xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision ccb01374)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the TCP_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  *
86  * - sk->sk_state uses the TCP state constants because they are widely used by
87  * other address families and exposed to userspace tools like ss(8):
88  *
89  *   TCP_CLOSE - unconnected
90  *   TCP_SYN_SENT - connecting
91  *   TCP_ESTABLISHED - connected
92  *   TCP_CLOSING - disconnecting
93  *   TCP_LISTEN - listening
94  */
95 
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/random.h>
111 #include <linux/skbuff.h>
112 #include <linux/smp.h>
113 #include <linux/socket.h>
114 #include <linux/stddef.h>
115 #include <linux/unistd.h>
116 #include <linux/wait.h>
117 #include <linux/workqueue.h>
118 #include <net/sock.h>
119 #include <net/af_vsock.h>
120 
121 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
122 static void vsock_sk_destruct(struct sock *sk);
123 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
124 
125 /* Protocol family. */
126 static struct proto vsock_proto = {
127 	.name = "AF_VSOCK",
128 	.owner = THIS_MODULE,
129 	.obj_size = sizeof(struct vsock_sock),
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 static const struct vsock_transport *transport;
138 static DEFINE_MUTEX(vsock_register_mutex);
139 
140 /**** EXPORTS ****/
141 
142 /* Get the ID of the local context.  This is transport dependent. */
143 
144 int vm_sockets_get_local_cid(void)
145 {
146 	return transport->get_local_cid();
147 }
148 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
149 
150 /**** UTILS ****/
151 
152 /* Each bound VSocket is stored in the bind hash table and each connected
153  * VSocket is stored in the connected hash table.
154  *
155  * Unbound sockets are all put on the same list attached to the end of the hash
156  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
157  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
158  * represents the list that addr hashes to).
159  *
160  * Specifically, we initialize the vsock_bind_table array to a size of
161  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
162  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
163  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
164  * mods with VSOCK_HASH_SIZE to ensure this.
165  */
166 #define MAX_PORT_RETRIES        24
167 
168 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
169 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
170 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
171 
172 /* XXX This can probably be implemented in a better way. */
173 #define VSOCK_CONN_HASH(src, dst)				\
174 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
175 #define vsock_connected_sockets(src, dst)		\
176 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
177 #define vsock_connected_sockets_vsk(vsk)				\
178 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
179 
180 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
181 EXPORT_SYMBOL_GPL(vsock_bind_table);
182 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
183 EXPORT_SYMBOL_GPL(vsock_connected_table);
184 DEFINE_SPINLOCK(vsock_table_lock);
185 EXPORT_SYMBOL_GPL(vsock_table_lock);
186 
187 /* Autobind this socket to the local address if necessary. */
188 static int vsock_auto_bind(struct vsock_sock *vsk)
189 {
190 	struct sock *sk = sk_vsock(vsk);
191 	struct sockaddr_vm local_addr;
192 
193 	if (vsock_addr_bound(&vsk->local_addr))
194 		return 0;
195 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
196 	return __vsock_bind(sk, &local_addr);
197 }
198 
199 static int __init vsock_init_tables(void)
200 {
201 	int i;
202 
203 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
204 		INIT_LIST_HEAD(&vsock_bind_table[i]);
205 
206 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
207 		INIT_LIST_HEAD(&vsock_connected_table[i]);
208 	return 0;
209 }
210 
211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
242 		if (addr->svm_port == vsk->local_addr.svm_port)
243 			return sk_vsock(vsk);
244 
245 	return NULL;
246 }
247 
248 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
249 						  struct sockaddr_vm *dst)
250 {
251 	struct vsock_sock *vsk;
252 
253 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
254 			    connected_table) {
255 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
256 		    dst->svm_port == vsk->local_addr.svm_port) {
257 			return sk_vsock(vsk);
258 		}
259 	}
260 
261 	return NULL;
262 }
263 
264 static void vsock_insert_unbound(struct vsock_sock *vsk)
265 {
266 	spin_lock_bh(&vsock_table_lock);
267 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
268 	spin_unlock_bh(&vsock_table_lock);
269 }
270 
271 void vsock_insert_connected(struct vsock_sock *vsk)
272 {
273 	struct list_head *list = vsock_connected_sockets(
274 		&vsk->remote_addr, &vsk->local_addr);
275 
276 	spin_lock_bh(&vsock_table_lock);
277 	__vsock_insert_connected(list, vsk);
278 	spin_unlock_bh(&vsock_table_lock);
279 }
280 EXPORT_SYMBOL_GPL(vsock_insert_connected);
281 
282 void vsock_remove_bound(struct vsock_sock *vsk)
283 {
284 	spin_lock_bh(&vsock_table_lock);
285 	__vsock_remove_bound(vsk);
286 	spin_unlock_bh(&vsock_table_lock);
287 }
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289 
290 void vsock_remove_connected(struct vsock_sock *vsk)
291 {
292 	spin_lock_bh(&vsock_table_lock);
293 	__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
329 static bool vsock_in_bound_table(struct vsock_sock *vsk)
330 {
331 	bool ret;
332 
333 	spin_lock_bh(&vsock_table_lock);
334 	ret = __vsock_in_bound_table(vsk);
335 	spin_unlock_bh(&vsock_table_lock);
336 
337 	return ret;
338 }
339 
340 static bool vsock_in_connected_table(struct vsock_sock *vsk)
341 {
342 	bool ret;
343 
344 	spin_lock_bh(&vsock_table_lock);
345 	ret = __vsock_in_connected_table(vsk);
346 	spin_unlock_bh(&vsock_table_lock);
347 
348 	return ret;
349 }
350 
351 void vsock_remove_sock(struct vsock_sock *vsk)
352 {
353 	if (vsock_in_bound_table(vsk))
354 		vsock_remove_bound(vsk);
355 
356 	if (vsock_in_connected_table(vsk))
357 		vsock_remove_connected(vsk);
358 }
359 EXPORT_SYMBOL_GPL(vsock_remove_sock);
360 
361 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
362 {
363 	int i;
364 
365 	spin_lock_bh(&vsock_table_lock);
366 
367 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
368 		struct vsock_sock *vsk;
369 		list_for_each_entry(vsk, &vsock_connected_table[i],
370 				    connected_table)
371 			fn(sk_vsock(vsk));
372 	}
373 
374 	spin_unlock_bh(&vsock_table_lock);
375 }
376 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
377 
378 void vsock_add_pending(struct sock *listener, struct sock *pending)
379 {
380 	struct vsock_sock *vlistener;
381 	struct vsock_sock *vpending;
382 
383 	vlistener = vsock_sk(listener);
384 	vpending = vsock_sk(pending);
385 
386 	sock_hold(pending);
387 	sock_hold(listener);
388 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
389 }
390 EXPORT_SYMBOL_GPL(vsock_add_pending);
391 
392 void vsock_remove_pending(struct sock *listener, struct sock *pending)
393 {
394 	struct vsock_sock *vpending = vsock_sk(pending);
395 
396 	list_del_init(&vpending->pending_links);
397 	sock_put(listener);
398 	sock_put(pending);
399 }
400 EXPORT_SYMBOL_GPL(vsock_remove_pending);
401 
402 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
403 {
404 	struct vsock_sock *vlistener;
405 	struct vsock_sock *vconnected;
406 
407 	vlistener = vsock_sk(listener);
408 	vconnected = vsock_sk(connected);
409 
410 	sock_hold(connected);
411 	sock_hold(listener);
412 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
413 }
414 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
415 
416 static struct sock *vsock_dequeue_accept(struct sock *listener)
417 {
418 	struct vsock_sock *vlistener;
419 	struct vsock_sock *vconnected;
420 
421 	vlistener = vsock_sk(listener);
422 
423 	if (list_empty(&vlistener->accept_queue))
424 		return NULL;
425 
426 	vconnected = list_entry(vlistener->accept_queue.next,
427 				struct vsock_sock, accept_queue);
428 
429 	list_del_init(&vconnected->accept_queue);
430 	sock_put(listener);
431 	/* The caller will need a reference on the connected socket so we let
432 	 * it call sock_put().
433 	 */
434 
435 	return sk_vsock(vconnected);
436 }
437 
438 static bool vsock_is_accept_queue_empty(struct sock *sk)
439 {
440 	struct vsock_sock *vsk = vsock_sk(sk);
441 	return list_empty(&vsk->accept_queue);
442 }
443 
444 static bool vsock_is_pending(struct sock *sk)
445 {
446 	struct vsock_sock *vsk = vsock_sk(sk);
447 	return !list_empty(&vsk->pending_links);
448 }
449 
450 static int vsock_send_shutdown(struct sock *sk, int mode)
451 {
452 	return transport->shutdown(vsock_sk(sk), mode);
453 }
454 
455 static void vsock_pending_work(struct work_struct *work)
456 {
457 	struct sock *sk;
458 	struct sock *listener;
459 	struct vsock_sock *vsk;
460 	bool cleanup;
461 
462 	vsk = container_of(work, struct vsock_sock, pending_work.work);
463 	sk = sk_vsock(vsk);
464 	listener = vsk->listener;
465 	cleanup = true;
466 
467 	lock_sock(listener);
468 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
469 
470 	if (vsock_is_pending(sk)) {
471 		vsock_remove_pending(listener, sk);
472 
473 		listener->sk_ack_backlog--;
474 	} else if (!vsk->rejected) {
475 		/* We are not on the pending list and accept() did not reject
476 		 * us, so we must have been accepted by our user process.  We
477 		 * just need to drop our references to the sockets and be on
478 		 * our way.
479 		 */
480 		cleanup = false;
481 		goto out;
482 	}
483 
484 	/* We need to remove ourself from the global connected sockets list so
485 	 * incoming packets can't find this socket, and to reduce the reference
486 	 * count.
487 	 */
488 	if (vsock_in_connected_table(vsk))
489 		vsock_remove_connected(vsk);
490 
491 	sk->sk_state = TCP_CLOSE;
492 
493 out:
494 	release_sock(sk);
495 	release_sock(listener);
496 	if (cleanup)
497 		sock_put(sk);
498 
499 	sock_put(sk);
500 	sock_put(listener);
501 }
502 
503 /**** SOCKET OPERATIONS ****/
504 
505 static int __vsock_bind_stream(struct vsock_sock *vsk,
506 			       struct sockaddr_vm *addr)
507 {
508 	static u32 port = 0;
509 	struct sockaddr_vm new_addr;
510 
511 	if (!port)
512 		port = LAST_RESERVED_PORT + 1 +
513 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
514 
515 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
516 
517 	if (addr->svm_port == VMADDR_PORT_ANY) {
518 		bool found = false;
519 		unsigned int i;
520 
521 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
522 			if (port <= LAST_RESERVED_PORT)
523 				port = LAST_RESERVED_PORT + 1;
524 
525 			new_addr.svm_port = port++;
526 
527 			if (!__vsock_find_bound_socket(&new_addr)) {
528 				found = true;
529 				break;
530 			}
531 		}
532 
533 		if (!found)
534 			return -EADDRNOTAVAIL;
535 	} else {
536 		/* If port is in reserved range, ensure caller
537 		 * has necessary privileges.
538 		 */
539 		if (addr->svm_port <= LAST_RESERVED_PORT &&
540 		    !capable(CAP_NET_BIND_SERVICE)) {
541 			return -EACCES;
542 		}
543 
544 		if (__vsock_find_bound_socket(&new_addr))
545 			return -EADDRINUSE;
546 	}
547 
548 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
549 
550 	/* Remove stream sockets from the unbound list and add them to the hash
551 	 * table for easy lookup by its address.  The unbound list is simply an
552 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
553 	 */
554 	__vsock_remove_bound(vsk);
555 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
556 
557 	return 0;
558 }
559 
560 static int __vsock_bind_dgram(struct vsock_sock *vsk,
561 			      struct sockaddr_vm *addr)
562 {
563 	return transport->dgram_bind(vsk, addr);
564 }
565 
566 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
567 {
568 	struct vsock_sock *vsk = vsock_sk(sk);
569 	u32 cid;
570 	int retval;
571 
572 	/* First ensure this socket isn't already bound. */
573 	if (vsock_addr_bound(&vsk->local_addr))
574 		return -EINVAL;
575 
576 	/* Now bind to the provided address or select appropriate values if
577 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
578 	 * like AF_INET prevents binding to a non-local IP address (in most
579 	 * cases), we only allow binding to the local CID.
580 	 */
581 	cid = transport->get_local_cid();
582 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
583 		return -EADDRNOTAVAIL;
584 
585 	switch (sk->sk_socket->type) {
586 	case SOCK_STREAM:
587 		spin_lock_bh(&vsock_table_lock);
588 		retval = __vsock_bind_stream(vsk, addr);
589 		spin_unlock_bh(&vsock_table_lock);
590 		break;
591 
592 	case SOCK_DGRAM:
593 		retval = __vsock_bind_dgram(vsk, addr);
594 		break;
595 
596 	default:
597 		retval = -EINVAL;
598 		break;
599 	}
600 
601 	return retval;
602 }
603 
604 static void vsock_connect_timeout(struct work_struct *work);
605 
606 struct sock *__vsock_create(struct net *net,
607 			    struct socket *sock,
608 			    struct sock *parent,
609 			    gfp_t priority,
610 			    unsigned short type,
611 			    int kern)
612 {
613 	struct sock *sk;
614 	struct vsock_sock *psk;
615 	struct vsock_sock *vsk;
616 
617 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
618 	if (!sk)
619 		return NULL;
620 
621 	sock_init_data(sock, sk);
622 
623 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
624 	 * non-NULL. We make sure that our sockets always have a type by
625 	 * setting it here if needed.
626 	 */
627 	if (!sock)
628 		sk->sk_type = type;
629 
630 	vsk = vsock_sk(sk);
631 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
632 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
633 
634 	sk->sk_destruct = vsock_sk_destruct;
635 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
636 	sock_reset_flag(sk, SOCK_DONE);
637 
638 	INIT_LIST_HEAD(&vsk->bound_table);
639 	INIT_LIST_HEAD(&vsk->connected_table);
640 	vsk->listener = NULL;
641 	INIT_LIST_HEAD(&vsk->pending_links);
642 	INIT_LIST_HEAD(&vsk->accept_queue);
643 	vsk->rejected = false;
644 	vsk->sent_request = false;
645 	vsk->ignore_connecting_rst = false;
646 	vsk->peer_shutdown = 0;
647 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
648 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
649 
650 	psk = parent ? vsock_sk(parent) : NULL;
651 	if (parent) {
652 		vsk->trusted = psk->trusted;
653 		vsk->owner = get_cred(psk->owner);
654 		vsk->connect_timeout = psk->connect_timeout;
655 	} else {
656 		vsk->trusted = capable(CAP_NET_ADMIN);
657 		vsk->owner = get_current_cred();
658 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
659 	}
660 
661 	if (transport->init(vsk, psk) < 0) {
662 		sk_free(sk);
663 		return NULL;
664 	}
665 
666 	if (sock)
667 		vsock_insert_unbound(vsk);
668 
669 	return sk;
670 }
671 EXPORT_SYMBOL_GPL(__vsock_create);
672 
673 static void __vsock_release(struct sock *sk)
674 {
675 	if (sk) {
676 		struct sk_buff *skb;
677 		struct sock *pending;
678 		struct vsock_sock *vsk;
679 
680 		vsk = vsock_sk(sk);
681 		pending = NULL;	/* Compiler warning. */
682 
683 		transport->release(vsk);
684 
685 		lock_sock(sk);
686 		sock_orphan(sk);
687 		sk->sk_shutdown = SHUTDOWN_MASK;
688 
689 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
690 			kfree_skb(skb);
691 
692 		/* Clean up any sockets that never were accepted. */
693 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
694 			__vsock_release(pending);
695 			sock_put(pending);
696 		}
697 
698 		release_sock(sk);
699 		sock_put(sk);
700 	}
701 }
702 
703 static void vsock_sk_destruct(struct sock *sk)
704 {
705 	struct vsock_sock *vsk = vsock_sk(sk);
706 
707 	transport->destruct(vsk);
708 
709 	/* When clearing these addresses, there's no need to set the family and
710 	 * possibly register the address family with the kernel.
711 	 */
712 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
713 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
714 
715 	put_cred(vsk->owner);
716 }
717 
718 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
719 {
720 	int err;
721 
722 	err = sock_queue_rcv_skb(sk, skb);
723 	if (err)
724 		kfree_skb(skb);
725 
726 	return err;
727 }
728 
729 s64 vsock_stream_has_data(struct vsock_sock *vsk)
730 {
731 	return transport->stream_has_data(vsk);
732 }
733 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
734 
735 s64 vsock_stream_has_space(struct vsock_sock *vsk)
736 {
737 	return transport->stream_has_space(vsk);
738 }
739 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
740 
741 static int vsock_release(struct socket *sock)
742 {
743 	__vsock_release(sock->sk);
744 	sock->sk = NULL;
745 	sock->state = SS_FREE;
746 
747 	return 0;
748 }
749 
750 static int
751 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
752 {
753 	int err;
754 	struct sock *sk;
755 	struct sockaddr_vm *vm_addr;
756 
757 	sk = sock->sk;
758 
759 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
760 		return -EINVAL;
761 
762 	lock_sock(sk);
763 	err = __vsock_bind(sk, vm_addr);
764 	release_sock(sk);
765 
766 	return err;
767 }
768 
769 static int vsock_getname(struct socket *sock,
770 			 struct sockaddr *addr, int peer)
771 {
772 	int err;
773 	struct sock *sk;
774 	struct vsock_sock *vsk;
775 	struct sockaddr_vm *vm_addr;
776 
777 	sk = sock->sk;
778 	vsk = vsock_sk(sk);
779 	err = 0;
780 
781 	lock_sock(sk);
782 
783 	if (peer) {
784 		if (sock->state != SS_CONNECTED) {
785 			err = -ENOTCONN;
786 			goto out;
787 		}
788 		vm_addr = &vsk->remote_addr;
789 	} else {
790 		vm_addr = &vsk->local_addr;
791 	}
792 
793 	if (!vm_addr) {
794 		err = -EINVAL;
795 		goto out;
796 	}
797 
798 	/* sys_getsockname() and sys_getpeername() pass us a
799 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
800 	 * that macro is defined in socket.c instead of .h, so we hardcode its
801 	 * value here.
802 	 */
803 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
804 	memcpy(addr, vm_addr, sizeof(*vm_addr));
805 	err = sizeof(*vm_addr);
806 
807 out:
808 	release_sock(sk);
809 	return err;
810 }
811 
812 static int vsock_shutdown(struct socket *sock, int mode)
813 {
814 	int err;
815 	struct sock *sk;
816 
817 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
818 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
819 	 * here like the other address families do.  Note also that the
820 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
821 	 * which is what we want.
822 	 */
823 	mode++;
824 
825 	if ((mode & ~SHUTDOWN_MASK) || !mode)
826 		return -EINVAL;
827 
828 	/* If this is a STREAM socket and it is not connected then bail out
829 	 * immediately.  If it is a DGRAM socket then we must first kick the
830 	 * socket so that it wakes up from any sleeping calls, for example
831 	 * recv(), and then afterwards return the error.
832 	 */
833 
834 	sk = sock->sk;
835 	if (sock->state == SS_UNCONNECTED) {
836 		err = -ENOTCONN;
837 		if (sk->sk_type == SOCK_STREAM)
838 			return err;
839 	} else {
840 		sock->state = SS_DISCONNECTING;
841 		err = 0;
842 	}
843 
844 	/* Receive and send shutdowns are treated alike. */
845 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
846 	if (mode) {
847 		lock_sock(sk);
848 		sk->sk_shutdown |= mode;
849 		sk->sk_state_change(sk);
850 		release_sock(sk);
851 
852 		if (sk->sk_type == SOCK_STREAM) {
853 			sock_reset_flag(sk, SOCK_DONE);
854 			vsock_send_shutdown(sk, mode);
855 		}
856 	}
857 
858 	return err;
859 }
860 
861 static __poll_t vsock_poll(struct file *file, struct socket *sock,
862 			       poll_table *wait)
863 {
864 	struct sock *sk;
865 	__poll_t mask;
866 	struct vsock_sock *vsk;
867 
868 	sk = sock->sk;
869 	vsk = vsock_sk(sk);
870 
871 	poll_wait(file, sk_sleep(sk), wait);
872 	mask = 0;
873 
874 	if (sk->sk_err)
875 		/* Signify that there has been an error on this socket. */
876 		mask |= EPOLLERR;
877 
878 	/* INET sockets treat local write shutdown and peer write shutdown as a
879 	 * case of EPOLLHUP set.
880 	 */
881 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
882 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
883 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
884 		mask |= EPOLLHUP;
885 	}
886 
887 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
888 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
889 		mask |= EPOLLRDHUP;
890 	}
891 
892 	if (sock->type == SOCK_DGRAM) {
893 		/* For datagram sockets we can read if there is something in
894 		 * the queue and write as long as the socket isn't shutdown for
895 		 * sending.
896 		 */
897 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
898 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
899 			mask |= EPOLLIN | EPOLLRDNORM;
900 		}
901 
902 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
903 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
904 
905 	} else if (sock->type == SOCK_STREAM) {
906 		lock_sock(sk);
907 
908 		/* Listening sockets that have connections in their accept
909 		 * queue can be read.
910 		 */
911 		if (sk->sk_state == TCP_LISTEN
912 		    && !vsock_is_accept_queue_empty(sk))
913 			mask |= EPOLLIN | EPOLLRDNORM;
914 
915 		/* If there is something in the queue then we can read. */
916 		if (transport->stream_is_active(vsk) &&
917 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
918 			bool data_ready_now = false;
919 			int ret = transport->notify_poll_in(
920 					vsk, 1, &data_ready_now);
921 			if (ret < 0) {
922 				mask |= EPOLLERR;
923 			} else {
924 				if (data_ready_now)
925 					mask |= EPOLLIN | EPOLLRDNORM;
926 
927 			}
928 		}
929 
930 		/* Sockets whose connections have been closed, reset, or
931 		 * terminated should also be considered read, and we check the
932 		 * shutdown flag for that.
933 		 */
934 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
935 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
936 			mask |= EPOLLIN | EPOLLRDNORM;
937 		}
938 
939 		/* Connected sockets that can produce data can be written. */
940 		if (sk->sk_state == TCP_ESTABLISHED) {
941 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
942 				bool space_avail_now = false;
943 				int ret = transport->notify_poll_out(
944 						vsk, 1, &space_avail_now);
945 				if (ret < 0) {
946 					mask |= EPOLLERR;
947 				} else {
948 					if (space_avail_now)
949 						/* Remove EPOLLWRBAND since INET
950 						 * sockets are not setting it.
951 						 */
952 						mask |= EPOLLOUT | EPOLLWRNORM;
953 
954 				}
955 			}
956 		}
957 
958 		/* Simulate INET socket poll behaviors, which sets
959 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
960 		 * but local send is not shutdown.
961 		 */
962 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
963 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
964 				mask |= EPOLLOUT | EPOLLWRNORM;
965 
966 		}
967 
968 		release_sock(sk);
969 	}
970 
971 	return mask;
972 }
973 
974 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
975 			       size_t len)
976 {
977 	int err;
978 	struct sock *sk;
979 	struct vsock_sock *vsk;
980 	struct sockaddr_vm *remote_addr;
981 
982 	if (msg->msg_flags & MSG_OOB)
983 		return -EOPNOTSUPP;
984 
985 	/* For now, MSG_DONTWAIT is always assumed... */
986 	err = 0;
987 	sk = sock->sk;
988 	vsk = vsock_sk(sk);
989 
990 	lock_sock(sk);
991 
992 	err = vsock_auto_bind(vsk);
993 	if (err)
994 		goto out;
995 
996 
997 	/* If the provided message contains an address, use that.  Otherwise
998 	 * fall back on the socket's remote handle (if it has been connected).
999 	 */
1000 	if (msg->msg_name &&
1001 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1002 			    &remote_addr) == 0) {
1003 		/* Ensure this address is of the right type and is a valid
1004 		 * destination.
1005 		 */
1006 
1007 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 			remote_addr->svm_cid = transport->get_local_cid();
1009 
1010 		if (!vsock_addr_bound(remote_addr)) {
1011 			err = -EINVAL;
1012 			goto out;
1013 		}
1014 	} else if (sock->state == SS_CONNECTED) {
1015 		remote_addr = &vsk->remote_addr;
1016 
1017 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1018 			remote_addr->svm_cid = transport->get_local_cid();
1019 
1020 		/* XXX Should connect() or this function ensure remote_addr is
1021 		 * bound?
1022 		 */
1023 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1024 			err = -EINVAL;
1025 			goto out;
1026 		}
1027 	} else {
1028 		err = -EINVAL;
1029 		goto out;
1030 	}
1031 
1032 	if (!transport->dgram_allow(remote_addr->svm_cid,
1033 				    remote_addr->svm_port)) {
1034 		err = -EINVAL;
1035 		goto out;
1036 	}
1037 
1038 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1039 
1040 out:
1041 	release_sock(sk);
1042 	return err;
1043 }
1044 
1045 static int vsock_dgram_connect(struct socket *sock,
1046 			       struct sockaddr *addr, int addr_len, int flags)
1047 {
1048 	int err;
1049 	struct sock *sk;
1050 	struct vsock_sock *vsk;
1051 	struct sockaddr_vm *remote_addr;
1052 
1053 	sk = sock->sk;
1054 	vsk = vsock_sk(sk);
1055 
1056 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1057 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1058 		lock_sock(sk);
1059 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1060 				VMADDR_PORT_ANY);
1061 		sock->state = SS_UNCONNECTED;
1062 		release_sock(sk);
1063 		return 0;
1064 	} else if (err != 0)
1065 		return -EINVAL;
1066 
1067 	lock_sock(sk);
1068 
1069 	err = vsock_auto_bind(vsk);
1070 	if (err)
1071 		goto out;
1072 
1073 	if (!transport->dgram_allow(remote_addr->svm_cid,
1074 				    remote_addr->svm_port)) {
1075 		err = -EINVAL;
1076 		goto out;
1077 	}
1078 
1079 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1080 	sock->state = SS_CONNECTED;
1081 
1082 out:
1083 	release_sock(sk);
1084 	return err;
1085 }
1086 
1087 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1088 			       size_t len, int flags)
1089 {
1090 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1091 }
1092 
1093 static const struct proto_ops vsock_dgram_ops = {
1094 	.family = PF_VSOCK,
1095 	.owner = THIS_MODULE,
1096 	.release = vsock_release,
1097 	.bind = vsock_bind,
1098 	.connect = vsock_dgram_connect,
1099 	.socketpair = sock_no_socketpair,
1100 	.accept = sock_no_accept,
1101 	.getname = vsock_getname,
1102 	.poll = vsock_poll,
1103 	.ioctl = sock_no_ioctl,
1104 	.listen = sock_no_listen,
1105 	.shutdown = vsock_shutdown,
1106 	.setsockopt = sock_no_setsockopt,
1107 	.getsockopt = sock_no_getsockopt,
1108 	.sendmsg = vsock_dgram_sendmsg,
1109 	.recvmsg = vsock_dgram_recvmsg,
1110 	.mmap = sock_no_mmap,
1111 	.sendpage = sock_no_sendpage,
1112 };
1113 
1114 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1115 {
1116 	if (!transport->cancel_pkt)
1117 		return -EOPNOTSUPP;
1118 
1119 	return transport->cancel_pkt(vsk);
1120 }
1121 
1122 static void vsock_connect_timeout(struct work_struct *work)
1123 {
1124 	struct sock *sk;
1125 	struct vsock_sock *vsk;
1126 	int cancel = 0;
1127 
1128 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1129 	sk = sk_vsock(vsk);
1130 
1131 	lock_sock(sk);
1132 	if (sk->sk_state == TCP_SYN_SENT &&
1133 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1134 		sk->sk_state = TCP_CLOSE;
1135 		sk->sk_err = ETIMEDOUT;
1136 		sk->sk_error_report(sk);
1137 		cancel = 1;
1138 	}
1139 	release_sock(sk);
1140 	if (cancel)
1141 		vsock_transport_cancel_pkt(vsk);
1142 
1143 	sock_put(sk);
1144 }
1145 
1146 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1147 				int addr_len, int flags)
1148 {
1149 	int err;
1150 	struct sock *sk;
1151 	struct vsock_sock *vsk;
1152 	struct sockaddr_vm *remote_addr;
1153 	long timeout;
1154 	DEFINE_WAIT(wait);
1155 
1156 	err = 0;
1157 	sk = sock->sk;
1158 	vsk = vsock_sk(sk);
1159 
1160 	lock_sock(sk);
1161 
1162 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1163 	switch (sock->state) {
1164 	case SS_CONNECTED:
1165 		err = -EISCONN;
1166 		goto out;
1167 	case SS_DISCONNECTING:
1168 		err = -EINVAL;
1169 		goto out;
1170 	case SS_CONNECTING:
1171 		/* This continues on so we can move sock into the SS_CONNECTED
1172 		 * state once the connection has completed (at which point err
1173 		 * will be set to zero also).  Otherwise, we will either wait
1174 		 * for the connection or return -EALREADY should this be a
1175 		 * non-blocking call.
1176 		 */
1177 		err = -EALREADY;
1178 		break;
1179 	default:
1180 		if ((sk->sk_state == TCP_LISTEN) ||
1181 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1182 			err = -EINVAL;
1183 			goto out;
1184 		}
1185 
1186 		/* The hypervisor and well-known contexts do not have socket
1187 		 * endpoints.
1188 		 */
1189 		if (!transport->stream_allow(remote_addr->svm_cid,
1190 					     remote_addr->svm_port)) {
1191 			err = -ENETUNREACH;
1192 			goto out;
1193 		}
1194 
1195 		/* Set the remote address that we are connecting to. */
1196 		memcpy(&vsk->remote_addr, remote_addr,
1197 		       sizeof(vsk->remote_addr));
1198 
1199 		err = vsock_auto_bind(vsk);
1200 		if (err)
1201 			goto out;
1202 
1203 		sk->sk_state = TCP_SYN_SENT;
1204 
1205 		err = transport->connect(vsk);
1206 		if (err < 0)
1207 			goto out;
1208 
1209 		/* Mark sock as connecting and set the error code to in
1210 		 * progress in case this is a non-blocking connect.
1211 		 */
1212 		sock->state = SS_CONNECTING;
1213 		err = -EINPROGRESS;
1214 	}
1215 
1216 	/* The receive path will handle all communication until we are able to
1217 	 * enter the connected state.  Here we wait for the connection to be
1218 	 * completed or a notification of an error.
1219 	 */
1220 	timeout = vsk->connect_timeout;
1221 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1222 
1223 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1224 		if (flags & O_NONBLOCK) {
1225 			/* If we're not going to block, we schedule a timeout
1226 			 * function to generate a timeout on the connection
1227 			 * attempt, in case the peer doesn't respond in a
1228 			 * timely manner. We hold on to the socket until the
1229 			 * timeout fires.
1230 			 */
1231 			sock_hold(sk);
1232 			schedule_delayed_work(&vsk->connect_work, timeout);
1233 
1234 			/* Skip ahead to preserve error code set above. */
1235 			goto out_wait;
1236 		}
1237 
1238 		release_sock(sk);
1239 		timeout = schedule_timeout(timeout);
1240 		lock_sock(sk);
1241 
1242 		if (signal_pending(current)) {
1243 			err = sock_intr_errno(timeout);
1244 			sk->sk_state = TCP_CLOSE;
1245 			sock->state = SS_UNCONNECTED;
1246 			vsock_transport_cancel_pkt(vsk);
1247 			goto out_wait;
1248 		} else if (timeout == 0) {
1249 			err = -ETIMEDOUT;
1250 			sk->sk_state = TCP_CLOSE;
1251 			sock->state = SS_UNCONNECTED;
1252 			vsock_transport_cancel_pkt(vsk);
1253 			goto out_wait;
1254 		}
1255 
1256 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1257 	}
1258 
1259 	if (sk->sk_err) {
1260 		err = -sk->sk_err;
1261 		sk->sk_state = TCP_CLOSE;
1262 		sock->state = SS_UNCONNECTED;
1263 	} else {
1264 		err = 0;
1265 	}
1266 
1267 out_wait:
1268 	finish_wait(sk_sleep(sk), &wait);
1269 out:
1270 	release_sock(sk);
1271 	return err;
1272 }
1273 
1274 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1275 			bool kern)
1276 {
1277 	struct sock *listener;
1278 	int err;
1279 	struct sock *connected;
1280 	struct vsock_sock *vconnected;
1281 	long timeout;
1282 	DEFINE_WAIT(wait);
1283 
1284 	err = 0;
1285 	listener = sock->sk;
1286 
1287 	lock_sock(listener);
1288 
1289 	if (sock->type != SOCK_STREAM) {
1290 		err = -EOPNOTSUPP;
1291 		goto out;
1292 	}
1293 
1294 	if (listener->sk_state != TCP_LISTEN) {
1295 		err = -EINVAL;
1296 		goto out;
1297 	}
1298 
1299 	/* Wait for children sockets to appear; these are the new sockets
1300 	 * created upon connection establishment.
1301 	 */
1302 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1303 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1304 
1305 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1306 	       listener->sk_err == 0) {
1307 		release_sock(listener);
1308 		timeout = schedule_timeout(timeout);
1309 		finish_wait(sk_sleep(listener), &wait);
1310 		lock_sock(listener);
1311 
1312 		if (signal_pending(current)) {
1313 			err = sock_intr_errno(timeout);
1314 			goto out;
1315 		} else if (timeout == 0) {
1316 			err = -EAGAIN;
1317 			goto out;
1318 		}
1319 
1320 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1321 	}
1322 	finish_wait(sk_sleep(listener), &wait);
1323 
1324 	if (listener->sk_err)
1325 		err = -listener->sk_err;
1326 
1327 	if (connected) {
1328 		listener->sk_ack_backlog--;
1329 
1330 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1331 		vconnected = vsock_sk(connected);
1332 
1333 		/* If the listener socket has received an error, then we should
1334 		 * reject this socket and return.  Note that we simply mark the
1335 		 * socket rejected, drop our reference, and let the cleanup
1336 		 * function handle the cleanup; the fact that we found it in
1337 		 * the listener's accept queue guarantees that the cleanup
1338 		 * function hasn't run yet.
1339 		 */
1340 		if (err) {
1341 			vconnected->rejected = true;
1342 		} else {
1343 			newsock->state = SS_CONNECTED;
1344 			sock_graft(connected, newsock);
1345 		}
1346 
1347 		release_sock(connected);
1348 		sock_put(connected);
1349 	}
1350 
1351 out:
1352 	release_sock(listener);
1353 	return err;
1354 }
1355 
1356 static int vsock_listen(struct socket *sock, int backlog)
1357 {
1358 	int err;
1359 	struct sock *sk;
1360 	struct vsock_sock *vsk;
1361 
1362 	sk = sock->sk;
1363 
1364 	lock_sock(sk);
1365 
1366 	if (sock->type != SOCK_STREAM) {
1367 		err = -EOPNOTSUPP;
1368 		goto out;
1369 	}
1370 
1371 	if (sock->state != SS_UNCONNECTED) {
1372 		err = -EINVAL;
1373 		goto out;
1374 	}
1375 
1376 	vsk = vsock_sk(sk);
1377 
1378 	if (!vsock_addr_bound(&vsk->local_addr)) {
1379 		err = -EINVAL;
1380 		goto out;
1381 	}
1382 
1383 	sk->sk_max_ack_backlog = backlog;
1384 	sk->sk_state = TCP_LISTEN;
1385 
1386 	err = 0;
1387 
1388 out:
1389 	release_sock(sk);
1390 	return err;
1391 }
1392 
1393 static int vsock_stream_setsockopt(struct socket *sock,
1394 				   int level,
1395 				   int optname,
1396 				   char __user *optval,
1397 				   unsigned int optlen)
1398 {
1399 	int err;
1400 	struct sock *sk;
1401 	struct vsock_sock *vsk;
1402 	u64 val;
1403 
1404 	if (level != AF_VSOCK)
1405 		return -ENOPROTOOPT;
1406 
1407 #define COPY_IN(_v)                                       \
1408 	do {						  \
1409 		if (optlen < sizeof(_v)) {		  \
1410 			err = -EINVAL;			  \
1411 			goto exit;			  \
1412 		}					  \
1413 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1414 			err = -EFAULT;					\
1415 			goto exit;					\
1416 		}							\
1417 	} while (0)
1418 
1419 	err = 0;
1420 	sk = sock->sk;
1421 	vsk = vsock_sk(sk);
1422 
1423 	lock_sock(sk);
1424 
1425 	switch (optname) {
1426 	case SO_VM_SOCKETS_BUFFER_SIZE:
1427 		COPY_IN(val);
1428 		transport->set_buffer_size(vsk, val);
1429 		break;
1430 
1431 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1432 		COPY_IN(val);
1433 		transport->set_max_buffer_size(vsk, val);
1434 		break;
1435 
1436 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1437 		COPY_IN(val);
1438 		transport->set_min_buffer_size(vsk, val);
1439 		break;
1440 
1441 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1442 		struct timeval tv;
1443 		COPY_IN(tv);
1444 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1445 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1446 			vsk->connect_timeout = tv.tv_sec * HZ +
1447 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1448 			if (vsk->connect_timeout == 0)
1449 				vsk->connect_timeout =
1450 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1451 
1452 		} else {
1453 			err = -ERANGE;
1454 		}
1455 		break;
1456 	}
1457 
1458 	default:
1459 		err = -ENOPROTOOPT;
1460 		break;
1461 	}
1462 
1463 #undef COPY_IN
1464 
1465 exit:
1466 	release_sock(sk);
1467 	return err;
1468 }
1469 
1470 static int vsock_stream_getsockopt(struct socket *sock,
1471 				   int level, int optname,
1472 				   char __user *optval,
1473 				   int __user *optlen)
1474 {
1475 	int err;
1476 	int len;
1477 	struct sock *sk;
1478 	struct vsock_sock *vsk;
1479 	u64 val;
1480 
1481 	if (level != AF_VSOCK)
1482 		return -ENOPROTOOPT;
1483 
1484 	err = get_user(len, optlen);
1485 	if (err != 0)
1486 		return err;
1487 
1488 #define COPY_OUT(_v)                            \
1489 	do {					\
1490 		if (len < sizeof(_v))		\
1491 			return -EINVAL;		\
1492 						\
1493 		len = sizeof(_v);		\
1494 		if (copy_to_user(optval, &_v, len) != 0)	\
1495 			return -EFAULT;				\
1496 								\
1497 	} while (0)
1498 
1499 	err = 0;
1500 	sk = sock->sk;
1501 	vsk = vsock_sk(sk);
1502 
1503 	switch (optname) {
1504 	case SO_VM_SOCKETS_BUFFER_SIZE:
1505 		val = transport->get_buffer_size(vsk);
1506 		COPY_OUT(val);
1507 		break;
1508 
1509 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1510 		val = transport->get_max_buffer_size(vsk);
1511 		COPY_OUT(val);
1512 		break;
1513 
1514 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1515 		val = transport->get_min_buffer_size(vsk);
1516 		COPY_OUT(val);
1517 		break;
1518 
1519 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1520 		struct timeval tv;
1521 		tv.tv_sec = vsk->connect_timeout / HZ;
1522 		tv.tv_usec =
1523 		    (vsk->connect_timeout -
1524 		     tv.tv_sec * HZ) * (1000000 / HZ);
1525 		COPY_OUT(tv);
1526 		break;
1527 	}
1528 	default:
1529 		return -ENOPROTOOPT;
1530 	}
1531 
1532 	err = put_user(len, optlen);
1533 	if (err != 0)
1534 		return -EFAULT;
1535 
1536 #undef COPY_OUT
1537 
1538 	return 0;
1539 }
1540 
1541 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1542 				size_t len)
1543 {
1544 	struct sock *sk;
1545 	struct vsock_sock *vsk;
1546 	ssize_t total_written;
1547 	long timeout;
1548 	int err;
1549 	struct vsock_transport_send_notify_data send_data;
1550 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1551 
1552 	sk = sock->sk;
1553 	vsk = vsock_sk(sk);
1554 	total_written = 0;
1555 	err = 0;
1556 
1557 	if (msg->msg_flags & MSG_OOB)
1558 		return -EOPNOTSUPP;
1559 
1560 	lock_sock(sk);
1561 
1562 	/* Callers should not provide a destination with stream sockets. */
1563 	if (msg->msg_namelen) {
1564 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1565 		goto out;
1566 	}
1567 
1568 	/* Send data only if both sides are not shutdown in the direction. */
1569 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1570 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1571 		err = -EPIPE;
1572 		goto out;
1573 	}
1574 
1575 	if (sk->sk_state != TCP_ESTABLISHED ||
1576 	    !vsock_addr_bound(&vsk->local_addr)) {
1577 		err = -ENOTCONN;
1578 		goto out;
1579 	}
1580 
1581 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1582 		err = -EDESTADDRREQ;
1583 		goto out;
1584 	}
1585 
1586 	/* Wait for room in the produce queue to enqueue our user's data. */
1587 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1588 
1589 	err = transport->notify_send_init(vsk, &send_data);
1590 	if (err < 0)
1591 		goto out;
1592 
1593 	while (total_written < len) {
1594 		ssize_t written;
1595 
1596 		add_wait_queue(sk_sleep(sk), &wait);
1597 		while (vsock_stream_has_space(vsk) == 0 &&
1598 		       sk->sk_err == 0 &&
1599 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1600 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1601 
1602 			/* Don't wait for non-blocking sockets. */
1603 			if (timeout == 0) {
1604 				err = -EAGAIN;
1605 				remove_wait_queue(sk_sleep(sk), &wait);
1606 				goto out_err;
1607 			}
1608 
1609 			err = transport->notify_send_pre_block(vsk, &send_data);
1610 			if (err < 0) {
1611 				remove_wait_queue(sk_sleep(sk), &wait);
1612 				goto out_err;
1613 			}
1614 
1615 			release_sock(sk);
1616 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1617 			lock_sock(sk);
1618 			if (signal_pending(current)) {
1619 				err = sock_intr_errno(timeout);
1620 				remove_wait_queue(sk_sleep(sk), &wait);
1621 				goto out_err;
1622 			} else if (timeout == 0) {
1623 				err = -EAGAIN;
1624 				remove_wait_queue(sk_sleep(sk), &wait);
1625 				goto out_err;
1626 			}
1627 		}
1628 		remove_wait_queue(sk_sleep(sk), &wait);
1629 
1630 		/* These checks occur both as part of and after the loop
1631 		 * conditional since we need to check before and after
1632 		 * sleeping.
1633 		 */
1634 		if (sk->sk_err) {
1635 			err = -sk->sk_err;
1636 			goto out_err;
1637 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1638 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1639 			err = -EPIPE;
1640 			goto out_err;
1641 		}
1642 
1643 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1644 		if (err < 0)
1645 			goto out_err;
1646 
1647 		/* Note that enqueue will only write as many bytes as are free
1648 		 * in the produce queue, so we don't need to ensure len is
1649 		 * smaller than the queue size.  It is the caller's
1650 		 * responsibility to check how many bytes we were able to send.
1651 		 */
1652 
1653 		written = transport->stream_enqueue(
1654 				vsk, msg,
1655 				len - total_written);
1656 		if (written < 0) {
1657 			err = -ENOMEM;
1658 			goto out_err;
1659 		}
1660 
1661 		total_written += written;
1662 
1663 		err = transport->notify_send_post_enqueue(
1664 				vsk, written, &send_data);
1665 		if (err < 0)
1666 			goto out_err;
1667 
1668 	}
1669 
1670 out_err:
1671 	if (total_written > 0)
1672 		err = total_written;
1673 out:
1674 	release_sock(sk);
1675 	return err;
1676 }
1677 
1678 
1679 static int
1680 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1681 		     int flags)
1682 {
1683 	struct sock *sk;
1684 	struct vsock_sock *vsk;
1685 	int err;
1686 	size_t target;
1687 	ssize_t copied;
1688 	long timeout;
1689 	struct vsock_transport_recv_notify_data recv_data;
1690 
1691 	DEFINE_WAIT(wait);
1692 
1693 	sk = sock->sk;
1694 	vsk = vsock_sk(sk);
1695 	err = 0;
1696 
1697 	lock_sock(sk);
1698 
1699 	if (sk->sk_state != TCP_ESTABLISHED) {
1700 		/* Recvmsg is supposed to return 0 if a peer performs an
1701 		 * orderly shutdown. Differentiate between that case and when a
1702 		 * peer has not connected or a local shutdown occured with the
1703 		 * SOCK_DONE flag.
1704 		 */
1705 		if (sock_flag(sk, SOCK_DONE))
1706 			err = 0;
1707 		else
1708 			err = -ENOTCONN;
1709 
1710 		goto out;
1711 	}
1712 
1713 	if (flags & MSG_OOB) {
1714 		err = -EOPNOTSUPP;
1715 		goto out;
1716 	}
1717 
1718 	/* We don't check peer_shutdown flag here since peer may actually shut
1719 	 * down, but there can be data in the queue that a local socket can
1720 	 * receive.
1721 	 */
1722 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1723 		err = 0;
1724 		goto out;
1725 	}
1726 
1727 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1728 	 * is not an error.  We may as well bail out now.
1729 	 */
1730 	if (!len) {
1731 		err = 0;
1732 		goto out;
1733 	}
1734 
1735 	/* We must not copy less than target bytes into the user's buffer
1736 	 * before returning successfully, so we wait for the consume queue to
1737 	 * have that much data to consume before dequeueing.  Note that this
1738 	 * makes it impossible to handle cases where target is greater than the
1739 	 * queue size.
1740 	 */
1741 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1742 	if (target >= transport->stream_rcvhiwat(vsk)) {
1743 		err = -ENOMEM;
1744 		goto out;
1745 	}
1746 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1747 	copied = 0;
1748 
1749 	err = transport->notify_recv_init(vsk, target, &recv_data);
1750 	if (err < 0)
1751 		goto out;
1752 
1753 
1754 	while (1) {
1755 		s64 ready;
1756 
1757 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1758 		ready = vsock_stream_has_data(vsk);
1759 
1760 		if (ready == 0) {
1761 			if (sk->sk_err != 0 ||
1762 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1763 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1764 				finish_wait(sk_sleep(sk), &wait);
1765 				break;
1766 			}
1767 			/* Don't wait for non-blocking sockets. */
1768 			if (timeout == 0) {
1769 				err = -EAGAIN;
1770 				finish_wait(sk_sleep(sk), &wait);
1771 				break;
1772 			}
1773 
1774 			err = transport->notify_recv_pre_block(
1775 					vsk, target, &recv_data);
1776 			if (err < 0) {
1777 				finish_wait(sk_sleep(sk), &wait);
1778 				break;
1779 			}
1780 			release_sock(sk);
1781 			timeout = schedule_timeout(timeout);
1782 			lock_sock(sk);
1783 
1784 			if (signal_pending(current)) {
1785 				err = sock_intr_errno(timeout);
1786 				finish_wait(sk_sleep(sk), &wait);
1787 				break;
1788 			} else if (timeout == 0) {
1789 				err = -EAGAIN;
1790 				finish_wait(sk_sleep(sk), &wait);
1791 				break;
1792 			}
1793 		} else {
1794 			ssize_t read;
1795 
1796 			finish_wait(sk_sleep(sk), &wait);
1797 
1798 			if (ready < 0) {
1799 				/* Invalid queue pair content. XXX This should
1800 				* be changed to a connection reset in a later
1801 				* change.
1802 				*/
1803 
1804 				err = -ENOMEM;
1805 				goto out;
1806 			}
1807 
1808 			err = transport->notify_recv_pre_dequeue(
1809 					vsk, target, &recv_data);
1810 			if (err < 0)
1811 				break;
1812 
1813 			read = transport->stream_dequeue(
1814 					vsk, msg,
1815 					len - copied, flags);
1816 			if (read < 0) {
1817 				err = -ENOMEM;
1818 				break;
1819 			}
1820 
1821 			copied += read;
1822 
1823 			err = transport->notify_recv_post_dequeue(
1824 					vsk, target, read,
1825 					!(flags & MSG_PEEK), &recv_data);
1826 			if (err < 0)
1827 				goto out;
1828 
1829 			if (read >= target || flags & MSG_PEEK)
1830 				break;
1831 
1832 			target -= read;
1833 		}
1834 	}
1835 
1836 	if (sk->sk_err)
1837 		err = -sk->sk_err;
1838 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1839 		err = 0;
1840 
1841 	if (copied > 0)
1842 		err = copied;
1843 
1844 out:
1845 	release_sock(sk);
1846 	return err;
1847 }
1848 
1849 static const struct proto_ops vsock_stream_ops = {
1850 	.family = PF_VSOCK,
1851 	.owner = THIS_MODULE,
1852 	.release = vsock_release,
1853 	.bind = vsock_bind,
1854 	.connect = vsock_stream_connect,
1855 	.socketpair = sock_no_socketpair,
1856 	.accept = vsock_accept,
1857 	.getname = vsock_getname,
1858 	.poll = vsock_poll,
1859 	.ioctl = sock_no_ioctl,
1860 	.listen = vsock_listen,
1861 	.shutdown = vsock_shutdown,
1862 	.setsockopt = vsock_stream_setsockopt,
1863 	.getsockopt = vsock_stream_getsockopt,
1864 	.sendmsg = vsock_stream_sendmsg,
1865 	.recvmsg = vsock_stream_recvmsg,
1866 	.mmap = sock_no_mmap,
1867 	.sendpage = sock_no_sendpage,
1868 };
1869 
1870 static int vsock_create(struct net *net, struct socket *sock,
1871 			int protocol, int kern)
1872 {
1873 	if (!sock)
1874 		return -EINVAL;
1875 
1876 	if (protocol && protocol != PF_VSOCK)
1877 		return -EPROTONOSUPPORT;
1878 
1879 	switch (sock->type) {
1880 	case SOCK_DGRAM:
1881 		sock->ops = &vsock_dgram_ops;
1882 		break;
1883 	case SOCK_STREAM:
1884 		sock->ops = &vsock_stream_ops;
1885 		break;
1886 	default:
1887 		return -ESOCKTNOSUPPORT;
1888 	}
1889 
1890 	sock->state = SS_UNCONNECTED;
1891 
1892 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1893 }
1894 
1895 static const struct net_proto_family vsock_family_ops = {
1896 	.family = AF_VSOCK,
1897 	.create = vsock_create,
1898 	.owner = THIS_MODULE,
1899 };
1900 
1901 static long vsock_dev_do_ioctl(struct file *filp,
1902 			       unsigned int cmd, void __user *ptr)
1903 {
1904 	u32 __user *p = ptr;
1905 	int retval = 0;
1906 
1907 	switch (cmd) {
1908 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1909 		if (put_user(transport->get_local_cid(), p) != 0)
1910 			retval = -EFAULT;
1911 		break;
1912 
1913 	default:
1914 		pr_err("Unknown ioctl %d\n", cmd);
1915 		retval = -EINVAL;
1916 	}
1917 
1918 	return retval;
1919 }
1920 
1921 static long vsock_dev_ioctl(struct file *filp,
1922 			    unsigned int cmd, unsigned long arg)
1923 {
1924 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1925 }
1926 
1927 #ifdef CONFIG_COMPAT
1928 static long vsock_dev_compat_ioctl(struct file *filp,
1929 				   unsigned int cmd, unsigned long arg)
1930 {
1931 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1932 }
1933 #endif
1934 
1935 static const struct file_operations vsock_device_ops = {
1936 	.owner		= THIS_MODULE,
1937 	.unlocked_ioctl	= vsock_dev_ioctl,
1938 #ifdef CONFIG_COMPAT
1939 	.compat_ioctl	= vsock_dev_compat_ioctl,
1940 #endif
1941 	.open		= nonseekable_open,
1942 };
1943 
1944 static struct miscdevice vsock_device = {
1945 	.name		= "vsock",
1946 	.fops		= &vsock_device_ops,
1947 };
1948 
1949 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1950 {
1951 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1952 
1953 	if (err)
1954 		return err;
1955 
1956 	if (transport) {
1957 		err = -EBUSY;
1958 		goto err_busy;
1959 	}
1960 
1961 	/* Transport must be the owner of the protocol so that it can't
1962 	 * unload while there are open sockets.
1963 	 */
1964 	vsock_proto.owner = owner;
1965 	transport = t;
1966 
1967 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1968 	err = misc_register(&vsock_device);
1969 	if (err) {
1970 		pr_err("Failed to register misc device\n");
1971 		goto err_reset_transport;
1972 	}
1973 
1974 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1975 	if (err) {
1976 		pr_err("Cannot register vsock protocol\n");
1977 		goto err_deregister_misc;
1978 	}
1979 
1980 	err = sock_register(&vsock_family_ops);
1981 	if (err) {
1982 		pr_err("could not register af_vsock (%d) address family: %d\n",
1983 		       AF_VSOCK, err);
1984 		goto err_unregister_proto;
1985 	}
1986 
1987 	mutex_unlock(&vsock_register_mutex);
1988 	return 0;
1989 
1990 err_unregister_proto:
1991 	proto_unregister(&vsock_proto);
1992 err_deregister_misc:
1993 	misc_deregister(&vsock_device);
1994 err_reset_transport:
1995 	transport = NULL;
1996 err_busy:
1997 	mutex_unlock(&vsock_register_mutex);
1998 	return err;
1999 }
2000 EXPORT_SYMBOL_GPL(__vsock_core_init);
2001 
2002 void vsock_core_exit(void)
2003 {
2004 	mutex_lock(&vsock_register_mutex);
2005 
2006 	misc_deregister(&vsock_device);
2007 	sock_unregister(AF_VSOCK);
2008 	proto_unregister(&vsock_proto);
2009 
2010 	/* We do not want the assignment below re-ordered. */
2011 	mb();
2012 	transport = NULL;
2013 
2014 	mutex_unlock(&vsock_register_mutex);
2015 }
2016 EXPORT_SYMBOL_GPL(vsock_core_exit);
2017 
2018 const struct vsock_transport *vsock_core_get_transport(void)
2019 {
2020 	/* vsock_register_mutex not taken since only the transport uses this
2021 	 * function and only while registered.
2022 	 */
2023 	return transport;
2024 }
2025 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2026 
2027 static void __exit vsock_exit(void)
2028 {
2029 	/* Do nothing.  This function makes this module removable. */
2030 }
2031 
2032 module_init(vsock_init_tables);
2033 module_exit(vsock_exit);
2034 
2035 MODULE_AUTHOR("VMware, Inc.");
2036 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2037 MODULE_VERSION("1.0.2.0-k");
2038 MODULE_LICENSE("GPL v2");
2039