xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 82003e04)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the VSOCK_SS_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  */
86 
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
109 
110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
111 static void vsock_sk_destruct(struct sock *sk);
112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
113 
114 /* Protocol family. */
115 static struct proto vsock_proto = {
116 	.name = "AF_VSOCK",
117 	.owner = THIS_MODULE,
118 	.obj_size = sizeof(struct vsock_sock),
119 };
120 
121 /* The default peer timeout indicates how long we will wait for a peer response
122  * to a control message.
123  */
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
125 
126 static const struct vsock_transport *transport;
127 static DEFINE_MUTEX(vsock_register_mutex);
128 
129 /**** EXPORTS ****/
130 
131 /* Get the ID of the local context.  This is transport dependent. */
132 
133 int vm_sockets_get_local_cid(void)
134 {
135 	return transport->get_local_cid();
136 }
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
138 
139 /**** UTILS ****/
140 
141 /* Each bound VSocket is stored in the bind hash table and each connected
142  * VSocket is stored in the connected hash table.
143  *
144  * Unbound sockets are all put on the same list attached to the end of the hash
145  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
146  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147  * represents the list that addr hashes to).
148  *
149  * Specifically, we initialize the vsock_bind_table array to a size of
150  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
153  * mods with VSOCK_HASH_SIZE to ensure this.
154  */
155 #define VSOCK_HASH_SIZE         251
156 #define MAX_PORT_RETRIES        24
157 
158 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
161 
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst)				\
164 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst)		\
166 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk)				\
168 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
169 
170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
172 static DEFINE_SPINLOCK(vsock_table_lock);
173 
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock *vsk)
176 {
177 	struct sock *sk = sk_vsock(vsk);
178 	struct sockaddr_vm local_addr;
179 
180 	if (vsock_addr_bound(&vsk->local_addr))
181 		return 0;
182 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
183 	return __vsock_bind(sk, &local_addr);
184 }
185 
186 static void vsock_init_tables(void)
187 {
188 	int i;
189 
190 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
191 		INIT_LIST_HEAD(&vsock_bind_table[i]);
192 
193 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
194 		INIT_LIST_HEAD(&vsock_connected_table[i]);
195 }
196 
197 static void __vsock_insert_bound(struct list_head *list,
198 				 struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->bound_table, list);
202 }
203 
204 static void __vsock_insert_connected(struct list_head *list,
205 				     struct vsock_sock *vsk)
206 {
207 	sock_hold(&vsk->sk);
208 	list_add(&vsk->connected_table, list);
209 }
210 
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
212 {
213 	list_del_init(&vsk->bound_table);
214 	sock_put(&vsk->sk);
215 }
216 
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->connected_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
224 {
225 	struct vsock_sock *vsk;
226 
227 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 		if (addr->svm_port == vsk->local_addr.svm_port)
229 			return sk_vsock(vsk);
230 
231 	return NULL;
232 }
233 
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 						  struct sockaddr_vm *dst)
236 {
237 	struct vsock_sock *vsk;
238 
239 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 			    connected_table) {
241 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 		    dst->svm_port == vsk->local_addr.svm_port) {
243 			return sk_vsock(vsk);
244 		}
245 	}
246 
247 	return NULL;
248 }
249 
250 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
251 {
252 	return !list_empty(&vsk->bound_table);
253 }
254 
255 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
256 {
257 	return !list_empty(&vsk->connected_table);
258 }
259 
260 static void vsock_insert_unbound(struct vsock_sock *vsk)
261 {
262 	spin_lock_bh(&vsock_table_lock);
263 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
264 	spin_unlock_bh(&vsock_table_lock);
265 }
266 
267 void vsock_insert_connected(struct vsock_sock *vsk)
268 {
269 	struct list_head *list = vsock_connected_sockets(
270 		&vsk->remote_addr, &vsk->local_addr);
271 
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_connected(list, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 EXPORT_SYMBOL_GPL(vsock_insert_connected);
277 
278 void vsock_remove_bound(struct vsock_sock *vsk)
279 {
280 	spin_lock_bh(&vsock_table_lock);
281 	__vsock_remove_bound(vsk);
282 	spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_remove_bound);
285 
286 void vsock_remove_connected(struct vsock_sock *vsk)
287 {
288 	spin_lock_bh(&vsock_table_lock);
289 	__vsock_remove_connected(vsk);
290 	spin_unlock_bh(&vsock_table_lock);
291 }
292 EXPORT_SYMBOL_GPL(vsock_remove_connected);
293 
294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
295 {
296 	struct sock *sk;
297 
298 	spin_lock_bh(&vsock_table_lock);
299 	sk = __vsock_find_bound_socket(addr);
300 	if (sk)
301 		sock_hold(sk);
302 
303 	spin_unlock_bh(&vsock_table_lock);
304 
305 	return sk;
306 }
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
308 
309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
310 					 struct sockaddr_vm *dst)
311 {
312 	struct sock *sk;
313 
314 	spin_lock_bh(&vsock_table_lock);
315 	sk = __vsock_find_connected_socket(src, dst);
316 	if (sk)
317 		sock_hold(sk);
318 
319 	spin_unlock_bh(&vsock_table_lock);
320 
321 	return sk;
322 }
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
324 
325 static bool vsock_in_bound_table(struct vsock_sock *vsk)
326 {
327 	bool ret;
328 
329 	spin_lock_bh(&vsock_table_lock);
330 	ret = __vsock_in_bound_table(vsk);
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return ret;
334 }
335 
336 static bool vsock_in_connected_table(struct vsock_sock *vsk)
337 {
338 	bool ret;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 	ret = __vsock_in_connected_table(vsk);
342 	spin_unlock_bh(&vsock_table_lock);
343 
344 	return ret;
345 }
346 
347 void vsock_remove_sock(struct vsock_sock *vsk)
348 {
349 	if (vsock_in_bound_table(vsk))
350 		vsock_remove_bound(vsk);
351 
352 	if (vsock_in_connected_table(vsk))
353 		vsock_remove_connected(vsk);
354 }
355 EXPORT_SYMBOL_GPL(vsock_remove_sock);
356 
357 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
358 {
359 	int i;
360 
361 	spin_lock_bh(&vsock_table_lock);
362 
363 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
364 		struct vsock_sock *vsk;
365 		list_for_each_entry(vsk, &vsock_connected_table[i],
366 				    connected_table)
367 			fn(sk_vsock(vsk));
368 	}
369 
370 	spin_unlock_bh(&vsock_table_lock);
371 }
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
373 
374 void vsock_add_pending(struct sock *listener, struct sock *pending)
375 {
376 	struct vsock_sock *vlistener;
377 	struct vsock_sock *vpending;
378 
379 	vlistener = vsock_sk(listener);
380 	vpending = vsock_sk(pending);
381 
382 	sock_hold(pending);
383 	sock_hold(listener);
384 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
385 }
386 EXPORT_SYMBOL_GPL(vsock_add_pending);
387 
388 void vsock_remove_pending(struct sock *listener, struct sock *pending)
389 {
390 	struct vsock_sock *vpending = vsock_sk(pending);
391 
392 	list_del_init(&vpending->pending_links);
393 	sock_put(listener);
394 	sock_put(pending);
395 }
396 EXPORT_SYMBOL_GPL(vsock_remove_pending);
397 
398 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
399 {
400 	struct vsock_sock *vlistener;
401 	struct vsock_sock *vconnected;
402 
403 	vlistener = vsock_sk(listener);
404 	vconnected = vsock_sk(connected);
405 
406 	sock_hold(connected);
407 	sock_hold(listener);
408 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
409 }
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
411 
412 static struct sock *vsock_dequeue_accept(struct sock *listener)
413 {
414 	struct vsock_sock *vlistener;
415 	struct vsock_sock *vconnected;
416 
417 	vlistener = vsock_sk(listener);
418 
419 	if (list_empty(&vlistener->accept_queue))
420 		return NULL;
421 
422 	vconnected = list_entry(vlistener->accept_queue.next,
423 				struct vsock_sock, accept_queue);
424 
425 	list_del_init(&vconnected->accept_queue);
426 	sock_put(listener);
427 	/* The caller will need a reference on the connected socket so we let
428 	 * it call sock_put().
429 	 */
430 
431 	return sk_vsock(vconnected);
432 }
433 
434 static bool vsock_is_accept_queue_empty(struct sock *sk)
435 {
436 	struct vsock_sock *vsk = vsock_sk(sk);
437 	return list_empty(&vsk->accept_queue);
438 }
439 
440 static bool vsock_is_pending(struct sock *sk)
441 {
442 	struct vsock_sock *vsk = vsock_sk(sk);
443 	return !list_empty(&vsk->pending_links);
444 }
445 
446 static int vsock_send_shutdown(struct sock *sk, int mode)
447 {
448 	return transport->shutdown(vsock_sk(sk), mode);
449 }
450 
451 void vsock_pending_work(struct work_struct *work)
452 {
453 	struct sock *sk;
454 	struct sock *listener;
455 	struct vsock_sock *vsk;
456 	bool cleanup;
457 
458 	vsk = container_of(work, struct vsock_sock, dwork.work);
459 	sk = sk_vsock(vsk);
460 	listener = vsk->listener;
461 	cleanup = true;
462 
463 	lock_sock(listener);
464 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
465 
466 	if (vsock_is_pending(sk)) {
467 		vsock_remove_pending(listener, sk);
468 
469 		listener->sk_ack_backlog--;
470 	} else if (!vsk->rejected) {
471 		/* We are not on the pending list and accept() did not reject
472 		 * us, so we must have been accepted by our user process.  We
473 		 * just need to drop our references to the sockets and be on
474 		 * our way.
475 		 */
476 		cleanup = false;
477 		goto out;
478 	}
479 
480 	/* We need to remove ourself from the global connected sockets list so
481 	 * incoming packets can't find this socket, and to reduce the reference
482 	 * count.
483 	 */
484 	if (vsock_in_connected_table(vsk))
485 		vsock_remove_connected(vsk);
486 
487 	sk->sk_state = SS_FREE;
488 
489 out:
490 	release_sock(sk);
491 	release_sock(listener);
492 	if (cleanup)
493 		sock_put(sk);
494 
495 	sock_put(sk);
496 	sock_put(listener);
497 }
498 EXPORT_SYMBOL_GPL(vsock_pending_work);
499 
500 /**** SOCKET OPERATIONS ****/
501 
502 static int __vsock_bind_stream(struct vsock_sock *vsk,
503 			       struct sockaddr_vm *addr)
504 {
505 	static u32 port = LAST_RESERVED_PORT + 1;
506 	struct sockaddr_vm new_addr;
507 
508 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
509 
510 	if (addr->svm_port == VMADDR_PORT_ANY) {
511 		bool found = false;
512 		unsigned int i;
513 
514 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
515 			if (port <= LAST_RESERVED_PORT)
516 				port = LAST_RESERVED_PORT + 1;
517 
518 			new_addr.svm_port = port++;
519 
520 			if (!__vsock_find_bound_socket(&new_addr)) {
521 				found = true;
522 				break;
523 			}
524 		}
525 
526 		if (!found)
527 			return -EADDRNOTAVAIL;
528 	} else {
529 		/* If port is in reserved range, ensure caller
530 		 * has necessary privileges.
531 		 */
532 		if (addr->svm_port <= LAST_RESERVED_PORT &&
533 		    !capable(CAP_NET_BIND_SERVICE)) {
534 			return -EACCES;
535 		}
536 
537 		if (__vsock_find_bound_socket(&new_addr))
538 			return -EADDRINUSE;
539 	}
540 
541 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
542 
543 	/* Remove stream sockets from the unbound list and add them to the hash
544 	 * table for easy lookup by its address.  The unbound list is simply an
545 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
546 	 */
547 	__vsock_remove_bound(vsk);
548 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
549 
550 	return 0;
551 }
552 
553 static int __vsock_bind_dgram(struct vsock_sock *vsk,
554 			      struct sockaddr_vm *addr)
555 {
556 	return transport->dgram_bind(vsk, addr);
557 }
558 
559 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
560 {
561 	struct vsock_sock *vsk = vsock_sk(sk);
562 	u32 cid;
563 	int retval;
564 
565 	/* First ensure this socket isn't already bound. */
566 	if (vsock_addr_bound(&vsk->local_addr))
567 		return -EINVAL;
568 
569 	/* Now bind to the provided address or select appropriate values if
570 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
571 	 * like AF_INET prevents binding to a non-local IP address (in most
572 	 * cases), we only allow binding to the local CID.
573 	 */
574 	cid = transport->get_local_cid();
575 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
576 		return -EADDRNOTAVAIL;
577 
578 	switch (sk->sk_socket->type) {
579 	case SOCK_STREAM:
580 		spin_lock_bh(&vsock_table_lock);
581 		retval = __vsock_bind_stream(vsk, addr);
582 		spin_unlock_bh(&vsock_table_lock);
583 		break;
584 
585 	case SOCK_DGRAM:
586 		retval = __vsock_bind_dgram(vsk, addr);
587 		break;
588 
589 	default:
590 		retval = -EINVAL;
591 		break;
592 	}
593 
594 	return retval;
595 }
596 
597 struct sock *__vsock_create(struct net *net,
598 			    struct socket *sock,
599 			    struct sock *parent,
600 			    gfp_t priority,
601 			    unsigned short type,
602 			    int kern)
603 {
604 	struct sock *sk;
605 	struct vsock_sock *psk;
606 	struct vsock_sock *vsk;
607 
608 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
609 	if (!sk)
610 		return NULL;
611 
612 	sock_init_data(sock, sk);
613 
614 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
615 	 * non-NULL. We make sure that our sockets always have a type by
616 	 * setting it here if needed.
617 	 */
618 	if (!sock)
619 		sk->sk_type = type;
620 
621 	vsk = vsock_sk(sk);
622 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
623 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 
625 	sk->sk_destruct = vsock_sk_destruct;
626 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
627 	sk->sk_state = 0;
628 	sock_reset_flag(sk, SOCK_DONE);
629 
630 	INIT_LIST_HEAD(&vsk->bound_table);
631 	INIT_LIST_HEAD(&vsk->connected_table);
632 	vsk->listener = NULL;
633 	INIT_LIST_HEAD(&vsk->pending_links);
634 	INIT_LIST_HEAD(&vsk->accept_queue);
635 	vsk->rejected = false;
636 	vsk->sent_request = false;
637 	vsk->ignore_connecting_rst = false;
638 	vsk->peer_shutdown = 0;
639 
640 	psk = parent ? vsock_sk(parent) : NULL;
641 	if (parent) {
642 		vsk->trusted = psk->trusted;
643 		vsk->owner = get_cred(psk->owner);
644 		vsk->connect_timeout = psk->connect_timeout;
645 	} else {
646 		vsk->trusted = capable(CAP_NET_ADMIN);
647 		vsk->owner = get_current_cred();
648 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
649 	}
650 
651 	if (transport->init(vsk, psk) < 0) {
652 		sk_free(sk);
653 		return NULL;
654 	}
655 
656 	if (sock)
657 		vsock_insert_unbound(vsk);
658 
659 	return sk;
660 }
661 EXPORT_SYMBOL_GPL(__vsock_create);
662 
663 static void __vsock_release(struct sock *sk)
664 {
665 	if (sk) {
666 		struct sk_buff *skb;
667 		struct sock *pending;
668 		struct vsock_sock *vsk;
669 
670 		vsk = vsock_sk(sk);
671 		pending = NULL;	/* Compiler warning. */
672 
673 		transport->release(vsk);
674 
675 		lock_sock(sk);
676 		sock_orphan(sk);
677 		sk->sk_shutdown = SHUTDOWN_MASK;
678 
679 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
680 			kfree_skb(skb);
681 
682 		/* Clean up any sockets that never were accepted. */
683 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
684 			__vsock_release(pending);
685 			sock_put(pending);
686 		}
687 
688 		release_sock(sk);
689 		sock_put(sk);
690 	}
691 }
692 
693 static void vsock_sk_destruct(struct sock *sk)
694 {
695 	struct vsock_sock *vsk = vsock_sk(sk);
696 
697 	transport->destruct(vsk);
698 
699 	/* When clearing these addresses, there's no need to set the family and
700 	 * possibly register the address family with the kernel.
701 	 */
702 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
703 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 
705 	put_cred(vsk->owner);
706 }
707 
708 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
709 {
710 	int err;
711 
712 	err = sock_queue_rcv_skb(sk, skb);
713 	if (err)
714 		kfree_skb(skb);
715 
716 	return err;
717 }
718 
719 s64 vsock_stream_has_data(struct vsock_sock *vsk)
720 {
721 	return transport->stream_has_data(vsk);
722 }
723 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
724 
725 s64 vsock_stream_has_space(struct vsock_sock *vsk)
726 {
727 	return transport->stream_has_space(vsk);
728 }
729 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
730 
731 static int vsock_release(struct socket *sock)
732 {
733 	__vsock_release(sock->sk);
734 	sock->sk = NULL;
735 	sock->state = SS_FREE;
736 
737 	return 0;
738 }
739 
740 static int
741 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
742 {
743 	int err;
744 	struct sock *sk;
745 	struct sockaddr_vm *vm_addr;
746 
747 	sk = sock->sk;
748 
749 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
750 		return -EINVAL;
751 
752 	lock_sock(sk);
753 	err = __vsock_bind(sk, vm_addr);
754 	release_sock(sk);
755 
756 	return err;
757 }
758 
759 static int vsock_getname(struct socket *sock,
760 			 struct sockaddr *addr, int *addr_len, int peer)
761 {
762 	int err;
763 	struct sock *sk;
764 	struct vsock_sock *vsk;
765 	struct sockaddr_vm *vm_addr;
766 
767 	sk = sock->sk;
768 	vsk = vsock_sk(sk);
769 	err = 0;
770 
771 	lock_sock(sk);
772 
773 	if (peer) {
774 		if (sock->state != SS_CONNECTED) {
775 			err = -ENOTCONN;
776 			goto out;
777 		}
778 		vm_addr = &vsk->remote_addr;
779 	} else {
780 		vm_addr = &vsk->local_addr;
781 	}
782 
783 	if (!vm_addr) {
784 		err = -EINVAL;
785 		goto out;
786 	}
787 
788 	/* sys_getsockname() and sys_getpeername() pass us a
789 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
790 	 * that macro is defined in socket.c instead of .h, so we hardcode its
791 	 * value here.
792 	 */
793 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
794 	memcpy(addr, vm_addr, sizeof(*vm_addr));
795 	*addr_len = sizeof(*vm_addr);
796 
797 out:
798 	release_sock(sk);
799 	return err;
800 }
801 
802 static int vsock_shutdown(struct socket *sock, int mode)
803 {
804 	int err;
805 	struct sock *sk;
806 
807 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
808 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
809 	 * here like the other address families do.  Note also that the
810 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
811 	 * which is what we want.
812 	 */
813 	mode++;
814 
815 	if ((mode & ~SHUTDOWN_MASK) || !mode)
816 		return -EINVAL;
817 
818 	/* If this is a STREAM socket and it is not connected then bail out
819 	 * immediately.  If it is a DGRAM socket then we must first kick the
820 	 * socket so that it wakes up from any sleeping calls, for example
821 	 * recv(), and then afterwards return the error.
822 	 */
823 
824 	sk = sock->sk;
825 	if (sock->state == SS_UNCONNECTED) {
826 		err = -ENOTCONN;
827 		if (sk->sk_type == SOCK_STREAM)
828 			return err;
829 	} else {
830 		sock->state = SS_DISCONNECTING;
831 		err = 0;
832 	}
833 
834 	/* Receive and send shutdowns are treated alike. */
835 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
836 	if (mode) {
837 		lock_sock(sk);
838 		sk->sk_shutdown |= mode;
839 		sk->sk_state_change(sk);
840 		release_sock(sk);
841 
842 		if (sk->sk_type == SOCK_STREAM) {
843 			sock_reset_flag(sk, SOCK_DONE);
844 			vsock_send_shutdown(sk, mode);
845 		}
846 	}
847 
848 	return err;
849 }
850 
851 static unsigned int vsock_poll(struct file *file, struct socket *sock,
852 			       poll_table *wait)
853 {
854 	struct sock *sk;
855 	unsigned int mask;
856 	struct vsock_sock *vsk;
857 
858 	sk = sock->sk;
859 	vsk = vsock_sk(sk);
860 
861 	poll_wait(file, sk_sleep(sk), wait);
862 	mask = 0;
863 
864 	if (sk->sk_err)
865 		/* Signify that there has been an error on this socket. */
866 		mask |= POLLERR;
867 
868 	/* INET sockets treat local write shutdown and peer write shutdown as a
869 	 * case of POLLHUP set.
870 	 */
871 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
872 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
873 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
874 		mask |= POLLHUP;
875 	}
876 
877 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
878 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
879 		mask |= POLLRDHUP;
880 	}
881 
882 	if (sock->type == SOCK_DGRAM) {
883 		/* For datagram sockets we can read if there is something in
884 		 * the queue and write as long as the socket isn't shutdown for
885 		 * sending.
886 		 */
887 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
888 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
889 			mask |= POLLIN | POLLRDNORM;
890 		}
891 
892 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
893 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
894 
895 	} else if (sock->type == SOCK_STREAM) {
896 		lock_sock(sk);
897 
898 		/* Listening sockets that have connections in their accept
899 		 * queue can be read.
900 		 */
901 		if (sk->sk_state == VSOCK_SS_LISTEN
902 		    && !vsock_is_accept_queue_empty(sk))
903 			mask |= POLLIN | POLLRDNORM;
904 
905 		/* If there is something in the queue then we can read. */
906 		if (transport->stream_is_active(vsk) &&
907 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
908 			bool data_ready_now = false;
909 			int ret = transport->notify_poll_in(
910 					vsk, 1, &data_ready_now);
911 			if (ret < 0) {
912 				mask |= POLLERR;
913 			} else {
914 				if (data_ready_now)
915 					mask |= POLLIN | POLLRDNORM;
916 
917 			}
918 		}
919 
920 		/* Sockets whose connections have been closed, reset, or
921 		 * terminated should also be considered read, and we check the
922 		 * shutdown flag for that.
923 		 */
924 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
925 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
926 			mask |= POLLIN | POLLRDNORM;
927 		}
928 
929 		/* Connected sockets that can produce data can be written. */
930 		if (sk->sk_state == SS_CONNECTED) {
931 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
932 				bool space_avail_now = false;
933 				int ret = transport->notify_poll_out(
934 						vsk, 1, &space_avail_now);
935 				if (ret < 0) {
936 					mask |= POLLERR;
937 				} else {
938 					if (space_avail_now)
939 						/* Remove POLLWRBAND since INET
940 						 * sockets are not setting it.
941 						 */
942 						mask |= POLLOUT | POLLWRNORM;
943 
944 				}
945 			}
946 		}
947 
948 		/* Simulate INET socket poll behaviors, which sets
949 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
950 		 * but local send is not shutdown.
951 		 */
952 		if (sk->sk_state == SS_UNCONNECTED) {
953 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
954 				mask |= POLLOUT | POLLWRNORM;
955 
956 		}
957 
958 		release_sock(sk);
959 	}
960 
961 	return mask;
962 }
963 
964 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
965 			       size_t len)
966 {
967 	int err;
968 	struct sock *sk;
969 	struct vsock_sock *vsk;
970 	struct sockaddr_vm *remote_addr;
971 
972 	if (msg->msg_flags & MSG_OOB)
973 		return -EOPNOTSUPP;
974 
975 	/* For now, MSG_DONTWAIT is always assumed... */
976 	err = 0;
977 	sk = sock->sk;
978 	vsk = vsock_sk(sk);
979 
980 	lock_sock(sk);
981 
982 	err = vsock_auto_bind(vsk);
983 	if (err)
984 		goto out;
985 
986 
987 	/* If the provided message contains an address, use that.  Otherwise
988 	 * fall back on the socket's remote handle (if it has been connected).
989 	 */
990 	if (msg->msg_name &&
991 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
992 			    &remote_addr) == 0) {
993 		/* Ensure this address is of the right type and is a valid
994 		 * destination.
995 		 */
996 
997 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
998 			remote_addr->svm_cid = transport->get_local_cid();
999 
1000 		if (!vsock_addr_bound(remote_addr)) {
1001 			err = -EINVAL;
1002 			goto out;
1003 		}
1004 	} else if (sock->state == SS_CONNECTED) {
1005 		remote_addr = &vsk->remote_addr;
1006 
1007 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 			remote_addr->svm_cid = transport->get_local_cid();
1009 
1010 		/* XXX Should connect() or this function ensure remote_addr is
1011 		 * bound?
1012 		 */
1013 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1014 			err = -EINVAL;
1015 			goto out;
1016 		}
1017 	} else {
1018 		err = -EINVAL;
1019 		goto out;
1020 	}
1021 
1022 	if (!transport->dgram_allow(remote_addr->svm_cid,
1023 				    remote_addr->svm_port)) {
1024 		err = -EINVAL;
1025 		goto out;
1026 	}
1027 
1028 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1029 
1030 out:
1031 	release_sock(sk);
1032 	return err;
1033 }
1034 
1035 static int vsock_dgram_connect(struct socket *sock,
1036 			       struct sockaddr *addr, int addr_len, int flags)
1037 {
1038 	int err;
1039 	struct sock *sk;
1040 	struct vsock_sock *vsk;
1041 	struct sockaddr_vm *remote_addr;
1042 
1043 	sk = sock->sk;
1044 	vsk = vsock_sk(sk);
1045 
1046 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1047 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1048 		lock_sock(sk);
1049 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1050 				VMADDR_PORT_ANY);
1051 		sock->state = SS_UNCONNECTED;
1052 		release_sock(sk);
1053 		return 0;
1054 	} else if (err != 0)
1055 		return -EINVAL;
1056 
1057 	lock_sock(sk);
1058 
1059 	err = vsock_auto_bind(vsk);
1060 	if (err)
1061 		goto out;
1062 
1063 	if (!transport->dgram_allow(remote_addr->svm_cid,
1064 				    remote_addr->svm_port)) {
1065 		err = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1070 	sock->state = SS_CONNECTED;
1071 
1072 out:
1073 	release_sock(sk);
1074 	return err;
1075 }
1076 
1077 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1078 			       size_t len, int flags)
1079 {
1080 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1081 }
1082 
1083 static const struct proto_ops vsock_dgram_ops = {
1084 	.family = PF_VSOCK,
1085 	.owner = THIS_MODULE,
1086 	.release = vsock_release,
1087 	.bind = vsock_bind,
1088 	.connect = vsock_dgram_connect,
1089 	.socketpair = sock_no_socketpair,
1090 	.accept = sock_no_accept,
1091 	.getname = vsock_getname,
1092 	.poll = vsock_poll,
1093 	.ioctl = sock_no_ioctl,
1094 	.listen = sock_no_listen,
1095 	.shutdown = vsock_shutdown,
1096 	.setsockopt = sock_no_setsockopt,
1097 	.getsockopt = sock_no_getsockopt,
1098 	.sendmsg = vsock_dgram_sendmsg,
1099 	.recvmsg = vsock_dgram_recvmsg,
1100 	.mmap = sock_no_mmap,
1101 	.sendpage = sock_no_sendpage,
1102 };
1103 
1104 static void vsock_connect_timeout(struct work_struct *work)
1105 {
1106 	struct sock *sk;
1107 	struct vsock_sock *vsk;
1108 
1109 	vsk = container_of(work, struct vsock_sock, dwork.work);
1110 	sk = sk_vsock(vsk);
1111 
1112 	lock_sock(sk);
1113 	if (sk->sk_state == SS_CONNECTING &&
1114 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1115 		sk->sk_state = SS_UNCONNECTED;
1116 		sk->sk_err = ETIMEDOUT;
1117 		sk->sk_error_report(sk);
1118 	}
1119 	release_sock(sk);
1120 
1121 	sock_put(sk);
1122 }
1123 
1124 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1125 				int addr_len, int flags)
1126 {
1127 	int err;
1128 	struct sock *sk;
1129 	struct vsock_sock *vsk;
1130 	struct sockaddr_vm *remote_addr;
1131 	long timeout;
1132 	DEFINE_WAIT(wait);
1133 
1134 	err = 0;
1135 	sk = sock->sk;
1136 	vsk = vsock_sk(sk);
1137 
1138 	lock_sock(sk);
1139 
1140 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1141 	switch (sock->state) {
1142 	case SS_CONNECTED:
1143 		err = -EISCONN;
1144 		goto out;
1145 	case SS_DISCONNECTING:
1146 		err = -EINVAL;
1147 		goto out;
1148 	case SS_CONNECTING:
1149 		/* This continues on so we can move sock into the SS_CONNECTED
1150 		 * state once the connection has completed (at which point err
1151 		 * will be set to zero also).  Otherwise, we will either wait
1152 		 * for the connection or return -EALREADY should this be a
1153 		 * non-blocking call.
1154 		 */
1155 		err = -EALREADY;
1156 		break;
1157 	default:
1158 		if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1159 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1160 			err = -EINVAL;
1161 			goto out;
1162 		}
1163 
1164 		/* The hypervisor and well-known contexts do not have socket
1165 		 * endpoints.
1166 		 */
1167 		if (!transport->stream_allow(remote_addr->svm_cid,
1168 					     remote_addr->svm_port)) {
1169 			err = -ENETUNREACH;
1170 			goto out;
1171 		}
1172 
1173 		/* Set the remote address that we are connecting to. */
1174 		memcpy(&vsk->remote_addr, remote_addr,
1175 		       sizeof(vsk->remote_addr));
1176 
1177 		err = vsock_auto_bind(vsk);
1178 		if (err)
1179 			goto out;
1180 
1181 		sk->sk_state = SS_CONNECTING;
1182 
1183 		err = transport->connect(vsk);
1184 		if (err < 0)
1185 			goto out;
1186 
1187 		/* Mark sock as connecting and set the error code to in
1188 		 * progress in case this is a non-blocking connect.
1189 		 */
1190 		sock->state = SS_CONNECTING;
1191 		err = -EINPROGRESS;
1192 	}
1193 
1194 	/* The receive path will handle all communication until we are able to
1195 	 * enter the connected state.  Here we wait for the connection to be
1196 	 * completed or a notification of an error.
1197 	 */
1198 	timeout = vsk->connect_timeout;
1199 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1200 
1201 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1202 		if (flags & O_NONBLOCK) {
1203 			/* If we're not going to block, we schedule a timeout
1204 			 * function to generate a timeout on the connection
1205 			 * attempt, in case the peer doesn't respond in a
1206 			 * timely manner. We hold on to the socket until the
1207 			 * timeout fires.
1208 			 */
1209 			sock_hold(sk);
1210 			INIT_DELAYED_WORK(&vsk->dwork,
1211 					  vsock_connect_timeout);
1212 			schedule_delayed_work(&vsk->dwork, timeout);
1213 
1214 			/* Skip ahead to preserve error code set above. */
1215 			goto out_wait;
1216 		}
1217 
1218 		release_sock(sk);
1219 		timeout = schedule_timeout(timeout);
1220 		lock_sock(sk);
1221 
1222 		if (signal_pending(current)) {
1223 			err = sock_intr_errno(timeout);
1224 			sk->sk_state = SS_UNCONNECTED;
1225 			sock->state = SS_UNCONNECTED;
1226 			goto out_wait;
1227 		} else if (timeout == 0) {
1228 			err = -ETIMEDOUT;
1229 			sk->sk_state = SS_UNCONNECTED;
1230 			sock->state = SS_UNCONNECTED;
1231 			goto out_wait;
1232 		}
1233 
1234 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1235 	}
1236 
1237 	if (sk->sk_err) {
1238 		err = -sk->sk_err;
1239 		sk->sk_state = SS_UNCONNECTED;
1240 		sock->state = SS_UNCONNECTED;
1241 	} else {
1242 		err = 0;
1243 	}
1244 
1245 out_wait:
1246 	finish_wait(sk_sleep(sk), &wait);
1247 out:
1248 	release_sock(sk);
1249 	return err;
1250 }
1251 
1252 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1253 {
1254 	struct sock *listener;
1255 	int err;
1256 	struct sock *connected;
1257 	struct vsock_sock *vconnected;
1258 	long timeout;
1259 	DEFINE_WAIT(wait);
1260 
1261 	err = 0;
1262 	listener = sock->sk;
1263 
1264 	lock_sock(listener);
1265 
1266 	if (sock->type != SOCK_STREAM) {
1267 		err = -EOPNOTSUPP;
1268 		goto out;
1269 	}
1270 
1271 	if (listener->sk_state != VSOCK_SS_LISTEN) {
1272 		err = -EINVAL;
1273 		goto out;
1274 	}
1275 
1276 	/* Wait for children sockets to appear; these are the new sockets
1277 	 * created upon connection establishment.
1278 	 */
1279 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1280 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1281 
1282 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1283 	       listener->sk_err == 0) {
1284 		release_sock(listener);
1285 		timeout = schedule_timeout(timeout);
1286 		finish_wait(sk_sleep(listener), &wait);
1287 		lock_sock(listener);
1288 
1289 		if (signal_pending(current)) {
1290 			err = sock_intr_errno(timeout);
1291 			goto out;
1292 		} else if (timeout == 0) {
1293 			err = -EAGAIN;
1294 			goto out;
1295 		}
1296 
1297 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1298 	}
1299 	finish_wait(sk_sleep(listener), &wait);
1300 
1301 	if (listener->sk_err)
1302 		err = -listener->sk_err;
1303 
1304 	if (connected) {
1305 		listener->sk_ack_backlog--;
1306 
1307 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1308 		vconnected = vsock_sk(connected);
1309 
1310 		/* If the listener socket has received an error, then we should
1311 		 * reject this socket and return.  Note that we simply mark the
1312 		 * socket rejected, drop our reference, and let the cleanup
1313 		 * function handle the cleanup; the fact that we found it in
1314 		 * the listener's accept queue guarantees that the cleanup
1315 		 * function hasn't run yet.
1316 		 */
1317 		if (err) {
1318 			vconnected->rejected = true;
1319 		} else {
1320 			newsock->state = SS_CONNECTED;
1321 			sock_graft(connected, newsock);
1322 		}
1323 
1324 		release_sock(connected);
1325 		sock_put(connected);
1326 	}
1327 
1328 out:
1329 	release_sock(listener);
1330 	return err;
1331 }
1332 
1333 static int vsock_listen(struct socket *sock, int backlog)
1334 {
1335 	int err;
1336 	struct sock *sk;
1337 	struct vsock_sock *vsk;
1338 
1339 	sk = sock->sk;
1340 
1341 	lock_sock(sk);
1342 
1343 	if (sock->type != SOCK_STREAM) {
1344 		err = -EOPNOTSUPP;
1345 		goto out;
1346 	}
1347 
1348 	if (sock->state != SS_UNCONNECTED) {
1349 		err = -EINVAL;
1350 		goto out;
1351 	}
1352 
1353 	vsk = vsock_sk(sk);
1354 
1355 	if (!vsock_addr_bound(&vsk->local_addr)) {
1356 		err = -EINVAL;
1357 		goto out;
1358 	}
1359 
1360 	sk->sk_max_ack_backlog = backlog;
1361 	sk->sk_state = VSOCK_SS_LISTEN;
1362 
1363 	err = 0;
1364 
1365 out:
1366 	release_sock(sk);
1367 	return err;
1368 }
1369 
1370 static int vsock_stream_setsockopt(struct socket *sock,
1371 				   int level,
1372 				   int optname,
1373 				   char __user *optval,
1374 				   unsigned int optlen)
1375 {
1376 	int err;
1377 	struct sock *sk;
1378 	struct vsock_sock *vsk;
1379 	u64 val;
1380 
1381 	if (level != AF_VSOCK)
1382 		return -ENOPROTOOPT;
1383 
1384 #define COPY_IN(_v)                                       \
1385 	do {						  \
1386 		if (optlen < sizeof(_v)) {		  \
1387 			err = -EINVAL;			  \
1388 			goto exit;			  \
1389 		}					  \
1390 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1391 			err = -EFAULT;					\
1392 			goto exit;					\
1393 		}							\
1394 	} while (0)
1395 
1396 	err = 0;
1397 	sk = sock->sk;
1398 	vsk = vsock_sk(sk);
1399 
1400 	lock_sock(sk);
1401 
1402 	switch (optname) {
1403 	case SO_VM_SOCKETS_BUFFER_SIZE:
1404 		COPY_IN(val);
1405 		transport->set_buffer_size(vsk, val);
1406 		break;
1407 
1408 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1409 		COPY_IN(val);
1410 		transport->set_max_buffer_size(vsk, val);
1411 		break;
1412 
1413 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1414 		COPY_IN(val);
1415 		transport->set_min_buffer_size(vsk, val);
1416 		break;
1417 
1418 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1419 		struct timeval tv;
1420 		COPY_IN(tv);
1421 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1422 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1423 			vsk->connect_timeout = tv.tv_sec * HZ +
1424 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1425 			if (vsk->connect_timeout == 0)
1426 				vsk->connect_timeout =
1427 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1428 
1429 		} else {
1430 			err = -ERANGE;
1431 		}
1432 		break;
1433 	}
1434 
1435 	default:
1436 		err = -ENOPROTOOPT;
1437 		break;
1438 	}
1439 
1440 #undef COPY_IN
1441 
1442 exit:
1443 	release_sock(sk);
1444 	return err;
1445 }
1446 
1447 static int vsock_stream_getsockopt(struct socket *sock,
1448 				   int level, int optname,
1449 				   char __user *optval,
1450 				   int __user *optlen)
1451 {
1452 	int err;
1453 	int len;
1454 	struct sock *sk;
1455 	struct vsock_sock *vsk;
1456 	u64 val;
1457 
1458 	if (level != AF_VSOCK)
1459 		return -ENOPROTOOPT;
1460 
1461 	err = get_user(len, optlen);
1462 	if (err != 0)
1463 		return err;
1464 
1465 #define COPY_OUT(_v)                            \
1466 	do {					\
1467 		if (len < sizeof(_v))		\
1468 			return -EINVAL;		\
1469 						\
1470 		len = sizeof(_v);		\
1471 		if (copy_to_user(optval, &_v, len) != 0)	\
1472 			return -EFAULT;				\
1473 								\
1474 	} while (0)
1475 
1476 	err = 0;
1477 	sk = sock->sk;
1478 	vsk = vsock_sk(sk);
1479 
1480 	switch (optname) {
1481 	case SO_VM_SOCKETS_BUFFER_SIZE:
1482 		val = transport->get_buffer_size(vsk);
1483 		COPY_OUT(val);
1484 		break;
1485 
1486 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1487 		val = transport->get_max_buffer_size(vsk);
1488 		COPY_OUT(val);
1489 		break;
1490 
1491 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1492 		val = transport->get_min_buffer_size(vsk);
1493 		COPY_OUT(val);
1494 		break;
1495 
1496 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1497 		struct timeval tv;
1498 		tv.tv_sec = vsk->connect_timeout / HZ;
1499 		tv.tv_usec =
1500 		    (vsk->connect_timeout -
1501 		     tv.tv_sec * HZ) * (1000000 / HZ);
1502 		COPY_OUT(tv);
1503 		break;
1504 	}
1505 	default:
1506 		return -ENOPROTOOPT;
1507 	}
1508 
1509 	err = put_user(len, optlen);
1510 	if (err != 0)
1511 		return -EFAULT;
1512 
1513 #undef COPY_OUT
1514 
1515 	return 0;
1516 }
1517 
1518 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1519 				size_t len)
1520 {
1521 	struct sock *sk;
1522 	struct vsock_sock *vsk;
1523 	ssize_t total_written;
1524 	long timeout;
1525 	int err;
1526 	struct vsock_transport_send_notify_data send_data;
1527 
1528 	DEFINE_WAIT(wait);
1529 
1530 	sk = sock->sk;
1531 	vsk = vsock_sk(sk);
1532 	total_written = 0;
1533 	err = 0;
1534 
1535 	if (msg->msg_flags & MSG_OOB)
1536 		return -EOPNOTSUPP;
1537 
1538 	lock_sock(sk);
1539 
1540 	/* Callers should not provide a destination with stream sockets. */
1541 	if (msg->msg_namelen) {
1542 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1543 		goto out;
1544 	}
1545 
1546 	/* Send data only if both sides are not shutdown in the direction. */
1547 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1548 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1549 		err = -EPIPE;
1550 		goto out;
1551 	}
1552 
1553 	if (sk->sk_state != SS_CONNECTED ||
1554 	    !vsock_addr_bound(&vsk->local_addr)) {
1555 		err = -ENOTCONN;
1556 		goto out;
1557 	}
1558 
1559 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1560 		err = -EDESTADDRREQ;
1561 		goto out;
1562 	}
1563 
1564 	/* Wait for room in the produce queue to enqueue our user's data. */
1565 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1566 
1567 	err = transport->notify_send_init(vsk, &send_data);
1568 	if (err < 0)
1569 		goto out;
1570 
1571 
1572 	while (total_written < len) {
1573 		ssize_t written;
1574 
1575 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1576 		while (vsock_stream_has_space(vsk) == 0 &&
1577 		       sk->sk_err == 0 &&
1578 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1579 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1580 
1581 			/* Don't wait for non-blocking sockets. */
1582 			if (timeout == 0) {
1583 				err = -EAGAIN;
1584 				finish_wait(sk_sleep(sk), &wait);
1585 				goto out_err;
1586 			}
1587 
1588 			err = transport->notify_send_pre_block(vsk, &send_data);
1589 			if (err < 0) {
1590 				finish_wait(sk_sleep(sk), &wait);
1591 				goto out_err;
1592 			}
1593 
1594 			release_sock(sk);
1595 			timeout = schedule_timeout(timeout);
1596 			lock_sock(sk);
1597 			if (signal_pending(current)) {
1598 				err = sock_intr_errno(timeout);
1599 				finish_wait(sk_sleep(sk), &wait);
1600 				goto out_err;
1601 			} else if (timeout == 0) {
1602 				err = -EAGAIN;
1603 				finish_wait(sk_sleep(sk), &wait);
1604 				goto out_err;
1605 			}
1606 
1607 			prepare_to_wait(sk_sleep(sk), &wait,
1608 					TASK_INTERRUPTIBLE);
1609 		}
1610 		finish_wait(sk_sleep(sk), &wait);
1611 
1612 		/* These checks occur both as part of and after the loop
1613 		 * conditional since we need to check before and after
1614 		 * sleeping.
1615 		 */
1616 		if (sk->sk_err) {
1617 			err = -sk->sk_err;
1618 			goto out_err;
1619 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1620 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1621 			err = -EPIPE;
1622 			goto out_err;
1623 		}
1624 
1625 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1626 		if (err < 0)
1627 			goto out_err;
1628 
1629 		/* Note that enqueue will only write as many bytes as are free
1630 		 * in the produce queue, so we don't need to ensure len is
1631 		 * smaller than the queue size.  It is the caller's
1632 		 * responsibility to check how many bytes we were able to send.
1633 		 */
1634 
1635 		written = transport->stream_enqueue(
1636 				vsk, msg,
1637 				len - total_written);
1638 		if (written < 0) {
1639 			err = -ENOMEM;
1640 			goto out_err;
1641 		}
1642 
1643 		total_written += written;
1644 
1645 		err = transport->notify_send_post_enqueue(
1646 				vsk, written, &send_data);
1647 		if (err < 0)
1648 			goto out_err;
1649 
1650 	}
1651 
1652 out_err:
1653 	if (total_written > 0)
1654 		err = total_written;
1655 out:
1656 	release_sock(sk);
1657 	return err;
1658 }
1659 
1660 
1661 static int
1662 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1663 		     int flags)
1664 {
1665 	struct sock *sk;
1666 	struct vsock_sock *vsk;
1667 	int err;
1668 	size_t target;
1669 	ssize_t copied;
1670 	long timeout;
1671 	struct vsock_transport_recv_notify_data recv_data;
1672 
1673 	DEFINE_WAIT(wait);
1674 
1675 	sk = sock->sk;
1676 	vsk = vsock_sk(sk);
1677 	err = 0;
1678 
1679 	lock_sock(sk);
1680 
1681 	if (sk->sk_state != SS_CONNECTED) {
1682 		/* Recvmsg is supposed to return 0 if a peer performs an
1683 		 * orderly shutdown. Differentiate between that case and when a
1684 		 * peer has not connected or a local shutdown occured with the
1685 		 * SOCK_DONE flag.
1686 		 */
1687 		if (sock_flag(sk, SOCK_DONE))
1688 			err = 0;
1689 		else
1690 			err = -ENOTCONN;
1691 
1692 		goto out;
1693 	}
1694 
1695 	if (flags & MSG_OOB) {
1696 		err = -EOPNOTSUPP;
1697 		goto out;
1698 	}
1699 
1700 	/* We don't check peer_shutdown flag here since peer may actually shut
1701 	 * down, but there can be data in the queue that a local socket can
1702 	 * receive.
1703 	 */
1704 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1705 		err = 0;
1706 		goto out;
1707 	}
1708 
1709 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1710 	 * is not an error.  We may as well bail out now.
1711 	 */
1712 	if (!len) {
1713 		err = 0;
1714 		goto out;
1715 	}
1716 
1717 	/* We must not copy less than target bytes into the user's buffer
1718 	 * before returning successfully, so we wait for the consume queue to
1719 	 * have that much data to consume before dequeueing.  Note that this
1720 	 * makes it impossible to handle cases where target is greater than the
1721 	 * queue size.
1722 	 */
1723 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1724 	if (target >= transport->stream_rcvhiwat(vsk)) {
1725 		err = -ENOMEM;
1726 		goto out;
1727 	}
1728 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1729 	copied = 0;
1730 
1731 	err = transport->notify_recv_init(vsk, target, &recv_data);
1732 	if (err < 0)
1733 		goto out;
1734 
1735 
1736 	while (1) {
1737 		s64 ready;
1738 
1739 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1740 		ready = vsock_stream_has_data(vsk);
1741 
1742 		if (ready == 0) {
1743 			if (sk->sk_err != 0 ||
1744 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1745 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1746 				finish_wait(sk_sleep(sk), &wait);
1747 				break;
1748 			}
1749 			/* Don't wait for non-blocking sockets. */
1750 			if (timeout == 0) {
1751 				err = -EAGAIN;
1752 				finish_wait(sk_sleep(sk), &wait);
1753 				break;
1754 			}
1755 
1756 			err = transport->notify_recv_pre_block(
1757 					vsk, target, &recv_data);
1758 			if (err < 0) {
1759 				finish_wait(sk_sleep(sk), &wait);
1760 				break;
1761 			}
1762 			release_sock(sk);
1763 			timeout = schedule_timeout(timeout);
1764 			lock_sock(sk);
1765 
1766 			if (signal_pending(current)) {
1767 				err = sock_intr_errno(timeout);
1768 				finish_wait(sk_sleep(sk), &wait);
1769 				break;
1770 			} else if (timeout == 0) {
1771 				err = -EAGAIN;
1772 				finish_wait(sk_sleep(sk), &wait);
1773 				break;
1774 			}
1775 		} else {
1776 			ssize_t read;
1777 
1778 			finish_wait(sk_sleep(sk), &wait);
1779 
1780 			if (ready < 0) {
1781 				/* Invalid queue pair content. XXX This should
1782 				* be changed to a connection reset in a later
1783 				* change.
1784 				*/
1785 
1786 				err = -ENOMEM;
1787 				goto out;
1788 			}
1789 
1790 			err = transport->notify_recv_pre_dequeue(
1791 					vsk, target, &recv_data);
1792 			if (err < 0)
1793 				break;
1794 
1795 			read = transport->stream_dequeue(
1796 					vsk, msg,
1797 					len - copied, flags);
1798 			if (read < 0) {
1799 				err = -ENOMEM;
1800 				break;
1801 			}
1802 
1803 			copied += read;
1804 
1805 			err = transport->notify_recv_post_dequeue(
1806 					vsk, target, read,
1807 					!(flags & MSG_PEEK), &recv_data);
1808 			if (err < 0)
1809 				goto out;
1810 
1811 			if (read >= target || flags & MSG_PEEK)
1812 				break;
1813 
1814 			target -= read;
1815 		}
1816 	}
1817 
1818 	if (sk->sk_err)
1819 		err = -sk->sk_err;
1820 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1821 		err = 0;
1822 
1823 	if (copied > 0)
1824 		err = copied;
1825 
1826 out:
1827 	release_sock(sk);
1828 	return err;
1829 }
1830 
1831 static const struct proto_ops vsock_stream_ops = {
1832 	.family = PF_VSOCK,
1833 	.owner = THIS_MODULE,
1834 	.release = vsock_release,
1835 	.bind = vsock_bind,
1836 	.connect = vsock_stream_connect,
1837 	.socketpair = sock_no_socketpair,
1838 	.accept = vsock_accept,
1839 	.getname = vsock_getname,
1840 	.poll = vsock_poll,
1841 	.ioctl = sock_no_ioctl,
1842 	.listen = vsock_listen,
1843 	.shutdown = vsock_shutdown,
1844 	.setsockopt = vsock_stream_setsockopt,
1845 	.getsockopt = vsock_stream_getsockopt,
1846 	.sendmsg = vsock_stream_sendmsg,
1847 	.recvmsg = vsock_stream_recvmsg,
1848 	.mmap = sock_no_mmap,
1849 	.sendpage = sock_no_sendpage,
1850 };
1851 
1852 static int vsock_create(struct net *net, struct socket *sock,
1853 			int protocol, int kern)
1854 {
1855 	if (!sock)
1856 		return -EINVAL;
1857 
1858 	if (protocol && protocol != PF_VSOCK)
1859 		return -EPROTONOSUPPORT;
1860 
1861 	switch (sock->type) {
1862 	case SOCK_DGRAM:
1863 		sock->ops = &vsock_dgram_ops;
1864 		break;
1865 	case SOCK_STREAM:
1866 		sock->ops = &vsock_stream_ops;
1867 		break;
1868 	default:
1869 		return -ESOCKTNOSUPPORT;
1870 	}
1871 
1872 	sock->state = SS_UNCONNECTED;
1873 
1874 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1875 }
1876 
1877 static const struct net_proto_family vsock_family_ops = {
1878 	.family = AF_VSOCK,
1879 	.create = vsock_create,
1880 	.owner = THIS_MODULE,
1881 };
1882 
1883 static long vsock_dev_do_ioctl(struct file *filp,
1884 			       unsigned int cmd, void __user *ptr)
1885 {
1886 	u32 __user *p = ptr;
1887 	int retval = 0;
1888 
1889 	switch (cmd) {
1890 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1891 		if (put_user(transport->get_local_cid(), p) != 0)
1892 			retval = -EFAULT;
1893 		break;
1894 
1895 	default:
1896 		pr_err("Unknown ioctl %d\n", cmd);
1897 		retval = -EINVAL;
1898 	}
1899 
1900 	return retval;
1901 }
1902 
1903 static long vsock_dev_ioctl(struct file *filp,
1904 			    unsigned int cmd, unsigned long arg)
1905 {
1906 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1907 }
1908 
1909 #ifdef CONFIG_COMPAT
1910 static long vsock_dev_compat_ioctl(struct file *filp,
1911 				   unsigned int cmd, unsigned long arg)
1912 {
1913 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1914 }
1915 #endif
1916 
1917 static const struct file_operations vsock_device_ops = {
1918 	.owner		= THIS_MODULE,
1919 	.unlocked_ioctl	= vsock_dev_ioctl,
1920 #ifdef CONFIG_COMPAT
1921 	.compat_ioctl	= vsock_dev_compat_ioctl,
1922 #endif
1923 	.open		= nonseekable_open,
1924 };
1925 
1926 static struct miscdevice vsock_device = {
1927 	.name		= "vsock",
1928 	.fops		= &vsock_device_ops,
1929 };
1930 
1931 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1932 {
1933 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1934 
1935 	if (err)
1936 		return err;
1937 
1938 	if (transport) {
1939 		err = -EBUSY;
1940 		goto err_busy;
1941 	}
1942 
1943 	/* Transport must be the owner of the protocol so that it can't
1944 	 * unload while there are open sockets.
1945 	 */
1946 	vsock_proto.owner = owner;
1947 	transport = t;
1948 
1949 	vsock_init_tables();
1950 
1951 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1952 	err = misc_register(&vsock_device);
1953 	if (err) {
1954 		pr_err("Failed to register misc device\n");
1955 		goto err_reset_transport;
1956 	}
1957 
1958 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1959 	if (err) {
1960 		pr_err("Cannot register vsock protocol\n");
1961 		goto err_deregister_misc;
1962 	}
1963 
1964 	err = sock_register(&vsock_family_ops);
1965 	if (err) {
1966 		pr_err("could not register af_vsock (%d) address family: %d\n",
1967 		       AF_VSOCK, err);
1968 		goto err_unregister_proto;
1969 	}
1970 
1971 	mutex_unlock(&vsock_register_mutex);
1972 	return 0;
1973 
1974 err_unregister_proto:
1975 	proto_unregister(&vsock_proto);
1976 err_deregister_misc:
1977 	misc_deregister(&vsock_device);
1978 err_reset_transport:
1979 	transport = NULL;
1980 err_busy:
1981 	mutex_unlock(&vsock_register_mutex);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL_GPL(__vsock_core_init);
1985 
1986 void vsock_core_exit(void)
1987 {
1988 	mutex_lock(&vsock_register_mutex);
1989 
1990 	misc_deregister(&vsock_device);
1991 	sock_unregister(AF_VSOCK);
1992 	proto_unregister(&vsock_proto);
1993 
1994 	/* We do not want the assignment below re-ordered. */
1995 	mb();
1996 	transport = NULL;
1997 
1998 	mutex_unlock(&vsock_register_mutex);
1999 }
2000 EXPORT_SYMBOL_GPL(vsock_core_exit);
2001 
2002 const struct vsock_transport *vsock_core_get_transport(void)
2003 {
2004 	/* vsock_register_mutex not taken since only the transport uses this
2005 	 * function and only while registered.
2006 	 */
2007 	return transport;
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2010 
2011 MODULE_AUTHOR("VMware, Inc.");
2012 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013 MODULE_VERSION("1.0.2.0-k");
2014 MODULE_LICENSE("GPL v2");
2015