xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision d7a3d85e)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the SS_LISTEN state.  When a connection
40  * request is received (the second kind of socket mentioned above), we create a
41  * new socket and refer to it as a pending socket.  These pending sockets are
42  * placed on the pending connection list of the listener socket.  When future
43  * packets are received for the address the listener socket is bound to, we
44  * check if the source of the packet is from one that has an existing pending
45  * connection.  If it does, we process the packet for the pending socket.  When
46  * that socket reaches the connected state, it is removed from the listener
47  * socket's pending list and enqueued in the listener socket's accept queue.
48  * Callers of accept(2) will accept connected sockets from the listener socket's
49  * accept queue.  If the socket cannot be accepted for some reason then it is
50  * marked rejected.  Once the connection is accepted, it is owned by the user
51  * process and the responsibility for cleanup falls with that user process.
52  *
53  * - It is possible that these pending sockets will never reach the connected
54  * state; in fact, we may never receive another packet after the connection
55  * request.  Because of this, we must schedule a cleanup function to run in the
56  * future, after some amount of time passes where a connection should have been
57  * established.  This function ensures that the socket is off all lists so it
58  * cannot be retrieved, then drops all references to the socket so it is cleaned
59  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60  * function will also cleanup rejected sockets, those that reach the connected
61  * state but leave it before they have been accepted.
62  *
63  * - Sockets created by user action will be cleaned up when the user process
64  * calls close(2), causing our release implementation to be called. Our release
65  * implementation will perform some cleanup then drop the last reference so our
66  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67  * perform additional cleanup that's common for both types of sockets.
68  *
69  * - A socket's reference count is what ensures that the structure won't be
70  * freed.  Each entry in a list (such as the "global" bound and connected tables
71  * and the listener socket's pending list and connected queue) ensures a
72  * reference.  When we defer work until process context and pass a socket as our
73  * argument, we must ensure the reference count is increased to ensure the
74  * socket isn't freed before the function is run; the deferred function will
75  * then drop the reference.
76  */
77 
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
82 #include <linux/io.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
98 #include <net/sock.h>
99 #include <net/af_vsock.h>
100 
101 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
102 static void vsock_sk_destruct(struct sock *sk);
103 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
104 
105 /* Protocol family. */
106 static struct proto vsock_proto = {
107 	.name = "AF_VSOCK",
108 	.owner = THIS_MODULE,
109 	.obj_size = sizeof(struct vsock_sock),
110 };
111 
112 /* The default peer timeout indicates how long we will wait for a peer response
113  * to a control message.
114  */
115 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
116 
117 #define SS_LISTEN 255
118 
119 static const struct vsock_transport *transport;
120 static DEFINE_MUTEX(vsock_register_mutex);
121 
122 /**** EXPORTS ****/
123 
124 /* Get the ID of the local context.  This is transport dependent. */
125 
126 int vm_sockets_get_local_cid(void)
127 {
128 	return transport->get_local_cid();
129 }
130 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
131 
132 /**** UTILS ****/
133 
134 /* Each bound VSocket is stored in the bind hash table and each connected
135  * VSocket is stored in the connected hash table.
136  *
137  * Unbound sockets are all put on the same list attached to the end of the hash
138  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
139  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
140  * represents the list that addr hashes to).
141  *
142  * Specifically, we initialize the vsock_bind_table array to a size of
143  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
144  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
145  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
146  * mods with VSOCK_HASH_SIZE to ensure this.
147  */
148 #define VSOCK_HASH_SIZE         251
149 #define MAX_PORT_RETRIES        24
150 
151 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
152 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
153 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
154 
155 /* XXX This can probably be implemented in a better way. */
156 #define VSOCK_CONN_HASH(src, dst)				\
157 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
158 #define vsock_connected_sockets(src, dst)		\
159 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
160 #define vsock_connected_sockets_vsk(vsk)				\
161 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
162 
163 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
164 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
165 static DEFINE_SPINLOCK(vsock_table_lock);
166 
167 /* Autobind this socket to the local address if necessary. */
168 static int vsock_auto_bind(struct vsock_sock *vsk)
169 {
170 	struct sock *sk = sk_vsock(vsk);
171 	struct sockaddr_vm local_addr;
172 
173 	if (vsock_addr_bound(&vsk->local_addr))
174 		return 0;
175 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
176 	return __vsock_bind(sk, &local_addr);
177 }
178 
179 static void vsock_init_tables(void)
180 {
181 	int i;
182 
183 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
184 		INIT_LIST_HEAD(&vsock_bind_table[i]);
185 
186 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
187 		INIT_LIST_HEAD(&vsock_connected_table[i]);
188 }
189 
190 static void __vsock_insert_bound(struct list_head *list,
191 				 struct vsock_sock *vsk)
192 {
193 	sock_hold(&vsk->sk);
194 	list_add(&vsk->bound_table, list);
195 }
196 
197 static void __vsock_insert_connected(struct list_head *list,
198 				     struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->connected_table, list);
202 }
203 
204 static void __vsock_remove_bound(struct vsock_sock *vsk)
205 {
206 	list_del_init(&vsk->bound_table);
207 	sock_put(&vsk->sk);
208 }
209 
210 static void __vsock_remove_connected(struct vsock_sock *vsk)
211 {
212 	list_del_init(&vsk->connected_table);
213 	sock_put(&vsk->sk);
214 }
215 
216 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
217 {
218 	struct vsock_sock *vsk;
219 
220 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
221 		if (addr->svm_port == vsk->local_addr.svm_port)
222 			return sk_vsock(vsk);
223 
224 	return NULL;
225 }
226 
227 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
228 						  struct sockaddr_vm *dst)
229 {
230 	struct vsock_sock *vsk;
231 
232 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
233 			    connected_table) {
234 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
235 		    dst->svm_port == vsk->local_addr.svm_port) {
236 			return sk_vsock(vsk);
237 		}
238 	}
239 
240 	return NULL;
241 }
242 
243 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
244 {
245 	return !list_empty(&vsk->bound_table);
246 }
247 
248 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
249 {
250 	return !list_empty(&vsk->connected_table);
251 }
252 
253 static void vsock_insert_unbound(struct vsock_sock *vsk)
254 {
255 	spin_lock_bh(&vsock_table_lock);
256 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
257 	spin_unlock_bh(&vsock_table_lock);
258 }
259 
260 void vsock_insert_connected(struct vsock_sock *vsk)
261 {
262 	struct list_head *list = vsock_connected_sockets(
263 		&vsk->remote_addr, &vsk->local_addr);
264 
265 	spin_lock_bh(&vsock_table_lock);
266 	__vsock_insert_connected(list, vsk);
267 	spin_unlock_bh(&vsock_table_lock);
268 }
269 EXPORT_SYMBOL_GPL(vsock_insert_connected);
270 
271 void vsock_remove_bound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_remove_bound(vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_remove_bound);
278 
279 void vsock_remove_connected(struct vsock_sock *vsk)
280 {
281 	spin_lock_bh(&vsock_table_lock);
282 	__vsock_remove_connected(vsk);
283 	spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_remove_connected);
286 
287 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
288 {
289 	struct sock *sk;
290 
291 	spin_lock_bh(&vsock_table_lock);
292 	sk = __vsock_find_bound_socket(addr);
293 	if (sk)
294 		sock_hold(sk);
295 
296 	spin_unlock_bh(&vsock_table_lock);
297 
298 	return sk;
299 }
300 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
301 
302 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
303 					 struct sockaddr_vm *dst)
304 {
305 	struct sock *sk;
306 
307 	spin_lock_bh(&vsock_table_lock);
308 	sk = __vsock_find_connected_socket(src, dst);
309 	if (sk)
310 		sock_hold(sk);
311 
312 	spin_unlock_bh(&vsock_table_lock);
313 
314 	return sk;
315 }
316 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
317 
318 static bool vsock_in_bound_table(struct vsock_sock *vsk)
319 {
320 	bool ret;
321 
322 	spin_lock_bh(&vsock_table_lock);
323 	ret = __vsock_in_bound_table(vsk);
324 	spin_unlock_bh(&vsock_table_lock);
325 
326 	return ret;
327 }
328 
329 static bool vsock_in_connected_table(struct vsock_sock *vsk)
330 {
331 	bool ret;
332 
333 	spin_lock_bh(&vsock_table_lock);
334 	ret = __vsock_in_connected_table(vsk);
335 	spin_unlock_bh(&vsock_table_lock);
336 
337 	return ret;
338 }
339 
340 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
341 {
342 	int i;
343 
344 	spin_lock_bh(&vsock_table_lock);
345 
346 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
347 		struct vsock_sock *vsk;
348 		list_for_each_entry(vsk, &vsock_connected_table[i],
349 				    connected_table)
350 			fn(sk_vsock(vsk));
351 	}
352 
353 	spin_unlock_bh(&vsock_table_lock);
354 }
355 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
356 
357 void vsock_add_pending(struct sock *listener, struct sock *pending)
358 {
359 	struct vsock_sock *vlistener;
360 	struct vsock_sock *vpending;
361 
362 	vlistener = vsock_sk(listener);
363 	vpending = vsock_sk(pending);
364 
365 	sock_hold(pending);
366 	sock_hold(listener);
367 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
368 }
369 EXPORT_SYMBOL_GPL(vsock_add_pending);
370 
371 void vsock_remove_pending(struct sock *listener, struct sock *pending)
372 {
373 	struct vsock_sock *vpending = vsock_sk(pending);
374 
375 	list_del_init(&vpending->pending_links);
376 	sock_put(listener);
377 	sock_put(pending);
378 }
379 EXPORT_SYMBOL_GPL(vsock_remove_pending);
380 
381 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
382 {
383 	struct vsock_sock *vlistener;
384 	struct vsock_sock *vconnected;
385 
386 	vlistener = vsock_sk(listener);
387 	vconnected = vsock_sk(connected);
388 
389 	sock_hold(connected);
390 	sock_hold(listener);
391 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
392 }
393 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
394 
395 static struct sock *vsock_dequeue_accept(struct sock *listener)
396 {
397 	struct vsock_sock *vlistener;
398 	struct vsock_sock *vconnected;
399 
400 	vlistener = vsock_sk(listener);
401 
402 	if (list_empty(&vlistener->accept_queue))
403 		return NULL;
404 
405 	vconnected = list_entry(vlistener->accept_queue.next,
406 				struct vsock_sock, accept_queue);
407 
408 	list_del_init(&vconnected->accept_queue);
409 	sock_put(listener);
410 	/* The caller will need a reference on the connected socket so we let
411 	 * it call sock_put().
412 	 */
413 
414 	return sk_vsock(vconnected);
415 }
416 
417 static bool vsock_is_accept_queue_empty(struct sock *sk)
418 {
419 	struct vsock_sock *vsk = vsock_sk(sk);
420 	return list_empty(&vsk->accept_queue);
421 }
422 
423 static bool vsock_is_pending(struct sock *sk)
424 {
425 	struct vsock_sock *vsk = vsock_sk(sk);
426 	return !list_empty(&vsk->pending_links);
427 }
428 
429 static int vsock_send_shutdown(struct sock *sk, int mode)
430 {
431 	return transport->shutdown(vsock_sk(sk), mode);
432 }
433 
434 void vsock_pending_work(struct work_struct *work)
435 {
436 	struct sock *sk;
437 	struct sock *listener;
438 	struct vsock_sock *vsk;
439 	bool cleanup;
440 
441 	vsk = container_of(work, struct vsock_sock, dwork.work);
442 	sk = sk_vsock(vsk);
443 	listener = vsk->listener;
444 	cleanup = true;
445 
446 	lock_sock(listener);
447 	lock_sock(sk);
448 
449 	if (vsock_is_pending(sk)) {
450 		vsock_remove_pending(listener, sk);
451 	} else if (!vsk->rejected) {
452 		/* We are not on the pending list and accept() did not reject
453 		 * us, so we must have been accepted by our user process.  We
454 		 * just need to drop our references to the sockets and be on
455 		 * our way.
456 		 */
457 		cleanup = false;
458 		goto out;
459 	}
460 
461 	listener->sk_ack_backlog--;
462 
463 	/* We need to remove ourself from the global connected sockets list so
464 	 * incoming packets can't find this socket, and to reduce the reference
465 	 * count.
466 	 */
467 	if (vsock_in_connected_table(vsk))
468 		vsock_remove_connected(vsk);
469 
470 	sk->sk_state = SS_FREE;
471 
472 out:
473 	release_sock(sk);
474 	release_sock(listener);
475 	if (cleanup)
476 		sock_put(sk);
477 
478 	sock_put(sk);
479 	sock_put(listener);
480 }
481 EXPORT_SYMBOL_GPL(vsock_pending_work);
482 
483 /**** SOCKET OPERATIONS ****/
484 
485 static int __vsock_bind_stream(struct vsock_sock *vsk,
486 			       struct sockaddr_vm *addr)
487 {
488 	static u32 port = LAST_RESERVED_PORT + 1;
489 	struct sockaddr_vm new_addr;
490 
491 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
492 
493 	if (addr->svm_port == VMADDR_PORT_ANY) {
494 		bool found = false;
495 		unsigned int i;
496 
497 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
498 			if (port <= LAST_RESERVED_PORT)
499 				port = LAST_RESERVED_PORT + 1;
500 
501 			new_addr.svm_port = port++;
502 
503 			if (!__vsock_find_bound_socket(&new_addr)) {
504 				found = true;
505 				break;
506 			}
507 		}
508 
509 		if (!found)
510 			return -EADDRNOTAVAIL;
511 	} else {
512 		/* If port is in reserved range, ensure caller
513 		 * has necessary privileges.
514 		 */
515 		if (addr->svm_port <= LAST_RESERVED_PORT &&
516 		    !capable(CAP_NET_BIND_SERVICE)) {
517 			return -EACCES;
518 		}
519 
520 		if (__vsock_find_bound_socket(&new_addr))
521 			return -EADDRINUSE;
522 	}
523 
524 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
525 
526 	/* Remove stream sockets from the unbound list and add them to the hash
527 	 * table for easy lookup by its address.  The unbound list is simply an
528 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
529 	 */
530 	__vsock_remove_bound(vsk);
531 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
532 
533 	return 0;
534 }
535 
536 static int __vsock_bind_dgram(struct vsock_sock *vsk,
537 			      struct sockaddr_vm *addr)
538 {
539 	return transport->dgram_bind(vsk, addr);
540 }
541 
542 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
543 {
544 	struct vsock_sock *vsk = vsock_sk(sk);
545 	u32 cid;
546 	int retval;
547 
548 	/* First ensure this socket isn't already bound. */
549 	if (vsock_addr_bound(&vsk->local_addr))
550 		return -EINVAL;
551 
552 	/* Now bind to the provided address or select appropriate values if
553 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
554 	 * like AF_INET prevents binding to a non-local IP address (in most
555 	 * cases), we only allow binding to the local CID.
556 	 */
557 	cid = transport->get_local_cid();
558 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
559 		return -EADDRNOTAVAIL;
560 
561 	switch (sk->sk_socket->type) {
562 	case SOCK_STREAM:
563 		spin_lock_bh(&vsock_table_lock);
564 		retval = __vsock_bind_stream(vsk, addr);
565 		spin_unlock_bh(&vsock_table_lock);
566 		break;
567 
568 	case SOCK_DGRAM:
569 		retval = __vsock_bind_dgram(vsk, addr);
570 		break;
571 
572 	default:
573 		retval = -EINVAL;
574 		break;
575 	}
576 
577 	return retval;
578 }
579 
580 struct sock *__vsock_create(struct net *net,
581 			    struct socket *sock,
582 			    struct sock *parent,
583 			    gfp_t priority,
584 			    unsigned short type)
585 {
586 	struct sock *sk;
587 	struct vsock_sock *psk;
588 	struct vsock_sock *vsk;
589 
590 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
591 	if (!sk)
592 		return NULL;
593 
594 	sock_init_data(sock, sk);
595 
596 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
597 	 * non-NULL. We make sure that our sockets always have a type by
598 	 * setting it here if needed.
599 	 */
600 	if (!sock)
601 		sk->sk_type = type;
602 
603 	vsk = vsock_sk(sk);
604 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
605 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
606 
607 	sk->sk_destruct = vsock_sk_destruct;
608 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
609 	sk->sk_state = 0;
610 	sock_reset_flag(sk, SOCK_DONE);
611 
612 	INIT_LIST_HEAD(&vsk->bound_table);
613 	INIT_LIST_HEAD(&vsk->connected_table);
614 	vsk->listener = NULL;
615 	INIT_LIST_HEAD(&vsk->pending_links);
616 	INIT_LIST_HEAD(&vsk->accept_queue);
617 	vsk->rejected = false;
618 	vsk->sent_request = false;
619 	vsk->ignore_connecting_rst = false;
620 	vsk->peer_shutdown = 0;
621 
622 	psk = parent ? vsock_sk(parent) : NULL;
623 	if (parent) {
624 		vsk->trusted = psk->trusted;
625 		vsk->owner = get_cred(psk->owner);
626 		vsk->connect_timeout = psk->connect_timeout;
627 	} else {
628 		vsk->trusted = capable(CAP_NET_ADMIN);
629 		vsk->owner = get_current_cred();
630 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
631 	}
632 
633 	if (transport->init(vsk, psk) < 0) {
634 		sk_free(sk);
635 		return NULL;
636 	}
637 
638 	if (sock)
639 		vsock_insert_unbound(vsk);
640 
641 	return sk;
642 }
643 EXPORT_SYMBOL_GPL(__vsock_create);
644 
645 static void __vsock_release(struct sock *sk)
646 {
647 	if (sk) {
648 		struct sk_buff *skb;
649 		struct sock *pending;
650 		struct vsock_sock *vsk;
651 
652 		vsk = vsock_sk(sk);
653 		pending = NULL;	/* Compiler warning. */
654 
655 		if (vsock_in_bound_table(vsk))
656 			vsock_remove_bound(vsk);
657 
658 		if (vsock_in_connected_table(vsk))
659 			vsock_remove_connected(vsk);
660 
661 		transport->release(vsk);
662 
663 		lock_sock(sk);
664 		sock_orphan(sk);
665 		sk->sk_shutdown = SHUTDOWN_MASK;
666 
667 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
668 			kfree_skb(skb);
669 
670 		/* Clean up any sockets that never were accepted. */
671 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
672 			__vsock_release(pending);
673 			sock_put(pending);
674 		}
675 
676 		release_sock(sk);
677 		sock_put(sk);
678 	}
679 }
680 
681 static void vsock_sk_destruct(struct sock *sk)
682 {
683 	struct vsock_sock *vsk = vsock_sk(sk);
684 
685 	transport->destruct(vsk);
686 
687 	/* When clearing these addresses, there's no need to set the family and
688 	 * possibly register the address family with the kernel.
689 	 */
690 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
691 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
692 
693 	put_cred(vsk->owner);
694 }
695 
696 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
697 {
698 	int err;
699 
700 	err = sock_queue_rcv_skb(sk, skb);
701 	if (err)
702 		kfree_skb(skb);
703 
704 	return err;
705 }
706 
707 s64 vsock_stream_has_data(struct vsock_sock *vsk)
708 {
709 	return transport->stream_has_data(vsk);
710 }
711 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
712 
713 s64 vsock_stream_has_space(struct vsock_sock *vsk)
714 {
715 	return transport->stream_has_space(vsk);
716 }
717 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
718 
719 static int vsock_release(struct socket *sock)
720 {
721 	__vsock_release(sock->sk);
722 	sock->sk = NULL;
723 	sock->state = SS_FREE;
724 
725 	return 0;
726 }
727 
728 static int
729 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
730 {
731 	int err;
732 	struct sock *sk;
733 	struct sockaddr_vm *vm_addr;
734 
735 	sk = sock->sk;
736 
737 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
738 		return -EINVAL;
739 
740 	lock_sock(sk);
741 	err = __vsock_bind(sk, vm_addr);
742 	release_sock(sk);
743 
744 	return err;
745 }
746 
747 static int vsock_getname(struct socket *sock,
748 			 struct sockaddr *addr, int *addr_len, int peer)
749 {
750 	int err;
751 	struct sock *sk;
752 	struct vsock_sock *vsk;
753 	struct sockaddr_vm *vm_addr;
754 
755 	sk = sock->sk;
756 	vsk = vsock_sk(sk);
757 	err = 0;
758 
759 	lock_sock(sk);
760 
761 	if (peer) {
762 		if (sock->state != SS_CONNECTED) {
763 			err = -ENOTCONN;
764 			goto out;
765 		}
766 		vm_addr = &vsk->remote_addr;
767 	} else {
768 		vm_addr = &vsk->local_addr;
769 	}
770 
771 	if (!vm_addr) {
772 		err = -EINVAL;
773 		goto out;
774 	}
775 
776 	/* sys_getsockname() and sys_getpeername() pass us a
777 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
778 	 * that macro is defined in socket.c instead of .h, so we hardcode its
779 	 * value here.
780 	 */
781 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
782 	memcpy(addr, vm_addr, sizeof(*vm_addr));
783 	*addr_len = sizeof(*vm_addr);
784 
785 out:
786 	release_sock(sk);
787 	return err;
788 }
789 
790 static int vsock_shutdown(struct socket *sock, int mode)
791 {
792 	int err;
793 	struct sock *sk;
794 
795 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
796 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
797 	 * here like the other address families do.  Note also that the
798 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
799 	 * which is what we want.
800 	 */
801 	mode++;
802 
803 	if ((mode & ~SHUTDOWN_MASK) || !mode)
804 		return -EINVAL;
805 
806 	/* If this is a STREAM socket and it is not connected then bail out
807 	 * immediately.  If it is a DGRAM socket then we must first kick the
808 	 * socket so that it wakes up from any sleeping calls, for example
809 	 * recv(), and then afterwards return the error.
810 	 */
811 
812 	sk = sock->sk;
813 	if (sock->state == SS_UNCONNECTED) {
814 		err = -ENOTCONN;
815 		if (sk->sk_type == SOCK_STREAM)
816 			return err;
817 	} else {
818 		sock->state = SS_DISCONNECTING;
819 		err = 0;
820 	}
821 
822 	/* Receive and send shutdowns are treated alike. */
823 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
824 	if (mode) {
825 		lock_sock(sk);
826 		sk->sk_shutdown |= mode;
827 		sk->sk_state_change(sk);
828 		release_sock(sk);
829 
830 		if (sk->sk_type == SOCK_STREAM) {
831 			sock_reset_flag(sk, SOCK_DONE);
832 			vsock_send_shutdown(sk, mode);
833 		}
834 	}
835 
836 	return err;
837 }
838 
839 static unsigned int vsock_poll(struct file *file, struct socket *sock,
840 			       poll_table *wait)
841 {
842 	struct sock *sk;
843 	unsigned int mask;
844 	struct vsock_sock *vsk;
845 
846 	sk = sock->sk;
847 	vsk = vsock_sk(sk);
848 
849 	poll_wait(file, sk_sleep(sk), wait);
850 	mask = 0;
851 
852 	if (sk->sk_err)
853 		/* Signify that there has been an error on this socket. */
854 		mask |= POLLERR;
855 
856 	/* INET sockets treat local write shutdown and peer write shutdown as a
857 	 * case of POLLHUP set.
858 	 */
859 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
860 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
861 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
862 		mask |= POLLHUP;
863 	}
864 
865 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
866 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
867 		mask |= POLLRDHUP;
868 	}
869 
870 	if (sock->type == SOCK_DGRAM) {
871 		/* For datagram sockets we can read if there is something in
872 		 * the queue and write as long as the socket isn't shutdown for
873 		 * sending.
874 		 */
875 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
876 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
877 			mask |= POLLIN | POLLRDNORM;
878 		}
879 
880 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
881 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
882 
883 	} else if (sock->type == SOCK_STREAM) {
884 		lock_sock(sk);
885 
886 		/* Listening sockets that have connections in their accept
887 		 * queue can be read.
888 		 */
889 		if (sk->sk_state == SS_LISTEN
890 		    && !vsock_is_accept_queue_empty(sk))
891 			mask |= POLLIN | POLLRDNORM;
892 
893 		/* If there is something in the queue then we can read. */
894 		if (transport->stream_is_active(vsk) &&
895 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
896 			bool data_ready_now = false;
897 			int ret = transport->notify_poll_in(
898 					vsk, 1, &data_ready_now);
899 			if (ret < 0) {
900 				mask |= POLLERR;
901 			} else {
902 				if (data_ready_now)
903 					mask |= POLLIN | POLLRDNORM;
904 
905 			}
906 		}
907 
908 		/* Sockets whose connections have been closed, reset, or
909 		 * terminated should also be considered read, and we check the
910 		 * shutdown flag for that.
911 		 */
912 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
913 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
914 			mask |= POLLIN | POLLRDNORM;
915 		}
916 
917 		/* Connected sockets that can produce data can be written. */
918 		if (sk->sk_state == SS_CONNECTED) {
919 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
920 				bool space_avail_now = false;
921 				int ret = transport->notify_poll_out(
922 						vsk, 1, &space_avail_now);
923 				if (ret < 0) {
924 					mask |= POLLERR;
925 				} else {
926 					if (space_avail_now)
927 						/* Remove POLLWRBAND since INET
928 						 * sockets are not setting it.
929 						 */
930 						mask |= POLLOUT | POLLWRNORM;
931 
932 				}
933 			}
934 		}
935 
936 		/* Simulate INET socket poll behaviors, which sets
937 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
938 		 * but local send is not shutdown.
939 		 */
940 		if (sk->sk_state == SS_UNCONNECTED) {
941 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
942 				mask |= POLLOUT | POLLWRNORM;
943 
944 		}
945 
946 		release_sock(sk);
947 	}
948 
949 	return mask;
950 }
951 
952 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
953 			       size_t len)
954 {
955 	int err;
956 	struct sock *sk;
957 	struct vsock_sock *vsk;
958 	struct sockaddr_vm *remote_addr;
959 
960 	if (msg->msg_flags & MSG_OOB)
961 		return -EOPNOTSUPP;
962 
963 	/* For now, MSG_DONTWAIT is always assumed... */
964 	err = 0;
965 	sk = sock->sk;
966 	vsk = vsock_sk(sk);
967 
968 	lock_sock(sk);
969 
970 	err = vsock_auto_bind(vsk);
971 	if (err)
972 		goto out;
973 
974 
975 	/* If the provided message contains an address, use that.  Otherwise
976 	 * fall back on the socket's remote handle (if it has been connected).
977 	 */
978 	if (msg->msg_name &&
979 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
980 			    &remote_addr) == 0) {
981 		/* Ensure this address is of the right type and is a valid
982 		 * destination.
983 		 */
984 
985 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
986 			remote_addr->svm_cid = transport->get_local_cid();
987 
988 		if (!vsock_addr_bound(remote_addr)) {
989 			err = -EINVAL;
990 			goto out;
991 		}
992 	} else if (sock->state == SS_CONNECTED) {
993 		remote_addr = &vsk->remote_addr;
994 
995 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
996 			remote_addr->svm_cid = transport->get_local_cid();
997 
998 		/* XXX Should connect() or this function ensure remote_addr is
999 		 * bound?
1000 		 */
1001 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 	} else {
1006 		err = -EINVAL;
1007 		goto out;
1008 	}
1009 
1010 	if (!transport->dgram_allow(remote_addr->svm_cid,
1011 				    remote_addr->svm_port)) {
1012 		err = -EINVAL;
1013 		goto out;
1014 	}
1015 
1016 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1017 
1018 out:
1019 	release_sock(sk);
1020 	return err;
1021 }
1022 
1023 static int vsock_dgram_connect(struct socket *sock,
1024 			       struct sockaddr *addr, int addr_len, int flags)
1025 {
1026 	int err;
1027 	struct sock *sk;
1028 	struct vsock_sock *vsk;
1029 	struct sockaddr_vm *remote_addr;
1030 
1031 	sk = sock->sk;
1032 	vsk = vsock_sk(sk);
1033 
1034 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1035 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1036 		lock_sock(sk);
1037 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1038 				VMADDR_PORT_ANY);
1039 		sock->state = SS_UNCONNECTED;
1040 		release_sock(sk);
1041 		return 0;
1042 	} else if (err != 0)
1043 		return -EINVAL;
1044 
1045 	lock_sock(sk);
1046 
1047 	err = vsock_auto_bind(vsk);
1048 	if (err)
1049 		goto out;
1050 
1051 	if (!transport->dgram_allow(remote_addr->svm_cid,
1052 				    remote_addr->svm_port)) {
1053 		err = -EINVAL;
1054 		goto out;
1055 	}
1056 
1057 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058 	sock->state = SS_CONNECTED;
1059 
1060 out:
1061 	release_sock(sk);
1062 	return err;
1063 }
1064 
1065 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1066 			       size_t len, int flags)
1067 {
1068 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1069 }
1070 
1071 static const struct proto_ops vsock_dgram_ops = {
1072 	.family = PF_VSOCK,
1073 	.owner = THIS_MODULE,
1074 	.release = vsock_release,
1075 	.bind = vsock_bind,
1076 	.connect = vsock_dgram_connect,
1077 	.socketpair = sock_no_socketpair,
1078 	.accept = sock_no_accept,
1079 	.getname = vsock_getname,
1080 	.poll = vsock_poll,
1081 	.ioctl = sock_no_ioctl,
1082 	.listen = sock_no_listen,
1083 	.shutdown = vsock_shutdown,
1084 	.setsockopt = sock_no_setsockopt,
1085 	.getsockopt = sock_no_getsockopt,
1086 	.sendmsg = vsock_dgram_sendmsg,
1087 	.recvmsg = vsock_dgram_recvmsg,
1088 	.mmap = sock_no_mmap,
1089 	.sendpage = sock_no_sendpage,
1090 };
1091 
1092 static void vsock_connect_timeout(struct work_struct *work)
1093 {
1094 	struct sock *sk;
1095 	struct vsock_sock *vsk;
1096 
1097 	vsk = container_of(work, struct vsock_sock, dwork.work);
1098 	sk = sk_vsock(vsk);
1099 
1100 	lock_sock(sk);
1101 	if (sk->sk_state == SS_CONNECTING &&
1102 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1103 		sk->sk_state = SS_UNCONNECTED;
1104 		sk->sk_err = ETIMEDOUT;
1105 		sk->sk_error_report(sk);
1106 	}
1107 	release_sock(sk);
1108 
1109 	sock_put(sk);
1110 }
1111 
1112 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1113 				int addr_len, int flags)
1114 {
1115 	int err;
1116 	struct sock *sk;
1117 	struct vsock_sock *vsk;
1118 	struct sockaddr_vm *remote_addr;
1119 	long timeout;
1120 	DEFINE_WAIT(wait);
1121 
1122 	err = 0;
1123 	sk = sock->sk;
1124 	vsk = vsock_sk(sk);
1125 
1126 	lock_sock(sk);
1127 
1128 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1129 	switch (sock->state) {
1130 	case SS_CONNECTED:
1131 		err = -EISCONN;
1132 		goto out;
1133 	case SS_DISCONNECTING:
1134 		err = -EINVAL;
1135 		goto out;
1136 	case SS_CONNECTING:
1137 		/* This continues on so we can move sock into the SS_CONNECTED
1138 		 * state once the connection has completed (at which point err
1139 		 * will be set to zero also).  Otherwise, we will either wait
1140 		 * for the connection or return -EALREADY should this be a
1141 		 * non-blocking call.
1142 		 */
1143 		err = -EALREADY;
1144 		break;
1145 	default:
1146 		if ((sk->sk_state == SS_LISTEN) ||
1147 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1148 			err = -EINVAL;
1149 			goto out;
1150 		}
1151 
1152 		/* The hypervisor and well-known contexts do not have socket
1153 		 * endpoints.
1154 		 */
1155 		if (!transport->stream_allow(remote_addr->svm_cid,
1156 					     remote_addr->svm_port)) {
1157 			err = -ENETUNREACH;
1158 			goto out;
1159 		}
1160 
1161 		/* Set the remote address that we are connecting to. */
1162 		memcpy(&vsk->remote_addr, remote_addr,
1163 		       sizeof(vsk->remote_addr));
1164 
1165 		err = vsock_auto_bind(vsk);
1166 		if (err)
1167 			goto out;
1168 
1169 		sk->sk_state = SS_CONNECTING;
1170 
1171 		err = transport->connect(vsk);
1172 		if (err < 0)
1173 			goto out;
1174 
1175 		/* Mark sock as connecting and set the error code to in
1176 		 * progress in case this is a non-blocking connect.
1177 		 */
1178 		sock->state = SS_CONNECTING;
1179 		err = -EINPROGRESS;
1180 	}
1181 
1182 	/* The receive path will handle all communication until we are able to
1183 	 * enter the connected state.  Here we wait for the connection to be
1184 	 * completed or a notification of an error.
1185 	 */
1186 	timeout = vsk->connect_timeout;
1187 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1188 
1189 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1190 		if (flags & O_NONBLOCK) {
1191 			/* If we're not going to block, we schedule a timeout
1192 			 * function to generate a timeout on the connection
1193 			 * attempt, in case the peer doesn't respond in a
1194 			 * timely manner. We hold on to the socket until the
1195 			 * timeout fires.
1196 			 */
1197 			sock_hold(sk);
1198 			INIT_DELAYED_WORK(&vsk->dwork,
1199 					  vsock_connect_timeout);
1200 			schedule_delayed_work(&vsk->dwork, timeout);
1201 
1202 			/* Skip ahead to preserve error code set above. */
1203 			goto out_wait;
1204 		}
1205 
1206 		release_sock(sk);
1207 		timeout = schedule_timeout(timeout);
1208 		lock_sock(sk);
1209 
1210 		if (signal_pending(current)) {
1211 			err = sock_intr_errno(timeout);
1212 			goto out_wait_error;
1213 		} else if (timeout == 0) {
1214 			err = -ETIMEDOUT;
1215 			goto out_wait_error;
1216 		}
1217 
1218 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1219 	}
1220 
1221 	if (sk->sk_err) {
1222 		err = -sk->sk_err;
1223 		goto out_wait_error;
1224 	} else
1225 		err = 0;
1226 
1227 out_wait:
1228 	finish_wait(sk_sleep(sk), &wait);
1229 out:
1230 	release_sock(sk);
1231 	return err;
1232 
1233 out_wait_error:
1234 	sk->sk_state = SS_UNCONNECTED;
1235 	sock->state = SS_UNCONNECTED;
1236 	goto out_wait;
1237 }
1238 
1239 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1240 {
1241 	struct sock *listener;
1242 	int err;
1243 	struct sock *connected;
1244 	struct vsock_sock *vconnected;
1245 	long timeout;
1246 	DEFINE_WAIT(wait);
1247 
1248 	err = 0;
1249 	listener = sock->sk;
1250 
1251 	lock_sock(listener);
1252 
1253 	if (sock->type != SOCK_STREAM) {
1254 		err = -EOPNOTSUPP;
1255 		goto out;
1256 	}
1257 
1258 	if (listener->sk_state != SS_LISTEN) {
1259 		err = -EINVAL;
1260 		goto out;
1261 	}
1262 
1263 	/* Wait for children sockets to appear; these are the new sockets
1264 	 * created upon connection establishment.
1265 	 */
1266 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1267 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1268 
1269 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1270 	       listener->sk_err == 0) {
1271 		release_sock(listener);
1272 		timeout = schedule_timeout(timeout);
1273 		lock_sock(listener);
1274 
1275 		if (signal_pending(current)) {
1276 			err = sock_intr_errno(timeout);
1277 			goto out_wait;
1278 		} else if (timeout == 0) {
1279 			err = -EAGAIN;
1280 			goto out_wait;
1281 		}
1282 
1283 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1284 	}
1285 
1286 	if (listener->sk_err)
1287 		err = -listener->sk_err;
1288 
1289 	if (connected) {
1290 		listener->sk_ack_backlog--;
1291 
1292 		lock_sock(connected);
1293 		vconnected = vsock_sk(connected);
1294 
1295 		/* If the listener socket has received an error, then we should
1296 		 * reject this socket and return.  Note that we simply mark the
1297 		 * socket rejected, drop our reference, and let the cleanup
1298 		 * function handle the cleanup; the fact that we found it in
1299 		 * the listener's accept queue guarantees that the cleanup
1300 		 * function hasn't run yet.
1301 		 */
1302 		if (err) {
1303 			vconnected->rejected = true;
1304 			release_sock(connected);
1305 			sock_put(connected);
1306 			goto out_wait;
1307 		}
1308 
1309 		newsock->state = SS_CONNECTED;
1310 		sock_graft(connected, newsock);
1311 		release_sock(connected);
1312 		sock_put(connected);
1313 	}
1314 
1315 out_wait:
1316 	finish_wait(sk_sleep(listener), &wait);
1317 out:
1318 	release_sock(listener);
1319 	return err;
1320 }
1321 
1322 static int vsock_listen(struct socket *sock, int backlog)
1323 {
1324 	int err;
1325 	struct sock *sk;
1326 	struct vsock_sock *vsk;
1327 
1328 	sk = sock->sk;
1329 
1330 	lock_sock(sk);
1331 
1332 	if (sock->type != SOCK_STREAM) {
1333 		err = -EOPNOTSUPP;
1334 		goto out;
1335 	}
1336 
1337 	if (sock->state != SS_UNCONNECTED) {
1338 		err = -EINVAL;
1339 		goto out;
1340 	}
1341 
1342 	vsk = vsock_sk(sk);
1343 
1344 	if (!vsock_addr_bound(&vsk->local_addr)) {
1345 		err = -EINVAL;
1346 		goto out;
1347 	}
1348 
1349 	sk->sk_max_ack_backlog = backlog;
1350 	sk->sk_state = SS_LISTEN;
1351 
1352 	err = 0;
1353 
1354 out:
1355 	release_sock(sk);
1356 	return err;
1357 }
1358 
1359 static int vsock_stream_setsockopt(struct socket *sock,
1360 				   int level,
1361 				   int optname,
1362 				   char __user *optval,
1363 				   unsigned int optlen)
1364 {
1365 	int err;
1366 	struct sock *sk;
1367 	struct vsock_sock *vsk;
1368 	u64 val;
1369 
1370 	if (level != AF_VSOCK)
1371 		return -ENOPROTOOPT;
1372 
1373 #define COPY_IN(_v)                                       \
1374 	do {						  \
1375 		if (optlen < sizeof(_v)) {		  \
1376 			err = -EINVAL;			  \
1377 			goto exit;			  \
1378 		}					  \
1379 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1380 			err = -EFAULT;					\
1381 			goto exit;					\
1382 		}							\
1383 	} while (0)
1384 
1385 	err = 0;
1386 	sk = sock->sk;
1387 	vsk = vsock_sk(sk);
1388 
1389 	lock_sock(sk);
1390 
1391 	switch (optname) {
1392 	case SO_VM_SOCKETS_BUFFER_SIZE:
1393 		COPY_IN(val);
1394 		transport->set_buffer_size(vsk, val);
1395 		break;
1396 
1397 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1398 		COPY_IN(val);
1399 		transport->set_max_buffer_size(vsk, val);
1400 		break;
1401 
1402 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1403 		COPY_IN(val);
1404 		transport->set_min_buffer_size(vsk, val);
1405 		break;
1406 
1407 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1408 		struct timeval tv;
1409 		COPY_IN(tv);
1410 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1411 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1412 			vsk->connect_timeout = tv.tv_sec * HZ +
1413 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1414 			if (vsk->connect_timeout == 0)
1415 				vsk->connect_timeout =
1416 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1417 
1418 		} else {
1419 			err = -ERANGE;
1420 		}
1421 		break;
1422 	}
1423 
1424 	default:
1425 		err = -ENOPROTOOPT;
1426 		break;
1427 	}
1428 
1429 #undef COPY_IN
1430 
1431 exit:
1432 	release_sock(sk);
1433 	return err;
1434 }
1435 
1436 static int vsock_stream_getsockopt(struct socket *sock,
1437 				   int level, int optname,
1438 				   char __user *optval,
1439 				   int __user *optlen)
1440 {
1441 	int err;
1442 	int len;
1443 	struct sock *sk;
1444 	struct vsock_sock *vsk;
1445 	u64 val;
1446 
1447 	if (level != AF_VSOCK)
1448 		return -ENOPROTOOPT;
1449 
1450 	err = get_user(len, optlen);
1451 	if (err != 0)
1452 		return err;
1453 
1454 #define COPY_OUT(_v)                            \
1455 	do {					\
1456 		if (len < sizeof(_v))		\
1457 			return -EINVAL;		\
1458 						\
1459 		len = sizeof(_v);		\
1460 		if (copy_to_user(optval, &_v, len) != 0)	\
1461 			return -EFAULT;				\
1462 								\
1463 	} while (0)
1464 
1465 	err = 0;
1466 	sk = sock->sk;
1467 	vsk = vsock_sk(sk);
1468 
1469 	switch (optname) {
1470 	case SO_VM_SOCKETS_BUFFER_SIZE:
1471 		val = transport->get_buffer_size(vsk);
1472 		COPY_OUT(val);
1473 		break;
1474 
1475 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1476 		val = transport->get_max_buffer_size(vsk);
1477 		COPY_OUT(val);
1478 		break;
1479 
1480 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1481 		val = transport->get_min_buffer_size(vsk);
1482 		COPY_OUT(val);
1483 		break;
1484 
1485 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1486 		struct timeval tv;
1487 		tv.tv_sec = vsk->connect_timeout / HZ;
1488 		tv.tv_usec =
1489 		    (vsk->connect_timeout -
1490 		     tv.tv_sec * HZ) * (1000000 / HZ);
1491 		COPY_OUT(tv);
1492 		break;
1493 	}
1494 	default:
1495 		return -ENOPROTOOPT;
1496 	}
1497 
1498 	err = put_user(len, optlen);
1499 	if (err != 0)
1500 		return -EFAULT;
1501 
1502 #undef COPY_OUT
1503 
1504 	return 0;
1505 }
1506 
1507 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1508 				size_t len)
1509 {
1510 	struct sock *sk;
1511 	struct vsock_sock *vsk;
1512 	ssize_t total_written;
1513 	long timeout;
1514 	int err;
1515 	struct vsock_transport_send_notify_data send_data;
1516 
1517 	DEFINE_WAIT(wait);
1518 
1519 	sk = sock->sk;
1520 	vsk = vsock_sk(sk);
1521 	total_written = 0;
1522 	err = 0;
1523 
1524 	if (msg->msg_flags & MSG_OOB)
1525 		return -EOPNOTSUPP;
1526 
1527 	lock_sock(sk);
1528 
1529 	/* Callers should not provide a destination with stream sockets. */
1530 	if (msg->msg_namelen) {
1531 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1532 		goto out;
1533 	}
1534 
1535 	/* Send data only if both sides are not shutdown in the direction. */
1536 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1537 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1538 		err = -EPIPE;
1539 		goto out;
1540 	}
1541 
1542 	if (sk->sk_state != SS_CONNECTED ||
1543 	    !vsock_addr_bound(&vsk->local_addr)) {
1544 		err = -ENOTCONN;
1545 		goto out;
1546 	}
1547 
1548 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1549 		err = -EDESTADDRREQ;
1550 		goto out;
1551 	}
1552 
1553 	/* Wait for room in the produce queue to enqueue our user's data. */
1554 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1555 
1556 	err = transport->notify_send_init(vsk, &send_data);
1557 	if (err < 0)
1558 		goto out;
1559 
1560 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1561 
1562 	while (total_written < len) {
1563 		ssize_t written;
1564 
1565 		while (vsock_stream_has_space(vsk) == 0 &&
1566 		       sk->sk_err == 0 &&
1567 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1568 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1569 
1570 			/* Don't wait for non-blocking sockets. */
1571 			if (timeout == 0) {
1572 				err = -EAGAIN;
1573 				goto out_wait;
1574 			}
1575 
1576 			err = transport->notify_send_pre_block(vsk, &send_data);
1577 			if (err < 0)
1578 				goto out_wait;
1579 
1580 			release_sock(sk);
1581 			timeout = schedule_timeout(timeout);
1582 			lock_sock(sk);
1583 			if (signal_pending(current)) {
1584 				err = sock_intr_errno(timeout);
1585 				goto out_wait;
1586 			} else if (timeout == 0) {
1587 				err = -EAGAIN;
1588 				goto out_wait;
1589 			}
1590 
1591 			prepare_to_wait(sk_sleep(sk), &wait,
1592 					TASK_INTERRUPTIBLE);
1593 		}
1594 
1595 		/* These checks occur both as part of and after the loop
1596 		 * conditional since we need to check before and after
1597 		 * sleeping.
1598 		 */
1599 		if (sk->sk_err) {
1600 			err = -sk->sk_err;
1601 			goto out_wait;
1602 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1603 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1604 			err = -EPIPE;
1605 			goto out_wait;
1606 		}
1607 
1608 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1609 		if (err < 0)
1610 			goto out_wait;
1611 
1612 		/* Note that enqueue will only write as many bytes as are free
1613 		 * in the produce queue, so we don't need to ensure len is
1614 		 * smaller than the queue size.  It is the caller's
1615 		 * responsibility to check how many bytes we were able to send.
1616 		 */
1617 
1618 		written = transport->stream_enqueue(
1619 				vsk, msg,
1620 				len - total_written);
1621 		if (written < 0) {
1622 			err = -ENOMEM;
1623 			goto out_wait;
1624 		}
1625 
1626 		total_written += written;
1627 
1628 		err = transport->notify_send_post_enqueue(
1629 				vsk, written, &send_data);
1630 		if (err < 0)
1631 			goto out_wait;
1632 
1633 	}
1634 
1635 out_wait:
1636 	if (total_written > 0)
1637 		err = total_written;
1638 	finish_wait(sk_sleep(sk), &wait);
1639 out:
1640 	release_sock(sk);
1641 	return err;
1642 }
1643 
1644 
1645 static int
1646 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1647 		     int flags)
1648 {
1649 	struct sock *sk;
1650 	struct vsock_sock *vsk;
1651 	int err;
1652 	size_t target;
1653 	ssize_t copied;
1654 	long timeout;
1655 	struct vsock_transport_recv_notify_data recv_data;
1656 
1657 	DEFINE_WAIT(wait);
1658 
1659 	sk = sock->sk;
1660 	vsk = vsock_sk(sk);
1661 	err = 0;
1662 
1663 	lock_sock(sk);
1664 
1665 	if (sk->sk_state != SS_CONNECTED) {
1666 		/* Recvmsg is supposed to return 0 if a peer performs an
1667 		 * orderly shutdown. Differentiate between that case and when a
1668 		 * peer has not connected or a local shutdown occured with the
1669 		 * SOCK_DONE flag.
1670 		 */
1671 		if (sock_flag(sk, SOCK_DONE))
1672 			err = 0;
1673 		else
1674 			err = -ENOTCONN;
1675 
1676 		goto out;
1677 	}
1678 
1679 	if (flags & MSG_OOB) {
1680 		err = -EOPNOTSUPP;
1681 		goto out;
1682 	}
1683 
1684 	/* We don't check peer_shutdown flag here since peer may actually shut
1685 	 * down, but there can be data in the queue that a local socket can
1686 	 * receive.
1687 	 */
1688 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1689 		err = 0;
1690 		goto out;
1691 	}
1692 
1693 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1694 	 * is not an error.  We may as well bail out now.
1695 	 */
1696 	if (!len) {
1697 		err = 0;
1698 		goto out;
1699 	}
1700 
1701 	/* We must not copy less than target bytes into the user's buffer
1702 	 * before returning successfully, so we wait for the consume queue to
1703 	 * have that much data to consume before dequeueing.  Note that this
1704 	 * makes it impossible to handle cases where target is greater than the
1705 	 * queue size.
1706 	 */
1707 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1708 	if (target >= transport->stream_rcvhiwat(vsk)) {
1709 		err = -ENOMEM;
1710 		goto out;
1711 	}
1712 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1713 	copied = 0;
1714 
1715 	err = transport->notify_recv_init(vsk, target, &recv_data);
1716 	if (err < 0)
1717 		goto out;
1718 
1719 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1720 
1721 	while (1) {
1722 		s64 ready = vsock_stream_has_data(vsk);
1723 
1724 		if (ready < 0) {
1725 			/* Invalid queue pair content. XXX This should be
1726 			 * changed to a connection reset in a later change.
1727 			 */
1728 
1729 			err = -ENOMEM;
1730 			goto out_wait;
1731 		} else if (ready > 0) {
1732 			ssize_t read;
1733 
1734 			err = transport->notify_recv_pre_dequeue(
1735 					vsk, target, &recv_data);
1736 			if (err < 0)
1737 				break;
1738 
1739 			read = transport->stream_dequeue(
1740 					vsk, msg,
1741 					len - copied, flags);
1742 			if (read < 0) {
1743 				err = -ENOMEM;
1744 				break;
1745 			}
1746 
1747 			copied += read;
1748 
1749 			err = transport->notify_recv_post_dequeue(
1750 					vsk, target, read,
1751 					!(flags & MSG_PEEK), &recv_data);
1752 			if (err < 0)
1753 				goto out_wait;
1754 
1755 			if (read >= target || flags & MSG_PEEK)
1756 				break;
1757 
1758 			target -= read;
1759 		} else {
1760 			if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1761 			    || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1762 				break;
1763 			}
1764 			/* Don't wait for non-blocking sockets. */
1765 			if (timeout == 0) {
1766 				err = -EAGAIN;
1767 				break;
1768 			}
1769 
1770 			err = transport->notify_recv_pre_block(
1771 					vsk, target, &recv_data);
1772 			if (err < 0)
1773 				break;
1774 
1775 			release_sock(sk);
1776 			timeout = schedule_timeout(timeout);
1777 			lock_sock(sk);
1778 
1779 			if (signal_pending(current)) {
1780 				err = sock_intr_errno(timeout);
1781 				break;
1782 			} else if (timeout == 0) {
1783 				err = -EAGAIN;
1784 				break;
1785 			}
1786 
1787 			prepare_to_wait(sk_sleep(sk), &wait,
1788 					TASK_INTERRUPTIBLE);
1789 		}
1790 	}
1791 
1792 	if (sk->sk_err)
1793 		err = -sk->sk_err;
1794 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1795 		err = 0;
1796 
1797 	if (copied > 0) {
1798 		/* We only do these additional bookkeeping/notification steps
1799 		 * if we actually copied something out of the queue pair
1800 		 * instead of just peeking ahead.
1801 		 */
1802 
1803 		if (!(flags & MSG_PEEK)) {
1804 			/* If the other side has shutdown for sending and there
1805 			 * is nothing more to read, then modify the socket
1806 			 * state.
1807 			 */
1808 			if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1809 				if (vsock_stream_has_data(vsk) <= 0) {
1810 					sk->sk_state = SS_UNCONNECTED;
1811 					sock_set_flag(sk, SOCK_DONE);
1812 					sk->sk_state_change(sk);
1813 				}
1814 			}
1815 		}
1816 		err = copied;
1817 	}
1818 
1819 out_wait:
1820 	finish_wait(sk_sleep(sk), &wait);
1821 out:
1822 	release_sock(sk);
1823 	return err;
1824 }
1825 
1826 static const struct proto_ops vsock_stream_ops = {
1827 	.family = PF_VSOCK,
1828 	.owner = THIS_MODULE,
1829 	.release = vsock_release,
1830 	.bind = vsock_bind,
1831 	.connect = vsock_stream_connect,
1832 	.socketpair = sock_no_socketpair,
1833 	.accept = vsock_accept,
1834 	.getname = vsock_getname,
1835 	.poll = vsock_poll,
1836 	.ioctl = sock_no_ioctl,
1837 	.listen = vsock_listen,
1838 	.shutdown = vsock_shutdown,
1839 	.setsockopt = vsock_stream_setsockopt,
1840 	.getsockopt = vsock_stream_getsockopt,
1841 	.sendmsg = vsock_stream_sendmsg,
1842 	.recvmsg = vsock_stream_recvmsg,
1843 	.mmap = sock_no_mmap,
1844 	.sendpage = sock_no_sendpage,
1845 };
1846 
1847 static int vsock_create(struct net *net, struct socket *sock,
1848 			int protocol, int kern)
1849 {
1850 	if (!sock)
1851 		return -EINVAL;
1852 
1853 	if (protocol && protocol != PF_VSOCK)
1854 		return -EPROTONOSUPPORT;
1855 
1856 	switch (sock->type) {
1857 	case SOCK_DGRAM:
1858 		sock->ops = &vsock_dgram_ops;
1859 		break;
1860 	case SOCK_STREAM:
1861 		sock->ops = &vsock_stream_ops;
1862 		break;
1863 	default:
1864 		return -ESOCKTNOSUPPORT;
1865 	}
1866 
1867 	sock->state = SS_UNCONNECTED;
1868 
1869 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1870 }
1871 
1872 static const struct net_proto_family vsock_family_ops = {
1873 	.family = AF_VSOCK,
1874 	.create = vsock_create,
1875 	.owner = THIS_MODULE,
1876 };
1877 
1878 static long vsock_dev_do_ioctl(struct file *filp,
1879 			       unsigned int cmd, void __user *ptr)
1880 {
1881 	u32 __user *p = ptr;
1882 	int retval = 0;
1883 
1884 	switch (cmd) {
1885 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1886 		if (put_user(transport->get_local_cid(), p) != 0)
1887 			retval = -EFAULT;
1888 		break;
1889 
1890 	default:
1891 		pr_err("Unknown ioctl %d\n", cmd);
1892 		retval = -EINVAL;
1893 	}
1894 
1895 	return retval;
1896 }
1897 
1898 static long vsock_dev_ioctl(struct file *filp,
1899 			    unsigned int cmd, unsigned long arg)
1900 {
1901 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1902 }
1903 
1904 #ifdef CONFIG_COMPAT
1905 static long vsock_dev_compat_ioctl(struct file *filp,
1906 				   unsigned int cmd, unsigned long arg)
1907 {
1908 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1909 }
1910 #endif
1911 
1912 static const struct file_operations vsock_device_ops = {
1913 	.owner		= THIS_MODULE,
1914 	.unlocked_ioctl	= vsock_dev_ioctl,
1915 #ifdef CONFIG_COMPAT
1916 	.compat_ioctl	= vsock_dev_compat_ioctl,
1917 #endif
1918 	.open		= nonseekable_open,
1919 };
1920 
1921 static struct miscdevice vsock_device = {
1922 	.name		= "vsock",
1923 	.fops		= &vsock_device_ops,
1924 };
1925 
1926 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1927 {
1928 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1929 
1930 	if (err)
1931 		return err;
1932 
1933 	if (transport) {
1934 		err = -EBUSY;
1935 		goto err_busy;
1936 	}
1937 
1938 	/* Transport must be the owner of the protocol so that it can't
1939 	 * unload while there are open sockets.
1940 	 */
1941 	vsock_proto.owner = owner;
1942 	transport = t;
1943 
1944 	vsock_init_tables();
1945 
1946 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1947 	err = misc_register(&vsock_device);
1948 	if (err) {
1949 		pr_err("Failed to register misc device\n");
1950 		return -ENOENT;
1951 	}
1952 
1953 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1954 	if (err) {
1955 		pr_err("Cannot register vsock protocol\n");
1956 		goto err_misc_deregister;
1957 	}
1958 
1959 	err = sock_register(&vsock_family_ops);
1960 	if (err) {
1961 		pr_err("could not register af_vsock (%d) address family: %d\n",
1962 		       AF_VSOCK, err);
1963 		goto err_unregister_proto;
1964 	}
1965 
1966 	mutex_unlock(&vsock_register_mutex);
1967 	return 0;
1968 
1969 err_unregister_proto:
1970 	proto_unregister(&vsock_proto);
1971 err_misc_deregister:
1972 	misc_deregister(&vsock_device);
1973 	transport = NULL;
1974 err_busy:
1975 	mutex_unlock(&vsock_register_mutex);
1976 	return err;
1977 }
1978 EXPORT_SYMBOL_GPL(__vsock_core_init);
1979 
1980 void vsock_core_exit(void)
1981 {
1982 	mutex_lock(&vsock_register_mutex);
1983 
1984 	misc_deregister(&vsock_device);
1985 	sock_unregister(AF_VSOCK);
1986 	proto_unregister(&vsock_proto);
1987 
1988 	/* We do not want the assignment below re-ordered. */
1989 	mb();
1990 	transport = NULL;
1991 
1992 	mutex_unlock(&vsock_register_mutex);
1993 }
1994 EXPORT_SYMBOL_GPL(vsock_core_exit);
1995 
1996 MODULE_AUTHOR("VMware, Inc.");
1997 MODULE_DESCRIPTION("VMware Virtual Socket Family");
1998 MODULE_VERSION("1.0.1.0-k");
1999 MODULE_LICENSE("GPL v2");
2000