1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the VSOCK_SS_LISTEN state. When a 40 * connection request is received (the second kind of socket mentioned above), 41 * we create a new socket and refer to it as a pending socket. These pending 42 * sockets are placed on the pending connection list of the listener socket. 43 * When future packets are received for the address the listener socket is 44 * bound to, we check if the source of the packet is from one that has an 45 * existing pending connection. If it does, we process the packet for the 46 * pending socket. When that socket reaches the connected state, it is removed 47 * from the listener socket's pending list and enqueued in the listener 48 * socket's accept queue. Callers of accept(2) will accept connected sockets 49 * from the listener socket's accept queue. If the socket cannot be accepted 50 * for some reason then it is marked rejected. Once the connection is 51 * accepted, it is owned by the user process and the responsibility for cleanup 52 * falls with that user process. 53 * 54 * - It is possible that these pending sockets will never reach the connected 55 * state; in fact, we may never receive another packet after the connection 56 * request. Because of this, we must schedule a cleanup function to run in the 57 * future, after some amount of time passes where a connection should have been 58 * established. This function ensures that the socket is off all lists so it 59 * cannot be retrieved, then drops all references to the socket so it is cleaned 60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 61 * function will also cleanup rejected sockets, those that reach the connected 62 * state but leave it before they have been accepted. 63 * 64 * - Lock ordering for pending or accept queue sockets is: 65 * 66 * lock_sock(listener); 67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 68 * 69 * Using explicit nested locking keeps lockdep happy since normally only one 70 * lock of a given class may be taken at a time. 71 * 72 * - Sockets created by user action will be cleaned up when the user process 73 * calls close(2), causing our release implementation to be called. Our release 74 * implementation will perform some cleanup then drop the last reference so our 75 * sk_destruct implementation is invoked. Our sk_destruct implementation will 76 * perform additional cleanup that's common for both types of sockets. 77 * 78 * - A socket's reference count is what ensures that the structure won't be 79 * freed. Each entry in a list (such as the "global" bound and connected tables 80 * and the listener socket's pending list and connected queue) ensures a 81 * reference. When we defer work until process context and pass a socket as our 82 * argument, we must ensure the reference count is increased to ensure the 83 * socket isn't freed before the function is run; the deferred function will 84 * then drop the reference. 85 */ 86 87 #include <linux/types.h> 88 #include <linux/bitops.h> 89 #include <linux/cred.h> 90 #include <linux/init.h> 91 #include <linux/io.h> 92 #include <linux/kernel.h> 93 #include <linux/kmod.h> 94 #include <linux/list.h> 95 #include <linux/miscdevice.h> 96 #include <linux/module.h> 97 #include <linux/mutex.h> 98 #include <linux/net.h> 99 #include <linux/poll.h> 100 #include <linux/skbuff.h> 101 #include <linux/smp.h> 102 #include <linux/socket.h> 103 #include <linux/stddef.h> 104 #include <linux/unistd.h> 105 #include <linux/wait.h> 106 #include <linux/workqueue.h> 107 #include <net/sock.h> 108 #include <net/af_vsock.h> 109 110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 111 static void vsock_sk_destruct(struct sock *sk); 112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 113 114 /* Protocol family. */ 115 static struct proto vsock_proto = { 116 .name = "AF_VSOCK", 117 .owner = THIS_MODULE, 118 .obj_size = sizeof(struct vsock_sock), 119 }; 120 121 /* The default peer timeout indicates how long we will wait for a peer response 122 * to a control message. 123 */ 124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 125 126 static const struct vsock_transport *transport; 127 static DEFINE_MUTEX(vsock_register_mutex); 128 129 /**** EXPORTS ****/ 130 131 /* Get the ID of the local context. This is transport dependent. */ 132 133 int vm_sockets_get_local_cid(void) 134 { 135 return transport->get_local_cid(); 136 } 137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 138 139 /**** UTILS ****/ 140 141 /* Each bound VSocket is stored in the bind hash table and each connected 142 * VSocket is stored in the connected hash table. 143 * 144 * Unbound sockets are all put on the same list attached to the end of the hash 145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 146 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 147 * represents the list that addr hashes to). 148 * 149 * Specifically, we initialize the vsock_bind_table array to a size of 150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 153 * mods with VSOCK_HASH_SIZE to ensure this. 154 */ 155 #define VSOCK_HASH_SIZE 251 156 #define MAX_PORT_RETRIES 24 157 158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 161 162 /* XXX This can probably be implemented in a better way. */ 163 #define VSOCK_CONN_HASH(src, dst) \ 164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 165 #define vsock_connected_sockets(src, dst) \ 166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 167 #define vsock_connected_sockets_vsk(vsk) \ 168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 169 170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 172 static DEFINE_SPINLOCK(vsock_table_lock); 173 174 /* Autobind this socket to the local address if necessary. */ 175 static int vsock_auto_bind(struct vsock_sock *vsk) 176 { 177 struct sock *sk = sk_vsock(vsk); 178 struct sockaddr_vm local_addr; 179 180 if (vsock_addr_bound(&vsk->local_addr)) 181 return 0; 182 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 183 return __vsock_bind(sk, &local_addr); 184 } 185 186 static void vsock_init_tables(void) 187 { 188 int i; 189 190 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 191 INIT_LIST_HEAD(&vsock_bind_table[i]); 192 193 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 194 INIT_LIST_HEAD(&vsock_connected_table[i]); 195 } 196 197 static void __vsock_insert_bound(struct list_head *list, 198 struct vsock_sock *vsk) 199 { 200 sock_hold(&vsk->sk); 201 list_add(&vsk->bound_table, list); 202 } 203 204 static void __vsock_insert_connected(struct list_head *list, 205 struct vsock_sock *vsk) 206 { 207 sock_hold(&vsk->sk); 208 list_add(&vsk->connected_table, list); 209 } 210 211 static void __vsock_remove_bound(struct vsock_sock *vsk) 212 { 213 list_del_init(&vsk->bound_table); 214 sock_put(&vsk->sk); 215 } 216 217 static void __vsock_remove_connected(struct vsock_sock *vsk) 218 { 219 list_del_init(&vsk->connected_table); 220 sock_put(&vsk->sk); 221 } 222 223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 224 { 225 struct vsock_sock *vsk; 226 227 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 228 if (addr->svm_port == vsk->local_addr.svm_port) 229 return sk_vsock(vsk); 230 231 return NULL; 232 } 233 234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 235 struct sockaddr_vm *dst) 236 { 237 struct vsock_sock *vsk; 238 239 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 240 connected_table) { 241 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 242 dst->svm_port == vsk->local_addr.svm_port) { 243 return sk_vsock(vsk); 244 } 245 } 246 247 return NULL; 248 } 249 250 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 251 { 252 return !list_empty(&vsk->bound_table); 253 } 254 255 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 256 { 257 return !list_empty(&vsk->connected_table); 258 } 259 260 static void vsock_insert_unbound(struct vsock_sock *vsk) 261 { 262 spin_lock_bh(&vsock_table_lock); 263 __vsock_insert_bound(vsock_unbound_sockets, vsk); 264 spin_unlock_bh(&vsock_table_lock); 265 } 266 267 void vsock_insert_connected(struct vsock_sock *vsk) 268 { 269 struct list_head *list = vsock_connected_sockets( 270 &vsk->remote_addr, &vsk->local_addr); 271 272 spin_lock_bh(&vsock_table_lock); 273 __vsock_insert_connected(list, vsk); 274 spin_unlock_bh(&vsock_table_lock); 275 } 276 EXPORT_SYMBOL_GPL(vsock_insert_connected); 277 278 void vsock_remove_bound(struct vsock_sock *vsk) 279 { 280 spin_lock_bh(&vsock_table_lock); 281 __vsock_remove_bound(vsk); 282 spin_unlock_bh(&vsock_table_lock); 283 } 284 EXPORT_SYMBOL_GPL(vsock_remove_bound); 285 286 void vsock_remove_connected(struct vsock_sock *vsk) 287 { 288 spin_lock_bh(&vsock_table_lock); 289 __vsock_remove_connected(vsk); 290 spin_unlock_bh(&vsock_table_lock); 291 } 292 EXPORT_SYMBOL_GPL(vsock_remove_connected); 293 294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 295 { 296 struct sock *sk; 297 298 spin_lock_bh(&vsock_table_lock); 299 sk = __vsock_find_bound_socket(addr); 300 if (sk) 301 sock_hold(sk); 302 303 spin_unlock_bh(&vsock_table_lock); 304 305 return sk; 306 } 307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 308 309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 310 struct sockaddr_vm *dst) 311 { 312 struct sock *sk; 313 314 spin_lock_bh(&vsock_table_lock); 315 sk = __vsock_find_connected_socket(src, dst); 316 if (sk) 317 sock_hold(sk); 318 319 spin_unlock_bh(&vsock_table_lock); 320 321 return sk; 322 } 323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 324 325 static bool vsock_in_bound_table(struct vsock_sock *vsk) 326 { 327 bool ret; 328 329 spin_lock_bh(&vsock_table_lock); 330 ret = __vsock_in_bound_table(vsk); 331 spin_unlock_bh(&vsock_table_lock); 332 333 return ret; 334 } 335 336 static bool vsock_in_connected_table(struct vsock_sock *vsk) 337 { 338 bool ret; 339 340 spin_lock_bh(&vsock_table_lock); 341 ret = __vsock_in_connected_table(vsk); 342 spin_unlock_bh(&vsock_table_lock); 343 344 return ret; 345 } 346 347 void vsock_remove_sock(struct vsock_sock *vsk) 348 { 349 if (vsock_in_bound_table(vsk)) 350 vsock_remove_bound(vsk); 351 352 if (vsock_in_connected_table(vsk)) 353 vsock_remove_connected(vsk); 354 } 355 EXPORT_SYMBOL_GPL(vsock_remove_sock); 356 357 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 358 { 359 int i; 360 361 spin_lock_bh(&vsock_table_lock); 362 363 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 364 struct vsock_sock *vsk; 365 list_for_each_entry(vsk, &vsock_connected_table[i], 366 connected_table) 367 fn(sk_vsock(vsk)); 368 } 369 370 spin_unlock_bh(&vsock_table_lock); 371 } 372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 373 374 void vsock_add_pending(struct sock *listener, struct sock *pending) 375 { 376 struct vsock_sock *vlistener; 377 struct vsock_sock *vpending; 378 379 vlistener = vsock_sk(listener); 380 vpending = vsock_sk(pending); 381 382 sock_hold(pending); 383 sock_hold(listener); 384 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 385 } 386 EXPORT_SYMBOL_GPL(vsock_add_pending); 387 388 void vsock_remove_pending(struct sock *listener, struct sock *pending) 389 { 390 struct vsock_sock *vpending = vsock_sk(pending); 391 392 list_del_init(&vpending->pending_links); 393 sock_put(listener); 394 sock_put(pending); 395 } 396 EXPORT_SYMBOL_GPL(vsock_remove_pending); 397 398 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 399 { 400 struct vsock_sock *vlistener; 401 struct vsock_sock *vconnected; 402 403 vlistener = vsock_sk(listener); 404 vconnected = vsock_sk(connected); 405 406 sock_hold(connected); 407 sock_hold(listener); 408 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 409 } 410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 411 412 static struct sock *vsock_dequeue_accept(struct sock *listener) 413 { 414 struct vsock_sock *vlistener; 415 struct vsock_sock *vconnected; 416 417 vlistener = vsock_sk(listener); 418 419 if (list_empty(&vlistener->accept_queue)) 420 return NULL; 421 422 vconnected = list_entry(vlistener->accept_queue.next, 423 struct vsock_sock, accept_queue); 424 425 list_del_init(&vconnected->accept_queue); 426 sock_put(listener); 427 /* The caller will need a reference on the connected socket so we let 428 * it call sock_put(). 429 */ 430 431 return sk_vsock(vconnected); 432 } 433 434 static bool vsock_is_accept_queue_empty(struct sock *sk) 435 { 436 struct vsock_sock *vsk = vsock_sk(sk); 437 return list_empty(&vsk->accept_queue); 438 } 439 440 static bool vsock_is_pending(struct sock *sk) 441 { 442 struct vsock_sock *vsk = vsock_sk(sk); 443 return !list_empty(&vsk->pending_links); 444 } 445 446 static int vsock_send_shutdown(struct sock *sk, int mode) 447 { 448 return transport->shutdown(vsock_sk(sk), mode); 449 } 450 451 void vsock_pending_work(struct work_struct *work) 452 { 453 struct sock *sk; 454 struct sock *listener; 455 struct vsock_sock *vsk; 456 bool cleanup; 457 458 vsk = container_of(work, struct vsock_sock, dwork.work); 459 sk = sk_vsock(vsk); 460 listener = vsk->listener; 461 cleanup = true; 462 463 lock_sock(listener); 464 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 465 466 if (vsock_is_pending(sk)) { 467 vsock_remove_pending(listener, sk); 468 } else if (!vsk->rejected) { 469 /* We are not on the pending list and accept() did not reject 470 * us, so we must have been accepted by our user process. We 471 * just need to drop our references to the sockets and be on 472 * our way. 473 */ 474 cleanup = false; 475 goto out; 476 } 477 478 listener->sk_ack_backlog--; 479 480 /* We need to remove ourself from the global connected sockets list so 481 * incoming packets can't find this socket, and to reduce the reference 482 * count. 483 */ 484 if (vsock_in_connected_table(vsk)) 485 vsock_remove_connected(vsk); 486 487 sk->sk_state = SS_FREE; 488 489 out: 490 release_sock(sk); 491 release_sock(listener); 492 if (cleanup) 493 sock_put(sk); 494 495 sock_put(sk); 496 sock_put(listener); 497 } 498 EXPORT_SYMBOL_GPL(vsock_pending_work); 499 500 /**** SOCKET OPERATIONS ****/ 501 502 static int __vsock_bind_stream(struct vsock_sock *vsk, 503 struct sockaddr_vm *addr) 504 { 505 static u32 port = LAST_RESERVED_PORT + 1; 506 struct sockaddr_vm new_addr; 507 508 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 509 510 if (addr->svm_port == VMADDR_PORT_ANY) { 511 bool found = false; 512 unsigned int i; 513 514 for (i = 0; i < MAX_PORT_RETRIES; i++) { 515 if (port <= LAST_RESERVED_PORT) 516 port = LAST_RESERVED_PORT + 1; 517 518 new_addr.svm_port = port++; 519 520 if (!__vsock_find_bound_socket(&new_addr)) { 521 found = true; 522 break; 523 } 524 } 525 526 if (!found) 527 return -EADDRNOTAVAIL; 528 } else { 529 /* If port is in reserved range, ensure caller 530 * has necessary privileges. 531 */ 532 if (addr->svm_port <= LAST_RESERVED_PORT && 533 !capable(CAP_NET_BIND_SERVICE)) { 534 return -EACCES; 535 } 536 537 if (__vsock_find_bound_socket(&new_addr)) 538 return -EADDRINUSE; 539 } 540 541 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 542 543 /* Remove stream sockets from the unbound list and add them to the hash 544 * table for easy lookup by its address. The unbound list is simply an 545 * extra entry at the end of the hash table, a trick used by AF_UNIX. 546 */ 547 __vsock_remove_bound(vsk); 548 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 549 550 return 0; 551 } 552 553 static int __vsock_bind_dgram(struct vsock_sock *vsk, 554 struct sockaddr_vm *addr) 555 { 556 return transport->dgram_bind(vsk, addr); 557 } 558 559 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 560 { 561 struct vsock_sock *vsk = vsock_sk(sk); 562 u32 cid; 563 int retval; 564 565 /* First ensure this socket isn't already bound. */ 566 if (vsock_addr_bound(&vsk->local_addr)) 567 return -EINVAL; 568 569 /* Now bind to the provided address or select appropriate values if 570 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 571 * like AF_INET prevents binding to a non-local IP address (in most 572 * cases), we only allow binding to the local CID. 573 */ 574 cid = transport->get_local_cid(); 575 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 576 return -EADDRNOTAVAIL; 577 578 switch (sk->sk_socket->type) { 579 case SOCK_STREAM: 580 spin_lock_bh(&vsock_table_lock); 581 retval = __vsock_bind_stream(vsk, addr); 582 spin_unlock_bh(&vsock_table_lock); 583 break; 584 585 case SOCK_DGRAM: 586 retval = __vsock_bind_dgram(vsk, addr); 587 break; 588 589 default: 590 retval = -EINVAL; 591 break; 592 } 593 594 return retval; 595 } 596 597 struct sock *__vsock_create(struct net *net, 598 struct socket *sock, 599 struct sock *parent, 600 gfp_t priority, 601 unsigned short type, 602 int kern) 603 { 604 struct sock *sk; 605 struct vsock_sock *psk; 606 struct vsock_sock *vsk; 607 608 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 609 if (!sk) 610 return NULL; 611 612 sock_init_data(sock, sk); 613 614 /* sk->sk_type is normally set in sock_init_data, but only if sock is 615 * non-NULL. We make sure that our sockets always have a type by 616 * setting it here if needed. 617 */ 618 if (!sock) 619 sk->sk_type = type; 620 621 vsk = vsock_sk(sk); 622 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 623 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 624 625 sk->sk_destruct = vsock_sk_destruct; 626 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 627 sk->sk_state = 0; 628 sock_reset_flag(sk, SOCK_DONE); 629 630 INIT_LIST_HEAD(&vsk->bound_table); 631 INIT_LIST_HEAD(&vsk->connected_table); 632 vsk->listener = NULL; 633 INIT_LIST_HEAD(&vsk->pending_links); 634 INIT_LIST_HEAD(&vsk->accept_queue); 635 vsk->rejected = false; 636 vsk->sent_request = false; 637 vsk->ignore_connecting_rst = false; 638 vsk->peer_shutdown = 0; 639 640 psk = parent ? vsock_sk(parent) : NULL; 641 if (parent) { 642 vsk->trusted = psk->trusted; 643 vsk->owner = get_cred(psk->owner); 644 vsk->connect_timeout = psk->connect_timeout; 645 } else { 646 vsk->trusted = capable(CAP_NET_ADMIN); 647 vsk->owner = get_current_cred(); 648 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 649 } 650 651 if (transport->init(vsk, psk) < 0) { 652 sk_free(sk); 653 return NULL; 654 } 655 656 if (sock) 657 vsock_insert_unbound(vsk); 658 659 return sk; 660 } 661 EXPORT_SYMBOL_GPL(__vsock_create); 662 663 static void __vsock_release(struct sock *sk) 664 { 665 if (sk) { 666 struct sk_buff *skb; 667 struct sock *pending; 668 struct vsock_sock *vsk; 669 670 vsk = vsock_sk(sk); 671 pending = NULL; /* Compiler warning. */ 672 673 transport->release(vsk); 674 675 lock_sock(sk); 676 sock_orphan(sk); 677 sk->sk_shutdown = SHUTDOWN_MASK; 678 679 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 680 kfree_skb(skb); 681 682 /* Clean up any sockets that never were accepted. */ 683 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 684 __vsock_release(pending); 685 sock_put(pending); 686 } 687 688 release_sock(sk); 689 sock_put(sk); 690 } 691 } 692 693 static void vsock_sk_destruct(struct sock *sk) 694 { 695 struct vsock_sock *vsk = vsock_sk(sk); 696 697 transport->destruct(vsk); 698 699 /* When clearing these addresses, there's no need to set the family and 700 * possibly register the address family with the kernel. 701 */ 702 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 703 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 704 705 put_cred(vsk->owner); 706 } 707 708 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 709 { 710 int err; 711 712 err = sock_queue_rcv_skb(sk, skb); 713 if (err) 714 kfree_skb(skb); 715 716 return err; 717 } 718 719 s64 vsock_stream_has_data(struct vsock_sock *vsk) 720 { 721 return transport->stream_has_data(vsk); 722 } 723 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 724 725 s64 vsock_stream_has_space(struct vsock_sock *vsk) 726 { 727 return transport->stream_has_space(vsk); 728 } 729 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 730 731 static int vsock_release(struct socket *sock) 732 { 733 __vsock_release(sock->sk); 734 sock->sk = NULL; 735 sock->state = SS_FREE; 736 737 return 0; 738 } 739 740 static int 741 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 742 { 743 int err; 744 struct sock *sk; 745 struct sockaddr_vm *vm_addr; 746 747 sk = sock->sk; 748 749 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 750 return -EINVAL; 751 752 lock_sock(sk); 753 err = __vsock_bind(sk, vm_addr); 754 release_sock(sk); 755 756 return err; 757 } 758 759 static int vsock_getname(struct socket *sock, 760 struct sockaddr *addr, int *addr_len, int peer) 761 { 762 int err; 763 struct sock *sk; 764 struct vsock_sock *vsk; 765 struct sockaddr_vm *vm_addr; 766 767 sk = sock->sk; 768 vsk = vsock_sk(sk); 769 err = 0; 770 771 lock_sock(sk); 772 773 if (peer) { 774 if (sock->state != SS_CONNECTED) { 775 err = -ENOTCONN; 776 goto out; 777 } 778 vm_addr = &vsk->remote_addr; 779 } else { 780 vm_addr = &vsk->local_addr; 781 } 782 783 if (!vm_addr) { 784 err = -EINVAL; 785 goto out; 786 } 787 788 /* sys_getsockname() and sys_getpeername() pass us a 789 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 790 * that macro is defined in socket.c instead of .h, so we hardcode its 791 * value here. 792 */ 793 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 794 memcpy(addr, vm_addr, sizeof(*vm_addr)); 795 *addr_len = sizeof(*vm_addr); 796 797 out: 798 release_sock(sk); 799 return err; 800 } 801 802 static int vsock_shutdown(struct socket *sock, int mode) 803 { 804 int err; 805 struct sock *sk; 806 807 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 808 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 809 * here like the other address families do. Note also that the 810 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 811 * which is what we want. 812 */ 813 mode++; 814 815 if ((mode & ~SHUTDOWN_MASK) || !mode) 816 return -EINVAL; 817 818 /* If this is a STREAM socket and it is not connected then bail out 819 * immediately. If it is a DGRAM socket then we must first kick the 820 * socket so that it wakes up from any sleeping calls, for example 821 * recv(), and then afterwards return the error. 822 */ 823 824 sk = sock->sk; 825 if (sock->state == SS_UNCONNECTED) { 826 err = -ENOTCONN; 827 if (sk->sk_type == SOCK_STREAM) 828 return err; 829 } else { 830 sock->state = SS_DISCONNECTING; 831 err = 0; 832 } 833 834 /* Receive and send shutdowns are treated alike. */ 835 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 836 if (mode) { 837 lock_sock(sk); 838 sk->sk_shutdown |= mode; 839 sk->sk_state_change(sk); 840 release_sock(sk); 841 842 if (sk->sk_type == SOCK_STREAM) { 843 sock_reset_flag(sk, SOCK_DONE); 844 vsock_send_shutdown(sk, mode); 845 } 846 } 847 848 return err; 849 } 850 851 static unsigned int vsock_poll(struct file *file, struct socket *sock, 852 poll_table *wait) 853 { 854 struct sock *sk; 855 unsigned int mask; 856 struct vsock_sock *vsk; 857 858 sk = sock->sk; 859 vsk = vsock_sk(sk); 860 861 poll_wait(file, sk_sleep(sk), wait); 862 mask = 0; 863 864 if (sk->sk_err) 865 /* Signify that there has been an error on this socket. */ 866 mask |= POLLERR; 867 868 /* INET sockets treat local write shutdown and peer write shutdown as a 869 * case of POLLHUP set. 870 */ 871 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 872 ((sk->sk_shutdown & SEND_SHUTDOWN) && 873 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 874 mask |= POLLHUP; 875 } 876 877 if (sk->sk_shutdown & RCV_SHUTDOWN || 878 vsk->peer_shutdown & SEND_SHUTDOWN) { 879 mask |= POLLRDHUP; 880 } 881 882 if (sock->type == SOCK_DGRAM) { 883 /* For datagram sockets we can read if there is something in 884 * the queue and write as long as the socket isn't shutdown for 885 * sending. 886 */ 887 if (!skb_queue_empty(&sk->sk_receive_queue) || 888 (sk->sk_shutdown & RCV_SHUTDOWN)) { 889 mask |= POLLIN | POLLRDNORM; 890 } 891 892 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 893 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 894 895 } else if (sock->type == SOCK_STREAM) { 896 lock_sock(sk); 897 898 /* Listening sockets that have connections in their accept 899 * queue can be read. 900 */ 901 if (sk->sk_state == VSOCK_SS_LISTEN 902 && !vsock_is_accept_queue_empty(sk)) 903 mask |= POLLIN | POLLRDNORM; 904 905 /* If there is something in the queue then we can read. */ 906 if (transport->stream_is_active(vsk) && 907 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 908 bool data_ready_now = false; 909 int ret = transport->notify_poll_in( 910 vsk, 1, &data_ready_now); 911 if (ret < 0) { 912 mask |= POLLERR; 913 } else { 914 if (data_ready_now) 915 mask |= POLLIN | POLLRDNORM; 916 917 } 918 } 919 920 /* Sockets whose connections have been closed, reset, or 921 * terminated should also be considered read, and we check the 922 * shutdown flag for that. 923 */ 924 if (sk->sk_shutdown & RCV_SHUTDOWN || 925 vsk->peer_shutdown & SEND_SHUTDOWN) { 926 mask |= POLLIN | POLLRDNORM; 927 } 928 929 /* Connected sockets that can produce data can be written. */ 930 if (sk->sk_state == SS_CONNECTED) { 931 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 932 bool space_avail_now = false; 933 int ret = transport->notify_poll_out( 934 vsk, 1, &space_avail_now); 935 if (ret < 0) { 936 mask |= POLLERR; 937 } else { 938 if (space_avail_now) 939 /* Remove POLLWRBAND since INET 940 * sockets are not setting it. 941 */ 942 mask |= POLLOUT | POLLWRNORM; 943 944 } 945 } 946 } 947 948 /* Simulate INET socket poll behaviors, which sets 949 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 950 * but local send is not shutdown. 951 */ 952 if (sk->sk_state == SS_UNCONNECTED) { 953 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 954 mask |= POLLOUT | POLLWRNORM; 955 956 } 957 958 release_sock(sk); 959 } 960 961 return mask; 962 } 963 964 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 965 size_t len) 966 { 967 int err; 968 struct sock *sk; 969 struct vsock_sock *vsk; 970 struct sockaddr_vm *remote_addr; 971 972 if (msg->msg_flags & MSG_OOB) 973 return -EOPNOTSUPP; 974 975 /* For now, MSG_DONTWAIT is always assumed... */ 976 err = 0; 977 sk = sock->sk; 978 vsk = vsock_sk(sk); 979 980 lock_sock(sk); 981 982 err = vsock_auto_bind(vsk); 983 if (err) 984 goto out; 985 986 987 /* If the provided message contains an address, use that. Otherwise 988 * fall back on the socket's remote handle (if it has been connected). 989 */ 990 if (msg->msg_name && 991 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 992 &remote_addr) == 0) { 993 /* Ensure this address is of the right type and is a valid 994 * destination. 995 */ 996 997 if (remote_addr->svm_cid == VMADDR_CID_ANY) 998 remote_addr->svm_cid = transport->get_local_cid(); 999 1000 if (!vsock_addr_bound(remote_addr)) { 1001 err = -EINVAL; 1002 goto out; 1003 } 1004 } else if (sock->state == SS_CONNECTED) { 1005 remote_addr = &vsk->remote_addr; 1006 1007 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1008 remote_addr->svm_cid = transport->get_local_cid(); 1009 1010 /* XXX Should connect() or this function ensure remote_addr is 1011 * bound? 1012 */ 1013 if (!vsock_addr_bound(&vsk->remote_addr)) { 1014 err = -EINVAL; 1015 goto out; 1016 } 1017 } else { 1018 err = -EINVAL; 1019 goto out; 1020 } 1021 1022 if (!transport->dgram_allow(remote_addr->svm_cid, 1023 remote_addr->svm_port)) { 1024 err = -EINVAL; 1025 goto out; 1026 } 1027 1028 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1029 1030 out: 1031 release_sock(sk); 1032 return err; 1033 } 1034 1035 static int vsock_dgram_connect(struct socket *sock, 1036 struct sockaddr *addr, int addr_len, int flags) 1037 { 1038 int err; 1039 struct sock *sk; 1040 struct vsock_sock *vsk; 1041 struct sockaddr_vm *remote_addr; 1042 1043 sk = sock->sk; 1044 vsk = vsock_sk(sk); 1045 1046 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1047 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1048 lock_sock(sk); 1049 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1050 VMADDR_PORT_ANY); 1051 sock->state = SS_UNCONNECTED; 1052 release_sock(sk); 1053 return 0; 1054 } else if (err != 0) 1055 return -EINVAL; 1056 1057 lock_sock(sk); 1058 1059 err = vsock_auto_bind(vsk); 1060 if (err) 1061 goto out; 1062 1063 if (!transport->dgram_allow(remote_addr->svm_cid, 1064 remote_addr->svm_port)) { 1065 err = -EINVAL; 1066 goto out; 1067 } 1068 1069 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1070 sock->state = SS_CONNECTED; 1071 1072 out: 1073 release_sock(sk); 1074 return err; 1075 } 1076 1077 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1078 size_t len, int flags) 1079 { 1080 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1081 } 1082 1083 static const struct proto_ops vsock_dgram_ops = { 1084 .family = PF_VSOCK, 1085 .owner = THIS_MODULE, 1086 .release = vsock_release, 1087 .bind = vsock_bind, 1088 .connect = vsock_dgram_connect, 1089 .socketpair = sock_no_socketpair, 1090 .accept = sock_no_accept, 1091 .getname = vsock_getname, 1092 .poll = vsock_poll, 1093 .ioctl = sock_no_ioctl, 1094 .listen = sock_no_listen, 1095 .shutdown = vsock_shutdown, 1096 .setsockopt = sock_no_setsockopt, 1097 .getsockopt = sock_no_getsockopt, 1098 .sendmsg = vsock_dgram_sendmsg, 1099 .recvmsg = vsock_dgram_recvmsg, 1100 .mmap = sock_no_mmap, 1101 .sendpage = sock_no_sendpage, 1102 }; 1103 1104 static void vsock_connect_timeout(struct work_struct *work) 1105 { 1106 struct sock *sk; 1107 struct vsock_sock *vsk; 1108 1109 vsk = container_of(work, struct vsock_sock, dwork.work); 1110 sk = sk_vsock(vsk); 1111 1112 lock_sock(sk); 1113 if (sk->sk_state == SS_CONNECTING && 1114 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1115 sk->sk_state = SS_UNCONNECTED; 1116 sk->sk_err = ETIMEDOUT; 1117 sk->sk_error_report(sk); 1118 } 1119 release_sock(sk); 1120 1121 sock_put(sk); 1122 } 1123 1124 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1125 int addr_len, int flags) 1126 { 1127 int err; 1128 struct sock *sk; 1129 struct vsock_sock *vsk; 1130 struct sockaddr_vm *remote_addr; 1131 long timeout; 1132 DEFINE_WAIT(wait); 1133 1134 err = 0; 1135 sk = sock->sk; 1136 vsk = vsock_sk(sk); 1137 1138 lock_sock(sk); 1139 1140 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1141 switch (sock->state) { 1142 case SS_CONNECTED: 1143 err = -EISCONN; 1144 goto out; 1145 case SS_DISCONNECTING: 1146 err = -EINVAL; 1147 goto out; 1148 case SS_CONNECTING: 1149 /* This continues on so we can move sock into the SS_CONNECTED 1150 * state once the connection has completed (at which point err 1151 * will be set to zero also). Otherwise, we will either wait 1152 * for the connection or return -EALREADY should this be a 1153 * non-blocking call. 1154 */ 1155 err = -EALREADY; 1156 break; 1157 default: 1158 if ((sk->sk_state == VSOCK_SS_LISTEN) || 1159 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1160 err = -EINVAL; 1161 goto out; 1162 } 1163 1164 /* The hypervisor and well-known contexts do not have socket 1165 * endpoints. 1166 */ 1167 if (!transport->stream_allow(remote_addr->svm_cid, 1168 remote_addr->svm_port)) { 1169 err = -ENETUNREACH; 1170 goto out; 1171 } 1172 1173 /* Set the remote address that we are connecting to. */ 1174 memcpy(&vsk->remote_addr, remote_addr, 1175 sizeof(vsk->remote_addr)); 1176 1177 err = vsock_auto_bind(vsk); 1178 if (err) 1179 goto out; 1180 1181 sk->sk_state = SS_CONNECTING; 1182 1183 err = transport->connect(vsk); 1184 if (err < 0) 1185 goto out; 1186 1187 /* Mark sock as connecting and set the error code to in 1188 * progress in case this is a non-blocking connect. 1189 */ 1190 sock->state = SS_CONNECTING; 1191 err = -EINPROGRESS; 1192 } 1193 1194 /* The receive path will handle all communication until we are able to 1195 * enter the connected state. Here we wait for the connection to be 1196 * completed or a notification of an error. 1197 */ 1198 timeout = vsk->connect_timeout; 1199 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1200 1201 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1202 if (flags & O_NONBLOCK) { 1203 /* If we're not going to block, we schedule a timeout 1204 * function to generate a timeout on the connection 1205 * attempt, in case the peer doesn't respond in a 1206 * timely manner. We hold on to the socket until the 1207 * timeout fires. 1208 */ 1209 sock_hold(sk); 1210 INIT_DELAYED_WORK(&vsk->dwork, 1211 vsock_connect_timeout); 1212 schedule_delayed_work(&vsk->dwork, timeout); 1213 1214 /* Skip ahead to preserve error code set above. */ 1215 goto out_wait; 1216 } 1217 1218 release_sock(sk); 1219 timeout = schedule_timeout(timeout); 1220 lock_sock(sk); 1221 1222 if (signal_pending(current)) { 1223 err = sock_intr_errno(timeout); 1224 sk->sk_state = SS_UNCONNECTED; 1225 sock->state = SS_UNCONNECTED; 1226 goto out_wait; 1227 } else if (timeout == 0) { 1228 err = -ETIMEDOUT; 1229 sk->sk_state = SS_UNCONNECTED; 1230 sock->state = SS_UNCONNECTED; 1231 goto out_wait; 1232 } 1233 1234 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1235 } 1236 1237 if (sk->sk_err) { 1238 err = -sk->sk_err; 1239 sk->sk_state = SS_UNCONNECTED; 1240 sock->state = SS_UNCONNECTED; 1241 } else { 1242 err = 0; 1243 } 1244 1245 out_wait: 1246 finish_wait(sk_sleep(sk), &wait); 1247 out: 1248 release_sock(sk); 1249 return err; 1250 } 1251 1252 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1253 { 1254 struct sock *listener; 1255 int err; 1256 struct sock *connected; 1257 struct vsock_sock *vconnected; 1258 long timeout; 1259 DEFINE_WAIT(wait); 1260 1261 err = 0; 1262 listener = sock->sk; 1263 1264 lock_sock(listener); 1265 1266 if (sock->type != SOCK_STREAM) { 1267 err = -EOPNOTSUPP; 1268 goto out; 1269 } 1270 1271 if (listener->sk_state != VSOCK_SS_LISTEN) { 1272 err = -EINVAL; 1273 goto out; 1274 } 1275 1276 /* Wait for children sockets to appear; these are the new sockets 1277 * created upon connection establishment. 1278 */ 1279 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1280 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1281 1282 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1283 listener->sk_err == 0) { 1284 release_sock(listener); 1285 timeout = schedule_timeout(timeout); 1286 finish_wait(sk_sleep(listener), &wait); 1287 lock_sock(listener); 1288 1289 if (signal_pending(current)) { 1290 err = sock_intr_errno(timeout); 1291 goto out; 1292 } else if (timeout == 0) { 1293 err = -EAGAIN; 1294 goto out; 1295 } 1296 1297 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1298 } 1299 finish_wait(sk_sleep(listener), &wait); 1300 1301 if (listener->sk_err) 1302 err = -listener->sk_err; 1303 1304 if (connected) { 1305 listener->sk_ack_backlog--; 1306 1307 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1308 vconnected = vsock_sk(connected); 1309 1310 /* If the listener socket has received an error, then we should 1311 * reject this socket and return. Note that we simply mark the 1312 * socket rejected, drop our reference, and let the cleanup 1313 * function handle the cleanup; the fact that we found it in 1314 * the listener's accept queue guarantees that the cleanup 1315 * function hasn't run yet. 1316 */ 1317 if (err) { 1318 vconnected->rejected = true; 1319 } else { 1320 newsock->state = SS_CONNECTED; 1321 sock_graft(connected, newsock); 1322 } 1323 1324 release_sock(connected); 1325 sock_put(connected); 1326 } 1327 1328 out: 1329 release_sock(listener); 1330 return err; 1331 } 1332 1333 static int vsock_listen(struct socket *sock, int backlog) 1334 { 1335 int err; 1336 struct sock *sk; 1337 struct vsock_sock *vsk; 1338 1339 sk = sock->sk; 1340 1341 lock_sock(sk); 1342 1343 if (sock->type != SOCK_STREAM) { 1344 err = -EOPNOTSUPP; 1345 goto out; 1346 } 1347 1348 if (sock->state != SS_UNCONNECTED) { 1349 err = -EINVAL; 1350 goto out; 1351 } 1352 1353 vsk = vsock_sk(sk); 1354 1355 if (!vsock_addr_bound(&vsk->local_addr)) { 1356 err = -EINVAL; 1357 goto out; 1358 } 1359 1360 sk->sk_max_ack_backlog = backlog; 1361 sk->sk_state = VSOCK_SS_LISTEN; 1362 1363 err = 0; 1364 1365 out: 1366 release_sock(sk); 1367 return err; 1368 } 1369 1370 static int vsock_stream_setsockopt(struct socket *sock, 1371 int level, 1372 int optname, 1373 char __user *optval, 1374 unsigned int optlen) 1375 { 1376 int err; 1377 struct sock *sk; 1378 struct vsock_sock *vsk; 1379 u64 val; 1380 1381 if (level != AF_VSOCK) 1382 return -ENOPROTOOPT; 1383 1384 #define COPY_IN(_v) \ 1385 do { \ 1386 if (optlen < sizeof(_v)) { \ 1387 err = -EINVAL; \ 1388 goto exit; \ 1389 } \ 1390 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1391 err = -EFAULT; \ 1392 goto exit; \ 1393 } \ 1394 } while (0) 1395 1396 err = 0; 1397 sk = sock->sk; 1398 vsk = vsock_sk(sk); 1399 1400 lock_sock(sk); 1401 1402 switch (optname) { 1403 case SO_VM_SOCKETS_BUFFER_SIZE: 1404 COPY_IN(val); 1405 transport->set_buffer_size(vsk, val); 1406 break; 1407 1408 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1409 COPY_IN(val); 1410 transport->set_max_buffer_size(vsk, val); 1411 break; 1412 1413 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1414 COPY_IN(val); 1415 transport->set_min_buffer_size(vsk, val); 1416 break; 1417 1418 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1419 struct timeval tv; 1420 COPY_IN(tv); 1421 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1422 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1423 vsk->connect_timeout = tv.tv_sec * HZ + 1424 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1425 if (vsk->connect_timeout == 0) 1426 vsk->connect_timeout = 1427 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1428 1429 } else { 1430 err = -ERANGE; 1431 } 1432 break; 1433 } 1434 1435 default: 1436 err = -ENOPROTOOPT; 1437 break; 1438 } 1439 1440 #undef COPY_IN 1441 1442 exit: 1443 release_sock(sk); 1444 return err; 1445 } 1446 1447 static int vsock_stream_getsockopt(struct socket *sock, 1448 int level, int optname, 1449 char __user *optval, 1450 int __user *optlen) 1451 { 1452 int err; 1453 int len; 1454 struct sock *sk; 1455 struct vsock_sock *vsk; 1456 u64 val; 1457 1458 if (level != AF_VSOCK) 1459 return -ENOPROTOOPT; 1460 1461 err = get_user(len, optlen); 1462 if (err != 0) 1463 return err; 1464 1465 #define COPY_OUT(_v) \ 1466 do { \ 1467 if (len < sizeof(_v)) \ 1468 return -EINVAL; \ 1469 \ 1470 len = sizeof(_v); \ 1471 if (copy_to_user(optval, &_v, len) != 0) \ 1472 return -EFAULT; \ 1473 \ 1474 } while (0) 1475 1476 err = 0; 1477 sk = sock->sk; 1478 vsk = vsock_sk(sk); 1479 1480 switch (optname) { 1481 case SO_VM_SOCKETS_BUFFER_SIZE: 1482 val = transport->get_buffer_size(vsk); 1483 COPY_OUT(val); 1484 break; 1485 1486 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1487 val = transport->get_max_buffer_size(vsk); 1488 COPY_OUT(val); 1489 break; 1490 1491 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1492 val = transport->get_min_buffer_size(vsk); 1493 COPY_OUT(val); 1494 break; 1495 1496 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1497 struct timeval tv; 1498 tv.tv_sec = vsk->connect_timeout / HZ; 1499 tv.tv_usec = 1500 (vsk->connect_timeout - 1501 tv.tv_sec * HZ) * (1000000 / HZ); 1502 COPY_OUT(tv); 1503 break; 1504 } 1505 default: 1506 return -ENOPROTOOPT; 1507 } 1508 1509 err = put_user(len, optlen); 1510 if (err != 0) 1511 return -EFAULT; 1512 1513 #undef COPY_OUT 1514 1515 return 0; 1516 } 1517 1518 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1519 size_t len) 1520 { 1521 struct sock *sk; 1522 struct vsock_sock *vsk; 1523 ssize_t total_written; 1524 long timeout; 1525 int err; 1526 struct vsock_transport_send_notify_data send_data; 1527 1528 DEFINE_WAIT(wait); 1529 1530 sk = sock->sk; 1531 vsk = vsock_sk(sk); 1532 total_written = 0; 1533 err = 0; 1534 1535 if (msg->msg_flags & MSG_OOB) 1536 return -EOPNOTSUPP; 1537 1538 lock_sock(sk); 1539 1540 /* Callers should not provide a destination with stream sockets. */ 1541 if (msg->msg_namelen) { 1542 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1543 goto out; 1544 } 1545 1546 /* Send data only if both sides are not shutdown in the direction. */ 1547 if (sk->sk_shutdown & SEND_SHUTDOWN || 1548 vsk->peer_shutdown & RCV_SHUTDOWN) { 1549 err = -EPIPE; 1550 goto out; 1551 } 1552 1553 if (sk->sk_state != SS_CONNECTED || 1554 !vsock_addr_bound(&vsk->local_addr)) { 1555 err = -ENOTCONN; 1556 goto out; 1557 } 1558 1559 if (!vsock_addr_bound(&vsk->remote_addr)) { 1560 err = -EDESTADDRREQ; 1561 goto out; 1562 } 1563 1564 /* Wait for room in the produce queue to enqueue our user's data. */ 1565 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1566 1567 err = transport->notify_send_init(vsk, &send_data); 1568 if (err < 0) 1569 goto out; 1570 1571 1572 while (total_written < len) { 1573 ssize_t written; 1574 1575 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1576 while (vsock_stream_has_space(vsk) == 0 && 1577 sk->sk_err == 0 && 1578 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1579 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1580 1581 /* Don't wait for non-blocking sockets. */ 1582 if (timeout == 0) { 1583 err = -EAGAIN; 1584 finish_wait(sk_sleep(sk), &wait); 1585 goto out_err; 1586 } 1587 1588 err = transport->notify_send_pre_block(vsk, &send_data); 1589 if (err < 0) { 1590 finish_wait(sk_sleep(sk), &wait); 1591 goto out_err; 1592 } 1593 1594 release_sock(sk); 1595 timeout = schedule_timeout(timeout); 1596 lock_sock(sk); 1597 if (signal_pending(current)) { 1598 err = sock_intr_errno(timeout); 1599 finish_wait(sk_sleep(sk), &wait); 1600 goto out_err; 1601 } else if (timeout == 0) { 1602 err = -EAGAIN; 1603 finish_wait(sk_sleep(sk), &wait); 1604 goto out_err; 1605 } 1606 1607 prepare_to_wait(sk_sleep(sk), &wait, 1608 TASK_INTERRUPTIBLE); 1609 } 1610 finish_wait(sk_sleep(sk), &wait); 1611 1612 /* These checks occur both as part of and after the loop 1613 * conditional since we need to check before and after 1614 * sleeping. 1615 */ 1616 if (sk->sk_err) { 1617 err = -sk->sk_err; 1618 goto out_err; 1619 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1620 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1621 err = -EPIPE; 1622 goto out_err; 1623 } 1624 1625 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1626 if (err < 0) 1627 goto out_err; 1628 1629 /* Note that enqueue will only write as many bytes as are free 1630 * in the produce queue, so we don't need to ensure len is 1631 * smaller than the queue size. It is the caller's 1632 * responsibility to check how many bytes we were able to send. 1633 */ 1634 1635 written = transport->stream_enqueue( 1636 vsk, msg, 1637 len - total_written); 1638 if (written < 0) { 1639 err = -ENOMEM; 1640 goto out_err; 1641 } 1642 1643 total_written += written; 1644 1645 err = transport->notify_send_post_enqueue( 1646 vsk, written, &send_data); 1647 if (err < 0) 1648 goto out_err; 1649 1650 } 1651 1652 out_err: 1653 if (total_written > 0) 1654 err = total_written; 1655 out: 1656 release_sock(sk); 1657 return err; 1658 } 1659 1660 1661 static int 1662 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1663 int flags) 1664 { 1665 struct sock *sk; 1666 struct vsock_sock *vsk; 1667 int err; 1668 size_t target; 1669 ssize_t copied; 1670 long timeout; 1671 struct vsock_transport_recv_notify_data recv_data; 1672 1673 DEFINE_WAIT(wait); 1674 1675 sk = sock->sk; 1676 vsk = vsock_sk(sk); 1677 err = 0; 1678 1679 lock_sock(sk); 1680 1681 if (sk->sk_state != SS_CONNECTED) { 1682 /* Recvmsg is supposed to return 0 if a peer performs an 1683 * orderly shutdown. Differentiate between that case and when a 1684 * peer has not connected or a local shutdown occured with the 1685 * SOCK_DONE flag. 1686 */ 1687 if (sock_flag(sk, SOCK_DONE)) 1688 err = 0; 1689 else 1690 err = -ENOTCONN; 1691 1692 goto out; 1693 } 1694 1695 if (flags & MSG_OOB) { 1696 err = -EOPNOTSUPP; 1697 goto out; 1698 } 1699 1700 /* We don't check peer_shutdown flag here since peer may actually shut 1701 * down, but there can be data in the queue that a local socket can 1702 * receive. 1703 */ 1704 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1705 err = 0; 1706 goto out; 1707 } 1708 1709 /* It is valid on Linux to pass in a zero-length receive buffer. This 1710 * is not an error. We may as well bail out now. 1711 */ 1712 if (!len) { 1713 err = 0; 1714 goto out; 1715 } 1716 1717 /* We must not copy less than target bytes into the user's buffer 1718 * before returning successfully, so we wait for the consume queue to 1719 * have that much data to consume before dequeueing. Note that this 1720 * makes it impossible to handle cases where target is greater than the 1721 * queue size. 1722 */ 1723 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1724 if (target >= transport->stream_rcvhiwat(vsk)) { 1725 err = -ENOMEM; 1726 goto out; 1727 } 1728 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1729 copied = 0; 1730 1731 err = transport->notify_recv_init(vsk, target, &recv_data); 1732 if (err < 0) 1733 goto out; 1734 1735 1736 while (1) { 1737 s64 ready; 1738 1739 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1740 ready = vsock_stream_has_data(vsk); 1741 1742 if (ready == 0) { 1743 if (sk->sk_err != 0 || 1744 (sk->sk_shutdown & RCV_SHUTDOWN) || 1745 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1746 finish_wait(sk_sleep(sk), &wait); 1747 break; 1748 } 1749 /* Don't wait for non-blocking sockets. */ 1750 if (timeout == 0) { 1751 err = -EAGAIN; 1752 finish_wait(sk_sleep(sk), &wait); 1753 break; 1754 } 1755 1756 err = transport->notify_recv_pre_block( 1757 vsk, target, &recv_data); 1758 if (err < 0) { 1759 finish_wait(sk_sleep(sk), &wait); 1760 break; 1761 } 1762 release_sock(sk); 1763 timeout = schedule_timeout(timeout); 1764 lock_sock(sk); 1765 1766 if (signal_pending(current)) { 1767 err = sock_intr_errno(timeout); 1768 finish_wait(sk_sleep(sk), &wait); 1769 break; 1770 } else if (timeout == 0) { 1771 err = -EAGAIN; 1772 finish_wait(sk_sleep(sk), &wait); 1773 break; 1774 } 1775 } else { 1776 ssize_t read; 1777 1778 finish_wait(sk_sleep(sk), &wait); 1779 1780 if (ready < 0) { 1781 /* Invalid queue pair content. XXX This should 1782 * be changed to a connection reset in a later 1783 * change. 1784 */ 1785 1786 err = -ENOMEM; 1787 goto out; 1788 } 1789 1790 err = transport->notify_recv_pre_dequeue( 1791 vsk, target, &recv_data); 1792 if (err < 0) 1793 break; 1794 1795 read = transport->stream_dequeue( 1796 vsk, msg, 1797 len - copied, flags); 1798 if (read < 0) { 1799 err = -ENOMEM; 1800 break; 1801 } 1802 1803 copied += read; 1804 1805 err = transport->notify_recv_post_dequeue( 1806 vsk, target, read, 1807 !(flags & MSG_PEEK), &recv_data); 1808 if (err < 0) 1809 goto out; 1810 1811 if (read >= target || flags & MSG_PEEK) 1812 break; 1813 1814 target -= read; 1815 } 1816 } 1817 1818 if (sk->sk_err) 1819 err = -sk->sk_err; 1820 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1821 err = 0; 1822 1823 if (copied > 0) 1824 err = copied; 1825 1826 out: 1827 release_sock(sk); 1828 return err; 1829 } 1830 1831 static const struct proto_ops vsock_stream_ops = { 1832 .family = PF_VSOCK, 1833 .owner = THIS_MODULE, 1834 .release = vsock_release, 1835 .bind = vsock_bind, 1836 .connect = vsock_stream_connect, 1837 .socketpair = sock_no_socketpair, 1838 .accept = vsock_accept, 1839 .getname = vsock_getname, 1840 .poll = vsock_poll, 1841 .ioctl = sock_no_ioctl, 1842 .listen = vsock_listen, 1843 .shutdown = vsock_shutdown, 1844 .setsockopt = vsock_stream_setsockopt, 1845 .getsockopt = vsock_stream_getsockopt, 1846 .sendmsg = vsock_stream_sendmsg, 1847 .recvmsg = vsock_stream_recvmsg, 1848 .mmap = sock_no_mmap, 1849 .sendpage = sock_no_sendpage, 1850 }; 1851 1852 static int vsock_create(struct net *net, struct socket *sock, 1853 int protocol, int kern) 1854 { 1855 if (!sock) 1856 return -EINVAL; 1857 1858 if (protocol && protocol != PF_VSOCK) 1859 return -EPROTONOSUPPORT; 1860 1861 switch (sock->type) { 1862 case SOCK_DGRAM: 1863 sock->ops = &vsock_dgram_ops; 1864 break; 1865 case SOCK_STREAM: 1866 sock->ops = &vsock_stream_ops; 1867 break; 1868 default: 1869 return -ESOCKTNOSUPPORT; 1870 } 1871 1872 sock->state = SS_UNCONNECTED; 1873 1874 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1875 } 1876 1877 static const struct net_proto_family vsock_family_ops = { 1878 .family = AF_VSOCK, 1879 .create = vsock_create, 1880 .owner = THIS_MODULE, 1881 }; 1882 1883 static long vsock_dev_do_ioctl(struct file *filp, 1884 unsigned int cmd, void __user *ptr) 1885 { 1886 u32 __user *p = ptr; 1887 int retval = 0; 1888 1889 switch (cmd) { 1890 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1891 if (put_user(transport->get_local_cid(), p) != 0) 1892 retval = -EFAULT; 1893 break; 1894 1895 default: 1896 pr_err("Unknown ioctl %d\n", cmd); 1897 retval = -EINVAL; 1898 } 1899 1900 return retval; 1901 } 1902 1903 static long vsock_dev_ioctl(struct file *filp, 1904 unsigned int cmd, unsigned long arg) 1905 { 1906 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1907 } 1908 1909 #ifdef CONFIG_COMPAT 1910 static long vsock_dev_compat_ioctl(struct file *filp, 1911 unsigned int cmd, unsigned long arg) 1912 { 1913 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1914 } 1915 #endif 1916 1917 static const struct file_operations vsock_device_ops = { 1918 .owner = THIS_MODULE, 1919 .unlocked_ioctl = vsock_dev_ioctl, 1920 #ifdef CONFIG_COMPAT 1921 .compat_ioctl = vsock_dev_compat_ioctl, 1922 #endif 1923 .open = nonseekable_open, 1924 }; 1925 1926 static struct miscdevice vsock_device = { 1927 .name = "vsock", 1928 .fops = &vsock_device_ops, 1929 }; 1930 1931 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1932 { 1933 int err = mutex_lock_interruptible(&vsock_register_mutex); 1934 1935 if (err) 1936 return err; 1937 1938 if (transport) { 1939 err = -EBUSY; 1940 goto err_busy; 1941 } 1942 1943 /* Transport must be the owner of the protocol so that it can't 1944 * unload while there are open sockets. 1945 */ 1946 vsock_proto.owner = owner; 1947 transport = t; 1948 1949 vsock_init_tables(); 1950 1951 vsock_device.minor = MISC_DYNAMIC_MINOR; 1952 err = misc_register(&vsock_device); 1953 if (err) { 1954 pr_err("Failed to register misc device\n"); 1955 goto err_reset_transport; 1956 } 1957 1958 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1959 if (err) { 1960 pr_err("Cannot register vsock protocol\n"); 1961 goto err_deregister_misc; 1962 } 1963 1964 err = sock_register(&vsock_family_ops); 1965 if (err) { 1966 pr_err("could not register af_vsock (%d) address family: %d\n", 1967 AF_VSOCK, err); 1968 goto err_unregister_proto; 1969 } 1970 1971 mutex_unlock(&vsock_register_mutex); 1972 return 0; 1973 1974 err_unregister_proto: 1975 proto_unregister(&vsock_proto); 1976 err_deregister_misc: 1977 misc_deregister(&vsock_device); 1978 err_reset_transport: 1979 transport = NULL; 1980 err_busy: 1981 mutex_unlock(&vsock_register_mutex); 1982 return err; 1983 } 1984 EXPORT_SYMBOL_GPL(__vsock_core_init); 1985 1986 void vsock_core_exit(void) 1987 { 1988 mutex_lock(&vsock_register_mutex); 1989 1990 misc_deregister(&vsock_device); 1991 sock_unregister(AF_VSOCK); 1992 proto_unregister(&vsock_proto); 1993 1994 /* We do not want the assignment below re-ordered. */ 1995 mb(); 1996 transport = NULL; 1997 1998 mutex_unlock(&vsock_register_mutex); 1999 } 2000 EXPORT_SYMBOL_GPL(vsock_core_exit); 2001 2002 const struct vsock_transport *vsock_core_get_transport(void) 2003 { 2004 /* vsock_register_mutex not taken since only the transport uses this 2005 * function and only while registered. 2006 */ 2007 return transport; 2008 } 2009 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2010 2011 MODULE_AUTHOR("VMware, Inc."); 2012 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2013 MODULE_VERSION("1.0.1.0-k"); 2014 MODULE_LICENSE("GPL v2"); 2015