1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/types.h> 89 #include <linux/bitops.h> 90 #include <linux/cred.h> 91 #include <linux/init.h> 92 #include <linux/io.h> 93 #include <linux/kernel.h> 94 #include <linux/sched/signal.h> 95 #include <linux/kmod.h> 96 #include <linux/list.h> 97 #include <linux/miscdevice.h> 98 #include <linux/module.h> 99 #include <linux/mutex.h> 100 #include <linux/net.h> 101 #include <linux/poll.h> 102 #include <linux/random.h> 103 #include <linux/skbuff.h> 104 #include <linux/smp.h> 105 #include <linux/socket.h> 106 #include <linux/stddef.h> 107 #include <linux/unistd.h> 108 #include <linux/wait.h> 109 #include <linux/workqueue.h> 110 #include <net/sock.h> 111 #include <net/af_vsock.h> 112 113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 114 static void vsock_sk_destruct(struct sock *sk); 115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 116 117 /* Protocol family. */ 118 static struct proto vsock_proto = { 119 .name = "AF_VSOCK", 120 .owner = THIS_MODULE, 121 .obj_size = sizeof(struct vsock_sock), 122 }; 123 124 /* The default peer timeout indicates how long we will wait for a peer response 125 * to a control message. 126 */ 127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 128 129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 132 133 /* Transport used for host->guest communication */ 134 static const struct vsock_transport *transport_h2g; 135 /* Transport used for guest->host communication */ 136 static const struct vsock_transport *transport_g2h; 137 /* Transport used for DGRAM communication */ 138 static const struct vsock_transport *transport_dgram; 139 /* Transport used for local communication */ 140 static const struct vsock_transport *transport_local; 141 static DEFINE_MUTEX(vsock_register_mutex); 142 143 /**** UTILS ****/ 144 145 /* Each bound VSocket is stored in the bind hash table and each connected 146 * VSocket is stored in the connected hash table. 147 * 148 * Unbound sockets are all put on the same list attached to the end of the hash 149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 150 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 151 * represents the list that addr hashes to). 152 * 153 * Specifically, we initialize the vsock_bind_table array to a size of 154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 157 * mods with VSOCK_HASH_SIZE to ensure this. 158 */ 159 #define MAX_PORT_RETRIES 24 160 161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 164 165 /* XXX This can probably be implemented in a better way. */ 166 #define VSOCK_CONN_HASH(src, dst) \ 167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 168 #define vsock_connected_sockets(src, dst) \ 169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 170 #define vsock_connected_sockets_vsk(vsk) \ 171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 172 173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 174 EXPORT_SYMBOL_GPL(vsock_bind_table); 175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 176 EXPORT_SYMBOL_GPL(vsock_connected_table); 177 DEFINE_SPINLOCK(vsock_table_lock); 178 EXPORT_SYMBOL_GPL(vsock_table_lock); 179 180 /* Autobind this socket to the local address if necessary. */ 181 static int vsock_auto_bind(struct vsock_sock *vsk) 182 { 183 struct sock *sk = sk_vsock(vsk); 184 struct sockaddr_vm local_addr; 185 186 if (vsock_addr_bound(&vsk->local_addr)) 187 return 0; 188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 189 return __vsock_bind(sk, &local_addr); 190 } 191 192 static void vsock_init_tables(void) 193 { 194 int i; 195 196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 197 INIT_LIST_HEAD(&vsock_bind_table[i]); 198 199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 200 INIT_LIST_HEAD(&vsock_connected_table[i]); 201 } 202 203 static void __vsock_insert_bound(struct list_head *list, 204 struct vsock_sock *vsk) 205 { 206 sock_hold(&vsk->sk); 207 list_add(&vsk->bound_table, list); 208 } 209 210 static void __vsock_insert_connected(struct list_head *list, 211 struct vsock_sock *vsk) 212 { 213 sock_hold(&vsk->sk); 214 list_add(&vsk->connected_table, list); 215 } 216 217 static void __vsock_remove_bound(struct vsock_sock *vsk) 218 { 219 list_del_init(&vsk->bound_table); 220 sock_put(&vsk->sk); 221 } 222 223 static void __vsock_remove_connected(struct vsock_sock *vsk) 224 { 225 list_del_init(&vsk->connected_table); 226 sock_put(&vsk->sk); 227 } 228 229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 230 { 231 struct vsock_sock *vsk; 232 233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 234 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 235 return sk_vsock(vsk); 236 237 if (addr->svm_port == vsk->local_addr.svm_port && 238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 239 addr->svm_cid == VMADDR_CID_ANY)) 240 return sk_vsock(vsk); 241 } 242 243 return NULL; 244 } 245 246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 247 struct sockaddr_vm *dst) 248 { 249 struct vsock_sock *vsk; 250 251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 252 connected_table) { 253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 254 dst->svm_port == vsk->local_addr.svm_port) { 255 return sk_vsock(vsk); 256 } 257 } 258 259 return NULL; 260 } 261 262 static void vsock_insert_unbound(struct vsock_sock *vsk) 263 { 264 spin_lock_bh(&vsock_table_lock); 265 __vsock_insert_bound(vsock_unbound_sockets, vsk); 266 spin_unlock_bh(&vsock_table_lock); 267 } 268 269 void vsock_insert_connected(struct vsock_sock *vsk) 270 { 271 struct list_head *list = vsock_connected_sockets( 272 &vsk->remote_addr, &vsk->local_addr); 273 274 spin_lock_bh(&vsock_table_lock); 275 __vsock_insert_connected(list, vsk); 276 spin_unlock_bh(&vsock_table_lock); 277 } 278 EXPORT_SYMBOL_GPL(vsock_insert_connected); 279 280 void vsock_remove_bound(struct vsock_sock *vsk) 281 { 282 spin_lock_bh(&vsock_table_lock); 283 if (__vsock_in_bound_table(vsk)) 284 __vsock_remove_bound(vsk); 285 spin_unlock_bh(&vsock_table_lock); 286 } 287 EXPORT_SYMBOL_GPL(vsock_remove_bound); 288 289 void vsock_remove_connected(struct vsock_sock *vsk) 290 { 291 spin_lock_bh(&vsock_table_lock); 292 if (__vsock_in_connected_table(vsk)) 293 __vsock_remove_connected(vsk); 294 spin_unlock_bh(&vsock_table_lock); 295 } 296 EXPORT_SYMBOL_GPL(vsock_remove_connected); 297 298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 299 { 300 struct sock *sk; 301 302 spin_lock_bh(&vsock_table_lock); 303 sk = __vsock_find_bound_socket(addr); 304 if (sk) 305 sock_hold(sk); 306 307 spin_unlock_bh(&vsock_table_lock); 308 309 return sk; 310 } 311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 312 313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 314 struct sockaddr_vm *dst) 315 { 316 struct sock *sk; 317 318 spin_lock_bh(&vsock_table_lock); 319 sk = __vsock_find_connected_socket(src, dst); 320 if (sk) 321 sock_hold(sk); 322 323 spin_unlock_bh(&vsock_table_lock); 324 325 return sk; 326 } 327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 328 329 void vsock_remove_sock(struct vsock_sock *vsk) 330 { 331 vsock_remove_bound(vsk); 332 vsock_remove_connected(vsk); 333 } 334 EXPORT_SYMBOL_GPL(vsock_remove_sock); 335 336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 337 { 338 int i; 339 340 spin_lock_bh(&vsock_table_lock); 341 342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 343 struct vsock_sock *vsk; 344 list_for_each_entry(vsk, &vsock_connected_table[i], 345 connected_table) 346 fn(sk_vsock(vsk)); 347 } 348 349 spin_unlock_bh(&vsock_table_lock); 350 } 351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 352 353 void vsock_add_pending(struct sock *listener, struct sock *pending) 354 { 355 struct vsock_sock *vlistener; 356 struct vsock_sock *vpending; 357 358 vlistener = vsock_sk(listener); 359 vpending = vsock_sk(pending); 360 361 sock_hold(pending); 362 sock_hold(listener); 363 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 364 } 365 EXPORT_SYMBOL_GPL(vsock_add_pending); 366 367 void vsock_remove_pending(struct sock *listener, struct sock *pending) 368 { 369 struct vsock_sock *vpending = vsock_sk(pending); 370 371 list_del_init(&vpending->pending_links); 372 sock_put(listener); 373 sock_put(pending); 374 } 375 EXPORT_SYMBOL_GPL(vsock_remove_pending); 376 377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 378 { 379 struct vsock_sock *vlistener; 380 struct vsock_sock *vconnected; 381 382 vlistener = vsock_sk(listener); 383 vconnected = vsock_sk(connected); 384 385 sock_hold(connected); 386 sock_hold(listener); 387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 388 } 389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 390 391 static bool vsock_use_local_transport(unsigned int remote_cid) 392 { 393 if (!transport_local) 394 return false; 395 396 if (remote_cid == VMADDR_CID_LOCAL) 397 return true; 398 399 if (transport_g2h) { 400 return remote_cid == transport_g2h->get_local_cid(); 401 } else { 402 return remote_cid == VMADDR_CID_HOST; 403 } 404 } 405 406 static void vsock_deassign_transport(struct vsock_sock *vsk) 407 { 408 if (!vsk->transport) 409 return; 410 411 vsk->transport->destruct(vsk); 412 module_put(vsk->transport->module); 413 vsk->transport = NULL; 414 } 415 416 /* Assign a transport to a socket and call the .init transport callback. 417 * 418 * Note: for connection oriented socket this must be called when vsk->remote_addr 419 * is set (e.g. during the connect() or when a connection request on a listener 420 * socket is received). 421 * The vsk->remote_addr is used to decide which transport to use: 422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 423 * g2h is not loaded, will use local transport; 424 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 425 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 426 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 427 */ 428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 429 { 430 const struct vsock_transport *new_transport; 431 struct sock *sk = sk_vsock(vsk); 432 unsigned int remote_cid = vsk->remote_addr.svm_cid; 433 __u8 remote_flags; 434 int ret; 435 436 /* If the packet is coming with the source and destination CIDs higher 437 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 438 * forwarded to the host should be established. Then the host will 439 * need to forward the packets to the guest. 440 * 441 * The flag is set on the (listen) receive path (psk is not NULL). On 442 * the connect path the flag can be set by the user space application. 443 */ 444 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 445 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 446 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 447 448 remote_flags = vsk->remote_addr.svm_flags; 449 450 switch (sk->sk_type) { 451 case SOCK_DGRAM: 452 new_transport = transport_dgram; 453 break; 454 case SOCK_STREAM: 455 case SOCK_SEQPACKET: 456 if (vsock_use_local_transport(remote_cid)) 457 new_transport = transport_local; 458 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 459 (remote_flags & VMADDR_FLAG_TO_HOST)) 460 new_transport = transport_g2h; 461 else 462 new_transport = transport_h2g; 463 break; 464 default: 465 return -ESOCKTNOSUPPORT; 466 } 467 468 if (vsk->transport) { 469 if (vsk->transport == new_transport) 470 return 0; 471 472 /* transport->release() must be called with sock lock acquired. 473 * This path can only be taken during vsock_connect(), where we 474 * have already held the sock lock. In the other cases, this 475 * function is called on a new socket which is not assigned to 476 * any transport. 477 */ 478 vsk->transport->release(vsk); 479 vsock_deassign_transport(vsk); 480 } 481 482 /* We increase the module refcnt to prevent the transport unloading 483 * while there are open sockets assigned to it. 484 */ 485 if (!new_transport || !try_module_get(new_transport->module)) 486 return -ENODEV; 487 488 if (sk->sk_type == SOCK_SEQPACKET) { 489 if (!new_transport->seqpacket_allow || 490 !new_transport->seqpacket_allow(remote_cid)) { 491 module_put(new_transport->module); 492 return -ESOCKTNOSUPPORT; 493 } 494 } 495 496 ret = new_transport->init(vsk, psk); 497 if (ret) { 498 module_put(new_transport->module); 499 return ret; 500 } 501 502 vsk->transport = new_transport; 503 504 return 0; 505 } 506 EXPORT_SYMBOL_GPL(vsock_assign_transport); 507 508 bool vsock_find_cid(unsigned int cid) 509 { 510 if (transport_g2h && cid == transport_g2h->get_local_cid()) 511 return true; 512 513 if (transport_h2g && cid == VMADDR_CID_HOST) 514 return true; 515 516 if (transport_local && cid == VMADDR_CID_LOCAL) 517 return true; 518 519 return false; 520 } 521 EXPORT_SYMBOL_GPL(vsock_find_cid); 522 523 static struct sock *vsock_dequeue_accept(struct sock *listener) 524 { 525 struct vsock_sock *vlistener; 526 struct vsock_sock *vconnected; 527 528 vlistener = vsock_sk(listener); 529 530 if (list_empty(&vlistener->accept_queue)) 531 return NULL; 532 533 vconnected = list_entry(vlistener->accept_queue.next, 534 struct vsock_sock, accept_queue); 535 536 list_del_init(&vconnected->accept_queue); 537 sock_put(listener); 538 /* The caller will need a reference on the connected socket so we let 539 * it call sock_put(). 540 */ 541 542 return sk_vsock(vconnected); 543 } 544 545 static bool vsock_is_accept_queue_empty(struct sock *sk) 546 { 547 struct vsock_sock *vsk = vsock_sk(sk); 548 return list_empty(&vsk->accept_queue); 549 } 550 551 static bool vsock_is_pending(struct sock *sk) 552 { 553 struct vsock_sock *vsk = vsock_sk(sk); 554 return !list_empty(&vsk->pending_links); 555 } 556 557 static int vsock_send_shutdown(struct sock *sk, int mode) 558 { 559 struct vsock_sock *vsk = vsock_sk(sk); 560 561 if (!vsk->transport) 562 return -ENODEV; 563 564 return vsk->transport->shutdown(vsk, mode); 565 } 566 567 static void vsock_pending_work(struct work_struct *work) 568 { 569 struct sock *sk; 570 struct sock *listener; 571 struct vsock_sock *vsk; 572 bool cleanup; 573 574 vsk = container_of(work, struct vsock_sock, pending_work.work); 575 sk = sk_vsock(vsk); 576 listener = vsk->listener; 577 cleanup = true; 578 579 lock_sock(listener); 580 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 581 582 if (vsock_is_pending(sk)) { 583 vsock_remove_pending(listener, sk); 584 585 sk_acceptq_removed(listener); 586 } else if (!vsk->rejected) { 587 /* We are not on the pending list and accept() did not reject 588 * us, so we must have been accepted by our user process. We 589 * just need to drop our references to the sockets and be on 590 * our way. 591 */ 592 cleanup = false; 593 goto out; 594 } 595 596 /* We need to remove ourself from the global connected sockets list so 597 * incoming packets can't find this socket, and to reduce the reference 598 * count. 599 */ 600 vsock_remove_connected(vsk); 601 602 sk->sk_state = TCP_CLOSE; 603 604 out: 605 release_sock(sk); 606 release_sock(listener); 607 if (cleanup) 608 sock_put(sk); 609 610 sock_put(sk); 611 sock_put(listener); 612 } 613 614 /**** SOCKET OPERATIONS ****/ 615 616 static int __vsock_bind_connectible(struct vsock_sock *vsk, 617 struct sockaddr_vm *addr) 618 { 619 static u32 port; 620 struct sockaddr_vm new_addr; 621 622 if (!port) 623 port = LAST_RESERVED_PORT + 1 + 624 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT); 625 626 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 627 628 if (addr->svm_port == VMADDR_PORT_ANY) { 629 bool found = false; 630 unsigned int i; 631 632 for (i = 0; i < MAX_PORT_RETRIES; i++) { 633 if (port <= LAST_RESERVED_PORT) 634 port = LAST_RESERVED_PORT + 1; 635 636 new_addr.svm_port = port++; 637 638 if (!__vsock_find_bound_socket(&new_addr)) { 639 found = true; 640 break; 641 } 642 } 643 644 if (!found) 645 return -EADDRNOTAVAIL; 646 } else { 647 /* If port is in reserved range, ensure caller 648 * has necessary privileges. 649 */ 650 if (addr->svm_port <= LAST_RESERVED_PORT && 651 !capable(CAP_NET_BIND_SERVICE)) { 652 return -EACCES; 653 } 654 655 if (__vsock_find_bound_socket(&new_addr)) 656 return -EADDRINUSE; 657 } 658 659 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 660 661 /* Remove connection oriented sockets from the unbound list and add them 662 * to the hash table for easy lookup by its address. The unbound list 663 * is simply an extra entry at the end of the hash table, a trick used 664 * by AF_UNIX. 665 */ 666 __vsock_remove_bound(vsk); 667 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 668 669 return 0; 670 } 671 672 static int __vsock_bind_dgram(struct vsock_sock *vsk, 673 struct sockaddr_vm *addr) 674 { 675 return vsk->transport->dgram_bind(vsk, addr); 676 } 677 678 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 679 { 680 struct vsock_sock *vsk = vsock_sk(sk); 681 int retval; 682 683 /* First ensure this socket isn't already bound. */ 684 if (vsock_addr_bound(&vsk->local_addr)) 685 return -EINVAL; 686 687 /* Now bind to the provided address or select appropriate values if 688 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 689 * like AF_INET prevents binding to a non-local IP address (in most 690 * cases), we only allow binding to a local CID. 691 */ 692 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 693 return -EADDRNOTAVAIL; 694 695 switch (sk->sk_socket->type) { 696 case SOCK_STREAM: 697 case SOCK_SEQPACKET: 698 spin_lock_bh(&vsock_table_lock); 699 retval = __vsock_bind_connectible(vsk, addr); 700 spin_unlock_bh(&vsock_table_lock); 701 break; 702 703 case SOCK_DGRAM: 704 retval = __vsock_bind_dgram(vsk, addr); 705 break; 706 707 default: 708 retval = -EINVAL; 709 break; 710 } 711 712 return retval; 713 } 714 715 static void vsock_connect_timeout(struct work_struct *work); 716 717 static struct sock *__vsock_create(struct net *net, 718 struct socket *sock, 719 struct sock *parent, 720 gfp_t priority, 721 unsigned short type, 722 int kern) 723 { 724 struct sock *sk; 725 struct vsock_sock *psk; 726 struct vsock_sock *vsk; 727 728 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 729 if (!sk) 730 return NULL; 731 732 sock_init_data(sock, sk); 733 734 /* sk->sk_type is normally set in sock_init_data, but only if sock is 735 * non-NULL. We make sure that our sockets always have a type by 736 * setting it here if needed. 737 */ 738 if (!sock) 739 sk->sk_type = type; 740 741 vsk = vsock_sk(sk); 742 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 743 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 744 745 sk->sk_destruct = vsock_sk_destruct; 746 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 747 sock_reset_flag(sk, SOCK_DONE); 748 749 INIT_LIST_HEAD(&vsk->bound_table); 750 INIT_LIST_HEAD(&vsk->connected_table); 751 vsk->listener = NULL; 752 INIT_LIST_HEAD(&vsk->pending_links); 753 INIT_LIST_HEAD(&vsk->accept_queue); 754 vsk->rejected = false; 755 vsk->sent_request = false; 756 vsk->ignore_connecting_rst = false; 757 vsk->peer_shutdown = 0; 758 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 759 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 760 761 psk = parent ? vsock_sk(parent) : NULL; 762 if (parent) { 763 vsk->trusted = psk->trusted; 764 vsk->owner = get_cred(psk->owner); 765 vsk->connect_timeout = psk->connect_timeout; 766 vsk->buffer_size = psk->buffer_size; 767 vsk->buffer_min_size = psk->buffer_min_size; 768 vsk->buffer_max_size = psk->buffer_max_size; 769 security_sk_clone(parent, sk); 770 } else { 771 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 772 vsk->owner = get_current_cred(); 773 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 774 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 775 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 776 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 777 } 778 779 return sk; 780 } 781 782 static bool sock_type_connectible(u16 type) 783 { 784 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 785 } 786 787 static void __vsock_release(struct sock *sk, int level) 788 { 789 if (sk) { 790 struct sock *pending; 791 struct vsock_sock *vsk; 792 793 vsk = vsock_sk(sk); 794 pending = NULL; /* Compiler warning. */ 795 796 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 797 * version to avoid the warning "possible recursive locking 798 * detected". When "level" is 0, lock_sock_nested(sk, level) 799 * is the same as lock_sock(sk). 800 */ 801 lock_sock_nested(sk, level); 802 803 if (vsk->transport) 804 vsk->transport->release(vsk); 805 else if (sock_type_connectible(sk->sk_type)) 806 vsock_remove_sock(vsk); 807 808 sock_orphan(sk); 809 sk->sk_shutdown = SHUTDOWN_MASK; 810 811 skb_queue_purge(&sk->sk_receive_queue); 812 813 /* Clean up any sockets that never were accepted. */ 814 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 815 __vsock_release(pending, SINGLE_DEPTH_NESTING); 816 sock_put(pending); 817 } 818 819 release_sock(sk); 820 sock_put(sk); 821 } 822 } 823 824 static void vsock_sk_destruct(struct sock *sk) 825 { 826 struct vsock_sock *vsk = vsock_sk(sk); 827 828 vsock_deassign_transport(vsk); 829 830 /* When clearing these addresses, there's no need to set the family and 831 * possibly register the address family with the kernel. 832 */ 833 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 834 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 835 836 put_cred(vsk->owner); 837 } 838 839 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 840 { 841 int err; 842 843 err = sock_queue_rcv_skb(sk, skb); 844 if (err) 845 kfree_skb(skb); 846 847 return err; 848 } 849 850 struct sock *vsock_create_connected(struct sock *parent) 851 { 852 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 853 parent->sk_type, 0); 854 } 855 EXPORT_SYMBOL_GPL(vsock_create_connected); 856 857 s64 vsock_stream_has_data(struct vsock_sock *vsk) 858 { 859 return vsk->transport->stream_has_data(vsk); 860 } 861 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 862 863 static s64 vsock_connectible_has_data(struct vsock_sock *vsk) 864 { 865 struct sock *sk = sk_vsock(vsk); 866 867 if (sk->sk_type == SOCK_SEQPACKET) 868 return vsk->transport->seqpacket_has_data(vsk); 869 else 870 return vsock_stream_has_data(vsk); 871 } 872 873 s64 vsock_stream_has_space(struct vsock_sock *vsk) 874 { 875 return vsk->transport->stream_has_space(vsk); 876 } 877 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 878 879 static int vsock_release(struct socket *sock) 880 { 881 __vsock_release(sock->sk, 0); 882 sock->sk = NULL; 883 sock->state = SS_FREE; 884 885 return 0; 886 } 887 888 static int 889 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 890 { 891 int err; 892 struct sock *sk; 893 struct sockaddr_vm *vm_addr; 894 895 sk = sock->sk; 896 897 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 898 return -EINVAL; 899 900 lock_sock(sk); 901 err = __vsock_bind(sk, vm_addr); 902 release_sock(sk); 903 904 return err; 905 } 906 907 static int vsock_getname(struct socket *sock, 908 struct sockaddr *addr, int peer) 909 { 910 int err; 911 struct sock *sk; 912 struct vsock_sock *vsk; 913 struct sockaddr_vm *vm_addr; 914 915 sk = sock->sk; 916 vsk = vsock_sk(sk); 917 err = 0; 918 919 lock_sock(sk); 920 921 if (peer) { 922 if (sock->state != SS_CONNECTED) { 923 err = -ENOTCONN; 924 goto out; 925 } 926 vm_addr = &vsk->remote_addr; 927 } else { 928 vm_addr = &vsk->local_addr; 929 } 930 931 if (!vm_addr) { 932 err = -EINVAL; 933 goto out; 934 } 935 936 /* sys_getsockname() and sys_getpeername() pass us a 937 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 938 * that macro is defined in socket.c instead of .h, so we hardcode its 939 * value here. 940 */ 941 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 942 memcpy(addr, vm_addr, sizeof(*vm_addr)); 943 err = sizeof(*vm_addr); 944 945 out: 946 release_sock(sk); 947 return err; 948 } 949 950 static int vsock_shutdown(struct socket *sock, int mode) 951 { 952 int err; 953 struct sock *sk; 954 955 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 956 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 957 * here like the other address families do. Note also that the 958 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 959 * which is what we want. 960 */ 961 mode++; 962 963 if ((mode & ~SHUTDOWN_MASK) || !mode) 964 return -EINVAL; 965 966 /* If this is a connection oriented socket and it is not connected then 967 * bail out immediately. If it is a DGRAM socket then we must first 968 * kick the socket so that it wakes up from any sleeping calls, for 969 * example recv(), and then afterwards return the error. 970 */ 971 972 sk = sock->sk; 973 974 lock_sock(sk); 975 if (sock->state == SS_UNCONNECTED) { 976 err = -ENOTCONN; 977 if (sock_type_connectible(sk->sk_type)) 978 goto out; 979 } else { 980 sock->state = SS_DISCONNECTING; 981 err = 0; 982 } 983 984 /* Receive and send shutdowns are treated alike. */ 985 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 986 if (mode) { 987 sk->sk_shutdown |= mode; 988 sk->sk_state_change(sk); 989 990 if (sock_type_connectible(sk->sk_type)) { 991 sock_reset_flag(sk, SOCK_DONE); 992 vsock_send_shutdown(sk, mode); 993 } 994 } 995 996 out: 997 release_sock(sk); 998 return err; 999 } 1000 1001 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1002 poll_table *wait) 1003 { 1004 struct sock *sk; 1005 __poll_t mask; 1006 struct vsock_sock *vsk; 1007 1008 sk = sock->sk; 1009 vsk = vsock_sk(sk); 1010 1011 poll_wait(file, sk_sleep(sk), wait); 1012 mask = 0; 1013 1014 if (sk->sk_err) 1015 /* Signify that there has been an error on this socket. */ 1016 mask |= EPOLLERR; 1017 1018 /* INET sockets treat local write shutdown and peer write shutdown as a 1019 * case of EPOLLHUP set. 1020 */ 1021 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1022 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1023 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1024 mask |= EPOLLHUP; 1025 } 1026 1027 if (sk->sk_shutdown & RCV_SHUTDOWN || 1028 vsk->peer_shutdown & SEND_SHUTDOWN) { 1029 mask |= EPOLLRDHUP; 1030 } 1031 1032 if (sock->type == SOCK_DGRAM) { 1033 /* For datagram sockets we can read if there is something in 1034 * the queue and write as long as the socket isn't shutdown for 1035 * sending. 1036 */ 1037 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1038 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1039 mask |= EPOLLIN | EPOLLRDNORM; 1040 } 1041 1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1043 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1044 1045 } else if (sock_type_connectible(sk->sk_type)) { 1046 const struct vsock_transport *transport; 1047 1048 lock_sock(sk); 1049 1050 transport = vsk->transport; 1051 1052 /* Listening sockets that have connections in their accept 1053 * queue can be read. 1054 */ 1055 if (sk->sk_state == TCP_LISTEN 1056 && !vsock_is_accept_queue_empty(sk)) 1057 mask |= EPOLLIN | EPOLLRDNORM; 1058 1059 /* If there is something in the queue then we can read. */ 1060 if (transport && transport->stream_is_active(vsk) && 1061 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1062 bool data_ready_now = false; 1063 int ret = transport->notify_poll_in( 1064 vsk, 1, &data_ready_now); 1065 if (ret < 0) { 1066 mask |= EPOLLERR; 1067 } else { 1068 if (data_ready_now) 1069 mask |= EPOLLIN | EPOLLRDNORM; 1070 1071 } 1072 } 1073 1074 /* Sockets whose connections have been closed, reset, or 1075 * terminated should also be considered read, and we check the 1076 * shutdown flag for that. 1077 */ 1078 if (sk->sk_shutdown & RCV_SHUTDOWN || 1079 vsk->peer_shutdown & SEND_SHUTDOWN) { 1080 mask |= EPOLLIN | EPOLLRDNORM; 1081 } 1082 1083 /* Connected sockets that can produce data can be written. */ 1084 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1085 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1086 bool space_avail_now = false; 1087 int ret = transport->notify_poll_out( 1088 vsk, 1, &space_avail_now); 1089 if (ret < 0) { 1090 mask |= EPOLLERR; 1091 } else { 1092 if (space_avail_now) 1093 /* Remove EPOLLWRBAND since INET 1094 * sockets are not setting it. 1095 */ 1096 mask |= EPOLLOUT | EPOLLWRNORM; 1097 1098 } 1099 } 1100 } 1101 1102 /* Simulate INET socket poll behaviors, which sets 1103 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1104 * but local send is not shutdown. 1105 */ 1106 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1108 mask |= EPOLLOUT | EPOLLWRNORM; 1109 1110 } 1111 1112 release_sock(sk); 1113 } 1114 1115 return mask; 1116 } 1117 1118 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1119 size_t len) 1120 { 1121 int err; 1122 struct sock *sk; 1123 struct vsock_sock *vsk; 1124 struct sockaddr_vm *remote_addr; 1125 const struct vsock_transport *transport; 1126 1127 if (msg->msg_flags & MSG_OOB) 1128 return -EOPNOTSUPP; 1129 1130 /* For now, MSG_DONTWAIT is always assumed... */ 1131 err = 0; 1132 sk = sock->sk; 1133 vsk = vsock_sk(sk); 1134 1135 lock_sock(sk); 1136 1137 transport = vsk->transport; 1138 1139 err = vsock_auto_bind(vsk); 1140 if (err) 1141 goto out; 1142 1143 1144 /* If the provided message contains an address, use that. Otherwise 1145 * fall back on the socket's remote handle (if it has been connected). 1146 */ 1147 if (msg->msg_name && 1148 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1149 &remote_addr) == 0) { 1150 /* Ensure this address is of the right type and is a valid 1151 * destination. 1152 */ 1153 1154 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1155 remote_addr->svm_cid = transport->get_local_cid(); 1156 1157 if (!vsock_addr_bound(remote_addr)) { 1158 err = -EINVAL; 1159 goto out; 1160 } 1161 } else if (sock->state == SS_CONNECTED) { 1162 remote_addr = &vsk->remote_addr; 1163 1164 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1165 remote_addr->svm_cid = transport->get_local_cid(); 1166 1167 /* XXX Should connect() or this function ensure remote_addr is 1168 * bound? 1169 */ 1170 if (!vsock_addr_bound(&vsk->remote_addr)) { 1171 err = -EINVAL; 1172 goto out; 1173 } 1174 } else { 1175 err = -EINVAL; 1176 goto out; 1177 } 1178 1179 if (!transport->dgram_allow(remote_addr->svm_cid, 1180 remote_addr->svm_port)) { 1181 err = -EINVAL; 1182 goto out; 1183 } 1184 1185 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1186 1187 out: 1188 release_sock(sk); 1189 return err; 1190 } 1191 1192 static int vsock_dgram_connect(struct socket *sock, 1193 struct sockaddr *addr, int addr_len, int flags) 1194 { 1195 int err; 1196 struct sock *sk; 1197 struct vsock_sock *vsk; 1198 struct sockaddr_vm *remote_addr; 1199 1200 sk = sock->sk; 1201 vsk = vsock_sk(sk); 1202 1203 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1204 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1205 lock_sock(sk); 1206 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1207 VMADDR_PORT_ANY); 1208 sock->state = SS_UNCONNECTED; 1209 release_sock(sk); 1210 return 0; 1211 } else if (err != 0) 1212 return -EINVAL; 1213 1214 lock_sock(sk); 1215 1216 err = vsock_auto_bind(vsk); 1217 if (err) 1218 goto out; 1219 1220 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1221 remote_addr->svm_port)) { 1222 err = -EINVAL; 1223 goto out; 1224 } 1225 1226 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1227 sock->state = SS_CONNECTED; 1228 1229 out: 1230 release_sock(sk); 1231 return err; 1232 } 1233 1234 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1235 size_t len, int flags) 1236 { 1237 struct vsock_sock *vsk = vsock_sk(sock->sk); 1238 1239 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1240 } 1241 1242 static const struct proto_ops vsock_dgram_ops = { 1243 .family = PF_VSOCK, 1244 .owner = THIS_MODULE, 1245 .release = vsock_release, 1246 .bind = vsock_bind, 1247 .connect = vsock_dgram_connect, 1248 .socketpair = sock_no_socketpair, 1249 .accept = sock_no_accept, 1250 .getname = vsock_getname, 1251 .poll = vsock_poll, 1252 .ioctl = sock_no_ioctl, 1253 .listen = sock_no_listen, 1254 .shutdown = vsock_shutdown, 1255 .sendmsg = vsock_dgram_sendmsg, 1256 .recvmsg = vsock_dgram_recvmsg, 1257 .mmap = sock_no_mmap, 1258 .sendpage = sock_no_sendpage, 1259 }; 1260 1261 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1262 { 1263 const struct vsock_transport *transport = vsk->transport; 1264 1265 if (!transport || !transport->cancel_pkt) 1266 return -EOPNOTSUPP; 1267 1268 return transport->cancel_pkt(vsk); 1269 } 1270 1271 static void vsock_connect_timeout(struct work_struct *work) 1272 { 1273 struct sock *sk; 1274 struct vsock_sock *vsk; 1275 1276 vsk = container_of(work, struct vsock_sock, connect_work.work); 1277 sk = sk_vsock(vsk); 1278 1279 lock_sock(sk); 1280 if (sk->sk_state == TCP_SYN_SENT && 1281 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1282 sk->sk_state = TCP_CLOSE; 1283 sk->sk_err = ETIMEDOUT; 1284 sk_error_report(sk); 1285 vsock_transport_cancel_pkt(vsk); 1286 } 1287 release_sock(sk); 1288 1289 sock_put(sk); 1290 } 1291 1292 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1293 int addr_len, int flags) 1294 { 1295 int err; 1296 struct sock *sk; 1297 struct vsock_sock *vsk; 1298 const struct vsock_transport *transport; 1299 struct sockaddr_vm *remote_addr; 1300 long timeout; 1301 DEFINE_WAIT(wait); 1302 1303 err = 0; 1304 sk = sock->sk; 1305 vsk = vsock_sk(sk); 1306 1307 lock_sock(sk); 1308 1309 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1310 switch (sock->state) { 1311 case SS_CONNECTED: 1312 err = -EISCONN; 1313 goto out; 1314 case SS_DISCONNECTING: 1315 err = -EINVAL; 1316 goto out; 1317 case SS_CONNECTING: 1318 /* This continues on so we can move sock into the SS_CONNECTED 1319 * state once the connection has completed (at which point err 1320 * will be set to zero also). Otherwise, we will either wait 1321 * for the connection or return -EALREADY should this be a 1322 * non-blocking call. 1323 */ 1324 err = -EALREADY; 1325 break; 1326 default: 1327 if ((sk->sk_state == TCP_LISTEN) || 1328 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1329 err = -EINVAL; 1330 goto out; 1331 } 1332 1333 /* Set the remote address that we are connecting to. */ 1334 memcpy(&vsk->remote_addr, remote_addr, 1335 sizeof(vsk->remote_addr)); 1336 1337 err = vsock_assign_transport(vsk, NULL); 1338 if (err) 1339 goto out; 1340 1341 transport = vsk->transport; 1342 1343 /* The hypervisor and well-known contexts do not have socket 1344 * endpoints. 1345 */ 1346 if (!transport || 1347 !transport->stream_allow(remote_addr->svm_cid, 1348 remote_addr->svm_port)) { 1349 err = -ENETUNREACH; 1350 goto out; 1351 } 1352 1353 err = vsock_auto_bind(vsk); 1354 if (err) 1355 goto out; 1356 1357 sk->sk_state = TCP_SYN_SENT; 1358 1359 err = transport->connect(vsk); 1360 if (err < 0) 1361 goto out; 1362 1363 /* Mark sock as connecting and set the error code to in 1364 * progress in case this is a non-blocking connect. 1365 */ 1366 sock->state = SS_CONNECTING; 1367 err = -EINPROGRESS; 1368 } 1369 1370 /* The receive path will handle all communication until we are able to 1371 * enter the connected state. Here we wait for the connection to be 1372 * completed or a notification of an error. 1373 */ 1374 timeout = vsk->connect_timeout; 1375 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1376 1377 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1378 if (flags & O_NONBLOCK) { 1379 /* If we're not going to block, we schedule a timeout 1380 * function to generate a timeout on the connection 1381 * attempt, in case the peer doesn't respond in a 1382 * timely manner. We hold on to the socket until the 1383 * timeout fires. 1384 */ 1385 sock_hold(sk); 1386 schedule_delayed_work(&vsk->connect_work, timeout); 1387 1388 /* Skip ahead to preserve error code set above. */ 1389 goto out_wait; 1390 } 1391 1392 release_sock(sk); 1393 timeout = schedule_timeout(timeout); 1394 lock_sock(sk); 1395 1396 if (signal_pending(current)) { 1397 err = sock_intr_errno(timeout); 1398 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1399 sock->state = SS_UNCONNECTED; 1400 vsock_transport_cancel_pkt(vsk); 1401 goto out_wait; 1402 } else if (timeout == 0) { 1403 err = -ETIMEDOUT; 1404 sk->sk_state = TCP_CLOSE; 1405 sock->state = SS_UNCONNECTED; 1406 vsock_transport_cancel_pkt(vsk); 1407 goto out_wait; 1408 } 1409 1410 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1411 } 1412 1413 if (sk->sk_err) { 1414 err = -sk->sk_err; 1415 sk->sk_state = TCP_CLOSE; 1416 sock->state = SS_UNCONNECTED; 1417 } else { 1418 err = 0; 1419 } 1420 1421 out_wait: 1422 finish_wait(sk_sleep(sk), &wait); 1423 out: 1424 release_sock(sk); 1425 return err; 1426 } 1427 1428 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, 1429 bool kern) 1430 { 1431 struct sock *listener; 1432 int err; 1433 struct sock *connected; 1434 struct vsock_sock *vconnected; 1435 long timeout; 1436 DEFINE_WAIT(wait); 1437 1438 err = 0; 1439 listener = sock->sk; 1440 1441 lock_sock(listener); 1442 1443 if (!sock_type_connectible(sock->type)) { 1444 err = -EOPNOTSUPP; 1445 goto out; 1446 } 1447 1448 if (listener->sk_state != TCP_LISTEN) { 1449 err = -EINVAL; 1450 goto out; 1451 } 1452 1453 /* Wait for children sockets to appear; these are the new sockets 1454 * created upon connection establishment. 1455 */ 1456 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK); 1457 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1458 1459 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1460 listener->sk_err == 0) { 1461 release_sock(listener); 1462 timeout = schedule_timeout(timeout); 1463 finish_wait(sk_sleep(listener), &wait); 1464 lock_sock(listener); 1465 1466 if (signal_pending(current)) { 1467 err = sock_intr_errno(timeout); 1468 goto out; 1469 } else if (timeout == 0) { 1470 err = -EAGAIN; 1471 goto out; 1472 } 1473 1474 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1475 } 1476 finish_wait(sk_sleep(listener), &wait); 1477 1478 if (listener->sk_err) 1479 err = -listener->sk_err; 1480 1481 if (connected) { 1482 sk_acceptq_removed(listener); 1483 1484 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1485 vconnected = vsock_sk(connected); 1486 1487 /* If the listener socket has received an error, then we should 1488 * reject this socket and return. Note that we simply mark the 1489 * socket rejected, drop our reference, and let the cleanup 1490 * function handle the cleanup; the fact that we found it in 1491 * the listener's accept queue guarantees that the cleanup 1492 * function hasn't run yet. 1493 */ 1494 if (err) { 1495 vconnected->rejected = true; 1496 } else { 1497 newsock->state = SS_CONNECTED; 1498 sock_graft(connected, newsock); 1499 } 1500 1501 release_sock(connected); 1502 sock_put(connected); 1503 } 1504 1505 out: 1506 release_sock(listener); 1507 return err; 1508 } 1509 1510 static int vsock_listen(struct socket *sock, int backlog) 1511 { 1512 int err; 1513 struct sock *sk; 1514 struct vsock_sock *vsk; 1515 1516 sk = sock->sk; 1517 1518 lock_sock(sk); 1519 1520 if (!sock_type_connectible(sk->sk_type)) { 1521 err = -EOPNOTSUPP; 1522 goto out; 1523 } 1524 1525 if (sock->state != SS_UNCONNECTED) { 1526 err = -EINVAL; 1527 goto out; 1528 } 1529 1530 vsk = vsock_sk(sk); 1531 1532 if (!vsock_addr_bound(&vsk->local_addr)) { 1533 err = -EINVAL; 1534 goto out; 1535 } 1536 1537 sk->sk_max_ack_backlog = backlog; 1538 sk->sk_state = TCP_LISTEN; 1539 1540 err = 0; 1541 1542 out: 1543 release_sock(sk); 1544 return err; 1545 } 1546 1547 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1548 const struct vsock_transport *transport, 1549 u64 val) 1550 { 1551 if (val > vsk->buffer_max_size) 1552 val = vsk->buffer_max_size; 1553 1554 if (val < vsk->buffer_min_size) 1555 val = vsk->buffer_min_size; 1556 1557 if (val != vsk->buffer_size && 1558 transport && transport->notify_buffer_size) 1559 transport->notify_buffer_size(vsk, &val); 1560 1561 vsk->buffer_size = val; 1562 } 1563 1564 static int vsock_connectible_setsockopt(struct socket *sock, 1565 int level, 1566 int optname, 1567 sockptr_t optval, 1568 unsigned int optlen) 1569 { 1570 int err; 1571 struct sock *sk; 1572 struct vsock_sock *vsk; 1573 const struct vsock_transport *transport; 1574 u64 val; 1575 1576 if (level != AF_VSOCK) 1577 return -ENOPROTOOPT; 1578 1579 #define COPY_IN(_v) \ 1580 do { \ 1581 if (optlen < sizeof(_v)) { \ 1582 err = -EINVAL; \ 1583 goto exit; \ 1584 } \ 1585 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1586 err = -EFAULT; \ 1587 goto exit; \ 1588 } \ 1589 } while (0) 1590 1591 err = 0; 1592 sk = sock->sk; 1593 vsk = vsock_sk(sk); 1594 1595 lock_sock(sk); 1596 1597 transport = vsk->transport; 1598 1599 switch (optname) { 1600 case SO_VM_SOCKETS_BUFFER_SIZE: 1601 COPY_IN(val); 1602 vsock_update_buffer_size(vsk, transport, val); 1603 break; 1604 1605 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1606 COPY_IN(val); 1607 vsk->buffer_max_size = val; 1608 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1609 break; 1610 1611 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1612 COPY_IN(val); 1613 vsk->buffer_min_size = val; 1614 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1615 break; 1616 1617 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1618 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1619 struct __kernel_sock_timeval tv; 1620 1621 err = sock_copy_user_timeval(&tv, optval, optlen, 1622 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1623 if (err) 1624 break; 1625 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1626 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1627 vsk->connect_timeout = tv.tv_sec * HZ + 1628 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1629 if (vsk->connect_timeout == 0) 1630 vsk->connect_timeout = 1631 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1632 1633 } else { 1634 err = -ERANGE; 1635 } 1636 break; 1637 } 1638 1639 default: 1640 err = -ENOPROTOOPT; 1641 break; 1642 } 1643 1644 #undef COPY_IN 1645 1646 exit: 1647 release_sock(sk); 1648 return err; 1649 } 1650 1651 static int vsock_connectible_getsockopt(struct socket *sock, 1652 int level, int optname, 1653 char __user *optval, 1654 int __user *optlen) 1655 { 1656 struct sock *sk = sock->sk; 1657 struct vsock_sock *vsk = vsock_sk(sk); 1658 1659 union { 1660 u64 val64; 1661 struct old_timeval32 tm32; 1662 struct __kernel_old_timeval tm; 1663 struct __kernel_sock_timeval stm; 1664 } v; 1665 1666 int lv = sizeof(v.val64); 1667 int len; 1668 1669 if (level != AF_VSOCK) 1670 return -ENOPROTOOPT; 1671 1672 if (get_user(len, optlen)) 1673 return -EFAULT; 1674 1675 memset(&v, 0, sizeof(v)); 1676 1677 switch (optname) { 1678 case SO_VM_SOCKETS_BUFFER_SIZE: 1679 v.val64 = vsk->buffer_size; 1680 break; 1681 1682 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1683 v.val64 = vsk->buffer_max_size; 1684 break; 1685 1686 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1687 v.val64 = vsk->buffer_min_size; 1688 break; 1689 1690 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1691 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1692 lv = sock_get_timeout(vsk->connect_timeout, &v, 1693 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1694 break; 1695 1696 default: 1697 return -ENOPROTOOPT; 1698 } 1699 1700 if (len < lv) 1701 return -EINVAL; 1702 if (len > lv) 1703 len = lv; 1704 if (copy_to_user(optval, &v, len)) 1705 return -EFAULT; 1706 1707 if (put_user(len, optlen)) 1708 return -EFAULT; 1709 1710 return 0; 1711 } 1712 1713 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1714 size_t len) 1715 { 1716 struct sock *sk; 1717 struct vsock_sock *vsk; 1718 const struct vsock_transport *transport; 1719 ssize_t total_written; 1720 long timeout; 1721 int err; 1722 struct vsock_transport_send_notify_data send_data; 1723 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1724 1725 sk = sock->sk; 1726 vsk = vsock_sk(sk); 1727 total_written = 0; 1728 err = 0; 1729 1730 if (msg->msg_flags & MSG_OOB) 1731 return -EOPNOTSUPP; 1732 1733 lock_sock(sk); 1734 1735 transport = vsk->transport; 1736 1737 /* Callers should not provide a destination with connection oriented 1738 * sockets. 1739 */ 1740 if (msg->msg_namelen) { 1741 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1742 goto out; 1743 } 1744 1745 /* Send data only if both sides are not shutdown in the direction. */ 1746 if (sk->sk_shutdown & SEND_SHUTDOWN || 1747 vsk->peer_shutdown & RCV_SHUTDOWN) { 1748 err = -EPIPE; 1749 goto out; 1750 } 1751 1752 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1753 !vsock_addr_bound(&vsk->local_addr)) { 1754 err = -ENOTCONN; 1755 goto out; 1756 } 1757 1758 if (!vsock_addr_bound(&vsk->remote_addr)) { 1759 err = -EDESTADDRREQ; 1760 goto out; 1761 } 1762 1763 /* Wait for room in the produce queue to enqueue our user's data. */ 1764 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1765 1766 err = transport->notify_send_init(vsk, &send_data); 1767 if (err < 0) 1768 goto out; 1769 1770 while (total_written < len) { 1771 ssize_t written; 1772 1773 add_wait_queue(sk_sleep(sk), &wait); 1774 while (vsock_stream_has_space(vsk) == 0 && 1775 sk->sk_err == 0 && 1776 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1777 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1778 1779 /* Don't wait for non-blocking sockets. */ 1780 if (timeout == 0) { 1781 err = -EAGAIN; 1782 remove_wait_queue(sk_sleep(sk), &wait); 1783 goto out_err; 1784 } 1785 1786 err = transport->notify_send_pre_block(vsk, &send_data); 1787 if (err < 0) { 1788 remove_wait_queue(sk_sleep(sk), &wait); 1789 goto out_err; 1790 } 1791 1792 release_sock(sk); 1793 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 1794 lock_sock(sk); 1795 if (signal_pending(current)) { 1796 err = sock_intr_errno(timeout); 1797 remove_wait_queue(sk_sleep(sk), &wait); 1798 goto out_err; 1799 } else if (timeout == 0) { 1800 err = -EAGAIN; 1801 remove_wait_queue(sk_sleep(sk), &wait); 1802 goto out_err; 1803 } 1804 } 1805 remove_wait_queue(sk_sleep(sk), &wait); 1806 1807 /* These checks occur both as part of and after the loop 1808 * conditional since we need to check before and after 1809 * sleeping. 1810 */ 1811 if (sk->sk_err) { 1812 err = -sk->sk_err; 1813 goto out_err; 1814 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1815 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1816 err = -EPIPE; 1817 goto out_err; 1818 } 1819 1820 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1821 if (err < 0) 1822 goto out_err; 1823 1824 /* Note that enqueue will only write as many bytes as are free 1825 * in the produce queue, so we don't need to ensure len is 1826 * smaller than the queue size. It is the caller's 1827 * responsibility to check how many bytes we were able to send. 1828 */ 1829 1830 if (sk->sk_type == SOCK_SEQPACKET) { 1831 written = transport->seqpacket_enqueue(vsk, 1832 msg, len - total_written); 1833 } else { 1834 written = transport->stream_enqueue(vsk, 1835 msg, len - total_written); 1836 } 1837 if (written < 0) { 1838 err = -ENOMEM; 1839 goto out_err; 1840 } 1841 1842 total_written += written; 1843 1844 err = transport->notify_send_post_enqueue( 1845 vsk, written, &send_data); 1846 if (err < 0) 1847 goto out_err; 1848 1849 } 1850 1851 out_err: 1852 if (total_written > 0) { 1853 /* Return number of written bytes only if: 1854 * 1) SOCK_STREAM socket. 1855 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 1856 */ 1857 if (sk->sk_type == SOCK_STREAM || total_written == len) 1858 err = total_written; 1859 } 1860 out: 1861 release_sock(sk); 1862 return err; 1863 } 1864 1865 static int vsock_connectible_wait_data(struct sock *sk, 1866 struct wait_queue_entry *wait, 1867 long timeout, 1868 struct vsock_transport_recv_notify_data *recv_data, 1869 size_t target) 1870 { 1871 const struct vsock_transport *transport; 1872 struct vsock_sock *vsk; 1873 s64 data; 1874 int err; 1875 1876 vsk = vsock_sk(sk); 1877 err = 0; 1878 transport = vsk->transport; 1879 1880 while ((data = vsock_connectible_has_data(vsk)) == 0) { 1881 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 1882 1883 if (sk->sk_err != 0 || 1884 (sk->sk_shutdown & RCV_SHUTDOWN) || 1885 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1886 break; 1887 } 1888 1889 /* Don't wait for non-blocking sockets. */ 1890 if (timeout == 0) { 1891 err = -EAGAIN; 1892 break; 1893 } 1894 1895 if (recv_data) { 1896 err = transport->notify_recv_pre_block(vsk, target, recv_data); 1897 if (err < 0) 1898 break; 1899 } 1900 1901 release_sock(sk); 1902 timeout = schedule_timeout(timeout); 1903 lock_sock(sk); 1904 1905 if (signal_pending(current)) { 1906 err = sock_intr_errno(timeout); 1907 break; 1908 } else if (timeout == 0) { 1909 err = -EAGAIN; 1910 break; 1911 } 1912 } 1913 1914 finish_wait(sk_sleep(sk), wait); 1915 1916 if (err) 1917 return err; 1918 1919 /* Internal transport error when checking for available 1920 * data. XXX This should be changed to a connection 1921 * reset in a later change. 1922 */ 1923 if (data < 0) 1924 return -ENOMEM; 1925 1926 return data; 1927 } 1928 1929 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 1930 size_t len, int flags) 1931 { 1932 struct vsock_transport_recv_notify_data recv_data; 1933 const struct vsock_transport *transport; 1934 struct vsock_sock *vsk; 1935 ssize_t copied; 1936 size_t target; 1937 long timeout; 1938 int err; 1939 1940 DEFINE_WAIT(wait); 1941 1942 vsk = vsock_sk(sk); 1943 transport = vsk->transport; 1944 1945 /* We must not copy less than target bytes into the user's buffer 1946 * before returning successfully, so we wait for the consume queue to 1947 * have that much data to consume before dequeueing. Note that this 1948 * makes it impossible to handle cases where target is greater than the 1949 * queue size. 1950 */ 1951 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1952 if (target >= transport->stream_rcvhiwat(vsk)) { 1953 err = -ENOMEM; 1954 goto out; 1955 } 1956 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1957 copied = 0; 1958 1959 err = transport->notify_recv_init(vsk, target, &recv_data); 1960 if (err < 0) 1961 goto out; 1962 1963 1964 while (1) { 1965 ssize_t read; 1966 1967 err = vsock_connectible_wait_data(sk, &wait, timeout, 1968 &recv_data, target); 1969 if (err <= 0) 1970 break; 1971 1972 err = transport->notify_recv_pre_dequeue(vsk, target, 1973 &recv_data); 1974 if (err < 0) 1975 break; 1976 1977 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 1978 if (read < 0) { 1979 err = -ENOMEM; 1980 break; 1981 } 1982 1983 copied += read; 1984 1985 err = transport->notify_recv_post_dequeue(vsk, target, read, 1986 !(flags & MSG_PEEK), &recv_data); 1987 if (err < 0) 1988 goto out; 1989 1990 if (read >= target || flags & MSG_PEEK) 1991 break; 1992 1993 target -= read; 1994 } 1995 1996 if (sk->sk_err) 1997 err = -sk->sk_err; 1998 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1999 err = 0; 2000 2001 if (copied > 0) 2002 err = copied; 2003 2004 out: 2005 return err; 2006 } 2007 2008 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2009 size_t len, int flags) 2010 { 2011 const struct vsock_transport *transport; 2012 struct vsock_sock *vsk; 2013 ssize_t msg_len; 2014 long timeout; 2015 int err = 0; 2016 DEFINE_WAIT(wait); 2017 2018 vsk = vsock_sk(sk); 2019 transport = vsk->transport; 2020 2021 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2022 2023 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2024 if (err <= 0) 2025 goto out; 2026 2027 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2028 2029 if (msg_len < 0) { 2030 err = -ENOMEM; 2031 goto out; 2032 } 2033 2034 if (sk->sk_err) { 2035 err = -sk->sk_err; 2036 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2037 err = 0; 2038 } else { 2039 /* User sets MSG_TRUNC, so return real length of 2040 * packet. 2041 */ 2042 if (flags & MSG_TRUNC) 2043 err = msg_len; 2044 else 2045 err = len - msg_data_left(msg); 2046 2047 /* Always set MSG_TRUNC if real length of packet is 2048 * bigger than user's buffer. 2049 */ 2050 if (msg_len > len) 2051 msg->msg_flags |= MSG_TRUNC; 2052 } 2053 2054 out: 2055 return err; 2056 } 2057 2058 static int 2059 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2060 int flags) 2061 { 2062 struct sock *sk; 2063 struct vsock_sock *vsk; 2064 const struct vsock_transport *transport; 2065 int err; 2066 2067 DEFINE_WAIT(wait); 2068 2069 sk = sock->sk; 2070 vsk = vsock_sk(sk); 2071 err = 0; 2072 2073 lock_sock(sk); 2074 2075 transport = vsk->transport; 2076 2077 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2078 /* Recvmsg is supposed to return 0 if a peer performs an 2079 * orderly shutdown. Differentiate between that case and when a 2080 * peer has not connected or a local shutdown occurred with the 2081 * SOCK_DONE flag. 2082 */ 2083 if (sock_flag(sk, SOCK_DONE)) 2084 err = 0; 2085 else 2086 err = -ENOTCONN; 2087 2088 goto out; 2089 } 2090 2091 if (flags & MSG_OOB) { 2092 err = -EOPNOTSUPP; 2093 goto out; 2094 } 2095 2096 /* We don't check peer_shutdown flag here since peer may actually shut 2097 * down, but there can be data in the queue that a local socket can 2098 * receive. 2099 */ 2100 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2101 err = 0; 2102 goto out; 2103 } 2104 2105 /* It is valid on Linux to pass in a zero-length receive buffer. This 2106 * is not an error. We may as well bail out now. 2107 */ 2108 if (!len) { 2109 err = 0; 2110 goto out; 2111 } 2112 2113 if (sk->sk_type == SOCK_STREAM) 2114 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2115 else 2116 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2117 2118 out: 2119 release_sock(sk); 2120 return err; 2121 } 2122 2123 static const struct proto_ops vsock_stream_ops = { 2124 .family = PF_VSOCK, 2125 .owner = THIS_MODULE, 2126 .release = vsock_release, 2127 .bind = vsock_bind, 2128 .connect = vsock_connect, 2129 .socketpair = sock_no_socketpair, 2130 .accept = vsock_accept, 2131 .getname = vsock_getname, 2132 .poll = vsock_poll, 2133 .ioctl = sock_no_ioctl, 2134 .listen = vsock_listen, 2135 .shutdown = vsock_shutdown, 2136 .setsockopt = vsock_connectible_setsockopt, 2137 .getsockopt = vsock_connectible_getsockopt, 2138 .sendmsg = vsock_connectible_sendmsg, 2139 .recvmsg = vsock_connectible_recvmsg, 2140 .mmap = sock_no_mmap, 2141 .sendpage = sock_no_sendpage, 2142 }; 2143 2144 static const struct proto_ops vsock_seqpacket_ops = { 2145 .family = PF_VSOCK, 2146 .owner = THIS_MODULE, 2147 .release = vsock_release, 2148 .bind = vsock_bind, 2149 .connect = vsock_connect, 2150 .socketpair = sock_no_socketpair, 2151 .accept = vsock_accept, 2152 .getname = vsock_getname, 2153 .poll = vsock_poll, 2154 .ioctl = sock_no_ioctl, 2155 .listen = vsock_listen, 2156 .shutdown = vsock_shutdown, 2157 .setsockopt = vsock_connectible_setsockopt, 2158 .getsockopt = vsock_connectible_getsockopt, 2159 .sendmsg = vsock_connectible_sendmsg, 2160 .recvmsg = vsock_connectible_recvmsg, 2161 .mmap = sock_no_mmap, 2162 .sendpage = sock_no_sendpage, 2163 }; 2164 2165 static int vsock_create(struct net *net, struct socket *sock, 2166 int protocol, int kern) 2167 { 2168 struct vsock_sock *vsk; 2169 struct sock *sk; 2170 int ret; 2171 2172 if (!sock) 2173 return -EINVAL; 2174 2175 if (protocol && protocol != PF_VSOCK) 2176 return -EPROTONOSUPPORT; 2177 2178 switch (sock->type) { 2179 case SOCK_DGRAM: 2180 sock->ops = &vsock_dgram_ops; 2181 break; 2182 case SOCK_STREAM: 2183 sock->ops = &vsock_stream_ops; 2184 break; 2185 case SOCK_SEQPACKET: 2186 sock->ops = &vsock_seqpacket_ops; 2187 break; 2188 default: 2189 return -ESOCKTNOSUPPORT; 2190 } 2191 2192 sock->state = SS_UNCONNECTED; 2193 2194 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2195 if (!sk) 2196 return -ENOMEM; 2197 2198 vsk = vsock_sk(sk); 2199 2200 if (sock->type == SOCK_DGRAM) { 2201 ret = vsock_assign_transport(vsk, NULL); 2202 if (ret < 0) { 2203 sock_put(sk); 2204 return ret; 2205 } 2206 } 2207 2208 vsock_insert_unbound(vsk); 2209 2210 return 0; 2211 } 2212 2213 static const struct net_proto_family vsock_family_ops = { 2214 .family = AF_VSOCK, 2215 .create = vsock_create, 2216 .owner = THIS_MODULE, 2217 }; 2218 2219 static long vsock_dev_do_ioctl(struct file *filp, 2220 unsigned int cmd, void __user *ptr) 2221 { 2222 u32 __user *p = ptr; 2223 u32 cid = VMADDR_CID_ANY; 2224 int retval = 0; 2225 2226 switch (cmd) { 2227 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2228 /* To be compatible with the VMCI behavior, we prioritize the 2229 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2230 */ 2231 if (transport_g2h) 2232 cid = transport_g2h->get_local_cid(); 2233 else if (transport_h2g) 2234 cid = transport_h2g->get_local_cid(); 2235 2236 if (put_user(cid, p) != 0) 2237 retval = -EFAULT; 2238 break; 2239 2240 default: 2241 retval = -ENOIOCTLCMD; 2242 } 2243 2244 return retval; 2245 } 2246 2247 static long vsock_dev_ioctl(struct file *filp, 2248 unsigned int cmd, unsigned long arg) 2249 { 2250 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2251 } 2252 2253 #ifdef CONFIG_COMPAT 2254 static long vsock_dev_compat_ioctl(struct file *filp, 2255 unsigned int cmd, unsigned long arg) 2256 { 2257 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2258 } 2259 #endif 2260 2261 static const struct file_operations vsock_device_ops = { 2262 .owner = THIS_MODULE, 2263 .unlocked_ioctl = vsock_dev_ioctl, 2264 #ifdef CONFIG_COMPAT 2265 .compat_ioctl = vsock_dev_compat_ioctl, 2266 #endif 2267 .open = nonseekable_open, 2268 }; 2269 2270 static struct miscdevice vsock_device = { 2271 .name = "vsock", 2272 .fops = &vsock_device_ops, 2273 }; 2274 2275 static int __init vsock_init(void) 2276 { 2277 int err = 0; 2278 2279 vsock_init_tables(); 2280 2281 vsock_proto.owner = THIS_MODULE; 2282 vsock_device.minor = MISC_DYNAMIC_MINOR; 2283 err = misc_register(&vsock_device); 2284 if (err) { 2285 pr_err("Failed to register misc device\n"); 2286 goto err_reset_transport; 2287 } 2288 2289 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2290 if (err) { 2291 pr_err("Cannot register vsock protocol\n"); 2292 goto err_deregister_misc; 2293 } 2294 2295 err = sock_register(&vsock_family_ops); 2296 if (err) { 2297 pr_err("could not register af_vsock (%d) address family: %d\n", 2298 AF_VSOCK, err); 2299 goto err_unregister_proto; 2300 } 2301 2302 return 0; 2303 2304 err_unregister_proto: 2305 proto_unregister(&vsock_proto); 2306 err_deregister_misc: 2307 misc_deregister(&vsock_device); 2308 err_reset_transport: 2309 return err; 2310 } 2311 2312 static void __exit vsock_exit(void) 2313 { 2314 misc_deregister(&vsock_device); 2315 sock_unregister(AF_VSOCK); 2316 proto_unregister(&vsock_proto); 2317 } 2318 2319 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2320 { 2321 return vsk->transport; 2322 } 2323 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2324 2325 int vsock_core_register(const struct vsock_transport *t, int features) 2326 { 2327 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2328 int err = mutex_lock_interruptible(&vsock_register_mutex); 2329 2330 if (err) 2331 return err; 2332 2333 t_h2g = transport_h2g; 2334 t_g2h = transport_g2h; 2335 t_dgram = transport_dgram; 2336 t_local = transport_local; 2337 2338 if (features & VSOCK_TRANSPORT_F_H2G) { 2339 if (t_h2g) { 2340 err = -EBUSY; 2341 goto err_busy; 2342 } 2343 t_h2g = t; 2344 } 2345 2346 if (features & VSOCK_TRANSPORT_F_G2H) { 2347 if (t_g2h) { 2348 err = -EBUSY; 2349 goto err_busy; 2350 } 2351 t_g2h = t; 2352 } 2353 2354 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2355 if (t_dgram) { 2356 err = -EBUSY; 2357 goto err_busy; 2358 } 2359 t_dgram = t; 2360 } 2361 2362 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2363 if (t_local) { 2364 err = -EBUSY; 2365 goto err_busy; 2366 } 2367 t_local = t; 2368 } 2369 2370 transport_h2g = t_h2g; 2371 transport_g2h = t_g2h; 2372 transport_dgram = t_dgram; 2373 transport_local = t_local; 2374 2375 err_busy: 2376 mutex_unlock(&vsock_register_mutex); 2377 return err; 2378 } 2379 EXPORT_SYMBOL_GPL(vsock_core_register); 2380 2381 void vsock_core_unregister(const struct vsock_transport *t) 2382 { 2383 mutex_lock(&vsock_register_mutex); 2384 2385 if (transport_h2g == t) 2386 transport_h2g = NULL; 2387 2388 if (transport_g2h == t) 2389 transport_g2h = NULL; 2390 2391 if (transport_dgram == t) 2392 transport_dgram = NULL; 2393 2394 if (transport_local == t) 2395 transport_local = NULL; 2396 2397 mutex_unlock(&vsock_register_mutex); 2398 } 2399 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2400 2401 module_init(vsock_init); 2402 module_exit(vsock_exit); 2403 2404 MODULE_AUTHOR("VMware, Inc."); 2405 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2406 MODULE_VERSION("1.0.2.0-k"); 2407 MODULE_LICENSE("GPL v2"); 2408