk);
1208 			schedule_delayed_work(&vsk->connect_work, timeout);
1209 
1210 			/* Skip ahead to preserve error code set above. */
1211 			goto out_wait;
1212 		}
1213 
1214 		release_sock(sk);
1215 		timeout = schedule_timeout(timeout);
1216 		lock_sock(sk);
1217 
1218 		if (signal_pending(current)) {
1219 			err = sock_intr_errno(timeout);
1220 			sk->sk_state = TCP_CLOSE;
1221 			sock->state = SS_UNCONNECTED;
1222 			vsock_transport_cancel_pkt(vsk);
1223 			goto out_wait;
1224 		} else if (timeout == 0) {
1225 			err = -ETIMEDOUT;
1226 			sk->sk_state = TCP_CLOSE;
1227 			sock->state = SS_UNCONNECTED;
1228 			vsock_transport_cancel_pkt(vsk);
1229 			goto out_wait;
1230 		}
1231 
1232 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1233 	}
1234 
1235 	if (sk->sk_err) {
1236 		err = -sk->sk_err;
1237 		sk->sk_state = TCP_CLOSE;
1238 		sock->state = SS_UNCONNECTED;
1239 	} else {
1240 		err = 0;
1241 	}
1242 
1243 out_wait:
1244 	finish_wait(sk_sleep(sk), &wait);
1245 out:
1246 	release_sock(sk);
1247 	return err;
1248 }
1249 
1250 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1251 			bool kern)
1252 {
1253 	struct sock *listener;
1254 	int err;
1255 	struct sock *connected;
1256 	struct vsock_sock *vconnected;
1257 	long timeout;
1258 	DEFINE_WAIT(wait);
1259 
1260 	err = 0;
1261 	listener = sock->sk;
1262 
1263 	lock_sock(listener);
1264 
1265 	if (sock->type != SOCK_STREAM) {
1266 		err = -EOPNOTSUPP;
1267 		goto out;
1268 	}
1269 
1270 	if (listener->sk_state != TCP_LISTEN) {
1271 		err = -EINVAL;
1272 		goto out;
1273 	}
1274 
1275 	/* Wait for children sockets to appear; these are the new sockets
1276 	 * created upon connection establishment.
1277 	 */
1278 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1279 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1280 
1281 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1282 	       listener->sk_err == 0) {
1283 		release_sock(listener);
1284 		timeout = schedule_timeout(timeout);
1285 		finish_wait(sk_sleep(listener), &wait);
1286 		lock_sock(listener);
1287 
1288 		if (signal_pending(current)) {
1289 			err = sock_intr_errno(timeout);
1290 			goto out;
1291 		} else if (timeout == 0) {
1292 			err = -EAGAIN;
1293 			goto out;
1294 		}
1295 
1296 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297 	}
1298 	finish_wait(sk_sleep(listener), &wait);
1299 
1300 	if (listener->sk_err)
1301 		err = -listener->sk_err;
1302 
1303 	if (connected) {
1304 		sk_acceptq_removed(listener);
1305 
1306 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1307 		vconnected = vsock_sk(connected);
1308 
1309 		/* If the listener socket has received an error, then we should
1310 		 * reject this socket and return.  Note that we simply mark the
1311 		 * socket rejected, drop our reference, and let the cleanup
1312 		 * function handle the cleanup; the fact that we found it in
1313 		 * the listener's accept queue guarantees that the cleanup
1314 		 * function hasn't run yet.
1315 		 */
1316 		if (err) {
1317 			vconnected->rejected = true;
1318 		} else {
1319 			newsock->state = SS_CONNECTED;
1320 			sock_graft(connected, newsock);
1321 		}
1322 
1323 		release_sock(connected);
1324 		sock_put(connected);
1325 	}
1326 
1327 out:
1328 	release_sock(listener);
1329 	return err;
1330 }
1331 
1332 static int vsock_listen(struct socket *sock, int backlog)
1333 {
1334 	int err;
1335 	struct sock *sk;
1336 	struct vsock_sock *vsk;
1337 
1338 	sk = sock->sk;
1339 
1340 	lock_sock(sk);
1341 
1342 	if (sock->type != SOCK_STREAM) {
1343 		err = -EOPNOTSUPP;
1344 		goto out;
1345 	}
1346 
1347 	if (sock->state != SS_UNCONNECTED) {
1348 		err = -EINVAL;
1349 		goto out;
1350 	}
1351 
1352 	vsk = vsock_sk(sk);
1353 
1354 	if (!vsock_addr_bound(&vsk->local_addr)) {
1355 		err = -EINVAL;
1356 		goto out;
1357 	}
1358 
1359 	sk->sk_max_ack_backlog = backlog;
1360 	sk->sk_state = TCP_LISTEN;
1361 
1362 	err = 0;
1363 
1364 out:
1365 	release_sock(sk);
1366 	return err;
1367 }
1368 
1369 static int vsock_stream_setsockopt(struct socket *sock,
1370 				   int level,
1371 				   int optname,
1372 				   char __user *optval,
1373 				   unsigned int optlen)
1374 {
1375 	int err;
1376 	struct sock *sk;
1377 	struct vsock_sock *vsk;
1378 	const struct vsock_transport *transport;
1379 	u64 val;
1380 
1381 	if (level != AF_VSOCK)
1382 		return -ENOPROTOOPT;
1383 
1384 #define COPY_IN(_v)                                       \
1385 	do {						  \
1386 		if (optlen < sizeof(_v)) {		  \
1387 			err = -EINVAL;			  \
1388 			goto exit;			  \
1389 		}					  \
1390 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1391 			err = -EFAULT;					\
1392 			goto exit;					\
1393 		}							\
1394 	} while (0)
1395 
1396 	err = 0;
1397 	sk = sock->sk;
1398 	vsk = vsock_sk(sk);
1399 	transport = vsk->transport;
1400 
1401 	lock_sock(sk);
1402 
1403 	switch (optname) {
1404 	case SO_VM_SOCKETS_BUFFER_SIZE:
1405 		COPY_IN(val);
1406 		transport->set_buffer_size(vsk, val);
1407 		break;
1408 
1409 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1410 		COPY_IN(val);
1411 		transport->set_max_buffer_size(vsk, val);
1412 		break;
1413 
1414 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1415 		COPY_IN(val);
1416 		transport->set_min_buffer_size(vsk, val);
1417 		break;
1418 
1419 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1420 		struct __kernel_old_timeval tv;
1421 		COPY_IN(tv);
1422 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1423 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1424 			vsk->connect_timeout = tv.tv_sec * HZ +
1425 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1426 			if (vsk->connect_timeout == 0)
1427 				vsk->connect_timeout =
1428 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1429 
1430 		} else {
1431 			err = -ERANGE;
1432 		}
1433 		break;
1434 	}
1435 
1436 	default:
1437 		err = -ENOPROTOOPT;
1438 		break;
1439 	}
1440 
1441 #undef COPY_IN
1442 
1443 exit:
1444 	release_sock(sk);
1445 	return err;
1446 }
1447 
1448 static int vsock_stream_getsockopt(struct socket *sock,
1449 				   int level, int optname,
1450 				   char __user *optval,
1451 				   int __user *optlen)
1452 {
1453 	int err;
1454 	int len;
1455 	struct sock *sk;
1456 	struct vsock_sock *vsk;
1457 	const struct vsock_transport *transport;
1458 	u64 val;
1459 
1460 	if (level != AF_VSOCK)
1461 		return -ENOPROTOOPT;
1462 
1463 	err = get_user(len, optlen);
1464 	if (err != 0)
1465 		return err;
1466 
1467 #define COPY_OUT(_v)                            \
1468 	do {					\
1469 		if (len < sizeof(_v))		\
1470 			return -EINVAL;		\
1471 						\
1472 		len = sizeof(_v);		\
1473 		if (copy_to_user(optval, &_v, len) != 0)	\
1474 			return -EFAULT;				\
1475 								\
1476 	} while (0)
1477 
1478 	err = 0;
1479 	sk = sock->sk;
1480 	vsk = vsock_sk(sk);
1481 	transport = vsk->transport;
1482 
1483 	switch (optname) {
1484 	case SO_VM_SOCKETS_BUFFER_SIZE:
1485 		val = transport->get_buffer_size(vsk);
1486 		COPY_OUT(val);
1487 		break;
1488 
1489 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1490 		val = transport->get_max_buffer_size(vsk);
1491 		COPY_OUT(val);
1492 		break;
1493 
1494 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1495 		val = transport->get_min_buffer_size(vsk);
1496 		COPY_OUT(val);
1497 		break;
1498 
1499 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1500 		struct __kernel_old_timeval tv;
1501 		tv.tv_sec = vsk->connect_timeout / HZ;
1502 		tv.tv_usec =
1503 		    (vsk->connect_timeout -
1504 		     tv.tv_sec * HZ) * (1000000 / HZ);
1505 		COPY_OUT(tv);
1506 		break;
1507 	}
1508 	default:
1509 		return -ENOPROTOOPT;
1510 	}
1511 
1512 	err = put_user(len, optlen);
1513 	if (err != 0)
1514 		return -EFAULT;
1515 
1516 #undef COPY_OUT
1517 
1518 	return 0;
1519 }
1520 
1521 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1522 				size_t len)
1523 {
1524 	struct sock *sk;
1525 	struct vsock_sock *vsk;
1526 	const struct vsock_transport *transport;
1527 	ssize_t total_written;
1528 	long timeout;
1529 	int err;
1530 	struct vsock_transport_send_notify_data send_data;
1531 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1532 
1533 	sk = sock->sk;
1534 	vsk = vsock_sk(sk);
1535 	transport = vsk->transport;
1536 	total_written = 0;
1537 	err = 0;
1538 
1539 	if (msg->msg_flags & MSG_OOB)
1540 		return -EOPNOTSUPP;
1541 
1542 	lock_sock(sk);
1543 
1544 	/* Callers should not provide a destination with stream sockets. */
1545 	if (msg->msg_namelen) {
1546 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1547 		goto out;
1548 	}
1549 
1550 	/* Send data only if both sides are not shutdown in the direction. */
1551 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1552 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1553 		err = -EPIPE;
1554 		goto out;
1555 	}
1556 
1557 	if (sk->sk_state != TCP_ESTABLISHED ||
1558 	    !vsock_addr_bound(&vsk->local_addr)) {
1559 		err = -ENOTCONN;
1560 		goto out;
1561 	}
1562 
1563 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1564 		err = -EDESTADDRREQ;
1565 		goto out;
1566 	}
1567 
1568 	/* Wait for room in the produce queue to enqueue our user's data. */
1569 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1570 
1571 	err = transport->notify_send_init(vsk, &send_data);
1572 	if (err < 0)
1573 		goto out;
1574 
1575 	while (total_written < len) {
1576 		ssize_t written;
1577 
1578 		add_wait_queue(sk_sleep(sk), &wait);
1579 		while (vsock_stream_has_space(vsk) == 0 &&
1580 		       sk->sk_err == 0 &&
1581 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1582 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1583 
1584 			/* Don't wait for non-blocking sockets. */
1585 			if (timeout == 0) {
1586 				err = -EAGAIN;
1587 				remove_wait_queue(sk_sleep(sk), &wait);
1588 				goto out_err;
1589 			}
1590 
1591 			err = transport->notify_send_pre_block(vsk, &send_data);
1592 			if (err < 0) {
1593 				remove_wait_queue(sk_sleep(sk), &wait);
1594 				goto out_err;
1595 			}
1596 
1597 			release_sock(sk);
1598 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1599 			lock_sock(sk);
1600 			if (signal_pending(current)) {
1601 				err = sock_intr_errno(timeout);
1602 				remove_wait_queue(sk_sleep(sk), &wait);
1603 				goto out_err;
1604 			} else if (timeout == 0) {
1605 				err = -EAGAIN;
1606 				remove_wait_queue(sk_sleep(sk), &wait);
1607 				goto out_err;
1608 			}
1609 		}
1610 		remove_wait_queue(sk_sleep(sk), &wait);
1611 
1612 		/* These checks occur both as part of and after the loop
1613 		 * conditional since we need to check before and after
1614 		 * sleeping.
1615 		 */
1616 		if (sk->sk_err) {
1617 			err = -sk->sk_err;
1618 			goto out_err;
1619 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1620 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1621 			err = -EPIPE;
1622 			goto out_err;
1623 		}
1624 
1625 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1626 		if (err < 0)
1627 			goto out_err;
1628 
1629 		/* Note that enqueue will only write as many bytes as are free
1630 		 * in the produce queue, so we don't need to ensure len is
1631 		 * smaller than the queue size.  It is the caller's
1632 		 * responsibility to check how many bytes we were able to send.
1633 		 */
1634 
1635 		written = transport->stream_enqueue(
1636 				vsk, msg,
1637 				len - total_written);
1638 		if (written < 0) {
1639 			err = -ENOMEM;
1640 			goto out_err;
1641 		}
1642 
1643 		total_written += written;
1644 
1645 		err = transport->notify_send_post_enqueue(
1646 				vsk, written, &send_data);
1647 		if (err < 0)
1648 			goto out_err;
1649 
1650 	}
1651 
1652 out_err:
1653 	if (total_written > 0)
1654 		err = total_written;
1655 out:
1656 	release_sock(sk);
1657 	return err;
1658 }
1659 
1660 
1661 static int
1662 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1663 		     int flags)
1664 {
1665 	struct sock *sk;
1666 	struct vsock_sock *vsk;
1667 	const struct vsock_transport *transport;
1668 	int err;
1669 	size_t target;
1670 	ssize_t copied;
1671 	long timeout;
1672 	struct vsock_transport_recv_notify_data recv_data;
1673 
1674 	DEFINE_WAIT(wait);
1675 
1676 	sk = sock->sk;
1677 	vsk = vsock_sk(sk);
1678 	transport = vsk->transport;
1679 	err = 0;
1680 
1681 	lock_sock(sk);
1682 
1683 	if (sk->sk_state != TCP_ESTABLISHED) {
1684 		/* Recvmsg is supposed to return 0 if a peer performs an
1685 		 * orderly shutdown. Differentiate between that case and when a
1686 		 * peer has not connected or a local shutdown occured with the
1687 		 * SOCK_DONE flag.
1688 		 */
1689 		if (sock_flag(sk, SOCK_DONE))
1690 			err = 0;
1691 		else
1692 			err = -ENOTCONN;
1693 
1694 		goto out;
1695 	}
1696 
1697 	if (flags & MSG_OOB) {
1698 		err = -EOPNOTSUPP;
1699 		goto out;
1700 	}
1701 
1702 	/* We don't check peer_shutdown flag here since peer may actually shut
1703 	 * down, but there can be data in the queue that a local socket can
1704 	 * receive.
1705 	 */
1706 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1707 		err = 0;
1708 		goto out;
1709 	}
1710 
1711 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1712 	 * is not an error.  We may as well bail out now.
1713 	 */
1714 	if (!len) {
1715 		err = 0;
1716 		goto out;
1717 	}
1718 
1719 	/* We must not copy less than target bytes into the user's buffer
1720 	 * before returning successfully, so we wait for the consume queue to
1721 	 * have that much data to consume before dequeueing.  Note that this
1722 	 * makes it impossible to handle cases where target is greater than the
1723 	 * queue size.
1724 	 */
1725 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1726 	if (target >= transport->stream_rcvhiwat(vsk)) {
1727 		err = -ENOMEM;
1728 		goto out;
1729 	}
1730 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1731 	copied = 0;
1732 
1733 	err = transport->notify_recv_init(vsk, target, &recv_data);
1734 	if (err < 0)
1735 		goto out;
1736 
1737 
1738 	while (1) {
1739 		s64 ready;
1740 
1741 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1742 		ready = vsock_stream_has_data(vsk);
1743 
1744 		if (ready == 0) {
1745 			if (sk->sk_err != 0 ||
1746 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1747 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1748 				finish_wait(sk_sleep(sk), &wait);
1749 				break;
1750 			}
1751 			/* Don't wait for non-blocking sockets. */
1752 			if (timeout == 0) {
1753 				err = -EAGAIN;
1754 				finish_wait(sk_sleep(sk), &wait);
1755 				break;
1756 			}
1757 
1758 			err = transport->notify_recv_pre_block(
1759 					vsk, target, &recv_data);
1760 			if (err < 0) {
1761 				finish_wait(sk_sleep(sk), &wait);
1762 				break;
1763 			}
1764 			release_sock(sk);
1765 			timeout = schedule_timeout(timeout);
1766 			lock_sock(sk);
1767 
1768 			if (signal_pending(current)) {
1769 				err = sock_intr_errno(timeout);
1770 				finish_wait(sk_sleep(sk), &wait);
1771 				break;
1772 			} else if (timeout == 0) {
1773 				err = -EAGAIN;
1774 				finish_wait(sk_sleep(sk), &wait);
1775 				break;
1776 			}
1777 		} else {
1778 			ssize_t read;
1779 
1780 			finish_wait(sk_sleep(sk), &wait);
1781 
1782 			if (ready < 0) {
1783 				/* Invalid queue pair content. XXX This should
1784 				* be changed to a connection reset in a later
1785 				* change.
1786 				*/
1787 
1788 				err = -ENOMEM;
1789 				goto out;
1790 			}
1791 
1792 			err = transport->notify_recv_pre_dequeue(
1793 					vsk, target, &recv_data);
1794 			if (err < 0)
1795 				break;
1796 
1797 			read = transport->stream_dequeue(
1798 					vsk, msg,
1799 					len - copied, flags);
1800 			if (read < 0) {
1801 				err = -ENOMEM;
1802 				break;
1803 			}
1804 
1805 			copied += read;
1806 
1807 			err = transport->notify_recv_post_dequeue(
1808 					vsk, target, read,
1809 					!(flags & MSG_PEEK), &recv_data);
1810 			if (err < 0)
1811 				goto out;
1812 
1813 			if (read >= target || flags & MSG_PEEK)
1814 				break;
1815 
1816 			target -= read;
1817 		}
1818 	}
1819 
1820 	if (sk->sk_err)
1821 		err = -sk->sk_err;
1822 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1823 		err = 0;
1824 
1825 	if (copied > 0)
1826 		err = copied;
1827 
1828 out:
1829 	release_sock(sk);
1830 	return err;
1831 }
1832 
1833 static const struct proto_ops vsock_stream_ops = {
1834 	.family = PF_VSOCK,
1835 	.owner = THIS_MODULE,
1836 	.release = vsock_release,
1837 	.bind = vsock_bind,
1838 	.connect = vsock_stream_connect,
1839 	.socketpair = sock_no_socketpair,
1840 	.accept = vsock_accept,
1841 	.getname = vsock_getname,
1842 	.poll = vsock_poll,
1843 	.ioctl = sock_no_ioctl,
1844 	.listen = vsock_listen,
1845 	.shutdown = vsock_shutdown,
1846 	.setsockopt = vsock_stream_setsockopt,
1847 	.getsockopt = vsock_stream_getsockopt,
1848 	.sendmsg = vsock_stream_sendmsg,
1849 	.recvmsg = vsock_stream_recvmsg,
1850 	.mmap = sock_no_mmap,
1851 	.sendpage = sock_no_sendpage,
1852 };
1853 
1854 static int vsock_create(struct net *net, struct socket *sock,
1855 			int protocol, int kern)
1856 {
1857 	if (!sock)
1858 		return -EINVAL;
1859 
1860 	if (protocol && protocol != PF_VSOCK)
1861 		return -EPROTONOSUPPORT;
1862 
1863 	switch (sock->type) {
1864 	case SOCK_DGRAM:
1865 		sock->ops = &vsock_dgram_ops;
1866 		break;
1867 	case SOCK_STREAM:
1868 		sock->ops = &vsock_stream_ops;
1869 		break;
1870 	default:
1871 		return -ESOCKTNOSUPPORT;
1872 	}
1873 
1874 	sock->state = SS_UNCONNECTED;
1875 
1876 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1877 }
1878 
1879 static const struct net_proto_family vsock_family_ops = {
1880 	.family = AF_VSOCK,
1881 	.create = vsock_create,
1882 	.owner = THIS_MODULE,
1883 };
1884 
1885 static long vsock_dev_do_ioctl(struct file *filp,
1886 			       unsigned int cmd, void __user *ptr)
1887 {
1888 	u32 __user *p = ptr;
1889 	int retval = 0;
1890 
1891 	switch (cmd) {
1892 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1893 		if (put_user(transport_single->get_local_cid(), p) != 0)
1894 			retval = -EFAULT;
1895 		break;
1896 
1897 	default:
1898 		pr_err("Unknown ioctl %d\n", cmd);
1899 		retval = -EINVAL;
1900 	}
1901 
1902 	return retval;
1903 }
1904 
1905 static long vsock_dev_ioctl(struct file *filp,
1906 			    unsigned int cmd, unsigned long arg)
1907 {
1908 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1909 }
1910 
1911 #ifdef CONFIG_COMPAT
1912 static long vsock_dev_compat_ioctl(struct file *filp,
1913 				   unsigned int cmd, unsigned long arg)
1914 {
1915 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1916 }
1917 #endif
1918 
1919 static const struct file_operations vsock_device_ops = {
1920 	.owner		= THIS_MODULE,
1921 	.unlocked_ioctl	= vsock_dev_ioctl,
1922 #ifdef CONFIG_COMPAT
1923 	.compat_ioctl	= vsock_dev_compat_ioctl,
1924 #endif
1925 	.open		= nonseekable_open,
1926 };
1927 
1928 static struct miscdevice vsock_device = {
1929 	.name		= "vsock",
1930 	.fops		= &vsock_device_ops,
1931 };
1932 
1933 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1934 {
1935 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1936 
1937 	if (err)
1938 		return err;
1939 
1940 	if (transport_single) {
1941 		err = -EBUSY;
1942 		goto err_busy;
1943 	}
1944 
1945 	/* Transport must be the owner of the protocol so that it can't
1946 	 * unload while there are open sockets.
1947 	 */
1948 	vsock_proto.owner = owner;
1949 	transport_single = t;
1950 
1951 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1952 	err = misc_register(&vsock_device);
1953 	if (err) {
1954 		pr_err("Failed to register misc device\n");
1955 		goto err_reset_transport;
1956 	}
1957 
1958 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1959 	if (err) {
1960 		pr_err("Cannot register vsock protocol\n");
1961 		goto err_deregister_misc;
1962 	}
1963 
1964 	err = sock_register(&vsock_family_ops);
1965 	if (err) {
1966 		pr_err("could not register af_vsock (%d) address family: %d\n",
1967 		       AF_VSOCK, err);
1968 		goto err_unregister_proto;
1969 	}
1970 
1971 	mutex_unlock(&vsock_register_mutex);
1972 	return 0;
1973 
1974 err_unregister_proto:
1975 	proto_unregister(&vsock_proto);
1976 err_deregister_misc:
1977 	misc_deregister(&vsock_device);
1978 err_reset_transport:
1979 	transport_single = NULL;
1980 err_busy:
1981 	mutex_unlock(&vsock_register_mutex);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL_GPL(__vsock_core_init);
1985 
1986 void vsock_core_exit(void)
1987 {
1988 	mutex_lock(&vsock_register_mutex);
1989 
1990 	misc_deregister(&vsock_device);
1991 	sock_unregister(AF_VSOCK);
1992 	proto_unregister(&vsock_proto);
1993 
1994 	/* We do not want the assignment below re-ordered. */
1995 	mb();
1996 	transport_single = NULL;
1997 
1998 	mutex_unlock(&vsock_register_mutex);
1999 }
2000 EXPORT_SYMBOL_GPL(vsock_core_exit);
2001 
2002 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2003 {
2004 	return vsk->transport;
2005 }
2006 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2007 
2008 static void __exit vsock_exit(void)
2009 {
2010 	/* Do nothing.  This function makes this module removable. */
2011 }
2012 
2013 module_init(vsock_init_tables);
2014 module_exit(vsock_exit);
2015 
2016 MODULE_AUTHOR("VMware, Inc.");
2017 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2018 MODULE_VERSION("1.0.2.0-k");
2019 MODULE_LICENSE("GPL v2");
2020