xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision b9ca2f5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 static const struct vsock_transport *transport_single;
134 static DEFINE_MUTEX(vsock_register_mutex);
135 
136 /**** UTILS ****/
137 
138 /* Each bound VSocket is stored in the bind hash table and each connected
139  * VSocket is stored in the connected hash table.
140  *
141  * Unbound sockets are all put on the same list attached to the end of the hash
142  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
143  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
144  * represents the list that addr hashes to).
145  *
146  * Specifically, we initialize the vsock_bind_table array to a size of
147  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
148  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
149  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
150  * mods with VSOCK_HASH_SIZE to ensure this.
151  */
152 #define MAX_PORT_RETRIES        24
153 
154 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
155 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
156 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
157 
158 /* XXX This can probably be implemented in a better way. */
159 #define VSOCK_CONN_HASH(src, dst)				\
160 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
161 #define vsock_connected_sockets(src, dst)		\
162 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
163 #define vsock_connected_sockets_vsk(vsk)				\
164 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
165 
166 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
167 EXPORT_SYMBOL_GPL(vsock_bind_table);
168 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
169 EXPORT_SYMBOL_GPL(vsock_connected_table);
170 DEFINE_SPINLOCK(vsock_table_lock);
171 EXPORT_SYMBOL_GPL(vsock_table_lock);
172 
173 /* Autobind this socket to the local address if necessary. */
174 static int vsock_auto_bind(struct vsock_sock *vsk)
175 {
176 	struct sock *sk = sk_vsock(vsk);
177 	struct sockaddr_vm local_addr;
178 
179 	if (vsock_addr_bound(&vsk->local_addr))
180 		return 0;
181 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
182 	return __vsock_bind(sk, &local_addr);
183 }
184 
185 static int __init vsock_init_tables(void)
186 {
187 	int i;
188 
189 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
190 		INIT_LIST_HEAD(&vsock_bind_table[i]);
191 
192 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
193 		INIT_LIST_HEAD(&vsock_connected_table[i]);
194 	return 0;
195 }
196 
197 static void __vsock_insert_bound(struct list_head *list,
198 				 struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->bound_table, list);
202 }
203 
204 static void __vsock_insert_connected(struct list_head *list,
205 				     struct vsock_sock *vsk)
206 {
207 	sock_hold(&vsk->sk);
208 	list_add(&vsk->connected_table, list);
209 }
210 
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
212 {
213 	list_del_init(&vsk->bound_table);
214 	sock_put(&vsk->sk);
215 }
216 
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->connected_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
224 {
225 	struct vsock_sock *vsk;
226 
227 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 		if (addr->svm_port == vsk->local_addr.svm_port)
229 			return sk_vsock(vsk);
230 
231 	return NULL;
232 }
233 
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 						  struct sockaddr_vm *dst)
236 {
237 	struct vsock_sock *vsk;
238 
239 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 			    connected_table) {
241 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 		    dst->svm_port == vsk->local_addr.svm_port) {
243 			return sk_vsock(vsk);
244 		}
245 	}
246 
247 	return NULL;
248 }
249 
250 static void vsock_insert_unbound(struct vsock_sock *vsk)
251 {
252 	spin_lock_bh(&vsock_table_lock);
253 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
254 	spin_unlock_bh(&vsock_table_lock);
255 }
256 
257 void vsock_insert_connected(struct vsock_sock *vsk)
258 {
259 	struct list_head *list = vsock_connected_sockets(
260 		&vsk->remote_addr, &vsk->local_addr);
261 
262 	spin_lock_bh(&vsock_table_lock);
263 	__vsock_insert_connected(list, vsk);
264 	spin_unlock_bh(&vsock_table_lock);
265 }
266 EXPORT_SYMBOL_GPL(vsock_insert_connected);
267 
268 void vsock_remove_bound(struct vsock_sock *vsk)
269 {
270 	spin_lock_bh(&vsock_table_lock);
271 	if (__vsock_in_bound_table(vsk))
272 		__vsock_remove_bound(vsk);
273 	spin_unlock_bh(&vsock_table_lock);
274 }
275 EXPORT_SYMBOL_GPL(vsock_remove_bound);
276 
277 void vsock_remove_connected(struct vsock_sock *vsk)
278 {
279 	spin_lock_bh(&vsock_table_lock);
280 	if (__vsock_in_connected_table(vsk))
281 		__vsock_remove_connected(vsk);
282 	spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_remove_connected);
285 
286 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
287 {
288 	struct sock *sk;
289 
290 	spin_lock_bh(&vsock_table_lock);
291 	sk = __vsock_find_bound_socket(addr);
292 	if (sk)
293 		sock_hold(sk);
294 
295 	spin_unlock_bh(&vsock_table_lock);
296 
297 	return sk;
298 }
299 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
300 
301 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
302 					 struct sockaddr_vm *dst)
303 {
304 	struct sock *sk;
305 
306 	spin_lock_bh(&vsock_table_lock);
307 	sk = __vsock_find_connected_socket(src, dst);
308 	if (sk)
309 		sock_hold(sk);
310 
311 	spin_unlock_bh(&vsock_table_lock);
312 
313 	return sk;
314 }
315 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
316 
317 void vsock_remove_sock(struct vsock_sock *vsk)
318 {
319 	vsock_remove_bound(vsk);
320 	vsock_remove_connected(vsk);
321 }
322 EXPORT_SYMBOL_GPL(vsock_remove_sock);
323 
324 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
325 {
326 	int i;
327 
328 	spin_lock_bh(&vsock_table_lock);
329 
330 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
331 		struct vsock_sock *vsk;
332 		list_for_each_entry(vsk, &vsock_connected_table[i],
333 				    connected_table)
334 			fn(sk_vsock(vsk));
335 	}
336 
337 	spin_unlock_bh(&vsock_table_lock);
338 }
339 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
340 
341 void vsock_add_pending(struct sock *listener, struct sock *pending)
342 {
343 	struct vsock_sock *vlistener;
344 	struct vsock_sock *vpending;
345 
346 	vlistener = vsock_sk(listener);
347 	vpending = vsock_sk(pending);
348 
349 	sock_hold(pending);
350 	sock_hold(listener);
351 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
352 }
353 EXPORT_SYMBOL_GPL(vsock_add_pending);
354 
355 void vsock_remove_pending(struct sock *listener, struct sock *pending)
356 {
357 	struct vsock_sock *vpending = vsock_sk(pending);
358 
359 	list_del_init(&vpending->pending_links);
360 	sock_put(listener);
361 	sock_put(pending);
362 }
363 EXPORT_SYMBOL_GPL(vsock_remove_pending);
364 
365 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
366 {
367 	struct vsock_sock *vlistener;
368 	struct vsock_sock *vconnected;
369 
370 	vlistener = vsock_sk(listener);
371 	vconnected = vsock_sk(connected);
372 
373 	sock_hold(connected);
374 	sock_hold(listener);
375 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
376 }
377 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
378 
379 static struct sock *vsock_dequeue_accept(struct sock *listener)
380 {
381 	struct vsock_sock *vlistener;
382 	struct vsock_sock *vconnected;
383 
384 	vlistener = vsock_sk(listener);
385 
386 	if (list_empty(&vlistener->accept_queue))
387 		return NULL;
388 
389 	vconnected = list_entry(vlistener->accept_queue.next,
390 				struct vsock_sock, accept_queue);
391 
392 	list_del_init(&vconnected->accept_queue);
393 	sock_put(listener);
394 	/* The caller will need a reference on the connected socket so we let
395 	 * it call sock_put().
396 	 */
397 
398 	return sk_vsock(vconnected);
399 }
400 
401 static bool vsock_is_accept_queue_empty(struct sock *sk)
402 {
403 	struct vsock_sock *vsk = vsock_sk(sk);
404 	return list_empty(&vsk->accept_queue);
405 }
406 
407 static bool vsock_is_pending(struct sock *sk)
408 {
409 	struct vsock_sock *vsk = vsock_sk(sk);
410 	return !list_empty(&vsk->pending_links);
411 }
412 
413 static int vsock_send_shutdown(struct sock *sk, int mode)
414 {
415 	struct vsock_sock *vsk = vsock_sk(sk);
416 
417 	return vsk->transport->shutdown(vsk, mode);
418 }
419 
420 static void vsock_pending_work(struct work_struct *work)
421 {
422 	struct sock *sk;
423 	struct sock *listener;
424 	struct vsock_sock *vsk;
425 	bool cleanup;
426 
427 	vsk = container_of(work, struct vsock_sock, pending_work.work);
428 	sk = sk_vsock(vsk);
429 	listener = vsk->listener;
430 	cleanup = true;
431 
432 	lock_sock(listener);
433 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
434 
435 	if (vsock_is_pending(sk)) {
436 		vsock_remove_pending(listener, sk);
437 
438 		sk_acceptq_removed(listener);
439 	} else if (!vsk->rejected) {
440 		/* We are not on the pending list and accept() did not reject
441 		 * us, so we must have been accepted by our user process.  We
442 		 * just need to drop our references to the sockets and be on
443 		 * our way.
444 		 */
445 		cleanup = false;
446 		goto out;
447 	}
448 
449 	/* We need to remove ourself from the global connected sockets list so
450 	 * incoming packets can't find this socket, and to reduce the reference
451 	 * count.
452 	 */
453 	vsock_remove_connected(vsk);
454 
455 	sk->sk_state = TCP_CLOSE;
456 
457 out:
458 	release_sock(sk);
459 	release_sock(listener);
460 	if (cleanup)
461 		sock_put(sk);
462 
463 	sock_put(sk);
464 	sock_put(listener);
465 }
466 
467 /**** SOCKET OPERATIONS ****/
468 
469 static int __vsock_bind_stream(struct vsock_sock *vsk,
470 			       struct sockaddr_vm *addr)
471 {
472 	static u32 port;
473 	struct sockaddr_vm new_addr;
474 
475 	if (!port)
476 		port = LAST_RESERVED_PORT + 1 +
477 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
478 
479 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
480 
481 	if (addr->svm_port == VMADDR_PORT_ANY) {
482 		bool found = false;
483 		unsigned int i;
484 
485 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
486 			if (port <= LAST_RESERVED_PORT)
487 				port = LAST_RESERVED_PORT + 1;
488 
489 			new_addr.svm_port = port++;
490 
491 			if (!__vsock_find_bound_socket(&new_addr)) {
492 				found = true;
493 				break;
494 			}
495 		}
496 
497 		if (!found)
498 			return -EADDRNOTAVAIL;
499 	} else {
500 		/* If port is in reserved range, ensure caller
501 		 * has necessary privileges.
502 		 */
503 		if (addr->svm_port <= LAST_RESERVED_PORT &&
504 		    !capable(CAP_NET_BIND_SERVICE)) {
505 			return -EACCES;
506 		}
507 
508 		if (__vsock_find_bound_socket(&new_addr))
509 			return -EADDRINUSE;
510 	}
511 
512 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
513 
514 	/* Remove stream sockets from the unbound list and add them to the hash
515 	 * table for easy lookup by its address.  The unbound list is simply an
516 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
517 	 */
518 	__vsock_remove_bound(vsk);
519 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
520 
521 	return 0;
522 }
523 
524 static int __vsock_bind_dgram(struct vsock_sock *vsk,
525 			      struct sockaddr_vm *addr)
526 {
527 	return vsk->transport->dgram_bind(vsk, addr);
528 }
529 
530 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
531 {
532 	struct vsock_sock *vsk = vsock_sk(sk);
533 	u32 cid;
534 	int retval;
535 
536 	/* First ensure this socket isn't already bound. */
537 	if (vsock_addr_bound(&vsk->local_addr))
538 		return -EINVAL;
539 
540 	/* Now bind to the provided address or select appropriate values if
541 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
542 	 * like AF_INET prevents binding to a non-local IP address (in most
543 	 * cases), we only allow binding to the local CID.
544 	 */
545 	cid = vsk->transport->get_local_cid();
546 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
547 		return -EADDRNOTAVAIL;
548 
549 	switch (sk->sk_socket->type) {
550 	case SOCK_STREAM:
551 		spin_lock_bh(&vsock_table_lock);
552 		retval = __vsock_bind_stream(vsk, addr);
553 		spin_unlock_bh(&vsock_table_lock);
554 		break;
555 
556 	case SOCK_DGRAM:
557 		retval = __vsock_bind_dgram(vsk, addr);
558 		break;
559 
560 	default:
561 		retval = -EINVAL;
562 		break;
563 	}
564 
565 	return retval;
566 }
567 
568 static void vsock_connect_timeout(struct work_struct *work);
569 
570 static struct sock *__vsock_create(struct net *net,
571 				   struct socket *sock,
572 				   struct sock *parent,
573 				   gfp_t priority,
574 				   unsigned short type,
575 				   int kern)
576 {
577 	struct sock *sk;
578 	struct vsock_sock *psk;
579 	struct vsock_sock *vsk;
580 
581 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
582 	if (!sk)
583 		return NULL;
584 
585 	sock_init_data(sock, sk);
586 
587 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
588 	 * non-NULL. We make sure that our sockets always have a type by
589 	 * setting it here if needed.
590 	 */
591 	if (!sock)
592 		sk->sk_type = type;
593 
594 	vsk = vsock_sk(sk);
595 	vsk->transport = transport_single;
596 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
597 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
598 
599 	sk->sk_destruct = vsock_sk_destruct;
600 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
601 	sock_reset_flag(sk, SOCK_DONE);
602 
603 	INIT_LIST_HEAD(&vsk->bound_table);
604 	INIT_LIST_HEAD(&vsk->connected_table);
605 	vsk->listener = NULL;
606 	INIT_LIST_HEAD(&vsk->pending_links);
607 	INIT_LIST_HEAD(&vsk->accept_queue);
608 	vsk->rejected = false;
609 	vsk->sent_request = false;
610 	vsk->ignore_connecting_rst = false;
611 	vsk->peer_shutdown = 0;
612 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
613 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
614 
615 	psk = parent ? vsock_sk(parent) : NULL;
616 	if (parent) {
617 		vsk->trusted = psk->trusted;
618 		vsk->owner = get_cred(psk->owner);
619 		vsk->connect_timeout = psk->connect_timeout;
620 		vsk->buffer_size = psk->buffer_size;
621 		vsk->buffer_min_size = psk->buffer_min_size;
622 		vsk->buffer_max_size = psk->buffer_max_size;
623 	} else {
624 		vsk->trusted = capable(CAP_NET_ADMIN);
625 		vsk->owner = get_current_cred();
626 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
627 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
628 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
629 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
630 	}
631 
632 	if (vsk->transport->init(vsk, psk) < 0) {
633 		sk_free(sk);
634 		return NULL;
635 	}
636 
637 	if (sock)
638 		vsock_insert_unbound(vsk);
639 
640 	return sk;
641 }
642 
643 static void __vsock_release(struct sock *sk, int level)
644 {
645 	if (sk) {
646 		struct sock *pending;
647 		struct vsock_sock *vsk;
648 
649 		vsk = vsock_sk(sk);
650 		pending = NULL;	/* Compiler warning. */
651 
652 		/* The release call is supposed to use lock_sock_nested()
653 		 * rather than lock_sock(), if a sock lock should be acquired.
654 		 */
655 		vsk->transport->release(vsk);
656 
657 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
658 		 * version to avoid the warning "possible recursive locking
659 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
660 		 * is the same as lock_sock(sk).
661 		 */
662 		lock_sock_nested(sk, level);
663 		sock_orphan(sk);
664 		sk->sk_shutdown = SHUTDOWN_MASK;
665 
666 		skb_queue_purge(&sk->sk_receive_queue);
667 
668 		/* Clean up any sockets that never were accepted. */
669 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
670 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
671 			sock_put(pending);
672 		}
673 
674 		release_sock(sk);
675 		sock_put(sk);
676 	}
677 }
678 
679 static void vsock_sk_destruct(struct sock *sk)
680 {
681 	struct vsock_sock *vsk = vsock_sk(sk);
682 
683 	vsk->transport->destruct(vsk);
684 
685 	/* When clearing these addresses, there's no need to set the family and
686 	 * possibly register the address family with the kernel.
687 	 */
688 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
689 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
690 
691 	put_cred(vsk->owner);
692 }
693 
694 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
695 {
696 	int err;
697 
698 	err = sock_queue_rcv_skb(sk, skb);
699 	if (err)
700 		kfree_skb(skb);
701 
702 	return err;
703 }
704 
705 struct sock *vsock_create_connected(struct sock *parent)
706 {
707 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
708 			      parent->sk_type, 0);
709 }
710 EXPORT_SYMBOL_GPL(vsock_create_connected);
711 
712 s64 vsock_stream_has_data(struct vsock_sock *vsk)
713 {
714 	return vsk->transport->stream_has_data(vsk);
715 }
716 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
717 
718 s64 vsock_stream_has_space(struct vsock_sock *vsk)
719 {
720 	return vsk->transport->stream_has_space(vsk);
721 }
722 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
723 
724 static int vsock_release(struct socket *sock)
725 {
726 	__vsock_release(sock->sk, 0);
727 	sock->sk = NULL;
728 	sock->state = SS_FREE;
729 
730 	return 0;
731 }
732 
733 static int
734 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
735 {
736 	int err;
737 	struct sock *sk;
738 	struct sockaddr_vm *vm_addr;
739 
740 	sk = sock->sk;
741 
742 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
743 		return -EINVAL;
744 
745 	lock_sock(sk);
746 	err = __vsock_bind(sk, vm_addr);
747 	release_sock(sk);
748 
749 	return err;
750 }
751 
752 static int vsock_getname(struct socket *sock,
753 			 struct sockaddr *addr, int peer)
754 {
755 	int err;
756 	struct sock *sk;
757 	struct vsock_sock *vsk;
758 	struct sockaddr_vm *vm_addr;
759 
760 	sk = sock->sk;
761 	vsk = vsock_sk(sk);
762 	err = 0;
763 
764 	lock_sock(sk);
765 
766 	if (peer) {
767 		if (sock->state != SS_CONNECTED) {
768 			err = -ENOTCONN;
769 			goto out;
770 		}
771 		vm_addr = &vsk->remote_addr;
772 	} else {
773 		vm_addr = &vsk->local_addr;
774 	}
775 
776 	if (!vm_addr) {
777 		err = -EINVAL;
778 		goto out;
779 	}
780 
781 	/* sys_getsockname() and sys_getpeername() pass us a
782 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
783 	 * that macro is defined in socket.c instead of .h, so we hardcode its
784 	 * value here.
785 	 */
786 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
787 	memcpy(addr, vm_addr, sizeof(*vm_addr));
788 	err = sizeof(*vm_addr);
789 
790 out:
791 	release_sock(sk);
792 	return err;
793 }
794 
795 static int vsock_shutdown(struct socket *sock, int mode)
796 {
797 	int err;
798 	struct sock *sk;
799 
800 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
801 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
802 	 * here like the other address families do.  Note also that the
803 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
804 	 * which is what we want.
805 	 */
806 	mode++;
807 
808 	if ((mode & ~SHUTDOWN_MASK) || !mode)
809 		return -EINVAL;
810 
811 	/* If this is a STREAM socket and it is not connected then bail out
812 	 * immediately.  If it is a DGRAM socket then we must first kick the
813 	 * socket so that it wakes up from any sleeping calls, for example
814 	 * recv(), and then afterwards return the error.
815 	 */
816 
817 	sk = sock->sk;
818 	if (sock->state == SS_UNCONNECTED) {
819 		err = -ENOTCONN;
820 		if (sk->sk_type == SOCK_STREAM)
821 			return err;
822 	} else {
823 		sock->state = SS_DISCONNECTING;
824 		err = 0;
825 	}
826 
827 	/* Receive and send shutdowns are treated alike. */
828 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
829 	if (mode) {
830 		lock_sock(sk);
831 		sk->sk_shutdown |= mode;
832 		sk->sk_state_change(sk);
833 		release_sock(sk);
834 
835 		if (sk->sk_type == SOCK_STREAM) {
836 			sock_reset_flag(sk, SOCK_DONE);
837 			vsock_send_shutdown(sk, mode);
838 		}
839 	}
840 
841 	return err;
842 }
843 
844 static __poll_t vsock_poll(struct file *file, struct socket *sock,
845 			       poll_table *wait)
846 {
847 	struct sock *sk;
848 	__poll_t mask;
849 	struct vsock_sock *vsk;
850 
851 	sk = sock->sk;
852 	vsk = vsock_sk(sk);
853 
854 	poll_wait(file, sk_sleep(sk), wait);
855 	mask = 0;
856 
857 	if (sk->sk_err)
858 		/* Signify that there has been an error on this socket. */
859 		mask |= EPOLLERR;
860 
861 	/* INET sockets treat local write shutdown and peer write shutdown as a
862 	 * case of EPOLLHUP set.
863 	 */
864 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
865 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
866 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
867 		mask |= EPOLLHUP;
868 	}
869 
870 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
871 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
872 		mask |= EPOLLRDHUP;
873 	}
874 
875 	if (sock->type == SOCK_DGRAM) {
876 		/* For datagram sockets we can read if there is something in
877 		 * the queue and write as long as the socket isn't shutdown for
878 		 * sending.
879 		 */
880 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
881 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
882 			mask |= EPOLLIN | EPOLLRDNORM;
883 		}
884 
885 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
886 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
887 
888 	} else if (sock->type == SOCK_STREAM) {
889 		const struct vsock_transport *transport = vsk->transport;
890 		lock_sock(sk);
891 
892 		/* Listening sockets that have connections in their accept
893 		 * queue can be read.
894 		 */
895 		if (sk->sk_state == TCP_LISTEN
896 		    && !vsock_is_accept_queue_empty(sk))
897 			mask |= EPOLLIN | EPOLLRDNORM;
898 
899 		/* If there is something in the queue then we can read. */
900 		if (transport->stream_is_active(vsk) &&
901 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
902 			bool data_ready_now = false;
903 			int ret = transport->notify_poll_in(
904 					vsk, 1, &data_ready_now);
905 			if (ret < 0) {
906 				mask |= EPOLLERR;
907 			} else {
908 				if (data_ready_now)
909 					mask |= EPOLLIN | EPOLLRDNORM;
910 
911 			}
912 		}
913 
914 		/* Sockets whose connections have been closed, reset, or
915 		 * terminated should also be considered read, and we check the
916 		 * shutdown flag for that.
917 		 */
918 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
919 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
920 			mask |= EPOLLIN | EPOLLRDNORM;
921 		}
922 
923 		/* Connected sockets that can produce data can be written. */
924 		if (sk->sk_state == TCP_ESTABLISHED) {
925 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
926 				bool space_avail_now = false;
927 				int ret = transport->notify_poll_out(
928 						vsk, 1, &space_avail_now);
929 				if (ret < 0) {
930 					mask |= EPOLLERR;
931 				} else {
932 					if (space_avail_now)
933 						/* Remove EPOLLWRBAND since INET
934 						 * sockets are not setting it.
935 						 */
936 						mask |= EPOLLOUT | EPOLLWRNORM;
937 
938 				}
939 			}
940 		}
941 
942 		/* Simulate INET socket poll behaviors, which sets
943 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
944 		 * but local send is not shutdown.
945 		 */
946 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
947 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
948 				mask |= EPOLLOUT | EPOLLWRNORM;
949 
950 		}
951 
952 		release_sock(sk);
953 	}
954 
955 	return mask;
956 }
957 
958 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
959 			       size_t len)
960 {
961 	int err;
962 	struct sock *sk;
963 	struct vsock_sock *vsk;
964 	struct sockaddr_vm *remote_addr;
965 	const struct vsock_transport *transport;
966 
967 	if (msg->msg_flags & MSG_OOB)
968 		return -EOPNOTSUPP;
969 
970 	/* For now, MSG_DONTWAIT is always assumed... */
971 	err = 0;
972 	sk = sock->sk;
973 	vsk = vsock_sk(sk);
974 	transport = vsk->transport;
975 
976 	lock_sock(sk);
977 
978 	err = vsock_auto_bind(vsk);
979 	if (err)
980 		goto out;
981 
982 
983 	/* If the provided message contains an address, use that.  Otherwise
984 	 * fall back on the socket's remote handle (if it has been connected).
985 	 */
986 	if (msg->msg_name &&
987 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
988 			    &remote_addr) == 0) {
989 		/* Ensure this address is of the right type and is a valid
990 		 * destination.
991 		 */
992 
993 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
994 			remote_addr->svm_cid = transport->get_local_cid();
995 
996 		if (!vsock_addr_bound(remote_addr)) {
997 			err = -EINVAL;
998 			goto out;
999 		}
1000 	} else if (sock->state == SS_CONNECTED) {
1001 		remote_addr = &vsk->remote_addr;
1002 
1003 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1004 			remote_addr->svm_cid = transport->get_local_cid();
1005 
1006 		/* XXX Should connect() or this function ensure remote_addr is
1007 		 * bound?
1008 		 */
1009 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1010 			err = -EINVAL;
1011 			goto out;
1012 		}
1013 	} else {
1014 		err = -EINVAL;
1015 		goto out;
1016 	}
1017 
1018 	if (!transport->dgram_allow(remote_addr->svm_cid,
1019 				    remote_addr->svm_port)) {
1020 		err = -EINVAL;
1021 		goto out;
1022 	}
1023 
1024 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1025 
1026 out:
1027 	release_sock(sk);
1028 	return err;
1029 }
1030 
1031 static int vsock_dgram_connect(struct socket *sock,
1032 			       struct sockaddr *addr, int addr_len, int flags)
1033 {
1034 	int err;
1035 	struct sock *sk;
1036 	struct vsock_sock *vsk;
1037 	struct sockaddr_vm *remote_addr;
1038 
1039 	sk = sock->sk;
1040 	vsk = vsock_sk(sk);
1041 
1042 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1043 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1044 		lock_sock(sk);
1045 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1046 				VMADDR_PORT_ANY);
1047 		sock->state = SS_UNCONNECTED;
1048 		release_sock(sk);
1049 		return 0;
1050 	} else if (err != 0)
1051 		return -EINVAL;
1052 
1053 	lock_sock(sk);
1054 
1055 	err = vsock_auto_bind(vsk);
1056 	if (err)
1057 		goto out;
1058 
1059 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1060 					 remote_addr->svm_port)) {
1061 		err = -EINVAL;
1062 		goto out;
1063 	}
1064 
1065 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1066 	sock->state = SS_CONNECTED;
1067 
1068 out:
1069 	release_sock(sk);
1070 	return err;
1071 }
1072 
1073 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1074 			       size_t len, int flags)
1075 {
1076 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1077 
1078 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1079 }
1080 
1081 static const struct proto_ops vsock_dgram_ops = {
1082 	.family = PF_VSOCK,
1083 	.owner = THIS_MODULE,
1084 	.release = vsock_release,
1085 	.bind = vsock_bind,
1086 	.connect = vsock_dgram_connect,
1087 	.socketpair = sock_no_socketpair,
1088 	.accept = sock_no_accept,
1089 	.getname = vsock_getname,
1090 	.poll = vsock_poll,
1091 	.ioctl = sock_no_ioctl,
1092 	.listen = sock_no_listen,
1093 	.shutdown = vsock_shutdown,
1094 	.setsockopt = sock_no_setsockopt,
1095 	.getsockopt = sock_no_getsockopt,
1096 	.sendmsg = vsock_dgram_sendmsg,
1097 	.recvmsg = vsock_dgram_recvmsg,
1098 	.mmap = sock_no_mmap,
1099 	.sendpage = sock_no_sendpage,
1100 };
1101 
1102 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1103 {
1104 	const struct vsock_transport *transport = vsk->transport;
1105 
1106 	if (!transport->cancel_pkt)
1107 		return -EOPNOTSUPP;
1108 
1109 	return transport->cancel_pkt(vsk);
1110 }
1111 
1112 static void vsock_connect_timeout(struct work_struct *work)
1113 {
1114 	struct sock *sk;
1115 	struct vsock_sock *vsk;
1116 	int cancel = 0;
1117 
1118 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1119 	sk = sk_vsock(vsk);
1120 
1121 	lock_sock(sk);
1122 	if (sk->sk_state == TCP_SYN_SENT &&
1123 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1124 		sk->sk_state = TCP_CLOSE;
1125 		sk->sk_err = ETIMEDOUT;
1126 		sk->sk_error_report(sk);
1127 		cancel = 1;
1128 	}
1129 	release_sock(sk);
1130 	if (cancel)
1131 		vsock_transport_cancel_pkt(vsk);
1132 
1133 	sock_put(sk);
1134 }
1135 
1136 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1137 				int addr_len, int flags)
1138 {
1139 	int err;
1140 	struct sock *sk;
1141 	struct vsock_sock *vsk;
1142 	const struct vsock_transport *transport;
1143 	struct sockaddr_vm *remote_addr;
1144 	long timeout;
1145 	DEFINE_WAIT(wait);
1146 
1147 	err = 0;
1148 	sk = sock->sk;
1149 	vsk = vsock_sk(sk);
1150 	transport = vsk->transport;
1151 
1152 	lock_sock(sk);
1153 
1154 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1155 	switch (sock->state) {
1156 	case SS_CONNECTED:
1157 		err = -EISCONN;
1158 		goto out;
1159 	case SS_DISCONNECTING:
1160 		err = -EINVAL;
1161 		goto out;
1162 	case SS_CONNECTING:
1163 		/* This continues on so we can move sock into the SS_CONNECTED
1164 		 * state once the connection has completed (at which point err
1165 		 * will be set to zero also).  Otherwise, we will either wait
1166 		 * for the connection or return -EALREADY should this be a
1167 		 * non-blocking call.
1168 		 */
1169 		err = -EALREADY;
1170 		break;
1171 	default:
1172 		if ((sk->sk_state == TCP_LISTEN) ||
1173 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1174 			err = -EINVAL;
1175 			goto out;
1176 		}
1177 
1178 		/* The hypervisor and well-known contexts do not have socket
1179 		 * endpoints.
1180 		 */
1181 		if (!transport->stream_allow(remote_addr->svm_cid,
1182 					     remote_addr->svm_port)) {
1183 			err = -ENETUNREACH;
1184 			goto out;
1185 		}
1186 
1187 		/* Set the remote address that we are connecting to. */
1188 		memcpy(&vsk->remote_addr, remote_addr,
1189 		       sizeof(vsk->remote_addr));
1190 
1191 		err = vsock_auto_bind(vsk);
1192 		if (err)
1193 			goto out;
1194 
1195 		sk->sk_state = TCP_SYN_SENT;
1196 
1197 		err = transport->connect(vsk);
1198 		if (err < 0)
1199 			goto out;
1200 
1201 		/* Mark sock as connecting and set the error code to in
1202 		 * progress in case this is a non-blocking connect.
1203 		 */
1204 		sock->state = SS_CONNECTING;
1205 		err = -EINPROGRESS;
1206 	}
1207 
1208 	/* The receive path will handle all communication until we are able to
1209 	 * enter the connected state.  Here we wait for the connection to be
1210 	 * completed or a notification of an error.
1211 	 */
1212 	timeout = vsk->connect_timeout;
1213 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1214 
1215 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1216 		if (flags & O_NONBLOCK) {
1217 			/* If we're not going to block, we schedule a timeout
1218 			 * function to generate a timeout on the connection
1219 			 * attempt, in case the peer doesn't respond in a
1220 			 * timely manner. We hold on to the socket until the
1221 			 * timeout fires.
1222 			 */
1223 			sock_hold(sk);
1224 			schedule_delayed_work(&vsk->connect_work, timeout);
1225 
1226 			/* Skip ahead to preserve error code set above. */
1227 			goto out_wait;
1228 		}
1229 
1230 		release_sock(sk);
1231 		timeout = schedule_timeout(timeout);
1232 		lock_sock(sk);
1233 
1234 		if (signal_pending(current)) {
1235 			err = sock_intr_errno(timeout);
1236 			sk->sk_state = TCP_CLOSE;
1237 			sock->state = SS_UNCONNECTED;
1238 			vsock_transport_cancel_pkt(vsk);
1239 			goto out_wait;
1240 		} else if (timeout == 0) {
1241 			err = -ETIMEDOUT;
1242 			sk->sk_state = TCP_CLOSE;
1243 			sock->state = SS_UNCONNECTED;
1244 			vsock_transport_cancel_pkt(vsk);
1245 			goto out_wait;
1246 		}
1247 
1248 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1249 	}
1250 
1251 	if (sk->sk_err) {
1252 		err = -sk->sk_err;
1253 		sk->sk_state = TCP_CLOSE;
1254 		sock->state = SS_UNCONNECTED;
1255 	} else {
1256 		err = 0;
1257 	}
1258 
1259 out_wait:
1260 	finish_wait(sk_sleep(sk), &wait);
1261 out:
1262 	release_sock(sk);
1263 	return err;
1264 }
1265 
1266 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1267 			bool kern)
1268 {
1269 	struct sock *listener;
1270 	int err;
1271 	struct sock *connected;
1272 	struct vsock_sock *vconnected;
1273 	long timeout;
1274 	DEFINE_WAIT(wait);
1275 
1276 	err = 0;
1277 	listener = sock->sk;
1278 
1279 	lock_sock(listener);
1280 
1281 	if (sock->type != SOCK_STREAM) {
1282 		err = -EOPNOTSUPP;
1283 		goto out;
1284 	}
1285 
1286 	if (listener->sk_state != TCP_LISTEN) {
1287 		err = -EINVAL;
1288 		goto out;
1289 	}
1290 
1291 	/* Wait for children sockets to appear; these are the new sockets
1292 	 * created upon connection establishment.
1293 	 */
1294 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1295 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1296 
1297 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1298 	       listener->sk_err == 0) {
1299 		release_sock(listener);
1300 		timeout = schedule_timeout(timeout);
1301 		finish_wait(sk_sleep(listener), &wait);
1302 		lock_sock(listener);
1303 
1304 		if (signal_pending(current)) {
1305 			err = sock_intr_errno(timeout);
1306 			goto out;
1307 		} else if (timeout == 0) {
1308 			err = -EAGAIN;
1309 			goto out;
1310 		}
1311 
1312 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1313 	}
1314 	finish_wait(sk_sleep(listener), &wait);
1315 
1316 	if (listener->sk_err)
1317 		err = -listener->sk_err;
1318 
1319 	if (connected) {
1320 		sk_acceptq_removed(listener);
1321 
1322 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1323 		vconnected = vsock_sk(connected);
1324 
1325 		/* If the listener socket has received an error, then we should
1326 		 * reject this socket and return.  Note that we simply mark the
1327 		 * socket rejected, drop our reference, and let the cleanup
1328 		 * function handle the cleanup; the fact that we found it in
1329 		 * the listener's accept queue guarantees that the cleanup
1330 		 * function hasn't run yet.
1331 		 */
1332 		if (err) {
1333 			vconnected->rejected = true;
1334 		} else {
1335 			newsock->state = SS_CONNECTED;
1336 			sock_graft(connected, newsock);
1337 		}
1338 
1339 		release_sock(connected);
1340 		sock_put(connected);
1341 	}
1342 
1343 out:
1344 	release_sock(listener);
1345 	return err;
1346 }
1347 
1348 static int vsock_listen(struct socket *sock, int backlog)
1349 {
1350 	int err;
1351 	struct sock *sk;
1352 	struct vsock_sock *vsk;
1353 
1354 	sk = sock->sk;
1355 
1356 	lock_sock(sk);
1357 
1358 	if (sock->type != SOCK_STREAM) {
1359 		err = -EOPNOTSUPP;
1360 		goto out;
1361 	}
1362 
1363 	if (sock->state != SS_UNCONNECTED) {
1364 		err = -EINVAL;
1365 		goto out;
1366 	}
1367 
1368 	vsk = vsock_sk(sk);
1369 
1370 	if (!vsock_addr_bound(&vsk->local_addr)) {
1371 		err = -EINVAL;
1372 		goto out;
1373 	}
1374 
1375 	sk->sk_max_ack_backlog = backlog;
1376 	sk->sk_state = TCP_LISTEN;
1377 
1378 	err = 0;
1379 
1380 out:
1381 	release_sock(sk);
1382 	return err;
1383 }
1384 
1385 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1386 				     const struct vsock_transport *transport,
1387 				     u64 val)
1388 {
1389 	if (val > vsk->buffer_max_size)
1390 		val = vsk->buffer_max_size;
1391 
1392 	if (val < vsk->buffer_min_size)
1393 		val = vsk->buffer_min_size;
1394 
1395 	if (val != vsk->buffer_size &&
1396 	    transport && transport->notify_buffer_size)
1397 		transport->notify_buffer_size(vsk, &val);
1398 
1399 	vsk->buffer_size = val;
1400 }
1401 
1402 static int vsock_stream_setsockopt(struct socket *sock,
1403 				   int level,
1404 				   int optname,
1405 				   char __user *optval,
1406 				   unsigned int optlen)
1407 {
1408 	int err;
1409 	struct sock *sk;
1410 	struct vsock_sock *vsk;
1411 	const struct vsock_transport *transport;
1412 	u64 val;
1413 
1414 	if (level != AF_VSOCK)
1415 		return -ENOPROTOOPT;
1416 
1417 #define COPY_IN(_v)                                       \
1418 	do {						  \
1419 		if (optlen < sizeof(_v)) {		  \
1420 			err = -EINVAL;			  \
1421 			goto exit;			  \
1422 		}					  \
1423 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1424 			err = -EFAULT;					\
1425 			goto exit;					\
1426 		}							\
1427 	} while (0)
1428 
1429 	err = 0;
1430 	sk = sock->sk;
1431 	vsk = vsock_sk(sk);
1432 	transport = vsk->transport;
1433 
1434 	lock_sock(sk);
1435 
1436 	switch (optname) {
1437 	case SO_VM_SOCKETS_BUFFER_SIZE:
1438 		COPY_IN(val);
1439 		vsock_update_buffer_size(vsk, transport, val);
1440 		break;
1441 
1442 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1443 		COPY_IN(val);
1444 		vsk->buffer_max_size = val;
1445 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1446 		break;
1447 
1448 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1449 		COPY_IN(val);
1450 		vsk->buffer_min_size = val;
1451 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1452 		break;
1453 
1454 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1455 		struct __kernel_old_timeval tv;
1456 		COPY_IN(tv);
1457 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1458 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1459 			vsk->connect_timeout = tv.tv_sec * HZ +
1460 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1461 			if (vsk->connect_timeout == 0)
1462 				vsk->connect_timeout =
1463 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1464 
1465 		} else {
1466 			err = -ERANGE;
1467 		}
1468 		break;
1469 	}
1470 
1471 	default:
1472 		err = -ENOPROTOOPT;
1473 		break;
1474 	}
1475 
1476 #undef COPY_IN
1477 
1478 exit:
1479 	release_sock(sk);
1480 	return err;
1481 }
1482 
1483 static int vsock_stream_getsockopt(struct socket *sock,
1484 				   int level, int optname,
1485 				   char __user *optval,
1486 				   int __user *optlen)
1487 {
1488 	int err;
1489 	int len;
1490 	struct sock *sk;
1491 	struct vsock_sock *vsk;
1492 	u64 val;
1493 
1494 	if (level != AF_VSOCK)
1495 		return -ENOPROTOOPT;
1496 
1497 	err = get_user(len, optlen);
1498 	if (err != 0)
1499 		return err;
1500 
1501 #define COPY_OUT(_v)                            \
1502 	do {					\
1503 		if (len < sizeof(_v))		\
1504 			return -EINVAL;		\
1505 						\
1506 		len = sizeof(_v);		\
1507 		if (copy_to_user(optval, &_v, len) != 0)	\
1508 			return -EFAULT;				\
1509 								\
1510 	} while (0)
1511 
1512 	err = 0;
1513 	sk = sock->sk;
1514 	vsk = vsock_sk(sk);
1515 
1516 	switch (optname) {
1517 	case SO_VM_SOCKETS_BUFFER_SIZE:
1518 		val = vsk->buffer_size;
1519 		COPY_OUT(val);
1520 		break;
1521 
1522 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1523 		val = vsk->buffer_max_size;
1524 		COPY_OUT(val);
1525 		break;
1526 
1527 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1528 		val = vsk->buffer_min_size;
1529 		COPY_OUT(val);
1530 		break;
1531 
1532 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1533 		struct __kernel_old_timeval tv;
1534 		tv.tv_sec = vsk->connect_timeout / HZ;
1535 		tv.tv_usec =
1536 		    (vsk->connect_timeout -
1537 		     tv.tv_sec * HZ) * (1000000 / HZ);
1538 		COPY_OUT(tv);
1539 		break;
1540 	}
1541 	default:
1542 		return -ENOPROTOOPT;
1543 	}
1544 
1545 	err = put_user(len, optlen);
1546 	if (err != 0)
1547 		return -EFAULT;
1548 
1549 #undef COPY_OUT
1550 
1551 	return 0;
1552 }
1553 
1554 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1555 				size_t len)
1556 {
1557 	struct sock *sk;
1558 	struct vsock_sock *vsk;
1559 	const struct vsock_transport *transport;
1560 	ssize_t total_written;
1561 	long timeout;
1562 	int err;
1563 	struct vsock_transport_send_notify_data send_data;
1564 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1565 
1566 	sk = sock->sk;
1567 	vsk = vsock_sk(sk);
1568 	transport = vsk->transport;
1569 	total_written = 0;
1570 	err = 0;
1571 
1572 	if (msg->msg_flags & MSG_OOB)
1573 		return -EOPNOTSUPP;
1574 
1575 	lock_sock(sk);
1576 
1577 	/* Callers should not provide a destination with stream sockets. */
1578 	if (msg->msg_namelen) {
1579 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1580 		goto out;
1581 	}
1582 
1583 	/* Send data only if both sides are not shutdown in the direction. */
1584 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1585 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1586 		err = -EPIPE;
1587 		goto out;
1588 	}
1589 
1590 	if (sk->sk_state != TCP_ESTABLISHED ||
1591 	    !vsock_addr_bound(&vsk->local_addr)) {
1592 		err = -ENOTCONN;
1593 		goto out;
1594 	}
1595 
1596 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1597 		err = -EDESTADDRREQ;
1598 		goto out;
1599 	}
1600 
1601 	/* Wait for room in the produce queue to enqueue our user's data. */
1602 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1603 
1604 	err = transport->notify_send_init(vsk, &send_data);
1605 	if (err < 0)
1606 		goto out;
1607 
1608 	while (total_written < len) {
1609 		ssize_t written;
1610 
1611 		add_wait_queue(sk_sleep(sk), &wait);
1612 		while (vsock_stream_has_space(vsk) == 0 &&
1613 		       sk->sk_err == 0 &&
1614 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1615 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1616 
1617 			/* Don't wait for non-blocking sockets. */
1618 			if (timeout == 0) {
1619 				err = -EAGAIN;
1620 				remove_wait_queue(sk_sleep(sk), &wait);
1621 				goto out_err;
1622 			}
1623 
1624 			err = transport->notify_send_pre_block(vsk, &send_data);
1625 			if (err < 0) {
1626 				remove_wait_queue(sk_sleep(sk), &wait);
1627 				goto out_err;
1628 			}
1629 
1630 			release_sock(sk);
1631 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1632 			lock_sock(sk);
1633 			if (signal_pending(current)) {
1634 				err = sock_intr_errno(timeout);
1635 				remove_wait_queue(sk_sleep(sk), &wait);
1636 				goto out_err;
1637 			} else if (timeout == 0) {
1638 				err = -EAGAIN;
1639 				remove_wait_queue(sk_sleep(sk), &wait);
1640 				goto out_err;
1641 			}
1642 		}
1643 		remove_wait_queue(sk_sleep(sk), &wait);
1644 
1645 		/* These checks occur both as part of and after the loop
1646 		 * conditional since we need to check before and after
1647 		 * sleeping.
1648 		 */
1649 		if (sk->sk_err) {
1650 			err = -sk->sk_err;
1651 			goto out_err;
1652 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1653 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1654 			err = -EPIPE;
1655 			goto out_err;
1656 		}
1657 
1658 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1659 		if (err < 0)
1660 			goto out_err;
1661 
1662 		/* Note that enqueue will only write as many bytes as are free
1663 		 * in the produce queue, so we don't need to ensure len is
1664 		 * smaller than the queue size.  It is the caller's
1665 		 * responsibility to check how many bytes we were able to send.
1666 		 */
1667 
1668 		written = transport->stream_enqueue(
1669 				vsk, msg,
1670 				len - total_written);
1671 		if (written < 0) {
1672 			err = -ENOMEM;
1673 			goto out_err;
1674 		}
1675 
1676 		total_written += written;
1677 
1678 		err = transport->notify_send_post_enqueue(
1679 				vsk, written, &send_data);
1680 		if (err < 0)
1681 			goto out_err;
1682 
1683 	}
1684 
1685 out_err:
1686 	if (total_written > 0)
1687 		err = total_written;
1688 out:
1689 	release_sock(sk);
1690 	return err;
1691 }
1692 
1693 
1694 static int
1695 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1696 		     int flags)
1697 {
1698 	struct sock *sk;
1699 	struct vsock_sock *vsk;
1700 	const struct vsock_transport *transport;
1701 	int err;
1702 	size_t target;
1703 	ssize_t copied;
1704 	long timeout;
1705 	struct vsock_transport_recv_notify_data recv_data;
1706 
1707 	DEFINE_WAIT(wait);
1708 
1709 	sk = sock->sk;
1710 	vsk = vsock_sk(sk);
1711 	transport = vsk->transport;
1712 	err = 0;
1713 
1714 	lock_sock(sk);
1715 
1716 	if (sk->sk_state != TCP_ESTABLISHED) {
1717 		/* Recvmsg is supposed to return 0 if a peer performs an
1718 		 * orderly shutdown. Differentiate between that case and when a
1719 		 * peer has not connected or a local shutdown occured with the
1720 		 * SOCK_DONE flag.
1721 		 */
1722 		if (sock_flag(sk, SOCK_DONE))
1723 			err = 0;
1724 		else
1725 			err = -ENOTCONN;
1726 
1727 		goto out;
1728 	}
1729 
1730 	if (flags & MSG_OOB) {
1731 		err = -EOPNOTSUPP;
1732 		goto out;
1733 	}
1734 
1735 	/* We don't check peer_shutdown flag here since peer may actually shut
1736 	 * down, but there can be data in the queue that a local socket can
1737 	 * receive.
1738 	 */
1739 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1740 		err = 0;
1741 		goto out;
1742 	}
1743 
1744 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1745 	 * is not an error.  We may as well bail out now.
1746 	 */
1747 	if (!len) {
1748 		err = 0;
1749 		goto out;
1750 	}
1751 
1752 	/* We must not copy less than target bytes into the user's buffer
1753 	 * before returning successfully, so we wait for the consume queue to
1754 	 * have that much data to consume before dequeueing.  Note that this
1755 	 * makes it impossible to handle cases where target is greater than the
1756 	 * queue size.
1757 	 */
1758 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1759 	if (target >= transport->stream_rcvhiwat(vsk)) {
1760 		err = -ENOMEM;
1761 		goto out;
1762 	}
1763 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1764 	copied = 0;
1765 
1766 	err = transport->notify_recv_init(vsk, target, &recv_data);
1767 	if (err < 0)
1768 		goto out;
1769 
1770 
1771 	while (1) {
1772 		s64 ready;
1773 
1774 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1775 		ready = vsock_stream_has_data(vsk);
1776 
1777 		if (ready == 0) {
1778 			if (sk->sk_err != 0 ||
1779 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1780 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1781 				finish_wait(sk_sleep(sk), &wait);
1782 				break;
1783 			}
1784 			/* Don't wait for non-blocking sockets. */
1785 			if (timeout == 0) {
1786 				err = -EAGAIN;
1787 				finish_wait(sk_sleep(sk), &wait);
1788 				break;
1789 			}
1790 
1791 			err = transport->notify_recv_pre_block(
1792 					vsk, target, &recv_data);
1793 			if (err < 0) {
1794 				finish_wait(sk_sleep(sk), &wait);
1795 				break;
1796 			}
1797 			release_sock(sk);
1798 			timeout = schedule_timeout(timeout);
1799 			lock_sock(sk);
1800 
1801 			if (signal_pending(current)) {
1802 				err = sock_intr_errno(timeout);
1803 				finish_wait(sk_sleep(sk), &wait);
1804 				break;
1805 			} else if (timeout == 0) {
1806 				err = -EAGAIN;
1807 				finish_wait(sk_sleep(sk), &wait);
1808 				break;
1809 			}
1810 		} else {
1811 			ssize_t read;
1812 
1813 			finish_wait(sk_sleep(sk), &wait);
1814 
1815 			if (ready < 0) {
1816 				/* Invalid queue pair content. XXX This should
1817 				* be changed to a connection reset in a later
1818 				* change.
1819 				*/
1820 
1821 				err = -ENOMEM;
1822 				goto out;
1823 			}
1824 
1825 			err = transport->notify_recv_pre_dequeue(
1826 					vsk, target, &recv_data);
1827 			if (err < 0)
1828 				break;
1829 
1830 			read = transport->stream_dequeue(
1831 					vsk, msg,
1832 					len - copied, flags);
1833 			if (read < 0) {
1834 				err = -ENOMEM;
1835 				break;
1836 			}
1837 
1838 			copied += read;
1839 
1840 			err = transport->notify_recv_post_dequeue(
1841 					vsk, target, read,
1842 					!(flags & MSG_PEEK), &recv_data);
1843 			if (err < 0)
1844 				goto out;
1845 
1846 			if (read >= target || flags & MSG_PEEK)
1847 				break;
1848 
1849 			target -= read;
1850 		}
1851 	}
1852 
1853 	if (sk->sk_err)
1854 		err = -sk->sk_err;
1855 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1856 		err = 0;
1857 
1858 	if (copied > 0)
1859 		err = copied;
1860 
1861 out:
1862 	release_sock(sk);
1863 	return err;
1864 }
1865 
1866 static const struct proto_ops vsock_stream_ops = {
1867 	.family = PF_VSOCK,
1868 	.owner = THIS_MODULE,
1869 	.release = vsock_release,
1870 	.bind = vsock_bind,
1871 	.connect = vsock_stream_connect,
1872 	.socketpair = sock_no_socketpair,
1873 	.accept = vsock_accept,
1874 	.getname = vsock_getname,
1875 	.poll = vsock_poll,
1876 	.ioctl = sock_no_ioctl,
1877 	.listen = vsock_listen,
1878 	.shutdown = vsock_shutdown,
1879 	.setsockopt = vsock_stream_setsockopt,
1880 	.getsockopt = vsock_stream_getsockopt,
1881 	.sendmsg = vsock_stream_sendmsg,
1882 	.recvmsg = vsock_stream_recvmsg,
1883 	.mmap = sock_no_mmap,
1884 	.sendpage = sock_no_sendpage,
1885 };
1886 
1887 static int vsock_create(struct net *net, struct socket *sock,
1888 			int protocol, int kern)
1889 {
1890 	if (!sock)
1891 		return -EINVAL;
1892 
1893 	if (protocol && protocol != PF_VSOCK)
1894 		return -EPROTONOSUPPORT;
1895 
1896 	switch (sock->type) {
1897 	case SOCK_DGRAM:
1898 		sock->ops = &vsock_dgram_ops;
1899 		break;
1900 	case SOCK_STREAM:
1901 		sock->ops = &vsock_stream_ops;
1902 		break;
1903 	default:
1904 		return -ESOCKTNOSUPPORT;
1905 	}
1906 
1907 	sock->state = SS_UNCONNECTED;
1908 
1909 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1910 }
1911 
1912 static const struct net_proto_family vsock_family_ops = {
1913 	.family = AF_VSOCK,
1914 	.create = vsock_create,
1915 	.owner = THIS_MODULE,
1916 };
1917 
1918 static long vsock_dev_do_ioctl(struct file *filp,
1919 			       unsigned int cmd, void __user *ptr)
1920 {
1921 	u32 __user *p = ptr;
1922 	int retval = 0;
1923 
1924 	switch (cmd) {
1925 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1926 		if (put_user(transport_single->get_local_cid(), p) != 0)
1927 			retval = -EFAULT;
1928 		break;
1929 
1930 	default:
1931 		pr_err("Unknown ioctl %d\n", cmd);
1932 		retval = -EINVAL;
1933 	}
1934 
1935 	return retval;
1936 }
1937 
1938 static long vsock_dev_ioctl(struct file *filp,
1939 			    unsigned int cmd, unsigned long arg)
1940 {
1941 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1942 }
1943 
1944 #ifdef CONFIG_COMPAT
1945 static long vsock_dev_compat_ioctl(struct file *filp,
1946 				   unsigned int cmd, unsigned long arg)
1947 {
1948 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1949 }
1950 #endif
1951 
1952 static const struct file_operations vsock_device_ops = {
1953 	.owner		= THIS_MODULE,
1954 	.unlocked_ioctl	= vsock_dev_ioctl,
1955 #ifdef CONFIG_COMPAT
1956 	.compat_ioctl	= vsock_dev_compat_ioctl,
1957 #endif
1958 	.open		= nonseekable_open,
1959 };
1960 
1961 static struct miscdevice vsock_device = {
1962 	.name		= "vsock",
1963 	.fops		= &vsock_device_ops,
1964 };
1965 
1966 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1967 {
1968 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1969 
1970 	if (err)
1971 		return err;
1972 
1973 	if (transport_single) {
1974 		err = -EBUSY;
1975 		goto err_busy;
1976 	}
1977 
1978 	/* Transport must be the owner of the protocol so that it can't
1979 	 * unload while there are open sockets.
1980 	 */
1981 	vsock_proto.owner = owner;
1982 	transport_single = t;
1983 
1984 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1985 	err = misc_register(&vsock_device);
1986 	if (err) {
1987 		pr_err("Failed to register misc device\n");
1988 		goto err_reset_transport;
1989 	}
1990 
1991 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1992 	if (err) {
1993 		pr_err("Cannot register vsock protocol\n");
1994 		goto err_deregister_misc;
1995 	}
1996 
1997 	err = sock_register(&vsock_family_ops);
1998 	if (err) {
1999 		pr_err("could not register af_vsock (%d) address family: %d\n",
2000 		       AF_VSOCK, err);
2001 		goto err_unregister_proto;
2002 	}
2003 
2004 	mutex_unlock(&vsock_register_mutex);
2005 	return 0;
2006 
2007 err_unregister_proto:
2008 	proto_unregister(&vsock_proto);
2009 err_deregister_misc:
2010 	misc_deregister(&vsock_device);
2011 err_reset_transport:
2012 	transport_single = NULL;
2013 err_busy:
2014 	mutex_unlock(&vsock_register_mutex);
2015 	return err;
2016 }
2017 EXPORT_SYMBOL_GPL(__vsock_core_init);
2018 
2019 void vsock_core_exit(void)
2020 {
2021 	mutex_lock(&vsock_register_mutex);
2022 
2023 	misc_deregister(&vsock_device);
2024 	sock_unregister(AF_VSOCK);
2025 	proto_unregister(&vsock_proto);
2026 
2027 	/* We do not want the assignment below re-ordered. */
2028 	mb();
2029 	transport_single = NULL;
2030 
2031 	mutex_unlock(&vsock_register_mutex);
2032 }
2033 EXPORT_SYMBOL_GPL(vsock_core_exit);
2034 
2035 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2036 {
2037 	return vsk->transport;
2038 }
2039 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2040 
2041 static void __exit vsock_exit(void)
2042 {
2043 	/* Do nothing.  This function makes this module removable. */
2044 }
2045 
2046 module_init(vsock_init_tables);
2047 module_exit(vsock_exit);
2048 
2049 MODULE_AUTHOR("VMware, Inc.");
2050 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2051 MODULE_VERSION("1.0.2.0-k");
2052 MODULE_LICENSE("GPL v2");
2053