xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 55f3e149)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 static const struct vsock_transport *transport_single;
134 static DEFINE_MUTEX(vsock_register_mutex);
135 
136 /**** UTILS ****/
137 
138 /* Each bound VSocket is stored in the bind hash table and each connected
139  * VSocket is stored in the connected hash table.
140  *
141  * Unbound sockets are all put on the same list attached to the end of the hash
142  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
143  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
144  * represents the list that addr hashes to).
145  *
146  * Specifically, we initialize the vsock_bind_table array to a size of
147  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
148  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
149  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
150  * mods with VSOCK_HASH_SIZE to ensure this.
151  */
152 #define MAX_PORT_RETRIES        24
153 
154 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
155 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
156 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
157 
158 /* XXX This can probably be implemented in a better way. */
159 #define VSOCK_CONN_HASH(src, dst)				\
160 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
161 #define vsock_connected_sockets(src, dst)		\
162 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
163 #define vsock_connected_sockets_vsk(vsk)				\
164 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
165 
166 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
167 EXPORT_SYMBOL_GPL(vsock_bind_table);
168 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
169 EXPORT_SYMBOL_GPL(vsock_connected_table);
170 DEFINE_SPINLOCK(vsock_table_lock);
171 EXPORT_SYMBOL_GPL(vsock_table_lock);
172 
173 /* Autobind this socket to the local address if necessary. */
174 static int vsock_auto_bind(struct vsock_sock *vsk)
175 {
176 	struct sock *sk = sk_vsock(vsk);
177 	struct sockaddr_vm local_addr;
178 
179 	if (vsock_addr_bound(&vsk->local_addr))
180 		return 0;
181 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
182 	return __vsock_bind(sk, &local_addr);
183 }
184 
185 static int __init vsock_init_tables(void)
186 {
187 	int i;
188 
189 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
190 		INIT_LIST_HEAD(&vsock_bind_table[i]);
191 
192 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
193 		INIT_LIST_HEAD(&vsock_connected_table[i]);
194 	return 0;
195 }
196 
197 static void __vsock_insert_bound(struct list_head *list,
198 				 struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->bound_table, list);
202 }
203 
204 static void __vsock_insert_connected(struct list_head *list,
205 				     struct vsock_sock *vsk)
206 {
207 	sock_hold(&vsk->sk);
208 	list_add(&vsk->connected_table, list);
209 }
210 
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
212 {
213 	list_del_init(&vsk->bound_table);
214 	sock_put(&vsk->sk);
215 }
216 
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->connected_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
224 {
225 	struct vsock_sock *vsk;
226 
227 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 		if (addr->svm_port == vsk->local_addr.svm_port)
229 			return sk_vsock(vsk);
230 
231 	return NULL;
232 }
233 
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 						  struct sockaddr_vm *dst)
236 {
237 	struct vsock_sock *vsk;
238 
239 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 			    connected_table) {
241 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 		    dst->svm_port == vsk->local_addr.svm_port) {
243 			return sk_vsock(vsk);
244 		}
245 	}
246 
247 	return NULL;
248 }
249 
250 static void vsock_insert_unbound(struct vsock_sock *vsk)
251 {
252 	spin_lock_bh(&vsock_table_lock);
253 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
254 	spin_unlock_bh(&vsock_table_lock);
255 }
256 
257 void vsock_insert_connected(struct vsock_sock *vsk)
258 {
259 	struct list_head *list = vsock_connected_sockets(
260 		&vsk->remote_addr, &vsk->local_addr);
261 
262 	spin_lock_bh(&vsock_table_lock);
263 	__vsock_insert_connected(list, vsk);
264 	spin_unlock_bh(&vsock_table_lock);
265 }
266 EXPORT_SYMBOL_GPL(vsock_insert_connected);
267 
268 void vsock_remove_bound(struct vsock_sock *vsk)
269 {
270 	spin_lock_bh(&vsock_table_lock);
271 	if (__vsock_in_bound_table(vsk))
272 		__vsock_remove_bound(vsk);
273 	spin_unlock_bh(&vsock_table_lock);
274 }
275 EXPORT_SYMBOL_GPL(vsock_remove_bound);
276 
277 void vsock_remove_connected(struct vsock_sock *vsk)
278 {
279 	spin_lock_bh(&vsock_table_lock);
280 	if (__vsock_in_connected_table(vsk))
281 		__vsock_remove_connected(vsk);
282 	spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_remove_connected);
285 
286 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
287 {
288 	struct sock *sk;
289 
290 	spin_lock_bh(&vsock_table_lock);
291 	sk = __vsock_find_bound_socket(addr);
292 	if (sk)
293 		sock_hold(sk);
294 
295 	spin_unlock_bh(&vsock_table_lock);
296 
297 	return sk;
298 }
299 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
300 
301 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
302 					 struct sockaddr_vm *dst)
303 {
304 	struct sock *sk;
305 
306 	spin_lock_bh(&vsock_table_lock);
307 	sk = __vsock_find_connected_socket(src, dst);
308 	if (sk)
309 		sock_hold(sk);
310 
311 	spin_unlock_bh(&vsock_table_lock);
312 
313 	return sk;
314 }
315 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
316 
317 void vsock_remove_sock(struct vsock_sock *vsk)
318 {
319 	vsock_remove_bound(vsk);
320 	vsock_remove_connected(vsk);
321 }
322 EXPORT_SYMBOL_GPL(vsock_remove_sock);
323 
324 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
325 {
326 	int i;
327 
328 	spin_lock_bh(&vsock_table_lock);
329 
330 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
331 		struct vsock_sock *vsk;
332 		list_for_each_entry(vsk, &vsock_connected_table[i],
333 				    connected_table)
334 			fn(sk_vsock(vsk));
335 	}
336 
337 	spin_unlock_bh(&vsock_table_lock);
338 }
339 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
340 
341 void vsock_add_pending(struct sock *listener, struct sock *pending)
342 {
343 	struct vsock_sock *vlistener;
344 	struct vsock_sock *vpending;
345 
346 	vlistener = vsock_sk(listener);
347 	vpending = vsock_sk(pending);
348 
349 	sock_hold(pending);
350 	sock_hold(listener);
351 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
352 }
353 EXPORT_SYMBOL_GPL(vsock_add_pending);
354 
355 void vsock_remove_pending(struct sock *listener, struct sock *pending)
356 {
357 	struct vsock_sock *vpending = vsock_sk(pending);
358 
359 	list_del_init(&vpending->pending_links);
360 	sock_put(listener);
361 	sock_put(pending);
362 }
363 EXPORT_SYMBOL_GPL(vsock_remove_pending);
364 
365 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
366 {
367 	struct vsock_sock *vlistener;
368 	struct vsock_sock *vconnected;
369 
370 	vlistener = vsock_sk(listener);
371 	vconnected = vsock_sk(connected);
372 
373 	sock_hold(connected);
374 	sock_hold(listener);
375 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
376 }
377 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
378 
379 static struct sock *vsock_dequeue_accept(struct sock *listener)
380 {
381 	struct vsock_sock *vlistener;
382 	struct vsock_sock *vconnected;
383 
384 	vlistener = vsock_sk(listener);
385 
386 	if (list_empty(&vlistener->accept_queue))
387 		return NULL;
388 
389 	vconnected = list_entry(vlistener->accept_queue.next,
390 				struct vsock_sock, accept_queue);
391 
392 	list_del_init(&vconnected->accept_queue);
393 	sock_put(listener);
394 	/* The caller will need a reference on the connected socket so we let
395 	 * it call sock_put().
396 	 */
397 
398 	return sk_vsock(vconnected);
399 }
400 
401 static bool vsock_is_accept_queue_empty(struct sock *sk)
402 {
403 	struct vsock_sock *vsk = vsock_sk(sk);
404 	return list_empty(&vsk->accept_queue);
405 }
406 
407 static bool vsock_is_pending(struct sock *sk)
408 {
409 	struct vsock_sock *vsk = vsock_sk(sk);
410 	return !list_empty(&vsk->pending_links);
411 }
412 
413 static int vsock_send_shutdown(struct sock *sk, int mode)
414 {
415 	struct vsock_sock *vsk = vsock_sk(sk);
416 
417 	return vsk->transport->shutdown(vsk, mode);
418 }
419 
420 static void vsock_pending_work(struct work_struct *work)
421 {
422 	struct sock *sk;
423 	struct sock *listener;
424 	struct vsock_sock *vsk;
425 	bool cleanup;
426 
427 	vsk = container_of(work, struct vsock_sock, pending_work.work);
428 	sk = sk_vsock(vsk);
429 	listener = vsk->listener;
430 	cleanup = true;
431 
432 	lock_sock(listener);
433 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
434 
435 	if (vsock_is_pending(sk)) {
436 		vsock_remove_pending(listener, sk);
437 
438 		sk_acceptq_removed(listener);
439 	} else if (!vsk->rejected) {
440 		/* We are not on the pending list and accept() did not reject
441 		 * us, so we must have been accepted by our user process.  We
442 		 * just need to drop our references to the sockets and be on
443 		 * our way.
444 		 */
445 		cleanup = false;
446 		goto out;
447 	}
448 
449 	/* We need to remove ourself from the global connected sockets list so
450 	 * incoming packets can't find this socket, and to reduce the reference
451 	 * count.
452 	 */
453 	vsock_remove_connected(vsk);
454 
455 	sk->sk_state = TCP_CLOSE;
456 
457 out:
458 	release_sock(sk);
459 	release_sock(listener);
460 	if (cleanup)
461 		sock_put(sk);
462 
463 	sock_put(sk);
464 	sock_put(listener);
465 }
466 
467 /**** SOCKET OPERATIONS ****/
468 
469 static int __vsock_bind_stream(struct vsock_sock *vsk,
470 			       struct sockaddr_vm *addr)
471 {
472 	static u32 port;
473 	struct sockaddr_vm new_addr;
474 
475 	if (!port)
476 		port = LAST_RESERVED_PORT + 1 +
477 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
478 
479 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
480 
481 	if (addr->svm_port == VMADDR_PORT_ANY) {
482 		bool found = false;
483 		unsigned int i;
484 
485 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
486 			if (port <= LAST_RESERVED_PORT)
487 				port = LAST_RESERVED_PORT + 1;
488 
489 			new_addr.svm_port = port++;
490 
491 			if (!__vsock_find_bound_socket(&new_addr)) {
492 				found = true;
493 				break;
494 			}
495 		}
496 
497 		if (!found)
498 			return -EADDRNOTAVAIL;
499 	} else {
500 		/* If port is in reserved range, ensure caller
501 		 * has necessary privileges.
502 		 */
503 		if (addr->svm_port <= LAST_RESERVED_PORT &&
504 		    !capable(CAP_NET_BIND_SERVICE)) {
505 			return -EACCES;
506 		}
507 
508 		if (__vsock_find_bound_socket(&new_addr))
509 			return -EADDRINUSE;
510 	}
511 
512 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
513 
514 	/* Remove stream sockets from the unbound list and add them to the hash
515 	 * table for easy lookup by its address.  The unbound list is simply an
516 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
517 	 */
518 	__vsock_remove_bound(vsk);
519 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
520 
521 	return 0;
522 }
523 
524 static int __vsock_bind_dgram(struct vsock_sock *vsk,
525 			      struct sockaddr_vm *addr)
526 {
527 	return vsk->transport->dgram_bind(vsk, addr);
528 }
529 
530 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
531 {
532 	struct vsock_sock *vsk = vsock_sk(sk);
533 	u32 cid;
534 	int retval;
535 
536 	/* First ensure this socket isn't already bound. */
537 	if (vsock_addr_bound(&vsk->local_addr))
538 		return -EINVAL;
539 
540 	/* Now bind to the provided address or select appropriate values if
541 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
542 	 * like AF_INET prevents binding to a non-local IP address (in most
543 	 * cases), we only allow binding to the local CID.
544 	 */
545 	cid = vsk->transport->get_local_cid();
546 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
547 		return -EADDRNOTAVAIL;
548 
549 	switch (sk->sk_socket->type) {
550 	case SOCK_STREAM:
551 		spin_lock_bh(&vsock_table_lock);
552 		retval = __vsock_bind_stream(vsk, addr);
553 		spin_unlock_bh(&vsock_table_lock);
554 		break;
555 
556 	case SOCK_DGRAM:
557 		retval = __vsock_bind_dgram(vsk, addr);
558 		break;
559 
560 	default:
561 		retval = -EINVAL;
562 		break;
563 	}
564 
565 	return retval;
566 }
567 
568 static void vsock_connect_timeout(struct work_struct *work);
569 
570 static struct sock *__vsock_create(struct net *net,
571 				   struct socket *sock,
572 				   struct sock *parent,
573 				   gfp_t priority,
574 				   unsigned short type,
575 				   int kern)
576 {
577 	struct sock *sk;
578 	struct vsock_sock *psk;
579 	struct vsock_sock *vsk;
580 
581 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
582 	if (!sk)
583 		return NULL;
584 
585 	sock_init_data(sock, sk);
586 
587 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
588 	 * non-NULL. We make sure that our sockets always have a type by
589 	 * setting it here if needed.
590 	 */
591 	if (!sock)
592 		sk->sk_type = type;
593 
594 	vsk = vsock_sk(sk);
595 	vsk->transport = transport_single;
596 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
597 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
598 
599 	sk->sk_destruct = vsock_sk_destruct;
600 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
601 	sock_reset_flag(sk, SOCK_DONE);
602 
603 	INIT_LIST_HEAD(&vsk->bound_table);
604 	INIT_LIST_HEAD(&vsk->connected_table);
605 	vsk->listener = NULL;
606 	INIT_LIST_HEAD(&vsk->pending_links);
607 	INIT_LIST_HEAD(&vsk->accept_queue);
608 	vsk->rejected = false;
609 	vsk->sent_request = false;
610 	vsk->ignore_connecting_rst = false;
611 	vsk->peer_shutdown = 0;
612 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
613 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
614 
615 	psk = parent ? vsock_sk(parent) : NULL;
616 	if (parent) {
617 		vsk->trusted = psk->trusted;
618 		vsk->owner = get_cred(psk->owner);
619 		vsk->connect_timeout = psk->connect_timeout;
620 		vsk->buffer_size = psk->buffer_size;
621 		vsk->buffer_min_size = psk->buffer_min_size;
622 		vsk->buffer_max_size = psk->buffer_max_size;
623 	} else {
624 		vsk->trusted = capable(CAP_NET_ADMIN);
625 		vsk->owner = get_current_cred();
626 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
627 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
628 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
629 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
630 	}
631 
632 	if (vsk->transport->init(vsk, psk) < 0) {
633 		sk_free(sk);
634 		return NULL;
635 	}
636 
637 	return sk;
638 }
639 
640 static void __vsock_release(struct sock *sk, int level)
641 {
642 	if (sk) {
643 		struct sock *pending;
644 		struct vsock_sock *vsk;
645 
646 		vsk = vsock_sk(sk);
647 		pending = NULL;	/* Compiler warning. */
648 
649 		/* The release call is supposed to use lock_sock_nested()
650 		 * rather than lock_sock(), if a sock lock should be acquired.
651 		 */
652 		vsk->transport->release(vsk);
653 
654 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
655 		 * version to avoid the warning "possible recursive locking
656 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
657 		 * is the same as lock_sock(sk).
658 		 */
659 		lock_sock_nested(sk, level);
660 		sock_orphan(sk);
661 		sk->sk_shutdown = SHUTDOWN_MASK;
662 
663 		skb_queue_purge(&sk->sk_receive_queue);
664 
665 		/* Clean up any sockets that never were accepted. */
666 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
667 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
668 			sock_put(pending);
669 		}
670 
671 		release_sock(sk);
672 		sock_put(sk);
673 	}
674 }
675 
676 static void vsock_sk_destruct(struct sock *sk)
677 {
678 	struct vsock_sock *vsk = vsock_sk(sk);
679 
680 	vsk->transport->destruct(vsk);
681 
682 	/* When clearing these addresses, there's no need to set the family and
683 	 * possibly register the address family with the kernel.
684 	 */
685 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
686 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
687 
688 	put_cred(vsk->owner);
689 }
690 
691 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
692 {
693 	int err;
694 
695 	err = sock_queue_rcv_skb(sk, skb);
696 	if (err)
697 		kfree_skb(skb);
698 
699 	return err;
700 }
701 
702 struct sock *vsock_create_connected(struct sock *parent)
703 {
704 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
705 			      parent->sk_type, 0);
706 }
707 EXPORT_SYMBOL_GPL(vsock_create_connected);
708 
709 s64 vsock_stream_has_data(struct vsock_sock *vsk)
710 {
711 	return vsk->transport->stream_has_data(vsk);
712 }
713 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
714 
715 s64 vsock_stream_has_space(struct vsock_sock *vsk)
716 {
717 	return vsk->transport->stream_has_space(vsk);
718 }
719 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
720 
721 static int vsock_release(struct socket *sock)
722 {
723 	__vsock_release(sock->sk, 0);
724 	sock->sk = NULL;
725 	sock->state = SS_FREE;
726 
727 	return 0;
728 }
729 
730 static int
731 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
732 {
733 	int err;
734 	struct sock *sk;
735 	struct sockaddr_vm *vm_addr;
736 
737 	sk = sock->sk;
738 
739 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
740 		return -EINVAL;
741 
742 	lock_sock(sk);
743 	err = __vsock_bind(sk, vm_addr);
744 	release_sock(sk);
745 
746 	return err;
747 }
748 
749 static int vsock_getname(struct socket *sock,
750 			 struct sockaddr *addr, int peer)
751 {
752 	int err;
753 	struct sock *sk;
754 	struct vsock_sock *vsk;
755 	struct sockaddr_vm *vm_addr;
756 
757 	sk = sock->sk;
758 	vsk = vsock_sk(sk);
759 	err = 0;
760 
761 	lock_sock(sk);
762 
763 	if (peer) {
764 		if (sock->state != SS_CONNECTED) {
765 			err = -ENOTCONN;
766 			goto out;
767 		}
768 		vm_addr = &vsk->remote_addr;
769 	} else {
770 		vm_addr = &vsk->local_addr;
771 	}
772 
773 	if (!vm_addr) {
774 		err = -EINVAL;
775 		goto out;
776 	}
777 
778 	/* sys_getsockname() and sys_getpeername() pass us a
779 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
780 	 * that macro is defined in socket.c instead of .h, so we hardcode its
781 	 * value here.
782 	 */
783 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
784 	memcpy(addr, vm_addr, sizeof(*vm_addr));
785 	err = sizeof(*vm_addr);
786 
787 out:
788 	release_sock(sk);
789 	return err;
790 }
791 
792 static int vsock_shutdown(struct socket *sock, int mode)
793 {
794 	int err;
795 	struct sock *sk;
796 
797 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
798 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
799 	 * here like the other address families do.  Note also that the
800 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
801 	 * which is what we want.
802 	 */
803 	mode++;
804 
805 	if ((mode & ~SHUTDOWN_MASK) || !mode)
806 		return -EINVAL;
807 
808 	/* If this is a STREAM socket and it is not connected then bail out
809 	 * immediately.  If it is a DGRAM socket then we must first kick the
810 	 * socket so that it wakes up from any sleeping calls, for example
811 	 * recv(), and then afterwards return the error.
812 	 */
813 
814 	sk = sock->sk;
815 	if (sock->state == SS_UNCONNECTED) {
816 		err = -ENOTCONN;
817 		if (sk->sk_type == SOCK_STREAM)
818 			return err;
819 	} else {
820 		sock->state = SS_DISCONNECTING;
821 		err = 0;
822 	}
823 
824 	/* Receive and send shutdowns are treated alike. */
825 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
826 	if (mode) {
827 		lock_sock(sk);
828 		sk->sk_shutdown |= mode;
829 		sk->sk_state_change(sk);
830 		release_sock(sk);
831 
832 		if (sk->sk_type == SOCK_STREAM) {
833 			sock_reset_flag(sk, SOCK_DONE);
834 			vsock_send_shutdown(sk, mode);
835 		}
836 	}
837 
838 	return err;
839 }
840 
841 static __poll_t vsock_poll(struct file *file, struct socket *sock,
842 			       poll_table *wait)
843 {
844 	struct sock *sk;
845 	__poll_t mask;
846 	struct vsock_sock *vsk;
847 
848 	sk = sock->sk;
849 	vsk = vsock_sk(sk);
850 
851 	poll_wait(file, sk_sleep(sk), wait);
852 	mask = 0;
853 
854 	if (sk->sk_err)
855 		/* Signify that there has been an error on this socket. */
856 		mask |= EPOLLERR;
857 
858 	/* INET sockets treat local write shutdown and peer write shutdown as a
859 	 * case of EPOLLHUP set.
860 	 */
861 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
862 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
863 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
864 		mask |= EPOLLHUP;
865 	}
866 
867 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
868 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
869 		mask |= EPOLLRDHUP;
870 	}
871 
872 	if (sock->type == SOCK_DGRAM) {
873 		/* For datagram sockets we can read if there is something in
874 		 * the queue and write as long as the socket isn't shutdown for
875 		 * sending.
876 		 */
877 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
878 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
879 			mask |= EPOLLIN | EPOLLRDNORM;
880 		}
881 
882 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
883 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
884 
885 	} else if (sock->type == SOCK_STREAM) {
886 		const struct vsock_transport *transport = vsk->transport;
887 		lock_sock(sk);
888 
889 		/* Listening sockets that have connections in their accept
890 		 * queue can be read.
891 		 */
892 		if (sk->sk_state == TCP_LISTEN
893 		    && !vsock_is_accept_queue_empty(sk))
894 			mask |= EPOLLIN | EPOLLRDNORM;
895 
896 		/* If there is something in the queue then we can read. */
897 		if (transport->stream_is_active(vsk) &&
898 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
899 			bool data_ready_now = false;
900 			int ret = transport->notify_poll_in(
901 					vsk, 1, &data_ready_now);
902 			if (ret < 0) {
903 				mask |= EPOLLERR;
904 			} else {
905 				if (data_ready_now)
906 					mask |= EPOLLIN | EPOLLRDNORM;
907 
908 			}
909 		}
910 
911 		/* Sockets whose connections have been closed, reset, or
912 		 * terminated should also be considered read, and we check the
913 		 * shutdown flag for that.
914 		 */
915 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
916 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
917 			mask |= EPOLLIN | EPOLLRDNORM;
918 		}
919 
920 		/* Connected sockets that can produce data can be written. */
921 		if (sk->sk_state == TCP_ESTABLISHED) {
922 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
923 				bool space_avail_now = false;
924 				int ret = transport->notify_poll_out(
925 						vsk, 1, &space_avail_now);
926 				if (ret < 0) {
927 					mask |= EPOLLERR;
928 				} else {
929 					if (space_avail_now)
930 						/* Remove EPOLLWRBAND since INET
931 						 * sockets are not setting it.
932 						 */
933 						mask |= EPOLLOUT | EPOLLWRNORM;
934 
935 				}
936 			}
937 		}
938 
939 		/* Simulate INET socket poll behaviors, which sets
940 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
941 		 * but local send is not shutdown.
942 		 */
943 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
944 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
945 				mask |= EPOLLOUT | EPOLLWRNORM;
946 
947 		}
948 
949 		release_sock(sk);
950 	}
951 
952 	return mask;
953 }
954 
955 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
956 			       size_t len)
957 {
958 	int err;
959 	struct sock *sk;
960 	struct vsock_sock *vsk;
961 	struct sockaddr_vm *remote_addr;
962 	const struct vsock_transport *transport;
963 
964 	if (msg->msg_flags & MSG_OOB)
965 		return -EOPNOTSUPP;
966 
967 	/* For now, MSG_DONTWAIT is always assumed... */
968 	err = 0;
969 	sk = sock->sk;
970 	vsk = vsock_sk(sk);
971 	transport = vsk->transport;
972 
973 	lock_sock(sk);
974 
975 	err = vsock_auto_bind(vsk);
976 	if (err)
977 		goto out;
978 
979 
980 	/* If the provided message contains an address, use that.  Otherwise
981 	 * fall back on the socket's remote handle (if it has been connected).
982 	 */
983 	if (msg->msg_name &&
984 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
985 			    &remote_addr) == 0) {
986 		/* Ensure this address is of the right type and is a valid
987 		 * destination.
988 		 */
989 
990 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
991 			remote_addr->svm_cid = transport->get_local_cid();
992 
993 		if (!vsock_addr_bound(remote_addr)) {
994 			err = -EINVAL;
995 			goto out;
996 		}
997 	} else if (sock->state == SS_CONNECTED) {
998 		remote_addr = &vsk->remote_addr;
999 
1000 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1001 			remote_addr->svm_cid = transport->get_local_cid();
1002 
1003 		/* XXX Should connect() or this function ensure remote_addr is
1004 		 * bound?
1005 		 */
1006 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1007 			err = -EINVAL;
1008 			goto out;
1009 		}
1010 	} else {
1011 		err = -EINVAL;
1012 		goto out;
1013 	}
1014 
1015 	if (!transport->dgram_allow(remote_addr->svm_cid,
1016 				    remote_addr->svm_port)) {
1017 		err = -EINVAL;
1018 		goto out;
1019 	}
1020 
1021 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1022 
1023 out:
1024 	release_sock(sk);
1025 	return err;
1026 }
1027 
1028 static int vsock_dgram_connect(struct socket *sock,
1029 			       struct sockaddr *addr, int addr_len, int flags)
1030 {
1031 	int err;
1032 	struct sock *sk;
1033 	struct vsock_sock *vsk;
1034 	struct sockaddr_vm *remote_addr;
1035 
1036 	sk = sock->sk;
1037 	vsk = vsock_sk(sk);
1038 
1039 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1040 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1041 		lock_sock(sk);
1042 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1043 				VMADDR_PORT_ANY);
1044 		sock->state = SS_UNCONNECTED;
1045 		release_sock(sk);
1046 		return 0;
1047 	} else if (err != 0)
1048 		return -EINVAL;
1049 
1050 	lock_sock(sk);
1051 
1052 	err = vsock_auto_bind(vsk);
1053 	if (err)
1054 		goto out;
1055 
1056 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1057 					 remote_addr->svm_port)) {
1058 		err = -EINVAL;
1059 		goto out;
1060 	}
1061 
1062 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1063 	sock->state = SS_CONNECTED;
1064 
1065 out:
1066 	release_sock(sk);
1067 	return err;
1068 }
1069 
1070 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1071 			       size_t len, int flags)
1072 {
1073 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1074 
1075 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1076 }
1077 
1078 static const struct proto_ops vsock_dgram_ops = {
1079 	.family = PF_VSOCK,
1080 	.owner = THIS_MODULE,
1081 	.release = vsock_release,
1082 	.bind = vsock_bind,
1083 	.connect = vsock_dgram_connect,
1084 	.socketpair = sock_no_socketpair,
1085 	.accept = sock_no_accept,
1086 	.getname = vsock_getname,
1087 	.poll = vsock_poll,
1088 	.ioctl = sock_no_ioctl,
1089 	.listen = sock_no_listen,
1090 	.shutdown = vsock_shutdown,
1091 	.setsockopt = sock_no_setsockopt,
1092 	.getsockopt = sock_no_getsockopt,
1093 	.sendmsg = vsock_dgram_sendmsg,
1094 	.recvmsg = vsock_dgram_recvmsg,
1095 	.mmap = sock_no_mmap,
1096 	.sendpage = sock_no_sendpage,
1097 };
1098 
1099 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1100 {
1101 	const struct vsock_transport *transport = vsk->transport;
1102 
1103 	if (!transport->cancel_pkt)
1104 		return -EOPNOTSUPP;
1105 
1106 	return transport->cancel_pkt(vsk);
1107 }
1108 
1109 static void vsock_connect_timeout(struct work_struct *work)
1110 {
1111 	struct sock *sk;
1112 	struct vsock_sock *vsk;
1113 	int cancel = 0;
1114 
1115 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1116 	sk = sk_vsock(vsk);
1117 
1118 	lock_sock(sk);
1119 	if (sk->sk_state == TCP_SYN_SENT &&
1120 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1121 		sk->sk_state = TCP_CLOSE;
1122 		sk->sk_err = ETIMEDOUT;
1123 		sk->sk_error_report(sk);
1124 		cancel = 1;
1125 	}
1126 	release_sock(sk);
1127 	if (cancel)
1128 		vsock_transport_cancel_pkt(vsk);
1129 
1130 	sock_put(sk);
1131 }
1132 
1133 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1134 				int addr_len, int flags)
1135 {
1136 	int err;
1137 	struct sock *sk;
1138 	struct vsock_sock *vsk;
1139 	const struct vsock_transport *transport;
1140 	struct sockaddr_vm *remote_addr;
1141 	long timeout;
1142 	DEFINE_WAIT(wait);
1143 
1144 	err = 0;
1145 	sk = sock->sk;
1146 	vsk = vsock_sk(sk);
1147 	transport = vsk->transport;
1148 
1149 	lock_sock(sk);
1150 
1151 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1152 	switch (sock->state) {
1153 	case SS_CONNECTED:
1154 		err = -EISCONN;
1155 		goto out;
1156 	case SS_DISCONNECTING:
1157 		err = -EINVAL;
1158 		goto out;
1159 	case SS_CONNECTING:
1160 		/* This continues on so we can move sock into the SS_CONNECTED
1161 		 * state once the connection has completed (at which point err
1162 		 * will be set to zero also).  Otherwise, we will either wait
1163 		 * for the connection or return -EALREADY should this be a
1164 		 * non-blocking call.
1165 		 */
1166 		err = -EALREADY;
1167 		break;
1168 	default:
1169 		if ((sk->sk_state == TCP_LISTEN) ||
1170 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1171 			err = -EINVAL;
1172 			goto out;
1173 		}
1174 
1175 		/* The hypervisor and well-known contexts do not have socket
1176 		 * endpoints.
1177 		 */
1178 		if (!transport->stream_allow(remote_addr->svm_cid,
1179 					     remote_addr->svm_port)) {
1180 			err = -ENETUNREACH;
1181 			goto out;
1182 		}
1183 
1184 		/* Set the remote address that we are connecting to. */
1185 		memcpy(&vsk->remote_addr, remote_addr,
1186 		       sizeof(vsk->remote_addr));
1187 
1188 		err = vsock_auto_bind(vsk);
1189 		if (err)
1190 			goto out;
1191 
1192 		sk->sk_state = TCP_SYN_SENT;
1193 
1194 		err = transport->connect(vsk);
1195 		if (err < 0)
1196 			goto out;
1197 
1198 		/* Mark sock as connecting and set the error code to in
1199 		 * progress in case this is a non-blocking connect.
1200 		 */
1201 		sock->state = SS_CONNECTING;
1202 		err = -EINPROGRESS;
1203 	}
1204 
1205 	/* The receive path will handle all communication until we are able to
1206 	 * enter the connected state.  Here we wait for the connection to be
1207 	 * completed or a notification of an error.
1208 	 */
1209 	timeout = vsk->connect_timeout;
1210 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1211 
1212 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1213 		if (flags & O_NONBLOCK) {
1214 			/* If we're not going to block, we schedule a timeout
1215 			 * function to generate a timeout on the connection
1216 			 * attempt, in case the peer doesn't respond in a
1217 			 * timely manner. We hold on to the socket until the
1218 			 * timeout fires.
1219 			 */
1220 			sock_hold(sk);
1221 			schedule_delayed_work(&vsk->connect_work, timeout);
1222 
1223 			/* Skip ahead to preserve error code set above. */
1224 			goto out_wait;
1225 		}
1226 
1227 		release_sock(sk);
1228 		timeout = schedule_timeout(timeout);
1229 		lock_sock(sk);
1230 
1231 		if (signal_pending(current)) {
1232 			err = sock_intr_errno(timeout);
1233 			sk->sk_state = TCP_CLOSE;
1234 			sock->state = SS_UNCONNECTED;
1235 			vsock_transport_cancel_pkt(vsk);
1236 			goto out_wait;
1237 		} else if (timeout == 0) {
1238 			err = -ETIMEDOUT;
1239 			sk->sk_state = TCP_CLOSE;
1240 			sock->state = SS_UNCONNECTED;
1241 			vsock_transport_cancel_pkt(vsk);
1242 			goto out_wait;
1243 		}
1244 
1245 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1246 	}
1247 
1248 	if (sk->sk_err) {
1249 		err = -sk->sk_err;
1250 		sk->sk_state = TCP_CLOSE;
1251 		sock->state = SS_UNCONNECTED;
1252 	} else {
1253 		err = 0;
1254 	}
1255 
1256 out_wait:
1257 	finish_wait(sk_sleep(sk), &wait);
1258 out:
1259 	release_sock(sk);
1260 	return err;
1261 }
1262 
1263 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1264 			bool kern)
1265 {
1266 	struct sock *listener;
1267 	int err;
1268 	struct sock *connected;
1269 	struct vsock_sock *vconnected;
1270 	long timeout;
1271 	DEFINE_WAIT(wait);
1272 
1273 	err = 0;
1274 	listener = sock->sk;
1275 
1276 	lock_sock(listener);
1277 
1278 	if (sock->type != SOCK_STREAM) {
1279 		err = -EOPNOTSUPP;
1280 		goto out;
1281 	}
1282 
1283 	if (listener->sk_state != TCP_LISTEN) {
1284 		err = -EINVAL;
1285 		goto out;
1286 	}
1287 
1288 	/* Wait for children sockets to appear; these are the new sockets
1289 	 * created upon connection establishment.
1290 	 */
1291 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1292 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1293 
1294 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1295 	       listener->sk_err == 0) {
1296 		release_sock(listener);
1297 		timeout = schedule_timeout(timeout);
1298 		finish_wait(sk_sleep(listener), &wait);
1299 		lock_sock(listener);
1300 
1301 		if (signal_pending(current)) {
1302 			err = sock_intr_errno(timeout);
1303 			goto out;
1304 		} else if (timeout == 0) {
1305 			err = -EAGAIN;
1306 			goto out;
1307 		}
1308 
1309 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1310 	}
1311 	finish_wait(sk_sleep(listener), &wait);
1312 
1313 	if (listener->sk_err)
1314 		err = -listener->sk_err;
1315 
1316 	if (connected) {
1317 		sk_acceptq_removed(listener);
1318 
1319 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1320 		vconnected = vsock_sk(connected);
1321 
1322 		/* If the listener socket has received an error, then we should
1323 		 * reject this socket and return.  Note that we simply mark the
1324 		 * socket rejected, drop our reference, and let the cleanup
1325 		 * function handle the cleanup; the fact that we found it in
1326 		 * the listener's accept queue guarantees that the cleanup
1327 		 * function hasn't run yet.
1328 		 */
1329 		if (err) {
1330 			vconnected->rejected = true;
1331 		} else {
1332 			newsock->state = SS_CONNECTED;
1333 			sock_graft(connected, newsock);
1334 		}
1335 
1336 		release_sock(connected);
1337 		sock_put(connected);
1338 	}
1339 
1340 out:
1341 	release_sock(listener);
1342 	return err;
1343 }
1344 
1345 static int vsock_listen(struct socket *sock, int backlog)
1346 {
1347 	int err;
1348 	struct sock *sk;
1349 	struct vsock_sock *vsk;
1350 
1351 	sk = sock->sk;
1352 
1353 	lock_sock(sk);
1354 
1355 	if (sock->type != SOCK_STREAM) {
1356 		err = -EOPNOTSUPP;
1357 		goto out;
1358 	}
1359 
1360 	if (sock->state != SS_UNCONNECTED) {
1361 		err = -EINVAL;
1362 		goto out;
1363 	}
1364 
1365 	vsk = vsock_sk(sk);
1366 
1367 	if (!vsock_addr_bound(&vsk->local_addr)) {
1368 		err = -EINVAL;
1369 		goto out;
1370 	}
1371 
1372 	sk->sk_max_ack_backlog = backlog;
1373 	sk->sk_state = TCP_LISTEN;
1374 
1375 	err = 0;
1376 
1377 out:
1378 	release_sock(sk);
1379 	return err;
1380 }
1381 
1382 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1383 				     const struct vsock_transport *transport,
1384 				     u64 val)
1385 {
1386 	if (val > vsk->buffer_max_size)
1387 		val = vsk->buffer_max_size;
1388 
1389 	if (val < vsk->buffer_min_size)
1390 		val = vsk->buffer_min_size;
1391 
1392 	if (val != vsk->buffer_size &&
1393 	    transport && transport->notify_buffer_size)
1394 		transport->notify_buffer_size(vsk, &val);
1395 
1396 	vsk->buffer_size = val;
1397 }
1398 
1399 static int vsock_stream_setsockopt(struct socket *sock,
1400 				   int level,
1401 				   int optname,
1402 				   char __user *optval,
1403 				   unsigned int optlen)
1404 {
1405 	int err;
1406 	struct sock *sk;
1407 	struct vsock_sock *vsk;
1408 	const struct vsock_transport *transport;
1409 	u64 val;
1410 
1411 	if (level != AF_VSOCK)
1412 		return -ENOPROTOOPT;
1413 
1414 #define COPY_IN(_v)                                       \
1415 	do {						  \
1416 		if (optlen < sizeof(_v)) {		  \
1417 			err = -EINVAL;			  \
1418 			goto exit;			  \
1419 		}					  \
1420 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1421 			err = -EFAULT;					\
1422 			goto exit;					\
1423 		}							\
1424 	} while (0)
1425 
1426 	err = 0;
1427 	sk = sock->sk;
1428 	vsk = vsock_sk(sk);
1429 	transport = vsk->transport;
1430 
1431 	lock_sock(sk);
1432 
1433 	switch (optname) {
1434 	case SO_VM_SOCKETS_BUFFER_SIZE:
1435 		COPY_IN(val);
1436 		vsock_update_buffer_size(vsk, transport, val);
1437 		break;
1438 
1439 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1440 		COPY_IN(val);
1441 		vsk->buffer_max_size = val;
1442 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1443 		break;
1444 
1445 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1446 		COPY_IN(val);
1447 		vsk->buffer_min_size = val;
1448 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1449 		break;
1450 
1451 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1452 		struct __kernel_old_timeval tv;
1453 		COPY_IN(tv);
1454 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1455 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1456 			vsk->connect_timeout = tv.tv_sec * HZ +
1457 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1458 			if (vsk->connect_timeout == 0)
1459 				vsk->connect_timeout =
1460 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1461 
1462 		} else {
1463 			err = -ERANGE;
1464 		}
1465 		break;
1466 	}
1467 
1468 	default:
1469 		err = -ENOPROTOOPT;
1470 		break;
1471 	}
1472 
1473 #undef COPY_IN
1474 
1475 exit:
1476 	release_sock(sk);
1477 	return err;
1478 }
1479 
1480 static int vsock_stream_getsockopt(struct socket *sock,
1481 				   int level, int optname,
1482 				   char __user *optval,
1483 				   int __user *optlen)
1484 {
1485 	int err;
1486 	int len;
1487 	struct sock *sk;
1488 	struct vsock_sock *vsk;
1489 	u64 val;
1490 
1491 	if (level != AF_VSOCK)
1492 		return -ENOPROTOOPT;
1493 
1494 	err = get_user(len, optlen);
1495 	if (err != 0)
1496 		return err;
1497 
1498 #define COPY_OUT(_v)                            \
1499 	do {					\
1500 		if (len < sizeof(_v))		\
1501 			return -EINVAL;		\
1502 						\
1503 		len = sizeof(_v);		\
1504 		if (copy_to_user(optval, &_v, len) != 0)	\
1505 			return -EFAULT;				\
1506 								\
1507 	} while (0)
1508 
1509 	err = 0;
1510 	sk = sock->sk;
1511 	vsk = vsock_sk(sk);
1512 
1513 	switch (optname) {
1514 	case SO_VM_SOCKETS_BUFFER_SIZE:
1515 		val = vsk->buffer_size;
1516 		COPY_OUT(val);
1517 		break;
1518 
1519 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1520 		val = vsk->buffer_max_size;
1521 		COPY_OUT(val);
1522 		break;
1523 
1524 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1525 		val = vsk->buffer_min_size;
1526 		COPY_OUT(val);
1527 		break;
1528 
1529 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1530 		struct __kernel_old_timeval tv;
1531 		tv.tv_sec = vsk->connect_timeout / HZ;
1532 		tv.tv_usec =
1533 		    (vsk->connect_timeout -
1534 		     tv.tv_sec * HZ) * (1000000 / HZ);
1535 		COPY_OUT(tv);
1536 		break;
1537 	}
1538 	default:
1539 		return -ENOPROTOOPT;
1540 	}
1541 
1542 	err = put_user(len, optlen);
1543 	if (err != 0)
1544 		return -EFAULT;
1545 
1546 #undef COPY_OUT
1547 
1548 	return 0;
1549 }
1550 
1551 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1552 				size_t len)
1553 {
1554 	struct sock *sk;
1555 	struct vsock_sock *vsk;
1556 	const struct vsock_transport *transport;
1557 	ssize_t total_written;
1558 	long timeout;
1559 	int err;
1560 	struct vsock_transport_send_notify_data send_data;
1561 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1562 
1563 	sk = sock->sk;
1564 	vsk = vsock_sk(sk);
1565 	transport = vsk->transport;
1566 	total_written = 0;
1567 	err = 0;
1568 
1569 	if (msg->msg_flags & MSG_OOB)
1570 		return -EOPNOTSUPP;
1571 
1572 	lock_sock(sk);
1573 
1574 	/* Callers should not provide a destination with stream sockets. */
1575 	if (msg->msg_namelen) {
1576 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1577 		goto out;
1578 	}
1579 
1580 	/* Send data only if both sides are not shutdown in the direction. */
1581 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1582 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1583 		err = -EPIPE;
1584 		goto out;
1585 	}
1586 
1587 	if (sk->sk_state != TCP_ESTABLISHED ||
1588 	    !vsock_addr_bound(&vsk->local_addr)) {
1589 		err = -ENOTCONN;
1590 		goto out;
1591 	}
1592 
1593 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1594 		err = -EDESTADDRREQ;
1595 		goto out;
1596 	}
1597 
1598 	/* Wait for room in the produce queue to enqueue our user's data. */
1599 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1600 
1601 	err = transport->notify_send_init(vsk, &send_data);
1602 	if (err < 0)
1603 		goto out;
1604 
1605 	while (total_written < len) {
1606 		ssize_t written;
1607 
1608 		add_wait_queue(sk_sleep(sk), &wait);
1609 		while (vsock_stream_has_space(vsk) == 0 &&
1610 		       sk->sk_err == 0 &&
1611 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1612 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1613 
1614 			/* Don't wait for non-blocking sockets. */
1615 			if (timeout == 0) {
1616 				err = -EAGAIN;
1617 				remove_wait_queue(sk_sleep(sk), &wait);
1618 				goto out_err;
1619 			}
1620 
1621 			err = transport->notify_send_pre_block(vsk, &send_data);
1622 			if (err < 0) {
1623 				remove_wait_queue(sk_sleep(sk), &wait);
1624 				goto out_err;
1625 			}
1626 
1627 			release_sock(sk);
1628 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1629 			lock_sock(sk);
1630 			if (signal_pending(current)) {
1631 				err = sock_intr_errno(timeout);
1632 				remove_wait_queue(sk_sleep(sk), &wait);
1633 				goto out_err;
1634 			} else if (timeout == 0) {
1635 				err = -EAGAIN;
1636 				remove_wait_queue(sk_sleep(sk), &wait);
1637 				goto out_err;
1638 			}
1639 		}
1640 		remove_wait_queue(sk_sleep(sk), &wait);
1641 
1642 		/* These checks occur both as part of and after the loop
1643 		 * conditional since we need to check before and after
1644 		 * sleeping.
1645 		 */
1646 		if (sk->sk_err) {
1647 			err = -sk->sk_err;
1648 			goto out_err;
1649 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1650 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1651 			err = -EPIPE;
1652 			goto out_err;
1653 		}
1654 
1655 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1656 		if (err < 0)
1657 			goto out_err;
1658 
1659 		/* Note that enqueue will only write as many bytes as are free
1660 		 * in the produce queue, so we don't need to ensure len is
1661 		 * smaller than the queue size.  It is the caller's
1662 		 * responsibility to check how many bytes we were able to send.
1663 		 */
1664 
1665 		written = transport->stream_enqueue(
1666 				vsk, msg,
1667 				len - total_written);
1668 		if (written < 0) {
1669 			err = -ENOMEM;
1670 			goto out_err;
1671 		}
1672 
1673 		total_written += written;
1674 
1675 		err = transport->notify_send_post_enqueue(
1676 				vsk, written, &send_data);
1677 		if (err < 0)
1678 			goto out_err;
1679 
1680 	}
1681 
1682 out_err:
1683 	if (total_written > 0)
1684 		err = total_written;
1685 out:
1686 	release_sock(sk);
1687 	return err;
1688 }
1689 
1690 
1691 static int
1692 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1693 		     int flags)
1694 {
1695 	struct sock *sk;
1696 	struct vsock_sock *vsk;
1697 	const struct vsock_transport *transport;
1698 	int err;
1699 	size_t target;
1700 	ssize_t copied;
1701 	long timeout;
1702 	struct vsock_transport_recv_notify_data recv_data;
1703 
1704 	DEFINE_WAIT(wait);
1705 
1706 	sk = sock->sk;
1707 	vsk = vsock_sk(sk);
1708 	transport = vsk->transport;
1709 	err = 0;
1710 
1711 	lock_sock(sk);
1712 
1713 	if (sk->sk_state != TCP_ESTABLISHED) {
1714 		/* Recvmsg is supposed to return 0 if a peer performs an
1715 		 * orderly shutdown. Differentiate between that case and when a
1716 		 * peer has not connected or a local shutdown occured with the
1717 		 * SOCK_DONE flag.
1718 		 */
1719 		if (sock_flag(sk, SOCK_DONE))
1720 			err = 0;
1721 		else
1722 			err = -ENOTCONN;
1723 
1724 		goto out;
1725 	}
1726 
1727 	if (flags & MSG_OOB) {
1728 		err = -EOPNOTSUPP;
1729 		goto out;
1730 	}
1731 
1732 	/* We don't check peer_shutdown flag here since peer may actually shut
1733 	 * down, but there can be data in the queue that a local socket can
1734 	 * receive.
1735 	 */
1736 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1737 		err = 0;
1738 		goto out;
1739 	}
1740 
1741 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1742 	 * is not an error.  We may as well bail out now.
1743 	 */
1744 	if (!len) {
1745 		err = 0;
1746 		goto out;
1747 	}
1748 
1749 	/* We must not copy less than target bytes into the user's buffer
1750 	 * before returning successfully, so we wait for the consume queue to
1751 	 * have that much data to consume before dequeueing.  Note that this
1752 	 * makes it impossible to handle cases where target is greater than the
1753 	 * queue size.
1754 	 */
1755 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1756 	if (target >= transport->stream_rcvhiwat(vsk)) {
1757 		err = -ENOMEM;
1758 		goto out;
1759 	}
1760 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1761 	copied = 0;
1762 
1763 	err = transport->notify_recv_init(vsk, target, &recv_data);
1764 	if (err < 0)
1765 		goto out;
1766 
1767 
1768 	while (1) {
1769 		s64 ready;
1770 
1771 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1772 		ready = vsock_stream_has_data(vsk);
1773 
1774 		if (ready == 0) {
1775 			if (sk->sk_err != 0 ||
1776 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1777 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1778 				finish_wait(sk_sleep(sk), &wait);
1779 				break;
1780 			}
1781 			/* Don't wait for non-blocking sockets. */
1782 			if (timeout == 0) {
1783 				err = -EAGAIN;
1784 				finish_wait(sk_sleep(sk), &wait);
1785 				break;
1786 			}
1787 
1788 			err = transport->notify_recv_pre_block(
1789 					vsk, target, &recv_data);
1790 			if (err < 0) {
1791 				finish_wait(sk_sleep(sk), &wait);
1792 				break;
1793 			}
1794 			release_sock(sk);
1795 			timeout = schedule_timeout(timeout);
1796 			lock_sock(sk);
1797 
1798 			if (signal_pending(current)) {
1799 				err = sock_intr_errno(timeout);
1800 				finish_wait(sk_sleep(sk), &wait);
1801 				break;
1802 			} else if (timeout == 0) {
1803 				err = -EAGAIN;
1804 				finish_wait(sk_sleep(sk), &wait);
1805 				break;
1806 			}
1807 		} else {
1808 			ssize_t read;
1809 
1810 			finish_wait(sk_sleep(sk), &wait);
1811 
1812 			if (ready < 0) {
1813 				/* Invalid queue pair content. XXX This should
1814 				* be changed to a connection reset in a later
1815 				* change.
1816 				*/
1817 
1818 				err = -ENOMEM;
1819 				goto out;
1820 			}
1821 
1822 			err = transport->notify_recv_pre_dequeue(
1823 					vsk, target, &recv_data);
1824 			if (err < 0)
1825 				break;
1826 
1827 			read = transport->stream_dequeue(
1828 					vsk, msg,
1829 					len - copied, flags);
1830 			if (read < 0) {
1831 				err = -ENOMEM;
1832 				break;
1833 			}
1834 
1835 			copied += read;
1836 
1837 			err = transport->notify_recv_post_dequeue(
1838 					vsk, target, read,
1839 					!(flags & MSG_PEEK), &recv_data);
1840 			if (err < 0)
1841 				goto out;
1842 
1843 			if (read >= target || flags & MSG_PEEK)
1844 				break;
1845 
1846 			target -= read;
1847 		}
1848 	}
1849 
1850 	if (sk->sk_err)
1851 		err = -sk->sk_err;
1852 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1853 		err = 0;
1854 
1855 	if (copied > 0)
1856 		err = copied;
1857 
1858 out:
1859 	release_sock(sk);
1860 	return err;
1861 }
1862 
1863 static const struct proto_ops vsock_stream_ops = {
1864 	.family = PF_VSOCK,
1865 	.owner = THIS_MODULE,
1866 	.release = vsock_release,
1867 	.bind = vsock_bind,
1868 	.connect = vsock_stream_connect,
1869 	.socketpair = sock_no_socketpair,
1870 	.accept = vsock_accept,
1871 	.getname = vsock_getname,
1872 	.poll = vsock_poll,
1873 	.ioctl = sock_no_ioctl,
1874 	.listen = vsock_listen,
1875 	.shutdown = vsock_shutdown,
1876 	.setsockopt = vsock_stream_setsockopt,
1877 	.getsockopt = vsock_stream_getsockopt,
1878 	.sendmsg = vsock_stream_sendmsg,
1879 	.recvmsg = vsock_stream_recvmsg,
1880 	.mmap = sock_no_mmap,
1881 	.sendpage = sock_no_sendpage,
1882 };
1883 
1884 static int vsock_create(struct net *net, struct socket *sock,
1885 			int protocol, int kern)
1886 {
1887 	struct sock *sk;
1888 
1889 	if (!sock)
1890 		return -EINVAL;
1891 
1892 	if (protocol && protocol != PF_VSOCK)
1893 		return -EPROTONOSUPPORT;
1894 
1895 	switch (sock->type) {
1896 	case SOCK_DGRAM:
1897 		sock->ops = &vsock_dgram_ops;
1898 		break;
1899 	case SOCK_STREAM:
1900 		sock->ops = &vsock_stream_ops;
1901 		break;
1902 	default:
1903 		return -ESOCKTNOSUPPORT;
1904 	}
1905 
1906 	sock->state = SS_UNCONNECTED;
1907 
1908 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
1909 	if (!sk)
1910 		return -ENOMEM;
1911 
1912 	vsock_insert_unbound(vsock_sk(sk));
1913 
1914 	return 0;
1915 }
1916 
1917 static const struct net_proto_family vsock_family_ops = {
1918 	.family = AF_VSOCK,
1919 	.create = vsock_create,
1920 	.owner = THIS_MODULE,
1921 };
1922 
1923 static long vsock_dev_do_ioctl(struct file *filp,
1924 			       unsigned int cmd, void __user *ptr)
1925 {
1926 	u32 __user *p = ptr;
1927 	int retval = 0;
1928 
1929 	switch (cmd) {
1930 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1931 		if (put_user(transport_single->get_local_cid(), p) != 0)
1932 			retval = -EFAULT;
1933 		break;
1934 
1935 	default:
1936 		pr_err("Unknown ioctl %d\n", cmd);
1937 		retval = -EINVAL;
1938 	}
1939 
1940 	return retval;
1941 }
1942 
1943 static long vsock_dev_ioctl(struct file *filp,
1944 			    unsigned int cmd, unsigned long arg)
1945 {
1946 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1947 }
1948 
1949 #ifdef CONFIG_COMPAT
1950 static long vsock_dev_compat_ioctl(struct file *filp,
1951 				   unsigned int cmd, unsigned long arg)
1952 {
1953 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1954 }
1955 #endif
1956 
1957 static const struct file_operations vsock_device_ops = {
1958 	.owner		= THIS_MODULE,
1959 	.unlocked_ioctl	= vsock_dev_ioctl,
1960 #ifdef CONFIG_COMPAT
1961 	.compat_ioctl	= vsock_dev_compat_ioctl,
1962 #endif
1963 	.open		= nonseekable_open,
1964 };
1965 
1966 static struct miscdevice vsock_device = {
1967 	.name		= "vsock",
1968 	.fops		= &vsock_device_ops,
1969 };
1970 
1971 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1972 {
1973 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1974 
1975 	if (err)
1976 		return err;
1977 
1978 	if (transport_single) {
1979 		err = -EBUSY;
1980 		goto err_busy;
1981 	}
1982 
1983 	/* Transport must be the owner of the protocol so that it can't
1984 	 * unload while there are open sockets.
1985 	 */
1986 	vsock_proto.owner = owner;
1987 	transport_single = t;
1988 
1989 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1990 	err = misc_register(&vsock_device);
1991 	if (err) {
1992 		pr_err("Failed to register misc device\n");
1993 		goto err_reset_transport;
1994 	}
1995 
1996 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1997 	if (err) {
1998 		pr_err("Cannot register vsock protocol\n");
1999 		goto err_deregister_misc;
2000 	}
2001 
2002 	err = sock_register(&vsock_family_ops);
2003 	if (err) {
2004 		pr_err("could not register af_vsock (%d) address family: %d\n",
2005 		       AF_VSOCK, err);
2006 		goto err_unregister_proto;
2007 	}
2008 
2009 	mutex_unlock(&vsock_register_mutex);
2010 	return 0;
2011 
2012 err_unregister_proto:
2013 	proto_unregister(&vsock_proto);
2014 err_deregister_misc:
2015 	misc_deregister(&vsock_device);
2016 err_reset_transport:
2017 	transport_single = NULL;
2018 err_busy:
2019 	mutex_unlock(&vsock_register_mutex);
2020 	return err;
2021 }
2022 EXPORT_SYMBOL_GPL(__vsock_core_init);
2023 
2024 void vsock_core_exit(void)
2025 {
2026 	mutex_lock(&vsock_register_mutex);
2027 
2028 	misc_deregister(&vsock_device);
2029 	sock_unregister(AF_VSOCK);
2030 	proto_unregister(&vsock_proto);
2031 
2032 	/* We do not want the assignment below re-ordered. */
2033 	mb();
2034 	transport_single = NULL;
2035 
2036 	mutex_unlock(&vsock_register_mutex);
2037 }
2038 EXPORT_SYMBOL_GPL(vsock_core_exit);
2039 
2040 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2041 {
2042 	return vsk->transport;
2043 }
2044 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2045 
2046 static void __exit vsock_exit(void)
2047 {
2048 	/* Do nothing.  This function makes this module removable. */
2049 }
2050 
2051 module_init(vsock_init_tables);
2052 module_exit(vsock_exit);
2053 
2054 MODULE_AUTHOR("VMware, Inc.");
2055 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2056 MODULE_VERSION("1.0.2.0-k");
2057 MODULE_LICENSE("GPL v2");
2058