xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 7e6f7d24)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the TCP_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  *
86  * - sk->sk_state uses the TCP state constants because they are widely used by
87  * other address families and exposed to userspace tools like ss(8):
88  *
89  *   TCP_CLOSE - unconnected
90  *   TCP_SYN_SENT - connecting
91  *   TCP_ESTABLISHED - connected
92  *   TCP_CLOSING - disconnecting
93  *   TCP_LISTEN - listening
94  */
95 
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/skbuff.h>
111 #include <linux/smp.h>
112 #include <linux/socket.h>
113 #include <linux/stddef.h>
114 #include <linux/unistd.h>
115 #include <linux/wait.h>
116 #include <linux/workqueue.h>
117 #include <net/sock.h>
118 #include <net/af_vsock.h>
119 
120 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
121 static void vsock_sk_destruct(struct sock *sk);
122 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
123 
124 /* Protocol family. */
125 static struct proto vsock_proto = {
126 	.name = "AF_VSOCK",
127 	.owner = THIS_MODULE,
128 	.obj_size = sizeof(struct vsock_sock),
129 };
130 
131 /* The default peer timeout indicates how long we will wait for a peer response
132  * to a control message.
133  */
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135 
136 static const struct vsock_transport *transport;
137 static DEFINE_MUTEX(vsock_register_mutex);
138 
139 /**** EXPORTS ****/
140 
141 /* Get the ID of the local context.  This is transport dependent. */
142 
143 int vm_sockets_get_local_cid(void)
144 {
145 	return transport->get_local_cid();
146 }
147 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
148 
149 /**** UTILS ****/
150 
151 /* Each bound VSocket is stored in the bind hash table and each connected
152  * VSocket is stored in the connected hash table.
153  *
154  * Unbound sockets are all put on the same list attached to the end of the hash
155  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
156  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157  * represents the list that addr hashes to).
158  *
159  * Specifically, we initialize the vsock_bind_table array to a size of
160  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
163  * mods with VSOCK_HASH_SIZE to ensure this.
164  */
165 #define MAX_PORT_RETRIES        24
166 
167 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
170 
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst)				\
173 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst)		\
175 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk)				\
177 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178 
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
185 
186 /* Autobind this socket to the local address if necessary. */
187 static int vsock_auto_bind(struct vsock_sock *vsk)
188 {
189 	struct sock *sk = sk_vsock(vsk);
190 	struct sockaddr_vm local_addr;
191 
192 	if (vsock_addr_bound(&vsk->local_addr))
193 		return 0;
194 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 	return __vsock_bind(sk, &local_addr);
196 }
197 
198 static int __init vsock_init_tables(void)
199 {
200 	int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 		INIT_LIST_HEAD(&vsock_bind_table[i]);
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 		INIT_LIST_HEAD(&vsock_connected_table[i]);
207 	return 0;
208 }
209 
210 static void __vsock_insert_bound(struct list_head *list,
211 				 struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->bound_table, list);
215 }
216 
217 static void __vsock_insert_connected(struct list_head *list,
218 				     struct vsock_sock *vsk)
219 {
220 	sock_hold(&vsk->sk);
221 	list_add(&vsk->connected_table, list);
222 }
223 
224 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 {
226 	list_del_init(&vsk->bound_table);
227 	sock_put(&vsk->sk);
228 }
229 
230 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 {
232 	list_del_init(&vsk->connected_table);
233 	sock_put(&vsk->sk);
234 }
235 
236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 {
238 	struct vsock_sock *vsk;
239 
240 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
241 		if (addr->svm_port == vsk->local_addr.svm_port)
242 			return sk_vsock(vsk);
243 
244 	return NULL;
245 }
246 
247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248 						  struct sockaddr_vm *dst)
249 {
250 	struct vsock_sock *vsk;
251 
252 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 			    connected_table) {
254 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255 		    dst->svm_port == vsk->local_addr.svm_port) {
256 			return sk_vsock(vsk);
257 		}
258 	}
259 
260 	return NULL;
261 }
262 
263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265 	spin_lock_bh(&vsock_table_lock);
266 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
267 	spin_unlock_bh(&vsock_table_lock);
268 }
269 
270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272 	struct list_head *list = vsock_connected_sockets(
273 		&vsk->remote_addr, &vsk->local_addr);
274 
275 	spin_lock_bh(&vsock_table_lock);
276 	__vsock_insert_connected(list, vsk);
277 	spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280 
281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	__vsock_remove_connected(vsk);
293 	spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_connected);
296 
297 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
298 {
299 	struct sock *sk;
300 
301 	spin_lock_bh(&vsock_table_lock);
302 	sk = __vsock_find_bound_socket(addr);
303 	if (sk)
304 		sock_hold(sk);
305 
306 	spin_unlock_bh(&vsock_table_lock);
307 
308 	return sk;
309 }
310 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
311 
312 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
313 					 struct sockaddr_vm *dst)
314 {
315 	struct sock *sk;
316 
317 	spin_lock_bh(&vsock_table_lock);
318 	sk = __vsock_find_connected_socket(src, dst);
319 	if (sk)
320 		sock_hold(sk);
321 
322 	spin_unlock_bh(&vsock_table_lock);
323 
324 	return sk;
325 }
326 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
327 
328 static bool vsock_in_bound_table(struct vsock_sock *vsk)
329 {
330 	bool ret;
331 
332 	spin_lock_bh(&vsock_table_lock);
333 	ret = __vsock_in_bound_table(vsk);
334 	spin_unlock_bh(&vsock_table_lock);
335 
336 	return ret;
337 }
338 
339 static bool vsock_in_connected_table(struct vsock_sock *vsk)
340 {
341 	bool ret;
342 
343 	spin_lock_bh(&vsock_table_lock);
344 	ret = __vsock_in_connected_table(vsk);
345 	spin_unlock_bh(&vsock_table_lock);
346 
347 	return ret;
348 }
349 
350 void vsock_remove_sock(struct vsock_sock *vsk)
351 {
352 	if (vsock_in_bound_table(vsk))
353 		vsock_remove_bound(vsk);
354 
355 	if (vsock_in_connected_table(vsk))
356 		vsock_remove_connected(vsk);
357 }
358 EXPORT_SYMBOL_GPL(vsock_remove_sock);
359 
360 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
361 {
362 	int i;
363 
364 	spin_lock_bh(&vsock_table_lock);
365 
366 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
367 		struct vsock_sock *vsk;
368 		list_for_each_entry(vsk, &vsock_connected_table[i],
369 				    connected_table)
370 			fn(sk_vsock(vsk));
371 	}
372 
373 	spin_unlock_bh(&vsock_table_lock);
374 }
375 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
376 
377 void vsock_add_pending(struct sock *listener, struct sock *pending)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vpending;
381 
382 	vlistener = vsock_sk(listener);
383 	vpending = vsock_sk(pending);
384 
385 	sock_hold(pending);
386 	sock_hold(listener);
387 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
388 }
389 EXPORT_SYMBOL_GPL(vsock_add_pending);
390 
391 void vsock_remove_pending(struct sock *listener, struct sock *pending)
392 {
393 	struct vsock_sock *vpending = vsock_sk(pending);
394 
395 	list_del_init(&vpending->pending_links);
396 	sock_put(listener);
397 	sock_put(pending);
398 }
399 EXPORT_SYMBOL_GPL(vsock_remove_pending);
400 
401 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
402 {
403 	struct vsock_sock *vlistener;
404 	struct vsock_sock *vconnected;
405 
406 	vlistener = vsock_sk(listener);
407 	vconnected = vsock_sk(connected);
408 
409 	sock_hold(connected);
410 	sock_hold(listener);
411 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
412 }
413 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
414 
415 static struct sock *vsock_dequeue_accept(struct sock *listener)
416 {
417 	struct vsock_sock *vlistener;
418 	struct vsock_sock *vconnected;
419 
420 	vlistener = vsock_sk(listener);
421 
422 	if (list_empty(&vlistener->accept_queue))
423 		return NULL;
424 
425 	vconnected = list_entry(vlistener->accept_queue.next,
426 				struct vsock_sock, accept_queue);
427 
428 	list_del_init(&vconnected->accept_queue);
429 	sock_put(listener);
430 	/* The caller will need a reference on the connected socket so we let
431 	 * it call sock_put().
432 	 */
433 
434 	return sk_vsock(vconnected);
435 }
436 
437 static bool vsock_is_accept_queue_empty(struct sock *sk)
438 {
439 	struct vsock_sock *vsk = vsock_sk(sk);
440 	return list_empty(&vsk->accept_queue);
441 }
442 
443 static bool vsock_is_pending(struct sock *sk)
444 {
445 	struct vsock_sock *vsk = vsock_sk(sk);
446 	return !list_empty(&vsk->pending_links);
447 }
448 
449 static int vsock_send_shutdown(struct sock *sk, int mode)
450 {
451 	return transport->shutdown(vsock_sk(sk), mode);
452 }
453 
454 void vsock_pending_work(struct work_struct *work)
455 {
456 	struct sock *sk;
457 	struct sock *listener;
458 	struct vsock_sock *vsk;
459 	bool cleanup;
460 
461 	vsk = container_of(work, struct vsock_sock, dwork.work);
462 	sk = sk_vsock(vsk);
463 	listener = vsk->listener;
464 	cleanup = true;
465 
466 	lock_sock(listener);
467 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
468 
469 	if (vsock_is_pending(sk)) {
470 		vsock_remove_pending(listener, sk);
471 
472 		listener->sk_ack_backlog--;
473 	} else if (!vsk->rejected) {
474 		/* We are not on the pending list and accept() did not reject
475 		 * us, so we must have been accepted by our user process.  We
476 		 * just need to drop our references to the sockets and be on
477 		 * our way.
478 		 */
479 		cleanup = false;
480 		goto out;
481 	}
482 
483 	/* We need to remove ourself from the global connected sockets list so
484 	 * incoming packets can't find this socket, and to reduce the reference
485 	 * count.
486 	 */
487 	if (vsock_in_connected_table(vsk))
488 		vsock_remove_connected(vsk);
489 
490 	sk->sk_state = TCP_CLOSE;
491 
492 out:
493 	release_sock(sk);
494 	release_sock(listener);
495 	if (cleanup)
496 		sock_put(sk);
497 
498 	sock_put(sk);
499 	sock_put(listener);
500 }
501 EXPORT_SYMBOL_GPL(vsock_pending_work);
502 
503 /**** SOCKET OPERATIONS ****/
504 
505 static int __vsock_bind_stream(struct vsock_sock *vsk,
506 			       struct sockaddr_vm *addr)
507 {
508 	static u32 port = LAST_RESERVED_PORT + 1;
509 	struct sockaddr_vm new_addr;
510 
511 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
512 
513 	if (addr->svm_port == VMADDR_PORT_ANY) {
514 		bool found = false;
515 		unsigned int i;
516 
517 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
518 			if (port <= LAST_RESERVED_PORT)
519 				port = LAST_RESERVED_PORT + 1;
520 
521 			new_addr.svm_port = port++;
522 
523 			if (!__vsock_find_bound_socket(&new_addr)) {
524 				found = true;
525 				break;
526 			}
527 		}
528 
529 		if (!found)
530 			return -EADDRNOTAVAIL;
531 	} else {
532 		/* If port is in reserved range, ensure caller
533 		 * has necessary privileges.
534 		 */
535 		if (addr->svm_port <= LAST_RESERVED_PORT &&
536 		    !capable(CAP_NET_BIND_SERVICE)) {
537 			return -EACCES;
538 		}
539 
540 		if (__vsock_find_bound_socket(&new_addr))
541 			return -EADDRINUSE;
542 	}
543 
544 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
545 
546 	/* Remove stream sockets from the unbound list and add them to the hash
547 	 * table for easy lookup by its address.  The unbound list is simply an
548 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
549 	 */
550 	__vsock_remove_bound(vsk);
551 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
552 
553 	return 0;
554 }
555 
556 static int __vsock_bind_dgram(struct vsock_sock *vsk,
557 			      struct sockaddr_vm *addr)
558 {
559 	return transport->dgram_bind(vsk, addr);
560 }
561 
562 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
563 {
564 	struct vsock_sock *vsk = vsock_sk(sk);
565 	u32 cid;
566 	int retval;
567 
568 	/* First ensure this socket isn't already bound. */
569 	if (vsock_addr_bound(&vsk->local_addr))
570 		return -EINVAL;
571 
572 	/* Now bind to the provided address or select appropriate values if
573 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
574 	 * like AF_INET prevents binding to a non-local IP address (in most
575 	 * cases), we only allow binding to the local CID.
576 	 */
577 	cid = transport->get_local_cid();
578 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
579 		return -EADDRNOTAVAIL;
580 
581 	switch (sk->sk_socket->type) {
582 	case SOCK_STREAM:
583 		spin_lock_bh(&vsock_table_lock);
584 		retval = __vsock_bind_stream(vsk, addr);
585 		spin_unlock_bh(&vsock_table_lock);
586 		break;
587 
588 	case SOCK_DGRAM:
589 		retval = __vsock_bind_dgram(vsk, addr);
590 		break;
591 
592 	default:
593 		retval = -EINVAL;
594 		break;
595 	}
596 
597 	return retval;
598 }
599 
600 struct sock *__vsock_create(struct net *net,
601 			    struct socket *sock,
602 			    struct sock *parent,
603 			    gfp_t priority,
604 			    unsigned short type,
605 			    int kern)
606 {
607 	struct sock *sk;
608 	struct vsock_sock *psk;
609 	struct vsock_sock *vsk;
610 
611 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
612 	if (!sk)
613 		return NULL;
614 
615 	sock_init_data(sock, sk);
616 
617 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
618 	 * non-NULL. We make sure that our sockets always have a type by
619 	 * setting it here if needed.
620 	 */
621 	if (!sock)
622 		sk->sk_type = type;
623 
624 	vsk = vsock_sk(sk);
625 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
626 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
627 
628 	sk->sk_destruct = vsock_sk_destruct;
629 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
630 	sock_reset_flag(sk, SOCK_DONE);
631 
632 	INIT_LIST_HEAD(&vsk->bound_table);
633 	INIT_LIST_HEAD(&vsk->connected_table);
634 	vsk->listener = NULL;
635 	INIT_LIST_HEAD(&vsk->pending_links);
636 	INIT_LIST_HEAD(&vsk->accept_queue);
637 	vsk->rejected = false;
638 	vsk->sent_request = false;
639 	vsk->ignore_connecting_rst = false;
640 	vsk->peer_shutdown = 0;
641 
642 	psk = parent ? vsock_sk(parent) : NULL;
643 	if (parent) {
644 		vsk->trusted = psk->trusted;
645 		vsk->owner = get_cred(psk->owner);
646 		vsk->connect_timeout = psk->connect_timeout;
647 	} else {
648 		vsk->trusted = capable(CAP_NET_ADMIN);
649 		vsk->owner = get_current_cred();
650 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
651 	}
652 
653 	if (transport->init(vsk, psk) < 0) {
654 		sk_free(sk);
655 		return NULL;
656 	}
657 
658 	if (sock)
659 		vsock_insert_unbound(vsk);
660 
661 	return sk;
662 }
663 EXPORT_SYMBOL_GPL(__vsock_create);
664 
665 static void __vsock_release(struct sock *sk)
666 {
667 	if (sk) {
668 		struct sk_buff *skb;
669 		struct sock *pending;
670 		struct vsock_sock *vsk;
671 
672 		vsk = vsock_sk(sk);
673 		pending = NULL;	/* Compiler warning. */
674 
675 		transport->release(vsk);
676 
677 		lock_sock(sk);
678 		sock_orphan(sk);
679 		sk->sk_shutdown = SHUTDOWN_MASK;
680 
681 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
682 			kfree_skb(skb);
683 
684 		/* Clean up any sockets that never were accepted. */
685 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
686 			__vsock_release(pending);
687 			sock_put(pending);
688 		}
689 
690 		release_sock(sk);
691 		sock_put(sk);
692 	}
693 }
694 
695 static void vsock_sk_destruct(struct sock *sk)
696 {
697 	struct vsock_sock *vsk = vsock_sk(sk);
698 
699 	transport->destruct(vsk);
700 
701 	/* When clearing these addresses, there's no need to set the family and
702 	 * possibly register the address family with the kernel.
703 	 */
704 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
706 
707 	put_cred(vsk->owner);
708 }
709 
710 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
711 {
712 	int err;
713 
714 	err = sock_queue_rcv_skb(sk, skb);
715 	if (err)
716 		kfree_skb(skb);
717 
718 	return err;
719 }
720 
721 s64 vsock_stream_has_data(struct vsock_sock *vsk)
722 {
723 	return transport->stream_has_data(vsk);
724 }
725 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
726 
727 s64 vsock_stream_has_space(struct vsock_sock *vsk)
728 {
729 	return transport->stream_has_space(vsk);
730 }
731 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
732 
733 static int vsock_release(struct socket *sock)
734 {
735 	__vsock_release(sock->sk);
736 	sock->sk = NULL;
737 	sock->state = SS_FREE;
738 
739 	return 0;
740 }
741 
742 static int
743 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
744 {
745 	int err;
746 	struct sock *sk;
747 	struct sockaddr_vm *vm_addr;
748 
749 	sk = sock->sk;
750 
751 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
752 		return -EINVAL;
753 
754 	lock_sock(sk);
755 	err = __vsock_bind(sk, vm_addr);
756 	release_sock(sk);
757 
758 	return err;
759 }
760 
761 static int vsock_getname(struct socket *sock,
762 			 struct sockaddr *addr, int peer)
763 {
764 	int err;
765 	struct sock *sk;
766 	struct vsock_sock *vsk;
767 	struct sockaddr_vm *vm_addr;
768 
769 	sk = sock->sk;
770 	vsk = vsock_sk(sk);
771 	err = 0;
772 
773 	lock_sock(sk);
774 
775 	if (peer) {
776 		if (sock->state != SS_CONNECTED) {
777 			err = -ENOTCONN;
778 			goto out;
779 		}
780 		vm_addr = &vsk->remote_addr;
781 	} else {
782 		vm_addr = &vsk->local_addr;
783 	}
784 
785 	if (!vm_addr) {
786 		err = -EINVAL;
787 		goto out;
788 	}
789 
790 	/* sys_getsockname() and sys_getpeername() pass us a
791 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
792 	 * that macro is defined in socket.c instead of .h, so we hardcode its
793 	 * value here.
794 	 */
795 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
796 	memcpy(addr, vm_addr, sizeof(*vm_addr));
797 	err = sizeof(*vm_addr);
798 
799 out:
800 	release_sock(sk);
801 	return err;
802 }
803 
804 static int vsock_shutdown(struct socket *sock, int mode)
805 {
806 	int err;
807 	struct sock *sk;
808 
809 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
810 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
811 	 * here like the other address families do.  Note also that the
812 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
813 	 * which is what we want.
814 	 */
815 	mode++;
816 
817 	if ((mode & ~SHUTDOWN_MASK) || !mode)
818 		return -EINVAL;
819 
820 	/* If this is a STREAM socket and it is not connected then bail out
821 	 * immediately.  If it is a DGRAM socket then we must first kick the
822 	 * socket so that it wakes up from any sleeping calls, for example
823 	 * recv(), and then afterwards return the error.
824 	 */
825 
826 	sk = sock->sk;
827 	if (sock->state == SS_UNCONNECTED) {
828 		err = -ENOTCONN;
829 		if (sk->sk_type == SOCK_STREAM)
830 			return err;
831 	} else {
832 		sock->state = SS_DISCONNECTING;
833 		err = 0;
834 	}
835 
836 	/* Receive and send shutdowns are treated alike. */
837 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
838 	if (mode) {
839 		lock_sock(sk);
840 		sk->sk_shutdown |= mode;
841 		sk->sk_state_change(sk);
842 		release_sock(sk);
843 
844 		if (sk->sk_type == SOCK_STREAM) {
845 			sock_reset_flag(sk, SOCK_DONE);
846 			vsock_send_shutdown(sk, mode);
847 		}
848 	}
849 
850 	return err;
851 }
852 
853 static __poll_t vsock_poll_mask(struct socket *sock, __poll_t events)
854 {
855 	struct sock *sk = sock->sk;
856 	struct vsock_sock *vsk = vsock_sk(sk);
857 	__poll_t mask = 0;
858 
859 	if (sk->sk_err)
860 		/* Signify that there has been an error on this socket. */
861 		mask |= EPOLLERR;
862 
863 	/* INET sockets treat local write shutdown and peer write shutdown as a
864 	 * case of EPOLLHUP set.
865 	 */
866 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
867 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
868 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
869 		mask |= EPOLLHUP;
870 	}
871 
872 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
873 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
874 		mask |= EPOLLRDHUP;
875 	}
876 
877 	if (sock->type == SOCK_DGRAM) {
878 		/* For datagram sockets we can read if there is something in
879 		 * the queue and write as long as the socket isn't shutdown for
880 		 * sending.
881 		 */
882 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
883 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
884 			mask |= EPOLLIN | EPOLLRDNORM;
885 		}
886 
887 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
888 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
889 
890 	} else if (sock->type == SOCK_STREAM) {
891 		lock_sock(sk);
892 
893 		/* Listening sockets that have connections in their accept
894 		 * queue can be read.
895 		 */
896 		if (sk->sk_state == TCP_LISTEN
897 		    && !vsock_is_accept_queue_empty(sk))
898 			mask |= EPOLLIN | EPOLLRDNORM;
899 
900 		/* If there is something in the queue then we can read. */
901 		if (transport->stream_is_active(vsk) &&
902 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
903 			bool data_ready_now = false;
904 			int ret = transport->notify_poll_in(
905 					vsk, 1, &data_ready_now);
906 			if (ret < 0) {
907 				mask |= EPOLLERR;
908 			} else {
909 				if (data_ready_now)
910 					mask |= EPOLLIN | EPOLLRDNORM;
911 
912 			}
913 		}
914 
915 		/* Sockets whose connections have been closed, reset, or
916 		 * terminated should also be considered read, and we check the
917 		 * shutdown flag for that.
918 		 */
919 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
920 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
921 			mask |= EPOLLIN | EPOLLRDNORM;
922 		}
923 
924 		/* Connected sockets that can produce data can be written. */
925 		if (sk->sk_state == TCP_ESTABLISHED) {
926 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
927 				bool space_avail_now = false;
928 				int ret = transport->notify_poll_out(
929 						vsk, 1, &space_avail_now);
930 				if (ret < 0) {
931 					mask |= EPOLLERR;
932 				} else {
933 					if (space_avail_now)
934 						/* Remove EPOLLWRBAND since INET
935 						 * sockets are not setting it.
936 						 */
937 						mask |= EPOLLOUT | EPOLLWRNORM;
938 
939 				}
940 			}
941 		}
942 
943 		/* Simulate INET socket poll behaviors, which sets
944 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
945 		 * but local send is not shutdown.
946 		 */
947 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
948 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
949 				mask |= EPOLLOUT | EPOLLWRNORM;
950 
951 		}
952 
953 		release_sock(sk);
954 	}
955 
956 	return mask;
957 }
958 
959 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
960 			       size_t len)
961 {
962 	int err;
963 	struct sock *sk;
964 	struct vsock_sock *vsk;
965 	struct sockaddr_vm *remote_addr;
966 
967 	if (msg->msg_flags & MSG_OOB)
968 		return -EOPNOTSUPP;
969 
970 	/* For now, MSG_DONTWAIT is always assumed... */
971 	err = 0;
972 	sk = sock->sk;
973 	vsk = vsock_sk(sk);
974 
975 	lock_sock(sk);
976 
977 	err = vsock_auto_bind(vsk);
978 	if (err)
979 		goto out;
980 
981 
982 	/* If the provided message contains an address, use that.  Otherwise
983 	 * fall back on the socket's remote handle (if it has been connected).
984 	 */
985 	if (msg->msg_name &&
986 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
987 			    &remote_addr) == 0) {
988 		/* Ensure this address is of the right type and is a valid
989 		 * destination.
990 		 */
991 
992 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
993 			remote_addr->svm_cid = transport->get_local_cid();
994 
995 		if (!vsock_addr_bound(remote_addr)) {
996 			err = -EINVAL;
997 			goto out;
998 		}
999 	} else if (sock->state == SS_CONNECTED) {
1000 		remote_addr = &vsk->remote_addr;
1001 
1002 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1003 			remote_addr->svm_cid = transport->get_local_cid();
1004 
1005 		/* XXX Should connect() or this function ensure remote_addr is
1006 		 * bound?
1007 		 */
1008 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1009 			err = -EINVAL;
1010 			goto out;
1011 		}
1012 	} else {
1013 		err = -EINVAL;
1014 		goto out;
1015 	}
1016 
1017 	if (!transport->dgram_allow(remote_addr->svm_cid,
1018 				    remote_addr->svm_port)) {
1019 		err = -EINVAL;
1020 		goto out;
1021 	}
1022 
1023 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1024 
1025 out:
1026 	release_sock(sk);
1027 	return err;
1028 }
1029 
1030 static int vsock_dgram_connect(struct socket *sock,
1031 			       struct sockaddr *addr, int addr_len, int flags)
1032 {
1033 	int err;
1034 	struct sock *sk;
1035 	struct vsock_sock *vsk;
1036 	struct sockaddr_vm *remote_addr;
1037 
1038 	sk = sock->sk;
1039 	vsk = vsock_sk(sk);
1040 
1041 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1042 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1043 		lock_sock(sk);
1044 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1045 				VMADDR_PORT_ANY);
1046 		sock->state = SS_UNCONNECTED;
1047 		release_sock(sk);
1048 		return 0;
1049 	} else if (err != 0)
1050 		return -EINVAL;
1051 
1052 	lock_sock(sk);
1053 
1054 	err = vsock_auto_bind(vsk);
1055 	if (err)
1056 		goto out;
1057 
1058 	if (!transport->dgram_allow(remote_addr->svm_cid,
1059 				    remote_addr->svm_port)) {
1060 		err = -EINVAL;
1061 		goto out;
1062 	}
1063 
1064 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1065 	sock->state = SS_CONNECTED;
1066 
1067 out:
1068 	release_sock(sk);
1069 	return err;
1070 }
1071 
1072 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1073 			       size_t len, int flags)
1074 {
1075 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1076 }
1077 
1078 static const struct proto_ops vsock_dgram_ops = {
1079 	.family = PF_VSOCK,
1080 	.owner = THIS_MODULE,
1081 	.release = vsock_release,
1082 	.bind = vsock_bind,
1083 	.connect = vsock_dgram_connect,
1084 	.socketpair = sock_no_socketpair,
1085 	.accept = sock_no_accept,
1086 	.getname = vsock_getname,
1087 	.poll_mask = vsock_poll_mask,
1088 	.ioctl = sock_no_ioctl,
1089 	.listen = sock_no_listen,
1090 	.shutdown = vsock_shutdown,
1091 	.setsockopt = sock_no_setsockopt,
1092 	.getsockopt = sock_no_getsockopt,
1093 	.sendmsg = vsock_dgram_sendmsg,
1094 	.recvmsg = vsock_dgram_recvmsg,
1095 	.mmap = sock_no_mmap,
1096 	.sendpage = sock_no_sendpage,
1097 };
1098 
1099 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1100 {
1101 	if (!transport->cancel_pkt)
1102 		return -EOPNOTSUPP;
1103 
1104 	return transport->cancel_pkt(vsk);
1105 }
1106 
1107 static void vsock_connect_timeout(struct work_struct *work)
1108 {
1109 	struct sock *sk;
1110 	struct vsock_sock *vsk;
1111 	int cancel = 0;
1112 
1113 	vsk = container_of(work, struct vsock_sock, dwork.work);
1114 	sk = sk_vsock(vsk);
1115 
1116 	lock_sock(sk);
1117 	if (sk->sk_state == TCP_SYN_SENT &&
1118 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1119 		sk->sk_state = TCP_CLOSE;
1120 		sk->sk_err = ETIMEDOUT;
1121 		sk->sk_error_report(sk);
1122 		cancel = 1;
1123 	}
1124 	release_sock(sk);
1125 	if (cancel)
1126 		vsock_transport_cancel_pkt(vsk);
1127 
1128 	sock_put(sk);
1129 }
1130 
1131 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1132 				int addr_len, int flags)
1133 {
1134 	int err;
1135 	struct sock *sk;
1136 	struct vsock_sock *vsk;
1137 	struct sockaddr_vm *remote_addr;
1138 	long timeout;
1139 	DEFINE_WAIT(wait);
1140 
1141 	err = 0;
1142 	sk = sock->sk;
1143 	vsk = vsock_sk(sk);
1144 
1145 	lock_sock(sk);
1146 
1147 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1148 	switch (sock->state) {
1149 	case SS_CONNECTED:
1150 		err = -EISCONN;
1151 		goto out;
1152 	case SS_DISCONNECTING:
1153 		err = -EINVAL;
1154 		goto out;
1155 	case SS_CONNECTING:
1156 		/* This continues on so we can move sock into the SS_CONNECTED
1157 		 * state once the connection has completed (at which point err
1158 		 * will be set to zero also).  Otherwise, we will either wait
1159 		 * for the connection or return -EALREADY should this be a
1160 		 * non-blocking call.
1161 		 */
1162 		err = -EALREADY;
1163 		break;
1164 	default:
1165 		if ((sk->sk_state == TCP_LISTEN) ||
1166 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1167 			err = -EINVAL;
1168 			goto out;
1169 		}
1170 
1171 		/* The hypervisor and well-known contexts do not have socket
1172 		 * endpoints.
1173 		 */
1174 		if (!transport->stream_allow(remote_addr->svm_cid,
1175 					     remote_addr->svm_port)) {
1176 			err = -ENETUNREACH;
1177 			goto out;
1178 		}
1179 
1180 		/* Set the remote address that we are connecting to. */
1181 		memcpy(&vsk->remote_addr, remote_addr,
1182 		       sizeof(vsk->remote_addr));
1183 
1184 		err = vsock_auto_bind(vsk);
1185 		if (err)
1186 			goto out;
1187 
1188 		sk->sk_state = TCP_SYN_SENT;
1189 
1190 		err = transport->connect(vsk);
1191 		if (err < 0)
1192 			goto out;
1193 
1194 		/* Mark sock as connecting and set the error code to in
1195 		 * progress in case this is a non-blocking connect.
1196 		 */
1197 		sock->state = SS_CONNECTING;
1198 		err = -EINPROGRESS;
1199 	}
1200 
1201 	/* The receive path will handle all communication until we are able to
1202 	 * enter the connected state.  Here we wait for the connection to be
1203 	 * completed or a notification of an error.
1204 	 */
1205 	timeout = vsk->connect_timeout;
1206 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1207 
1208 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1209 		if (flags & O_NONBLOCK) {
1210 			/* If we're not going to block, we schedule a timeout
1211 			 * function to generate a timeout on the connection
1212 			 * attempt, in case the peer doesn't respond in a
1213 			 * timely manner. We hold on to the socket until the
1214 			 * timeout fires.
1215 			 */
1216 			sock_hold(sk);
1217 			INIT_DELAYED_WORK(&vsk->dwork,
1218 					  vsock_connect_timeout);
1219 			schedule_delayed_work(&vsk->dwork, timeout);
1220 
1221 			/* Skip ahead to preserve error code set above. */
1222 			goto out_wait;
1223 		}
1224 
1225 		release_sock(sk);
1226 		timeout = schedule_timeout(timeout);
1227 		lock_sock(sk);
1228 
1229 		if (signal_pending(current)) {
1230 			err = sock_intr_errno(timeout);
1231 			sk->sk_state = TCP_CLOSE;
1232 			sock->state = SS_UNCONNECTED;
1233 			vsock_transport_cancel_pkt(vsk);
1234 			goto out_wait;
1235 		} else if (timeout == 0) {
1236 			err = -ETIMEDOUT;
1237 			sk->sk_state = TCP_CLOSE;
1238 			sock->state = SS_UNCONNECTED;
1239 			vsock_transport_cancel_pkt(vsk);
1240 			goto out_wait;
1241 		}
1242 
1243 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1244 	}
1245 
1246 	if (sk->sk_err) {
1247 		err = -sk->sk_err;
1248 		sk->sk_state = TCP_CLOSE;
1249 		sock->state = SS_UNCONNECTED;
1250 	} else {
1251 		err = 0;
1252 	}
1253 
1254 out_wait:
1255 	finish_wait(sk_sleep(sk), &wait);
1256 out:
1257 	release_sock(sk);
1258 	return err;
1259 }
1260 
1261 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1262 			bool kern)
1263 {
1264 	struct sock *listener;
1265 	int err;
1266 	struct sock *connected;
1267 	struct vsock_sock *vconnected;
1268 	long timeout;
1269 	DEFINE_WAIT(wait);
1270 
1271 	err = 0;
1272 	listener = sock->sk;
1273 
1274 	lock_sock(listener);
1275 
1276 	if (sock->type != SOCK_STREAM) {
1277 		err = -EOPNOTSUPP;
1278 		goto out;
1279 	}
1280 
1281 	if (listener->sk_state != TCP_LISTEN) {
1282 		err = -EINVAL;
1283 		goto out;
1284 	}
1285 
1286 	/* Wait for children sockets to appear; these are the new sockets
1287 	 * created upon connection establishment.
1288 	 */
1289 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1290 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1291 
1292 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1293 	       listener->sk_err == 0) {
1294 		release_sock(listener);
1295 		timeout = schedule_timeout(timeout);
1296 		finish_wait(sk_sleep(listener), &wait);
1297 		lock_sock(listener);
1298 
1299 		if (signal_pending(current)) {
1300 			err = sock_intr_errno(timeout);
1301 			goto out;
1302 		} else if (timeout == 0) {
1303 			err = -EAGAIN;
1304 			goto out;
1305 		}
1306 
1307 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1308 	}
1309 	finish_wait(sk_sleep(listener), &wait);
1310 
1311 	if (listener->sk_err)
1312 		err = -listener->sk_err;
1313 
1314 	if (connected) {
1315 		listener->sk_ack_backlog--;
1316 
1317 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1318 		vconnected = vsock_sk(connected);
1319 
1320 		/* If the listener socket has received an error, then we should
1321 		 * reject this socket and return.  Note that we simply mark the
1322 		 * socket rejected, drop our reference, and let the cleanup
1323 		 * function handle the cleanup; the fact that we found it in
1324 		 * the listener's accept queue guarantees that the cleanup
1325 		 * function hasn't run yet.
1326 		 */
1327 		if (err) {
1328 			vconnected->rejected = true;
1329 		} else {
1330 			newsock->state = SS_CONNECTED;
1331 			sock_graft(connected, newsock);
1332 		}
1333 
1334 		release_sock(connected);
1335 		sock_put(connected);
1336 	}
1337 
1338 out:
1339 	release_sock(listener);
1340 	return err;
1341 }
1342 
1343 static int vsock_listen(struct socket *sock, int backlog)
1344 {
1345 	int err;
1346 	struct sock *sk;
1347 	struct vsock_sock *vsk;
1348 
1349 	sk = sock->sk;
1350 
1351 	lock_sock(sk);
1352 
1353 	if (sock->type != SOCK_STREAM) {
1354 		err = -EOPNOTSUPP;
1355 		goto out;
1356 	}
1357 
1358 	if (sock->state != SS_UNCONNECTED) {
1359 		err = -EINVAL;
1360 		goto out;
1361 	}
1362 
1363 	vsk = vsock_sk(sk);
1364 
1365 	if (!vsock_addr_bound(&vsk->local_addr)) {
1366 		err = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	sk->sk_max_ack_backlog = backlog;
1371 	sk->sk_state = TCP_LISTEN;
1372 
1373 	err = 0;
1374 
1375 out:
1376 	release_sock(sk);
1377 	return err;
1378 }
1379 
1380 static int vsock_stream_setsockopt(struct socket *sock,
1381 				   int level,
1382 				   int optname,
1383 				   char __user *optval,
1384 				   unsigned int optlen)
1385 {
1386 	int err;
1387 	struct sock *sk;
1388 	struct vsock_sock *vsk;
1389 	u64 val;
1390 
1391 	if (level != AF_VSOCK)
1392 		return -ENOPROTOOPT;
1393 
1394 #define COPY_IN(_v)                                       \
1395 	do {						  \
1396 		if (optlen < sizeof(_v)) {		  \
1397 			err = -EINVAL;			  \
1398 			goto exit;			  \
1399 		}					  \
1400 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1401 			err = -EFAULT;					\
1402 			goto exit;					\
1403 		}							\
1404 	} while (0)
1405 
1406 	err = 0;
1407 	sk = sock->sk;
1408 	vsk = vsock_sk(sk);
1409 
1410 	lock_sock(sk);
1411 
1412 	switch (optname) {
1413 	case SO_VM_SOCKETS_BUFFER_SIZE:
1414 		COPY_IN(val);
1415 		transport->set_buffer_size(vsk, val);
1416 		break;
1417 
1418 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1419 		COPY_IN(val);
1420 		transport->set_max_buffer_size(vsk, val);
1421 		break;
1422 
1423 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1424 		COPY_IN(val);
1425 		transport->set_min_buffer_size(vsk, val);
1426 		break;
1427 
1428 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1429 		struct timeval tv;
1430 		COPY_IN(tv);
1431 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1432 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1433 			vsk->connect_timeout = tv.tv_sec * HZ +
1434 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1435 			if (vsk->connect_timeout == 0)
1436 				vsk->connect_timeout =
1437 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1438 
1439 		} else {
1440 			err = -ERANGE;
1441 		}
1442 		break;
1443 	}
1444 
1445 	default:
1446 		err = -ENOPROTOOPT;
1447 		break;
1448 	}
1449 
1450 #undef COPY_IN
1451 
1452 exit:
1453 	release_sock(sk);
1454 	return err;
1455 }
1456 
1457 static int vsock_stream_getsockopt(struct socket *sock,
1458 				   int level, int optname,
1459 				   char __user *optval,
1460 				   int __user *optlen)
1461 {
1462 	int err;
1463 	int len;
1464 	struct sock *sk;
1465 	struct vsock_sock *vsk;
1466 	u64 val;
1467 
1468 	if (level != AF_VSOCK)
1469 		return -ENOPROTOOPT;
1470 
1471 	err = get_user(len, optlen);
1472 	if (err != 0)
1473 		return err;
1474 
1475 #define COPY_OUT(_v)                            \
1476 	do {					\
1477 		if (len < sizeof(_v))		\
1478 			return -EINVAL;		\
1479 						\
1480 		len = sizeof(_v);		\
1481 		if (copy_to_user(optval, &_v, len) != 0)	\
1482 			return -EFAULT;				\
1483 								\
1484 	} while (0)
1485 
1486 	err = 0;
1487 	sk = sock->sk;
1488 	vsk = vsock_sk(sk);
1489 
1490 	switch (optname) {
1491 	case SO_VM_SOCKETS_BUFFER_SIZE:
1492 		val = transport->get_buffer_size(vsk);
1493 		COPY_OUT(val);
1494 		break;
1495 
1496 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1497 		val = transport->get_max_buffer_size(vsk);
1498 		COPY_OUT(val);
1499 		break;
1500 
1501 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1502 		val = transport->get_min_buffer_size(vsk);
1503 		COPY_OUT(val);
1504 		break;
1505 
1506 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1507 		struct timeval tv;
1508 		tv.tv_sec = vsk->connect_timeout / HZ;
1509 		tv.tv_usec =
1510 		    (vsk->connect_timeout -
1511 		     tv.tv_sec * HZ) * (1000000 / HZ);
1512 		COPY_OUT(tv);
1513 		break;
1514 	}
1515 	default:
1516 		return -ENOPROTOOPT;
1517 	}
1518 
1519 	err = put_user(len, optlen);
1520 	if (err != 0)
1521 		return -EFAULT;
1522 
1523 #undef COPY_OUT
1524 
1525 	return 0;
1526 }
1527 
1528 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1529 				size_t len)
1530 {
1531 	struct sock *sk;
1532 	struct vsock_sock *vsk;
1533 	ssize_t total_written;
1534 	long timeout;
1535 	int err;
1536 	struct vsock_transport_send_notify_data send_data;
1537 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1538 
1539 	sk = sock->sk;
1540 	vsk = vsock_sk(sk);
1541 	total_written = 0;
1542 	err = 0;
1543 
1544 	if (msg->msg_flags & MSG_OOB)
1545 		return -EOPNOTSUPP;
1546 
1547 	lock_sock(sk);
1548 
1549 	/* Callers should not provide a destination with stream sockets. */
1550 	if (msg->msg_namelen) {
1551 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1552 		goto out;
1553 	}
1554 
1555 	/* Send data only if both sides are not shutdown in the direction. */
1556 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1557 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1558 		err = -EPIPE;
1559 		goto out;
1560 	}
1561 
1562 	if (sk->sk_state != TCP_ESTABLISHED ||
1563 	    !vsock_addr_bound(&vsk->local_addr)) {
1564 		err = -ENOTCONN;
1565 		goto out;
1566 	}
1567 
1568 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1569 		err = -EDESTADDRREQ;
1570 		goto out;
1571 	}
1572 
1573 	/* Wait for room in the produce queue to enqueue our user's data. */
1574 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1575 
1576 	err = transport->notify_send_init(vsk, &send_data);
1577 	if (err < 0)
1578 		goto out;
1579 
1580 	while (total_written < len) {
1581 		ssize_t written;
1582 
1583 		add_wait_queue(sk_sleep(sk), &wait);
1584 		while (vsock_stream_has_space(vsk) == 0 &&
1585 		       sk->sk_err == 0 &&
1586 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1587 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1588 
1589 			/* Don't wait for non-blocking sockets. */
1590 			if (timeout == 0) {
1591 				err = -EAGAIN;
1592 				remove_wait_queue(sk_sleep(sk), &wait);
1593 				goto out_err;
1594 			}
1595 
1596 			err = transport->notify_send_pre_block(vsk, &send_data);
1597 			if (err < 0) {
1598 				remove_wait_queue(sk_sleep(sk), &wait);
1599 				goto out_err;
1600 			}
1601 
1602 			release_sock(sk);
1603 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1604 			lock_sock(sk);
1605 			if (signal_pending(current)) {
1606 				err = sock_intr_errno(timeout);
1607 				remove_wait_queue(sk_sleep(sk), &wait);
1608 				goto out_err;
1609 			} else if (timeout == 0) {
1610 				err = -EAGAIN;
1611 				remove_wait_queue(sk_sleep(sk), &wait);
1612 				goto out_err;
1613 			}
1614 		}
1615 		remove_wait_queue(sk_sleep(sk), &wait);
1616 
1617 		/* These checks occur both as part of and after the loop
1618 		 * conditional since we need to check before and after
1619 		 * sleeping.
1620 		 */
1621 		if (sk->sk_err) {
1622 			err = -sk->sk_err;
1623 			goto out_err;
1624 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1625 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1626 			err = -EPIPE;
1627 			goto out_err;
1628 		}
1629 
1630 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1631 		if (err < 0)
1632 			goto out_err;
1633 
1634 		/* Note that enqueue will only write as many bytes as are free
1635 		 * in the produce queue, so we don't need to ensure len is
1636 		 * smaller than the queue size.  It is the caller's
1637 		 * responsibility to check how many bytes we were able to send.
1638 		 */
1639 
1640 		written = transport->stream_enqueue(
1641 				vsk, msg,
1642 				len - total_written);
1643 		if (written < 0) {
1644 			err = -ENOMEM;
1645 			goto out_err;
1646 		}
1647 
1648 		total_written += written;
1649 
1650 		err = transport->notify_send_post_enqueue(
1651 				vsk, written, &send_data);
1652 		if (err < 0)
1653 			goto out_err;
1654 
1655 	}
1656 
1657 out_err:
1658 	if (total_written > 0)
1659 		err = total_written;
1660 out:
1661 	release_sock(sk);
1662 	return err;
1663 }
1664 
1665 
1666 static int
1667 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1668 		     int flags)
1669 {
1670 	struct sock *sk;
1671 	struct vsock_sock *vsk;
1672 	int err;
1673 	size_t target;
1674 	ssize_t copied;
1675 	long timeout;
1676 	struct vsock_transport_recv_notify_data recv_data;
1677 
1678 	DEFINE_WAIT(wait);
1679 
1680 	sk = sock->sk;
1681 	vsk = vsock_sk(sk);
1682 	err = 0;
1683 
1684 	lock_sock(sk);
1685 
1686 	if (sk->sk_state != TCP_ESTABLISHED) {
1687 		/* Recvmsg is supposed to return 0 if a peer performs an
1688 		 * orderly shutdown. Differentiate between that case and when a
1689 		 * peer has not connected or a local shutdown occured with the
1690 		 * SOCK_DONE flag.
1691 		 */
1692 		if (sock_flag(sk, SOCK_DONE))
1693 			err = 0;
1694 		else
1695 			err = -ENOTCONN;
1696 
1697 		goto out;
1698 	}
1699 
1700 	if (flags & MSG_OOB) {
1701 		err = -EOPNOTSUPP;
1702 		goto out;
1703 	}
1704 
1705 	/* We don't check peer_shutdown flag here since peer may actually shut
1706 	 * down, but there can be data in the queue that a local socket can
1707 	 * receive.
1708 	 */
1709 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1710 		err = 0;
1711 		goto out;
1712 	}
1713 
1714 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1715 	 * is not an error.  We may as well bail out now.
1716 	 */
1717 	if (!len) {
1718 		err = 0;
1719 		goto out;
1720 	}
1721 
1722 	/* We must not copy less than target bytes into the user's buffer
1723 	 * before returning successfully, so we wait for the consume queue to
1724 	 * have that much data to consume before dequeueing.  Note that this
1725 	 * makes it impossible to handle cases where target is greater than the
1726 	 * queue size.
1727 	 */
1728 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1729 	if (target >= transport->stream_rcvhiwat(vsk)) {
1730 		err = -ENOMEM;
1731 		goto out;
1732 	}
1733 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1734 	copied = 0;
1735 
1736 	err = transport->notify_recv_init(vsk, target, &recv_data);
1737 	if (err < 0)
1738 		goto out;
1739 
1740 
1741 	while (1) {
1742 		s64 ready;
1743 
1744 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1745 		ready = vsock_stream_has_data(vsk);
1746 
1747 		if (ready == 0) {
1748 			if (sk->sk_err != 0 ||
1749 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1750 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1751 				finish_wait(sk_sleep(sk), &wait);
1752 				break;
1753 			}
1754 			/* Don't wait for non-blocking sockets. */
1755 			if (timeout == 0) {
1756 				err = -EAGAIN;
1757 				finish_wait(sk_sleep(sk), &wait);
1758 				break;
1759 			}
1760 
1761 			err = transport->notify_recv_pre_block(
1762 					vsk, target, &recv_data);
1763 			if (err < 0) {
1764 				finish_wait(sk_sleep(sk), &wait);
1765 				break;
1766 			}
1767 			release_sock(sk);
1768 			timeout = schedule_timeout(timeout);
1769 			lock_sock(sk);
1770 
1771 			if (signal_pending(current)) {
1772 				err = sock_intr_errno(timeout);
1773 				finish_wait(sk_sleep(sk), &wait);
1774 				break;
1775 			} else if (timeout == 0) {
1776 				err = -EAGAIN;
1777 				finish_wait(sk_sleep(sk), &wait);
1778 				break;
1779 			}
1780 		} else {
1781 			ssize_t read;
1782 
1783 			finish_wait(sk_sleep(sk), &wait);
1784 
1785 			if (ready < 0) {
1786 				/* Invalid queue pair content. XXX This should
1787 				* be changed to a connection reset in a later
1788 				* change.
1789 				*/
1790 
1791 				err = -ENOMEM;
1792 				goto out;
1793 			}
1794 
1795 			err = transport->notify_recv_pre_dequeue(
1796 					vsk, target, &recv_data);
1797 			if (err < 0)
1798 				break;
1799 
1800 			read = transport->stream_dequeue(
1801 					vsk, msg,
1802 					len - copied, flags);
1803 			if (read < 0) {
1804 				err = -ENOMEM;
1805 				break;
1806 			}
1807 
1808 			copied += read;
1809 
1810 			err = transport->notify_recv_post_dequeue(
1811 					vsk, target, read,
1812 					!(flags & MSG_PEEK), &recv_data);
1813 			if (err < 0)
1814 				goto out;
1815 
1816 			if (read >= target || flags & MSG_PEEK)
1817 				break;
1818 
1819 			target -= read;
1820 		}
1821 	}
1822 
1823 	if (sk->sk_err)
1824 		err = -sk->sk_err;
1825 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1826 		err = 0;
1827 
1828 	if (copied > 0)
1829 		err = copied;
1830 
1831 out:
1832 	release_sock(sk);
1833 	return err;
1834 }
1835 
1836 static const struct proto_ops vsock_stream_ops = {
1837 	.family = PF_VSOCK,
1838 	.owner = THIS_MODULE,
1839 	.release = vsock_release,
1840 	.bind = vsock_bind,
1841 	.connect = vsock_stream_connect,
1842 	.socketpair = sock_no_socketpair,
1843 	.accept = vsock_accept,
1844 	.getname = vsock_getname,
1845 	.poll_mask = vsock_poll_mask,
1846 	.ioctl = sock_no_ioctl,
1847 	.listen = vsock_listen,
1848 	.shutdown = vsock_shutdown,
1849 	.setsockopt = vsock_stream_setsockopt,
1850 	.getsockopt = vsock_stream_getsockopt,
1851 	.sendmsg = vsock_stream_sendmsg,
1852 	.recvmsg = vsock_stream_recvmsg,
1853 	.mmap = sock_no_mmap,
1854 	.sendpage = sock_no_sendpage,
1855 };
1856 
1857 static int vsock_create(struct net *net, struct socket *sock,
1858 			int protocol, int kern)
1859 {
1860 	if (!sock)
1861 		return -EINVAL;
1862 
1863 	if (protocol && protocol != PF_VSOCK)
1864 		return -EPROTONOSUPPORT;
1865 
1866 	switch (sock->type) {
1867 	case SOCK_DGRAM:
1868 		sock->ops = &vsock_dgram_ops;
1869 		break;
1870 	case SOCK_STREAM:
1871 		sock->ops = &vsock_stream_ops;
1872 		break;
1873 	default:
1874 		return -ESOCKTNOSUPPORT;
1875 	}
1876 
1877 	sock->state = SS_UNCONNECTED;
1878 
1879 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1880 }
1881 
1882 static const struct net_proto_family vsock_family_ops = {
1883 	.family = AF_VSOCK,
1884 	.create = vsock_create,
1885 	.owner = THIS_MODULE,
1886 };
1887 
1888 static long vsock_dev_do_ioctl(struct file *filp,
1889 			       unsigned int cmd, void __user *ptr)
1890 {
1891 	u32 __user *p = ptr;
1892 	int retval = 0;
1893 
1894 	switch (cmd) {
1895 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1896 		if (put_user(transport->get_local_cid(), p) != 0)
1897 			retval = -EFAULT;
1898 		break;
1899 
1900 	default:
1901 		pr_err("Unknown ioctl %d\n", cmd);
1902 		retval = -EINVAL;
1903 	}
1904 
1905 	return retval;
1906 }
1907 
1908 static long vsock_dev_ioctl(struct file *filp,
1909 			    unsigned int cmd, unsigned long arg)
1910 {
1911 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1912 }
1913 
1914 #ifdef CONFIG_COMPAT
1915 static long vsock_dev_compat_ioctl(struct file *filp,
1916 				   unsigned int cmd, unsigned long arg)
1917 {
1918 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1919 }
1920 #endif
1921 
1922 static const struct file_operations vsock_device_ops = {
1923 	.owner		= THIS_MODULE,
1924 	.unlocked_ioctl	= vsock_dev_ioctl,
1925 #ifdef CONFIG_COMPAT
1926 	.compat_ioctl	= vsock_dev_compat_ioctl,
1927 #endif
1928 	.open		= nonseekable_open,
1929 };
1930 
1931 static struct miscdevice vsock_device = {
1932 	.name		= "vsock",
1933 	.fops		= &vsock_device_ops,
1934 };
1935 
1936 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1937 {
1938 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1939 
1940 	if (err)
1941 		return err;
1942 
1943 	if (transport) {
1944 		err = -EBUSY;
1945 		goto err_busy;
1946 	}
1947 
1948 	/* Transport must be the owner of the protocol so that it can't
1949 	 * unload while there are open sockets.
1950 	 */
1951 	vsock_proto.owner = owner;
1952 	transport = t;
1953 
1954 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1955 	err = misc_register(&vsock_device);
1956 	if (err) {
1957 		pr_err("Failed to register misc device\n");
1958 		goto err_reset_transport;
1959 	}
1960 
1961 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1962 	if (err) {
1963 		pr_err("Cannot register vsock protocol\n");
1964 		goto err_deregister_misc;
1965 	}
1966 
1967 	err = sock_register(&vsock_family_ops);
1968 	if (err) {
1969 		pr_err("could not register af_vsock (%d) address family: %d\n",
1970 		       AF_VSOCK, err);
1971 		goto err_unregister_proto;
1972 	}
1973 
1974 	mutex_unlock(&vsock_register_mutex);
1975 	return 0;
1976 
1977 err_unregister_proto:
1978 	proto_unregister(&vsock_proto);
1979 err_deregister_misc:
1980 	misc_deregister(&vsock_device);
1981 err_reset_transport:
1982 	transport = NULL;
1983 err_busy:
1984 	mutex_unlock(&vsock_register_mutex);
1985 	return err;
1986 }
1987 EXPORT_SYMBOL_GPL(__vsock_core_init);
1988 
1989 void vsock_core_exit(void)
1990 {
1991 	mutex_lock(&vsock_register_mutex);
1992 
1993 	misc_deregister(&vsock_device);
1994 	sock_unregister(AF_VSOCK);
1995 	proto_unregister(&vsock_proto);
1996 
1997 	/* We do not want the assignment below re-ordered. */
1998 	mb();
1999 	transport = NULL;
2000 
2001 	mutex_unlock(&vsock_register_mutex);
2002 }
2003 EXPORT_SYMBOL_GPL(vsock_core_exit);
2004 
2005 const struct vsock_transport *vsock_core_get_transport(void)
2006 {
2007 	/* vsock_register_mutex not taken since only the transport uses this
2008 	 * function and only while registered.
2009 	 */
2010 	return transport;
2011 }
2012 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2013 
2014 static void __exit vsock_exit(void)
2015 {
2016 	/* Do nothing.  This function makes this module removable. */
2017 }
2018 
2019 module_init(vsock_init_tables);
2020 module_exit(vsock_exit);
2021 
2022 MODULE_AUTHOR("VMware, Inc.");
2023 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2024 MODULE_VERSION("1.0.2.0-k");
2025 MODULE_LICENSE("GPL v2");
2026