1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the SS_LISTEN state. When a connection 40 * request is received (the second kind of socket mentioned above), we create a 41 * new socket and refer to it as a pending socket. These pending sockets are 42 * placed on the pending connection list of the listener socket. When future 43 * packets are received for the address the listener socket is bound to, we 44 * check if the source of the packet is from one that has an existing pending 45 * connection. If it does, we process the packet for the pending socket. When 46 * that socket reaches the connected state, it is removed from the listener 47 * socket's pending list and enqueued in the listener socket's accept queue. 48 * Callers of accept(2) will accept connected sockets from the listener socket's 49 * accept queue. If the socket cannot be accepted for some reason then it is 50 * marked rejected. Once the connection is accepted, it is owned by the user 51 * process and the responsibility for cleanup falls with that user process. 52 * 53 * - It is possible that these pending sockets will never reach the connected 54 * state; in fact, we may never receive another packet after the connection 55 * request. Because of this, we must schedule a cleanup function to run in the 56 * future, after some amount of time passes where a connection should have been 57 * established. This function ensures that the socket is off all lists so it 58 * cannot be retrieved, then drops all references to the socket so it is cleaned 59 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 60 * function will also cleanup rejected sockets, those that reach the connected 61 * state but leave it before they have been accepted. 62 * 63 * - Sockets created by user action will be cleaned up when the user process 64 * calls close(2), causing our release implementation to be called. Our release 65 * implementation will perform some cleanup then drop the last reference so our 66 * sk_destruct implementation is invoked. Our sk_destruct implementation will 67 * perform additional cleanup that's common for both types of sockets. 68 * 69 * - A socket's reference count is what ensures that the structure won't be 70 * freed. Each entry in a list (such as the "global" bound and connected tables 71 * and the listener socket's pending list and connected queue) ensures a 72 * reference. When we defer work until process context and pass a socket as our 73 * argument, we must ensure the reference count is increased to ensure the 74 * socket isn't freed before the function is run; the deferred function will 75 * then drop the reference. 76 */ 77 78 #include <linux/types.h> 79 #include <linux/bitops.h> 80 #include <linux/cred.h> 81 #include <linux/init.h> 82 #include <linux/io.h> 83 #include <linux/kernel.h> 84 #include <linux/kmod.h> 85 #include <linux/list.h> 86 #include <linux/miscdevice.h> 87 #include <linux/module.h> 88 #include <linux/mutex.h> 89 #include <linux/net.h> 90 #include <linux/poll.h> 91 #include <linux/skbuff.h> 92 #include <linux/smp.h> 93 #include <linux/socket.h> 94 #include <linux/stddef.h> 95 #include <linux/unistd.h> 96 #include <linux/wait.h> 97 #include <linux/workqueue.h> 98 #include <net/sock.h> 99 100 #include "af_vsock.h" 101 102 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 103 static void vsock_sk_destruct(struct sock *sk); 104 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 105 106 /* Protocol family. */ 107 static struct proto vsock_proto = { 108 .name = "AF_VSOCK", 109 .owner = THIS_MODULE, 110 .obj_size = sizeof(struct vsock_sock), 111 }; 112 113 /* The default peer timeout indicates how long we will wait for a peer response 114 * to a control message. 115 */ 116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 117 118 #define SS_LISTEN 255 119 120 static const struct vsock_transport *transport; 121 static DEFINE_MUTEX(vsock_register_mutex); 122 123 /**** EXPORTS ****/ 124 125 /* Get the ID of the local context. This is transport dependent. */ 126 127 int vm_sockets_get_local_cid(void) 128 { 129 return transport->get_local_cid(); 130 } 131 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 132 133 /**** UTILS ****/ 134 135 /* Each bound VSocket is stored in the bind hash table and each connected 136 * VSocket is stored in the connected hash table. 137 * 138 * Unbound sockets are all put on the same list attached to the end of the hash 139 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 140 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 141 * represents the list that addr hashes to). 142 * 143 * Specifically, we initialize the vsock_bind_table array to a size of 144 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 145 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 146 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 147 * mods with VSOCK_HASH_SIZE - 1 to ensure this. 148 */ 149 #define VSOCK_HASH_SIZE 251 150 #define MAX_PORT_RETRIES 24 151 152 #define VSOCK_HASH(addr) ((addr)->svm_port % (VSOCK_HASH_SIZE - 1)) 153 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 154 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 155 156 /* XXX This can probably be implemented in a better way. */ 157 #define VSOCK_CONN_HASH(src, dst) \ 158 (((src)->svm_cid ^ (dst)->svm_port) % (VSOCK_HASH_SIZE - 1)) 159 #define vsock_connected_sockets(src, dst) \ 160 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 161 #define vsock_connected_sockets_vsk(vsk) \ 162 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 163 164 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 165 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 166 static DEFINE_SPINLOCK(vsock_table_lock); 167 168 static __init void vsock_init_tables(void) 169 { 170 int i; 171 172 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 173 INIT_LIST_HEAD(&vsock_bind_table[i]); 174 175 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 176 INIT_LIST_HEAD(&vsock_connected_table[i]); 177 } 178 179 static void __vsock_insert_bound(struct list_head *list, 180 struct vsock_sock *vsk) 181 { 182 sock_hold(&vsk->sk); 183 list_add(&vsk->bound_table, list); 184 } 185 186 static void __vsock_insert_connected(struct list_head *list, 187 struct vsock_sock *vsk) 188 { 189 sock_hold(&vsk->sk); 190 list_add(&vsk->connected_table, list); 191 } 192 193 static void __vsock_remove_bound(struct vsock_sock *vsk) 194 { 195 list_del_init(&vsk->bound_table); 196 sock_put(&vsk->sk); 197 } 198 199 static void __vsock_remove_connected(struct vsock_sock *vsk) 200 { 201 list_del_init(&vsk->connected_table); 202 sock_put(&vsk->sk); 203 } 204 205 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 206 { 207 struct vsock_sock *vsk; 208 209 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 210 if (vsock_addr_equals_addr_any(addr, &vsk->local_addr)) 211 return sk_vsock(vsk); 212 213 return NULL; 214 } 215 216 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 217 struct sockaddr_vm *dst) 218 { 219 struct vsock_sock *vsk; 220 221 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 222 connected_table) { 223 if (vsock_addr_equals_addr(src, &vsk->remote_addr) 224 && vsock_addr_equals_addr(dst, &vsk->local_addr)) { 225 return sk_vsock(vsk); 226 } 227 } 228 229 return NULL; 230 } 231 232 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 233 { 234 return !list_empty(&vsk->bound_table); 235 } 236 237 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 238 { 239 return !list_empty(&vsk->connected_table); 240 } 241 242 static void vsock_insert_unbound(struct vsock_sock *vsk) 243 { 244 spin_lock_bh(&vsock_table_lock); 245 __vsock_insert_bound(vsock_unbound_sockets, vsk); 246 spin_unlock_bh(&vsock_table_lock); 247 } 248 249 void vsock_insert_connected(struct vsock_sock *vsk) 250 { 251 struct list_head *list = vsock_connected_sockets( 252 &vsk->remote_addr, &vsk->local_addr); 253 254 spin_lock_bh(&vsock_table_lock); 255 __vsock_insert_connected(list, vsk); 256 spin_unlock_bh(&vsock_table_lock); 257 } 258 EXPORT_SYMBOL_GPL(vsock_insert_connected); 259 260 void vsock_remove_bound(struct vsock_sock *vsk) 261 { 262 spin_lock_bh(&vsock_table_lock); 263 __vsock_remove_bound(vsk); 264 spin_unlock_bh(&vsock_table_lock); 265 } 266 EXPORT_SYMBOL_GPL(vsock_remove_bound); 267 268 void vsock_remove_connected(struct vsock_sock *vsk) 269 { 270 spin_lock_bh(&vsock_table_lock); 271 __vsock_remove_connected(vsk); 272 spin_unlock_bh(&vsock_table_lock); 273 } 274 EXPORT_SYMBOL_GPL(vsock_remove_connected); 275 276 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 277 { 278 struct sock *sk; 279 280 spin_lock_bh(&vsock_table_lock); 281 sk = __vsock_find_bound_socket(addr); 282 if (sk) 283 sock_hold(sk); 284 285 spin_unlock_bh(&vsock_table_lock); 286 287 return sk; 288 } 289 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 290 291 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 292 struct sockaddr_vm *dst) 293 { 294 struct sock *sk; 295 296 spin_lock_bh(&vsock_table_lock); 297 sk = __vsock_find_connected_socket(src, dst); 298 if (sk) 299 sock_hold(sk); 300 301 spin_unlock_bh(&vsock_table_lock); 302 303 return sk; 304 } 305 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 306 307 static bool vsock_in_bound_table(struct vsock_sock *vsk) 308 { 309 bool ret; 310 311 spin_lock_bh(&vsock_table_lock); 312 ret = __vsock_in_bound_table(vsk); 313 spin_unlock_bh(&vsock_table_lock); 314 315 return ret; 316 } 317 318 static bool vsock_in_connected_table(struct vsock_sock *vsk) 319 { 320 bool ret; 321 322 spin_lock_bh(&vsock_table_lock); 323 ret = __vsock_in_connected_table(vsk); 324 spin_unlock_bh(&vsock_table_lock); 325 326 return ret; 327 } 328 329 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 330 { 331 int i; 332 333 spin_lock_bh(&vsock_table_lock); 334 335 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 336 struct vsock_sock *vsk; 337 list_for_each_entry(vsk, &vsock_connected_table[i], 338 connected_table); 339 fn(sk_vsock(vsk)); 340 } 341 342 spin_unlock_bh(&vsock_table_lock); 343 } 344 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 345 346 void vsock_add_pending(struct sock *listener, struct sock *pending) 347 { 348 struct vsock_sock *vlistener; 349 struct vsock_sock *vpending; 350 351 vlistener = vsock_sk(listener); 352 vpending = vsock_sk(pending); 353 354 sock_hold(pending); 355 sock_hold(listener); 356 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 357 } 358 EXPORT_SYMBOL_GPL(vsock_add_pending); 359 360 void vsock_remove_pending(struct sock *listener, struct sock *pending) 361 { 362 struct vsock_sock *vpending = vsock_sk(pending); 363 364 list_del_init(&vpending->pending_links); 365 sock_put(listener); 366 sock_put(pending); 367 } 368 EXPORT_SYMBOL_GPL(vsock_remove_pending); 369 370 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 371 { 372 struct vsock_sock *vlistener; 373 struct vsock_sock *vconnected; 374 375 vlistener = vsock_sk(listener); 376 vconnected = vsock_sk(connected); 377 378 sock_hold(connected); 379 sock_hold(listener); 380 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 381 } 382 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 383 384 static struct sock *vsock_dequeue_accept(struct sock *listener) 385 { 386 struct vsock_sock *vlistener; 387 struct vsock_sock *vconnected; 388 389 vlistener = vsock_sk(listener); 390 391 if (list_empty(&vlistener->accept_queue)) 392 return NULL; 393 394 vconnected = list_entry(vlistener->accept_queue.next, 395 struct vsock_sock, accept_queue); 396 397 list_del_init(&vconnected->accept_queue); 398 sock_put(listener); 399 /* The caller will need a reference on the connected socket so we let 400 * it call sock_put(). 401 */ 402 403 return sk_vsock(vconnected); 404 } 405 406 static bool vsock_is_accept_queue_empty(struct sock *sk) 407 { 408 struct vsock_sock *vsk = vsock_sk(sk); 409 return list_empty(&vsk->accept_queue); 410 } 411 412 static bool vsock_is_pending(struct sock *sk) 413 { 414 struct vsock_sock *vsk = vsock_sk(sk); 415 return !list_empty(&vsk->pending_links); 416 } 417 418 static int vsock_send_shutdown(struct sock *sk, int mode) 419 { 420 return transport->shutdown(vsock_sk(sk), mode); 421 } 422 423 void vsock_pending_work(struct work_struct *work) 424 { 425 struct sock *sk; 426 struct sock *listener; 427 struct vsock_sock *vsk; 428 bool cleanup; 429 430 vsk = container_of(work, struct vsock_sock, dwork.work); 431 sk = sk_vsock(vsk); 432 listener = vsk->listener; 433 cleanup = true; 434 435 lock_sock(listener); 436 lock_sock(sk); 437 438 if (vsock_is_pending(sk)) { 439 vsock_remove_pending(listener, sk); 440 } else if (!vsk->rejected) { 441 /* We are not on the pending list and accept() did not reject 442 * us, so we must have been accepted by our user process. We 443 * just need to drop our references to the sockets and be on 444 * our way. 445 */ 446 cleanup = false; 447 goto out; 448 } 449 450 listener->sk_ack_backlog--; 451 452 /* We need to remove ourself from the global connected sockets list so 453 * incoming packets can't find this socket, and to reduce the reference 454 * count. 455 */ 456 if (vsock_in_connected_table(vsk)) 457 vsock_remove_connected(vsk); 458 459 sk->sk_state = SS_FREE; 460 461 out: 462 release_sock(sk); 463 release_sock(listener); 464 if (cleanup) 465 sock_put(sk); 466 467 sock_put(sk); 468 sock_put(listener); 469 } 470 EXPORT_SYMBOL_GPL(vsock_pending_work); 471 472 /**** SOCKET OPERATIONS ****/ 473 474 static int __vsock_bind_stream(struct vsock_sock *vsk, 475 struct sockaddr_vm *addr) 476 { 477 static u32 port = LAST_RESERVED_PORT + 1; 478 struct sockaddr_vm new_addr; 479 480 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 481 482 if (addr->svm_port == VMADDR_PORT_ANY) { 483 bool found = false; 484 unsigned int i; 485 486 for (i = 0; i < MAX_PORT_RETRIES; i++) { 487 if (port <= LAST_RESERVED_PORT) 488 port = LAST_RESERVED_PORT + 1; 489 490 new_addr.svm_port = port++; 491 492 if (!__vsock_find_bound_socket(&new_addr)) { 493 found = true; 494 break; 495 } 496 } 497 498 if (!found) 499 return -EADDRNOTAVAIL; 500 } else { 501 /* If port is in reserved range, ensure caller 502 * has necessary privileges. 503 */ 504 if (addr->svm_port <= LAST_RESERVED_PORT && 505 !capable(CAP_NET_BIND_SERVICE)) { 506 return -EACCES; 507 } 508 509 if (__vsock_find_bound_socket(&new_addr)) 510 return -EADDRINUSE; 511 } 512 513 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 514 515 /* Remove stream sockets from the unbound list and add them to the hash 516 * table for easy lookup by its address. The unbound list is simply an 517 * extra entry at the end of the hash table, a trick used by AF_UNIX. 518 */ 519 __vsock_remove_bound(vsk); 520 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 521 522 return 0; 523 } 524 525 static int __vsock_bind_dgram(struct vsock_sock *vsk, 526 struct sockaddr_vm *addr) 527 { 528 return transport->dgram_bind(vsk, addr); 529 } 530 531 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 532 { 533 struct vsock_sock *vsk = vsock_sk(sk); 534 u32 cid; 535 int retval; 536 537 /* First ensure this socket isn't already bound. */ 538 if (vsock_addr_bound(&vsk->local_addr)) 539 return -EINVAL; 540 541 /* Now bind to the provided address or select appropriate values if 542 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 543 * like AF_INET prevents binding to a non-local IP address (in most 544 * cases), we only allow binding to the local CID. 545 */ 546 cid = transport->get_local_cid(); 547 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 548 return -EADDRNOTAVAIL; 549 550 switch (sk->sk_socket->type) { 551 case SOCK_STREAM: 552 spin_lock_bh(&vsock_table_lock); 553 retval = __vsock_bind_stream(vsk, addr); 554 spin_unlock_bh(&vsock_table_lock); 555 break; 556 557 case SOCK_DGRAM: 558 retval = __vsock_bind_dgram(vsk, addr); 559 break; 560 561 default: 562 retval = -EINVAL; 563 break; 564 } 565 566 return retval; 567 } 568 569 struct sock *__vsock_create(struct net *net, 570 struct socket *sock, 571 struct sock *parent, 572 gfp_t priority, 573 unsigned short type) 574 { 575 struct sock *sk; 576 struct vsock_sock *psk; 577 struct vsock_sock *vsk; 578 579 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto); 580 if (!sk) 581 return NULL; 582 583 sock_init_data(sock, sk); 584 585 /* sk->sk_type is normally set in sock_init_data, but only if sock is 586 * non-NULL. We make sure that our sockets always have a type by 587 * setting it here if needed. 588 */ 589 if (!sock) 590 sk->sk_type = type; 591 592 vsk = vsock_sk(sk); 593 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 594 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 595 596 sk->sk_destruct = vsock_sk_destruct; 597 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 598 sk->sk_state = 0; 599 sock_reset_flag(sk, SOCK_DONE); 600 601 INIT_LIST_HEAD(&vsk->bound_table); 602 INIT_LIST_HEAD(&vsk->connected_table); 603 vsk->listener = NULL; 604 INIT_LIST_HEAD(&vsk->pending_links); 605 INIT_LIST_HEAD(&vsk->accept_queue); 606 vsk->rejected = false; 607 vsk->sent_request = false; 608 vsk->ignore_connecting_rst = false; 609 vsk->peer_shutdown = 0; 610 611 psk = parent ? vsock_sk(parent) : NULL; 612 if (parent) { 613 vsk->trusted = psk->trusted; 614 vsk->owner = get_cred(psk->owner); 615 vsk->connect_timeout = psk->connect_timeout; 616 } else { 617 vsk->trusted = capable(CAP_NET_ADMIN); 618 vsk->owner = get_current_cred(); 619 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 620 } 621 622 if (transport->init(vsk, psk) < 0) { 623 sk_free(sk); 624 return NULL; 625 } 626 627 if (sock) 628 vsock_insert_unbound(vsk); 629 630 return sk; 631 } 632 EXPORT_SYMBOL_GPL(__vsock_create); 633 634 static void __vsock_release(struct sock *sk) 635 { 636 if (sk) { 637 struct sk_buff *skb; 638 struct sock *pending; 639 struct vsock_sock *vsk; 640 641 vsk = vsock_sk(sk); 642 pending = NULL; /* Compiler warning. */ 643 644 if (vsock_in_bound_table(vsk)) 645 vsock_remove_bound(vsk); 646 647 if (vsock_in_connected_table(vsk)) 648 vsock_remove_connected(vsk); 649 650 transport->release(vsk); 651 652 lock_sock(sk); 653 sock_orphan(sk); 654 sk->sk_shutdown = SHUTDOWN_MASK; 655 656 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 657 kfree_skb(skb); 658 659 /* Clean up any sockets that never were accepted. */ 660 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 661 __vsock_release(pending); 662 sock_put(pending); 663 } 664 665 release_sock(sk); 666 sock_put(sk); 667 } 668 } 669 670 static void vsock_sk_destruct(struct sock *sk) 671 { 672 struct vsock_sock *vsk = vsock_sk(sk); 673 674 transport->destruct(vsk); 675 676 /* When clearing these addresses, there's no need to set the family and 677 * possibly register the address family with the kernel. 678 */ 679 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 680 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 681 682 put_cred(vsk->owner); 683 } 684 685 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 686 { 687 int err; 688 689 err = sock_queue_rcv_skb(sk, skb); 690 if (err) 691 kfree_skb(skb); 692 693 return err; 694 } 695 696 s64 vsock_stream_has_data(struct vsock_sock *vsk) 697 { 698 return transport->stream_has_data(vsk); 699 } 700 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 701 702 s64 vsock_stream_has_space(struct vsock_sock *vsk) 703 { 704 return transport->stream_has_space(vsk); 705 } 706 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 707 708 static int vsock_release(struct socket *sock) 709 { 710 __vsock_release(sock->sk); 711 sock->sk = NULL; 712 sock->state = SS_FREE; 713 714 return 0; 715 } 716 717 static int 718 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 719 { 720 int err; 721 struct sock *sk; 722 struct sockaddr_vm *vm_addr; 723 724 sk = sock->sk; 725 726 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 727 return -EINVAL; 728 729 lock_sock(sk); 730 err = __vsock_bind(sk, vm_addr); 731 release_sock(sk); 732 733 return err; 734 } 735 736 static int vsock_getname(struct socket *sock, 737 struct sockaddr *addr, int *addr_len, int peer) 738 { 739 int err; 740 struct sock *sk; 741 struct vsock_sock *vsk; 742 struct sockaddr_vm *vm_addr; 743 744 sk = sock->sk; 745 vsk = vsock_sk(sk); 746 err = 0; 747 748 lock_sock(sk); 749 750 if (peer) { 751 if (sock->state != SS_CONNECTED) { 752 err = -ENOTCONN; 753 goto out; 754 } 755 vm_addr = &vsk->remote_addr; 756 } else { 757 vm_addr = &vsk->local_addr; 758 } 759 760 if (!vm_addr) { 761 err = -EINVAL; 762 goto out; 763 } 764 765 /* sys_getsockname() and sys_getpeername() pass us a 766 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 767 * that macro is defined in socket.c instead of .h, so we hardcode its 768 * value here. 769 */ 770 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 771 memcpy(addr, vm_addr, sizeof(*vm_addr)); 772 *addr_len = sizeof(*vm_addr); 773 774 out: 775 release_sock(sk); 776 return err; 777 } 778 779 static int vsock_shutdown(struct socket *sock, int mode) 780 { 781 int err; 782 struct sock *sk; 783 784 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 785 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 786 * here like the other address families do. Note also that the 787 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 788 * which is what we want. 789 */ 790 mode++; 791 792 if ((mode & ~SHUTDOWN_MASK) || !mode) 793 return -EINVAL; 794 795 /* If this is a STREAM socket and it is not connected then bail out 796 * immediately. If it is a DGRAM socket then we must first kick the 797 * socket so that it wakes up from any sleeping calls, for example 798 * recv(), and then afterwards return the error. 799 */ 800 801 sk = sock->sk; 802 if (sock->state == SS_UNCONNECTED) { 803 err = -ENOTCONN; 804 if (sk->sk_type == SOCK_STREAM) 805 return err; 806 } else { 807 sock->state = SS_DISCONNECTING; 808 err = 0; 809 } 810 811 /* Receive and send shutdowns are treated alike. */ 812 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 813 if (mode) { 814 lock_sock(sk); 815 sk->sk_shutdown |= mode; 816 sk->sk_state_change(sk); 817 release_sock(sk); 818 819 if (sk->sk_type == SOCK_STREAM) { 820 sock_reset_flag(sk, SOCK_DONE); 821 vsock_send_shutdown(sk, mode); 822 } 823 } 824 825 return err; 826 } 827 828 static unsigned int vsock_poll(struct file *file, struct socket *sock, 829 poll_table *wait) 830 { 831 struct sock *sk; 832 unsigned int mask; 833 struct vsock_sock *vsk; 834 835 sk = sock->sk; 836 vsk = vsock_sk(sk); 837 838 poll_wait(file, sk_sleep(sk), wait); 839 mask = 0; 840 841 if (sk->sk_err) 842 /* Signify that there has been an error on this socket. */ 843 mask |= POLLERR; 844 845 /* INET sockets treat local write shutdown and peer write shutdown as a 846 * case of POLLHUP set. 847 */ 848 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 849 ((sk->sk_shutdown & SEND_SHUTDOWN) && 850 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 851 mask |= POLLHUP; 852 } 853 854 if (sk->sk_shutdown & RCV_SHUTDOWN || 855 vsk->peer_shutdown & SEND_SHUTDOWN) { 856 mask |= POLLRDHUP; 857 } 858 859 if (sock->type == SOCK_DGRAM) { 860 /* For datagram sockets we can read if there is something in 861 * the queue and write as long as the socket isn't shutdown for 862 * sending. 863 */ 864 if (!skb_queue_empty(&sk->sk_receive_queue) || 865 (sk->sk_shutdown & RCV_SHUTDOWN)) { 866 mask |= POLLIN | POLLRDNORM; 867 } 868 869 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 870 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 871 872 } else if (sock->type == SOCK_STREAM) { 873 lock_sock(sk); 874 875 /* Listening sockets that have connections in their accept 876 * queue can be read. 877 */ 878 if (sk->sk_state == SS_LISTEN 879 && !vsock_is_accept_queue_empty(sk)) 880 mask |= POLLIN | POLLRDNORM; 881 882 /* If there is something in the queue then we can read. */ 883 if (transport->stream_is_active(vsk) && 884 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 885 bool data_ready_now = false; 886 int ret = transport->notify_poll_in( 887 vsk, 1, &data_ready_now); 888 if (ret < 0) { 889 mask |= POLLERR; 890 } else { 891 if (data_ready_now) 892 mask |= POLLIN | POLLRDNORM; 893 894 } 895 } 896 897 /* Sockets whose connections have been closed, reset, or 898 * terminated should also be considered read, and we check the 899 * shutdown flag for that. 900 */ 901 if (sk->sk_shutdown & RCV_SHUTDOWN || 902 vsk->peer_shutdown & SEND_SHUTDOWN) { 903 mask |= POLLIN | POLLRDNORM; 904 } 905 906 /* Connected sockets that can produce data can be written. */ 907 if (sk->sk_state == SS_CONNECTED) { 908 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 909 bool space_avail_now = false; 910 int ret = transport->notify_poll_out( 911 vsk, 1, &space_avail_now); 912 if (ret < 0) { 913 mask |= POLLERR; 914 } else { 915 if (space_avail_now) 916 /* Remove POLLWRBAND since INET 917 * sockets are not setting it. 918 */ 919 mask |= POLLOUT | POLLWRNORM; 920 921 } 922 } 923 } 924 925 /* Simulate INET socket poll behaviors, which sets 926 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 927 * but local send is not shutdown. 928 */ 929 if (sk->sk_state == SS_UNCONNECTED) { 930 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 931 mask |= POLLOUT | POLLWRNORM; 932 933 } 934 935 release_sock(sk); 936 } 937 938 return mask; 939 } 940 941 static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, 942 struct msghdr *msg, size_t len) 943 { 944 int err; 945 struct sock *sk; 946 struct vsock_sock *vsk; 947 struct sockaddr_vm *remote_addr; 948 949 if (msg->msg_flags & MSG_OOB) 950 return -EOPNOTSUPP; 951 952 /* For now, MSG_DONTWAIT is always assumed... */ 953 err = 0; 954 sk = sock->sk; 955 vsk = vsock_sk(sk); 956 957 lock_sock(sk); 958 959 if (!vsock_addr_bound(&vsk->local_addr)) { 960 struct sockaddr_vm local_addr; 961 962 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 963 err = __vsock_bind(sk, &local_addr); 964 if (err != 0) 965 goto out; 966 967 } 968 969 /* If the provided message contains an address, use that. Otherwise 970 * fall back on the socket's remote handle (if it has been connected). 971 */ 972 if (msg->msg_name && 973 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 974 &remote_addr) == 0) { 975 /* Ensure this address is of the right type and is a valid 976 * destination. 977 */ 978 979 if (remote_addr->svm_cid == VMADDR_CID_ANY) 980 remote_addr->svm_cid = transport->get_local_cid(); 981 982 if (!vsock_addr_bound(remote_addr)) { 983 err = -EINVAL; 984 goto out; 985 } 986 } else if (sock->state == SS_CONNECTED) { 987 remote_addr = &vsk->remote_addr; 988 989 if (remote_addr->svm_cid == VMADDR_CID_ANY) 990 remote_addr->svm_cid = transport->get_local_cid(); 991 992 /* XXX Should connect() or this function ensure remote_addr is 993 * bound? 994 */ 995 if (!vsock_addr_bound(&vsk->remote_addr)) { 996 err = -EINVAL; 997 goto out; 998 } 999 } else { 1000 err = -EINVAL; 1001 goto out; 1002 } 1003 1004 if (!transport->dgram_allow(remote_addr->svm_cid, 1005 remote_addr->svm_port)) { 1006 err = -EINVAL; 1007 goto out; 1008 } 1009 1010 err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len); 1011 1012 out: 1013 release_sock(sk); 1014 return err; 1015 } 1016 1017 static int vsock_dgram_connect(struct socket *sock, 1018 struct sockaddr *addr, int addr_len, int flags) 1019 { 1020 int err; 1021 struct sock *sk; 1022 struct vsock_sock *vsk; 1023 struct sockaddr_vm *remote_addr; 1024 1025 sk = sock->sk; 1026 vsk = vsock_sk(sk); 1027 1028 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1029 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1030 lock_sock(sk); 1031 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1032 VMADDR_PORT_ANY); 1033 sock->state = SS_UNCONNECTED; 1034 release_sock(sk); 1035 return 0; 1036 } else if (err != 0) 1037 return -EINVAL; 1038 1039 lock_sock(sk); 1040 1041 if (!vsock_addr_bound(&vsk->local_addr)) { 1042 struct sockaddr_vm local_addr; 1043 1044 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 1045 err = __vsock_bind(sk, &local_addr); 1046 if (err != 0) 1047 goto out; 1048 1049 } 1050 1051 if (!transport->dgram_allow(remote_addr->svm_cid, 1052 remote_addr->svm_port)) { 1053 err = -EINVAL; 1054 goto out; 1055 } 1056 1057 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1058 sock->state = SS_CONNECTED; 1059 1060 out: 1061 release_sock(sk); 1062 return err; 1063 } 1064 1065 static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock, 1066 struct msghdr *msg, size_t len, int flags) 1067 { 1068 return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len, 1069 flags); 1070 } 1071 1072 static const struct proto_ops vsock_dgram_ops = { 1073 .family = PF_VSOCK, 1074 .owner = THIS_MODULE, 1075 .release = vsock_release, 1076 .bind = vsock_bind, 1077 .connect = vsock_dgram_connect, 1078 .socketpair = sock_no_socketpair, 1079 .accept = sock_no_accept, 1080 .getname = vsock_getname, 1081 .poll = vsock_poll, 1082 .ioctl = sock_no_ioctl, 1083 .listen = sock_no_listen, 1084 .shutdown = vsock_shutdown, 1085 .setsockopt = sock_no_setsockopt, 1086 .getsockopt = sock_no_getsockopt, 1087 .sendmsg = vsock_dgram_sendmsg, 1088 .recvmsg = vsock_dgram_recvmsg, 1089 .mmap = sock_no_mmap, 1090 .sendpage = sock_no_sendpage, 1091 }; 1092 1093 static void vsock_connect_timeout(struct work_struct *work) 1094 { 1095 struct sock *sk; 1096 struct vsock_sock *vsk; 1097 1098 vsk = container_of(work, struct vsock_sock, dwork.work); 1099 sk = sk_vsock(vsk); 1100 1101 lock_sock(sk); 1102 if (sk->sk_state == SS_CONNECTING && 1103 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1104 sk->sk_state = SS_UNCONNECTED; 1105 sk->sk_err = ETIMEDOUT; 1106 sk->sk_error_report(sk); 1107 } 1108 release_sock(sk); 1109 1110 sock_put(sk); 1111 } 1112 1113 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1114 int addr_len, int flags) 1115 { 1116 int err; 1117 struct sock *sk; 1118 struct vsock_sock *vsk; 1119 struct sockaddr_vm *remote_addr; 1120 long timeout; 1121 DEFINE_WAIT(wait); 1122 1123 err = 0; 1124 sk = sock->sk; 1125 vsk = vsock_sk(sk); 1126 1127 lock_sock(sk); 1128 1129 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1130 switch (sock->state) { 1131 case SS_CONNECTED: 1132 err = -EISCONN; 1133 goto out; 1134 case SS_DISCONNECTING: 1135 err = -EINVAL; 1136 goto out; 1137 case SS_CONNECTING: 1138 /* This continues on so we can move sock into the SS_CONNECTED 1139 * state once the connection has completed (at which point err 1140 * will be set to zero also). Otherwise, we will either wait 1141 * for the connection or return -EALREADY should this be a 1142 * non-blocking call. 1143 */ 1144 err = -EALREADY; 1145 break; 1146 default: 1147 if ((sk->sk_state == SS_LISTEN) || 1148 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1149 err = -EINVAL; 1150 goto out; 1151 } 1152 1153 /* The hypervisor and well-known contexts do not have socket 1154 * endpoints. 1155 */ 1156 if (!transport->stream_allow(remote_addr->svm_cid, 1157 remote_addr->svm_port)) { 1158 err = -ENETUNREACH; 1159 goto out; 1160 } 1161 1162 /* Set the remote address that we are connecting to. */ 1163 memcpy(&vsk->remote_addr, remote_addr, 1164 sizeof(vsk->remote_addr)); 1165 1166 /* Autobind this socket to the local address if necessary. */ 1167 if (!vsock_addr_bound(&vsk->local_addr)) { 1168 struct sockaddr_vm local_addr; 1169 1170 vsock_addr_init(&local_addr, VMADDR_CID_ANY, 1171 VMADDR_PORT_ANY); 1172 err = __vsock_bind(sk, &local_addr); 1173 if (err != 0) 1174 goto out; 1175 1176 } 1177 1178 sk->sk_state = SS_CONNECTING; 1179 1180 err = transport->connect(vsk); 1181 if (err < 0) 1182 goto out; 1183 1184 /* Mark sock as connecting and set the error code to in 1185 * progress in case this is a non-blocking connect. 1186 */ 1187 sock->state = SS_CONNECTING; 1188 err = -EINPROGRESS; 1189 } 1190 1191 /* The receive path will handle all communication until we are able to 1192 * enter the connected state. Here we wait for the connection to be 1193 * completed or a notification of an error. 1194 */ 1195 timeout = vsk->connect_timeout; 1196 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1197 1198 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1199 if (flags & O_NONBLOCK) { 1200 /* If we're not going to block, we schedule a timeout 1201 * function to generate a timeout on the connection 1202 * attempt, in case the peer doesn't respond in a 1203 * timely manner. We hold on to the socket until the 1204 * timeout fires. 1205 */ 1206 sock_hold(sk); 1207 INIT_DELAYED_WORK(&vsk->dwork, 1208 vsock_connect_timeout); 1209 schedule_delayed_work(&vsk->dwork, timeout); 1210 1211 /* Skip ahead to preserve error code set above. */ 1212 goto out_wait; 1213 } 1214 1215 release_sock(sk); 1216 timeout = schedule_timeout(timeout); 1217 lock_sock(sk); 1218 1219 if (signal_pending(current)) { 1220 err = sock_intr_errno(timeout); 1221 goto out_wait_error; 1222 } else if (timeout == 0) { 1223 err = -ETIMEDOUT; 1224 goto out_wait_error; 1225 } 1226 1227 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1228 } 1229 1230 if (sk->sk_err) { 1231 err = -sk->sk_err; 1232 goto out_wait_error; 1233 } else 1234 err = 0; 1235 1236 out_wait: 1237 finish_wait(sk_sleep(sk), &wait); 1238 out: 1239 release_sock(sk); 1240 return err; 1241 1242 out_wait_error: 1243 sk->sk_state = SS_UNCONNECTED; 1244 sock->state = SS_UNCONNECTED; 1245 goto out_wait; 1246 } 1247 1248 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1249 { 1250 struct sock *listener; 1251 int err; 1252 struct sock *connected; 1253 struct vsock_sock *vconnected; 1254 long timeout; 1255 DEFINE_WAIT(wait); 1256 1257 err = 0; 1258 listener = sock->sk; 1259 1260 lock_sock(listener); 1261 1262 if (sock->type != SOCK_STREAM) { 1263 err = -EOPNOTSUPP; 1264 goto out; 1265 } 1266 1267 if (listener->sk_state != SS_LISTEN) { 1268 err = -EINVAL; 1269 goto out; 1270 } 1271 1272 /* Wait for children sockets to appear; these are the new sockets 1273 * created upon connection establishment. 1274 */ 1275 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1276 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1277 1278 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1279 listener->sk_err == 0) { 1280 release_sock(listener); 1281 timeout = schedule_timeout(timeout); 1282 lock_sock(listener); 1283 1284 if (signal_pending(current)) { 1285 err = sock_intr_errno(timeout); 1286 goto out_wait; 1287 } else if (timeout == 0) { 1288 err = -EAGAIN; 1289 goto out_wait; 1290 } 1291 1292 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1293 } 1294 1295 if (listener->sk_err) 1296 err = -listener->sk_err; 1297 1298 if (connected) { 1299 listener->sk_ack_backlog--; 1300 1301 lock_sock(connected); 1302 vconnected = vsock_sk(connected); 1303 1304 /* If the listener socket has received an error, then we should 1305 * reject this socket and return. Note that we simply mark the 1306 * socket rejected, drop our reference, and let the cleanup 1307 * function handle the cleanup; the fact that we found it in 1308 * the listener's accept queue guarantees that the cleanup 1309 * function hasn't run yet. 1310 */ 1311 if (err) { 1312 vconnected->rejected = true; 1313 release_sock(connected); 1314 sock_put(connected); 1315 goto out_wait; 1316 } 1317 1318 newsock->state = SS_CONNECTED; 1319 sock_graft(connected, newsock); 1320 release_sock(connected); 1321 sock_put(connected); 1322 } 1323 1324 out_wait: 1325 finish_wait(sk_sleep(listener), &wait); 1326 out: 1327 release_sock(listener); 1328 return err; 1329 } 1330 1331 static int vsock_listen(struct socket *sock, int backlog) 1332 { 1333 int err; 1334 struct sock *sk; 1335 struct vsock_sock *vsk; 1336 1337 sk = sock->sk; 1338 1339 lock_sock(sk); 1340 1341 if (sock->type != SOCK_STREAM) { 1342 err = -EOPNOTSUPP; 1343 goto out; 1344 } 1345 1346 if (sock->state != SS_UNCONNECTED) { 1347 err = -EINVAL; 1348 goto out; 1349 } 1350 1351 vsk = vsock_sk(sk); 1352 1353 if (!vsock_addr_bound(&vsk->local_addr)) { 1354 err = -EINVAL; 1355 goto out; 1356 } 1357 1358 sk->sk_max_ack_backlog = backlog; 1359 sk->sk_state = SS_LISTEN; 1360 1361 err = 0; 1362 1363 out: 1364 release_sock(sk); 1365 return err; 1366 } 1367 1368 static int vsock_stream_setsockopt(struct socket *sock, 1369 int level, 1370 int optname, 1371 char __user *optval, 1372 unsigned int optlen) 1373 { 1374 int err; 1375 struct sock *sk; 1376 struct vsock_sock *vsk; 1377 u64 val; 1378 1379 if (level != AF_VSOCK) 1380 return -ENOPROTOOPT; 1381 1382 #define COPY_IN(_v) \ 1383 do { \ 1384 if (optlen < sizeof(_v)) { \ 1385 err = -EINVAL; \ 1386 goto exit; \ 1387 } \ 1388 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1389 err = -EFAULT; \ 1390 goto exit; \ 1391 } \ 1392 } while (0) 1393 1394 err = 0; 1395 sk = sock->sk; 1396 vsk = vsock_sk(sk); 1397 1398 lock_sock(sk); 1399 1400 switch (optname) { 1401 case SO_VM_SOCKETS_BUFFER_SIZE: 1402 COPY_IN(val); 1403 transport->set_buffer_size(vsk, val); 1404 break; 1405 1406 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1407 COPY_IN(val); 1408 transport->set_max_buffer_size(vsk, val); 1409 break; 1410 1411 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1412 COPY_IN(val); 1413 transport->set_min_buffer_size(vsk, val); 1414 break; 1415 1416 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1417 struct timeval tv; 1418 COPY_IN(tv); 1419 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1420 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1421 vsk->connect_timeout = tv.tv_sec * HZ + 1422 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1423 if (vsk->connect_timeout == 0) 1424 vsk->connect_timeout = 1425 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1426 1427 } else { 1428 err = -ERANGE; 1429 } 1430 break; 1431 } 1432 1433 default: 1434 err = -ENOPROTOOPT; 1435 break; 1436 } 1437 1438 #undef COPY_IN 1439 1440 exit: 1441 release_sock(sk); 1442 return err; 1443 } 1444 1445 static int vsock_stream_getsockopt(struct socket *sock, 1446 int level, int optname, 1447 char __user *optval, 1448 int __user *optlen) 1449 { 1450 int err; 1451 int len; 1452 struct sock *sk; 1453 struct vsock_sock *vsk; 1454 u64 val; 1455 1456 if (level != AF_VSOCK) 1457 return -ENOPROTOOPT; 1458 1459 err = get_user(len, optlen); 1460 if (err != 0) 1461 return err; 1462 1463 #define COPY_OUT(_v) \ 1464 do { \ 1465 if (len < sizeof(_v)) \ 1466 return -EINVAL; \ 1467 \ 1468 len = sizeof(_v); \ 1469 if (copy_to_user(optval, &_v, len) != 0) \ 1470 return -EFAULT; \ 1471 \ 1472 } while (0) 1473 1474 err = 0; 1475 sk = sock->sk; 1476 vsk = vsock_sk(sk); 1477 1478 switch (optname) { 1479 case SO_VM_SOCKETS_BUFFER_SIZE: 1480 val = transport->get_buffer_size(vsk); 1481 COPY_OUT(val); 1482 break; 1483 1484 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1485 val = transport->get_max_buffer_size(vsk); 1486 COPY_OUT(val); 1487 break; 1488 1489 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1490 val = transport->get_min_buffer_size(vsk); 1491 COPY_OUT(val); 1492 break; 1493 1494 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1495 struct timeval tv; 1496 tv.tv_sec = vsk->connect_timeout / HZ; 1497 tv.tv_usec = 1498 (vsk->connect_timeout - 1499 tv.tv_sec * HZ) * (1000000 / HZ); 1500 COPY_OUT(tv); 1501 break; 1502 } 1503 default: 1504 return -ENOPROTOOPT; 1505 } 1506 1507 err = put_user(len, optlen); 1508 if (err != 0) 1509 return -EFAULT; 1510 1511 #undef COPY_OUT 1512 1513 return 0; 1514 } 1515 1516 static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock, 1517 struct msghdr *msg, size_t len) 1518 { 1519 struct sock *sk; 1520 struct vsock_sock *vsk; 1521 ssize_t total_written; 1522 long timeout; 1523 int err; 1524 struct vsock_transport_send_notify_data send_data; 1525 1526 DEFINE_WAIT(wait); 1527 1528 sk = sock->sk; 1529 vsk = vsock_sk(sk); 1530 total_written = 0; 1531 err = 0; 1532 1533 if (msg->msg_flags & MSG_OOB) 1534 return -EOPNOTSUPP; 1535 1536 lock_sock(sk); 1537 1538 /* Callers should not provide a destination with stream sockets. */ 1539 if (msg->msg_namelen) { 1540 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1541 goto out; 1542 } 1543 1544 /* Send data only if both sides are not shutdown in the direction. */ 1545 if (sk->sk_shutdown & SEND_SHUTDOWN || 1546 vsk->peer_shutdown & RCV_SHUTDOWN) { 1547 err = -EPIPE; 1548 goto out; 1549 } 1550 1551 if (sk->sk_state != SS_CONNECTED || 1552 !vsock_addr_bound(&vsk->local_addr)) { 1553 err = -ENOTCONN; 1554 goto out; 1555 } 1556 1557 if (!vsock_addr_bound(&vsk->remote_addr)) { 1558 err = -EDESTADDRREQ; 1559 goto out; 1560 } 1561 1562 /* Wait for room in the produce queue to enqueue our user's data. */ 1563 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1564 1565 err = transport->notify_send_init(vsk, &send_data); 1566 if (err < 0) 1567 goto out; 1568 1569 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1570 1571 while (total_written < len) { 1572 ssize_t written; 1573 1574 while (vsock_stream_has_space(vsk) == 0 && 1575 sk->sk_err == 0 && 1576 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1577 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1578 1579 /* Don't wait for non-blocking sockets. */ 1580 if (timeout == 0) { 1581 err = -EAGAIN; 1582 goto out_wait; 1583 } 1584 1585 err = transport->notify_send_pre_block(vsk, &send_data); 1586 if (err < 0) 1587 goto out_wait; 1588 1589 release_sock(sk); 1590 timeout = schedule_timeout(timeout); 1591 lock_sock(sk); 1592 if (signal_pending(current)) { 1593 err = sock_intr_errno(timeout); 1594 goto out_wait; 1595 } else if (timeout == 0) { 1596 err = -EAGAIN; 1597 goto out_wait; 1598 } 1599 1600 prepare_to_wait(sk_sleep(sk), &wait, 1601 TASK_INTERRUPTIBLE); 1602 } 1603 1604 /* These checks occur both as part of and after the loop 1605 * conditional since we need to check before and after 1606 * sleeping. 1607 */ 1608 if (sk->sk_err) { 1609 err = -sk->sk_err; 1610 goto out_wait; 1611 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1612 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1613 err = -EPIPE; 1614 goto out_wait; 1615 } 1616 1617 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1618 if (err < 0) 1619 goto out_wait; 1620 1621 /* Note that enqueue will only write as many bytes as are free 1622 * in the produce queue, so we don't need to ensure len is 1623 * smaller than the queue size. It is the caller's 1624 * responsibility to check how many bytes we were able to send. 1625 */ 1626 1627 written = transport->stream_enqueue( 1628 vsk, msg->msg_iov, 1629 len - total_written); 1630 if (written < 0) { 1631 err = -ENOMEM; 1632 goto out_wait; 1633 } 1634 1635 total_written += written; 1636 1637 err = transport->notify_send_post_enqueue( 1638 vsk, written, &send_data); 1639 if (err < 0) 1640 goto out_wait; 1641 1642 } 1643 1644 out_wait: 1645 if (total_written > 0) 1646 err = total_written; 1647 finish_wait(sk_sleep(sk), &wait); 1648 out: 1649 release_sock(sk); 1650 return err; 1651 } 1652 1653 1654 static int 1655 vsock_stream_recvmsg(struct kiocb *kiocb, 1656 struct socket *sock, 1657 struct msghdr *msg, size_t len, int flags) 1658 { 1659 struct sock *sk; 1660 struct vsock_sock *vsk; 1661 int err; 1662 size_t target; 1663 ssize_t copied; 1664 long timeout; 1665 struct vsock_transport_recv_notify_data recv_data; 1666 1667 DEFINE_WAIT(wait); 1668 1669 sk = sock->sk; 1670 vsk = vsock_sk(sk); 1671 err = 0; 1672 1673 lock_sock(sk); 1674 1675 if (sk->sk_state != SS_CONNECTED) { 1676 /* Recvmsg is supposed to return 0 if a peer performs an 1677 * orderly shutdown. Differentiate between that case and when a 1678 * peer has not connected or a local shutdown occured with the 1679 * SOCK_DONE flag. 1680 */ 1681 if (sock_flag(sk, SOCK_DONE)) 1682 err = 0; 1683 else 1684 err = -ENOTCONN; 1685 1686 goto out; 1687 } 1688 1689 if (flags & MSG_OOB) { 1690 err = -EOPNOTSUPP; 1691 goto out; 1692 } 1693 1694 /* We don't check peer_shutdown flag here since peer may actually shut 1695 * down, but there can be data in the queue that a local socket can 1696 * receive. 1697 */ 1698 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1699 err = 0; 1700 goto out; 1701 } 1702 1703 /* It is valid on Linux to pass in a zero-length receive buffer. This 1704 * is not an error. We may as well bail out now. 1705 */ 1706 if (!len) { 1707 err = 0; 1708 goto out; 1709 } 1710 1711 /* We must not copy less than target bytes into the user's buffer 1712 * before returning successfully, so we wait for the consume queue to 1713 * have that much data to consume before dequeueing. Note that this 1714 * makes it impossible to handle cases where target is greater than the 1715 * queue size. 1716 */ 1717 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1718 if (target >= transport->stream_rcvhiwat(vsk)) { 1719 err = -ENOMEM; 1720 goto out; 1721 } 1722 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1723 copied = 0; 1724 1725 err = transport->notify_recv_init(vsk, target, &recv_data); 1726 if (err < 0) 1727 goto out; 1728 1729 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1730 1731 while (1) { 1732 s64 ready = vsock_stream_has_data(vsk); 1733 1734 if (ready < 0) { 1735 /* Invalid queue pair content. XXX This should be 1736 * changed to a connection reset in a later change. 1737 */ 1738 1739 err = -ENOMEM; 1740 goto out_wait; 1741 } else if (ready > 0) { 1742 ssize_t read; 1743 1744 err = transport->notify_recv_pre_dequeue( 1745 vsk, target, &recv_data); 1746 if (err < 0) 1747 break; 1748 1749 read = transport->stream_dequeue( 1750 vsk, msg->msg_iov, 1751 len - copied, flags); 1752 if (read < 0) { 1753 err = -ENOMEM; 1754 break; 1755 } 1756 1757 copied += read; 1758 1759 err = transport->notify_recv_post_dequeue( 1760 vsk, target, read, 1761 !(flags & MSG_PEEK), &recv_data); 1762 if (err < 0) 1763 goto out_wait; 1764 1765 if (read >= target || flags & MSG_PEEK) 1766 break; 1767 1768 target -= read; 1769 } else { 1770 if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN) 1771 || (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1772 break; 1773 } 1774 /* Don't wait for non-blocking sockets. */ 1775 if (timeout == 0) { 1776 err = -EAGAIN; 1777 break; 1778 } 1779 1780 err = transport->notify_recv_pre_block( 1781 vsk, target, &recv_data); 1782 if (err < 0) 1783 break; 1784 1785 release_sock(sk); 1786 timeout = schedule_timeout(timeout); 1787 lock_sock(sk); 1788 1789 if (signal_pending(current)) { 1790 err = sock_intr_errno(timeout); 1791 break; 1792 } else if (timeout == 0) { 1793 err = -EAGAIN; 1794 break; 1795 } 1796 1797 prepare_to_wait(sk_sleep(sk), &wait, 1798 TASK_INTERRUPTIBLE); 1799 } 1800 } 1801 1802 if (sk->sk_err) 1803 err = -sk->sk_err; 1804 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1805 err = 0; 1806 1807 if (copied > 0) { 1808 /* We only do these additional bookkeeping/notification steps 1809 * if we actually copied something out of the queue pair 1810 * instead of just peeking ahead. 1811 */ 1812 1813 if (!(flags & MSG_PEEK)) { 1814 /* If the other side has shutdown for sending and there 1815 * is nothing more to read, then modify the socket 1816 * state. 1817 */ 1818 if (vsk->peer_shutdown & SEND_SHUTDOWN) { 1819 if (vsock_stream_has_data(vsk) <= 0) { 1820 sk->sk_state = SS_UNCONNECTED; 1821 sock_set_flag(sk, SOCK_DONE); 1822 sk->sk_state_change(sk); 1823 } 1824 } 1825 } 1826 err = copied; 1827 } 1828 1829 out_wait: 1830 finish_wait(sk_sleep(sk), &wait); 1831 out: 1832 release_sock(sk); 1833 return err; 1834 } 1835 1836 static const struct proto_ops vsock_stream_ops = { 1837 .family = PF_VSOCK, 1838 .owner = THIS_MODULE, 1839 .release = vsock_release, 1840 .bind = vsock_bind, 1841 .connect = vsock_stream_connect, 1842 .socketpair = sock_no_socketpair, 1843 .accept = vsock_accept, 1844 .getname = vsock_getname, 1845 .poll = vsock_poll, 1846 .ioctl = sock_no_ioctl, 1847 .listen = vsock_listen, 1848 .shutdown = vsock_shutdown, 1849 .setsockopt = vsock_stream_setsockopt, 1850 .getsockopt = vsock_stream_getsockopt, 1851 .sendmsg = vsock_stream_sendmsg, 1852 .recvmsg = vsock_stream_recvmsg, 1853 .mmap = sock_no_mmap, 1854 .sendpage = sock_no_sendpage, 1855 }; 1856 1857 static int vsock_create(struct net *net, struct socket *sock, 1858 int protocol, int kern) 1859 { 1860 if (!sock) 1861 return -EINVAL; 1862 1863 if (protocol && protocol != PF_VSOCK) 1864 return -EPROTONOSUPPORT; 1865 1866 switch (sock->type) { 1867 case SOCK_DGRAM: 1868 sock->ops = &vsock_dgram_ops; 1869 break; 1870 case SOCK_STREAM: 1871 sock->ops = &vsock_stream_ops; 1872 break; 1873 default: 1874 return -ESOCKTNOSUPPORT; 1875 } 1876 1877 sock->state = SS_UNCONNECTED; 1878 1879 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM; 1880 } 1881 1882 static const struct net_proto_family vsock_family_ops = { 1883 .family = AF_VSOCK, 1884 .create = vsock_create, 1885 .owner = THIS_MODULE, 1886 }; 1887 1888 static long vsock_dev_do_ioctl(struct file *filp, 1889 unsigned int cmd, void __user *ptr) 1890 { 1891 u32 __user *p = ptr; 1892 int retval = 0; 1893 1894 switch (cmd) { 1895 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1896 if (put_user(transport->get_local_cid(), p) != 0) 1897 retval = -EFAULT; 1898 break; 1899 1900 default: 1901 pr_err("Unknown ioctl %d\n", cmd); 1902 retval = -EINVAL; 1903 } 1904 1905 return retval; 1906 } 1907 1908 static long vsock_dev_ioctl(struct file *filp, 1909 unsigned int cmd, unsigned long arg) 1910 { 1911 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1912 } 1913 1914 #ifdef CONFIG_COMPAT 1915 static long vsock_dev_compat_ioctl(struct file *filp, 1916 unsigned int cmd, unsigned long arg) 1917 { 1918 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1919 } 1920 #endif 1921 1922 static const struct file_operations vsock_device_ops = { 1923 .owner = THIS_MODULE, 1924 .unlocked_ioctl = vsock_dev_ioctl, 1925 #ifdef CONFIG_COMPAT 1926 .compat_ioctl = vsock_dev_compat_ioctl, 1927 #endif 1928 .open = nonseekable_open, 1929 }; 1930 1931 static struct miscdevice vsock_device = { 1932 .name = "vsock", 1933 .minor = MISC_DYNAMIC_MINOR, 1934 .fops = &vsock_device_ops, 1935 }; 1936 1937 static int __vsock_core_init(void) 1938 { 1939 int err; 1940 1941 vsock_init_tables(); 1942 1943 err = misc_register(&vsock_device); 1944 if (err) { 1945 pr_err("Failed to register misc device\n"); 1946 return -ENOENT; 1947 } 1948 1949 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1950 if (err) { 1951 pr_err("Cannot register vsock protocol\n"); 1952 goto err_misc_deregister; 1953 } 1954 1955 err = sock_register(&vsock_family_ops); 1956 if (err) { 1957 pr_err("could not register af_vsock (%d) address family: %d\n", 1958 AF_VSOCK, err); 1959 goto err_unregister_proto; 1960 } 1961 1962 return 0; 1963 1964 err_unregister_proto: 1965 proto_unregister(&vsock_proto); 1966 err_misc_deregister: 1967 misc_deregister(&vsock_device); 1968 return err; 1969 } 1970 1971 int vsock_core_init(const struct vsock_transport *t) 1972 { 1973 int retval = mutex_lock_interruptible(&vsock_register_mutex); 1974 if (retval) 1975 return retval; 1976 1977 if (transport) { 1978 retval = -EBUSY; 1979 goto out; 1980 } 1981 1982 transport = t; 1983 retval = __vsock_core_init(); 1984 if (retval) 1985 transport = NULL; 1986 1987 out: 1988 mutex_unlock(&vsock_register_mutex); 1989 return retval; 1990 } 1991 EXPORT_SYMBOL_GPL(vsock_core_init); 1992 1993 void vsock_core_exit(void) 1994 { 1995 mutex_lock(&vsock_register_mutex); 1996 1997 misc_deregister(&vsock_device); 1998 sock_unregister(AF_VSOCK); 1999 proto_unregister(&vsock_proto); 2000 2001 /* We do not want the assignment below re-ordered. */ 2002 mb(); 2003 transport = NULL; 2004 2005 mutex_unlock(&vsock_register_mutex); 2006 } 2007 EXPORT_SYMBOL_GPL(vsock_core_exit); 2008 2009 MODULE_AUTHOR("VMware, Inc."); 2010 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2011 MODULE_VERSION("1.0.0.0-k"); 2012 MODULE_LICENSE("GPL v2"); 2013