1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the VSOCK_SS_LISTEN state. When a 40 * connection request is received (the second kind of socket mentioned above), 41 * we create a new socket and refer to it as a pending socket. These pending 42 * sockets are placed on the pending connection list of the listener socket. 43 * When future packets are received for the address the listener socket is 44 * bound to, we check if the source of the packet is from one that has an 45 * existing pending connection. If it does, we process the packet for the 46 * pending socket. When that socket reaches the connected state, it is removed 47 * from the listener socket's pending list and enqueued in the listener 48 * socket's accept queue. Callers of accept(2) will accept connected sockets 49 * from the listener socket's accept queue. If the socket cannot be accepted 50 * for some reason then it is marked rejected. Once the connection is 51 * accepted, it is owned by the user process and the responsibility for cleanup 52 * falls with that user process. 53 * 54 * - It is possible that these pending sockets will never reach the connected 55 * state; in fact, we may never receive another packet after the connection 56 * request. Because of this, we must schedule a cleanup function to run in the 57 * future, after some amount of time passes where a connection should have been 58 * established. This function ensures that the socket is off all lists so it 59 * cannot be retrieved, then drops all references to the socket so it is cleaned 60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 61 * function will also cleanup rejected sockets, those that reach the connected 62 * state but leave it before they have been accepted. 63 * 64 * - Lock ordering for pending or accept queue sockets is: 65 * 66 * lock_sock(listener); 67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 68 * 69 * Using explicit nested locking keeps lockdep happy since normally only one 70 * lock of a given class may be taken at a time. 71 * 72 * - Sockets created by user action will be cleaned up when the user process 73 * calls close(2), causing our release implementation to be called. Our release 74 * implementation will perform some cleanup then drop the last reference so our 75 * sk_destruct implementation is invoked. Our sk_destruct implementation will 76 * perform additional cleanup that's common for both types of sockets. 77 * 78 * - A socket's reference count is what ensures that the structure won't be 79 * freed. Each entry in a list (such as the "global" bound and connected tables 80 * and the listener socket's pending list and connected queue) ensures a 81 * reference. When we defer work until process context and pass a socket as our 82 * argument, we must ensure the reference count is increased to ensure the 83 * socket isn't freed before the function is run; the deferred function will 84 * then drop the reference. 85 */ 86 87 #include <linux/types.h> 88 #include <linux/bitops.h> 89 #include <linux/cred.h> 90 #include <linux/init.h> 91 #include <linux/io.h> 92 #include <linux/kernel.h> 93 #include <linux/kmod.h> 94 #include <linux/list.h> 95 #include <linux/miscdevice.h> 96 #include <linux/module.h> 97 #include <linux/mutex.h> 98 #include <linux/net.h> 99 #include <linux/poll.h> 100 #include <linux/skbuff.h> 101 #include <linux/smp.h> 102 #include <linux/socket.h> 103 #include <linux/stddef.h> 104 #include <linux/unistd.h> 105 #include <linux/wait.h> 106 #include <linux/workqueue.h> 107 #include <net/sock.h> 108 #include <net/af_vsock.h> 109 110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 111 static void vsock_sk_destruct(struct sock *sk); 112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 113 114 /* Protocol family. */ 115 static struct proto vsock_proto = { 116 .name = "AF_VSOCK", 117 .owner = THIS_MODULE, 118 .obj_size = sizeof(struct vsock_sock), 119 }; 120 121 /* The default peer timeout indicates how long we will wait for a peer response 122 * to a control message. 123 */ 124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 125 126 static const struct vsock_transport *transport; 127 static DEFINE_MUTEX(vsock_register_mutex); 128 129 /**** EXPORTS ****/ 130 131 /* Get the ID of the local context. This is transport dependent. */ 132 133 int vm_sockets_get_local_cid(void) 134 { 135 return transport->get_local_cid(); 136 } 137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 138 139 /**** UTILS ****/ 140 141 /* Each bound VSocket is stored in the bind hash table and each connected 142 * VSocket is stored in the connected hash table. 143 * 144 * Unbound sockets are all put on the same list attached to the end of the hash 145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 146 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 147 * represents the list that addr hashes to). 148 * 149 * Specifically, we initialize the vsock_bind_table array to a size of 150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 153 * mods with VSOCK_HASH_SIZE to ensure this. 154 */ 155 #define VSOCK_HASH_SIZE 251 156 #define MAX_PORT_RETRIES 24 157 158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 161 162 /* XXX This can probably be implemented in a better way. */ 163 #define VSOCK_CONN_HASH(src, dst) \ 164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 165 #define vsock_connected_sockets(src, dst) \ 166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 167 #define vsock_connected_sockets_vsk(vsk) \ 168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 169 170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 172 static DEFINE_SPINLOCK(vsock_table_lock); 173 174 /* Autobind this socket to the local address if necessary. */ 175 static int vsock_auto_bind(struct vsock_sock *vsk) 176 { 177 struct sock *sk = sk_vsock(vsk); 178 struct sockaddr_vm local_addr; 179 180 if (vsock_addr_bound(&vsk->local_addr)) 181 return 0; 182 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 183 return __vsock_bind(sk, &local_addr); 184 } 185 186 static void vsock_init_tables(void) 187 { 188 int i; 189 190 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 191 INIT_LIST_HEAD(&vsock_bind_table[i]); 192 193 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 194 INIT_LIST_HEAD(&vsock_connected_table[i]); 195 } 196 197 static void __vsock_insert_bound(struct list_head *list, 198 struct vsock_sock *vsk) 199 { 200 sock_hold(&vsk->sk); 201 list_add(&vsk->bound_table, list); 202 } 203 204 static void __vsock_insert_connected(struct list_head *list, 205 struct vsock_sock *vsk) 206 { 207 sock_hold(&vsk->sk); 208 list_add(&vsk->connected_table, list); 209 } 210 211 static void __vsock_remove_bound(struct vsock_sock *vsk) 212 { 213 list_del_init(&vsk->bound_table); 214 sock_put(&vsk->sk); 215 } 216 217 static void __vsock_remove_connected(struct vsock_sock *vsk) 218 { 219 list_del_init(&vsk->connected_table); 220 sock_put(&vsk->sk); 221 } 222 223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 224 { 225 struct vsock_sock *vsk; 226 227 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 228 if (addr->svm_port == vsk->local_addr.svm_port) 229 return sk_vsock(vsk); 230 231 return NULL; 232 } 233 234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 235 struct sockaddr_vm *dst) 236 { 237 struct vsock_sock *vsk; 238 239 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 240 connected_table) { 241 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 242 dst->svm_port == vsk->local_addr.svm_port) { 243 return sk_vsock(vsk); 244 } 245 } 246 247 return NULL; 248 } 249 250 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 251 { 252 return !list_empty(&vsk->bound_table); 253 } 254 255 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 256 { 257 return !list_empty(&vsk->connected_table); 258 } 259 260 static void vsock_insert_unbound(struct vsock_sock *vsk) 261 { 262 spin_lock_bh(&vsock_table_lock); 263 __vsock_insert_bound(vsock_unbound_sockets, vsk); 264 spin_unlock_bh(&vsock_table_lock); 265 } 266 267 void vsock_insert_connected(struct vsock_sock *vsk) 268 { 269 struct list_head *list = vsock_connected_sockets( 270 &vsk->remote_addr, &vsk->local_addr); 271 272 spin_lock_bh(&vsock_table_lock); 273 __vsock_insert_connected(list, vsk); 274 spin_unlock_bh(&vsock_table_lock); 275 } 276 EXPORT_SYMBOL_GPL(vsock_insert_connected); 277 278 void vsock_remove_bound(struct vsock_sock *vsk) 279 { 280 spin_lock_bh(&vsock_table_lock); 281 __vsock_remove_bound(vsk); 282 spin_unlock_bh(&vsock_table_lock); 283 } 284 EXPORT_SYMBOL_GPL(vsock_remove_bound); 285 286 void vsock_remove_connected(struct vsock_sock *vsk) 287 { 288 spin_lock_bh(&vsock_table_lock); 289 __vsock_remove_connected(vsk); 290 spin_unlock_bh(&vsock_table_lock); 291 } 292 EXPORT_SYMBOL_GPL(vsock_remove_connected); 293 294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 295 { 296 struct sock *sk; 297 298 spin_lock_bh(&vsock_table_lock); 299 sk = __vsock_find_bound_socket(addr); 300 if (sk) 301 sock_hold(sk); 302 303 spin_unlock_bh(&vsock_table_lock); 304 305 return sk; 306 } 307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 308 309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 310 struct sockaddr_vm *dst) 311 { 312 struct sock *sk; 313 314 spin_lock_bh(&vsock_table_lock); 315 sk = __vsock_find_connected_socket(src, dst); 316 if (sk) 317 sock_hold(sk); 318 319 spin_unlock_bh(&vsock_table_lock); 320 321 return sk; 322 } 323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 324 325 static bool vsock_in_bound_table(struct vsock_sock *vsk) 326 { 327 bool ret; 328 329 spin_lock_bh(&vsock_table_lock); 330 ret = __vsock_in_bound_table(vsk); 331 spin_unlock_bh(&vsock_table_lock); 332 333 return ret; 334 } 335 336 static bool vsock_in_connected_table(struct vsock_sock *vsk) 337 { 338 bool ret; 339 340 spin_lock_bh(&vsock_table_lock); 341 ret = __vsock_in_connected_table(vsk); 342 spin_unlock_bh(&vsock_table_lock); 343 344 return ret; 345 } 346 347 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 348 { 349 int i; 350 351 spin_lock_bh(&vsock_table_lock); 352 353 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 354 struct vsock_sock *vsk; 355 list_for_each_entry(vsk, &vsock_connected_table[i], 356 connected_table) 357 fn(sk_vsock(vsk)); 358 } 359 360 spin_unlock_bh(&vsock_table_lock); 361 } 362 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 363 364 void vsock_add_pending(struct sock *listener, struct sock *pending) 365 { 366 struct vsock_sock *vlistener; 367 struct vsock_sock *vpending; 368 369 vlistener = vsock_sk(listener); 370 vpending = vsock_sk(pending); 371 372 sock_hold(pending); 373 sock_hold(listener); 374 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 375 } 376 EXPORT_SYMBOL_GPL(vsock_add_pending); 377 378 void vsock_remove_pending(struct sock *listener, struct sock *pending) 379 { 380 struct vsock_sock *vpending = vsock_sk(pending); 381 382 list_del_init(&vpending->pending_links); 383 sock_put(listener); 384 sock_put(pending); 385 } 386 EXPORT_SYMBOL_GPL(vsock_remove_pending); 387 388 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 389 { 390 struct vsock_sock *vlistener; 391 struct vsock_sock *vconnected; 392 393 vlistener = vsock_sk(listener); 394 vconnected = vsock_sk(connected); 395 396 sock_hold(connected); 397 sock_hold(listener); 398 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 399 } 400 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 401 402 static struct sock *vsock_dequeue_accept(struct sock *listener) 403 { 404 struct vsock_sock *vlistener; 405 struct vsock_sock *vconnected; 406 407 vlistener = vsock_sk(listener); 408 409 if (list_empty(&vlistener->accept_queue)) 410 return NULL; 411 412 vconnected = list_entry(vlistener->accept_queue.next, 413 struct vsock_sock, accept_queue); 414 415 list_del_init(&vconnected->accept_queue); 416 sock_put(listener); 417 /* The caller will need a reference on the connected socket so we let 418 * it call sock_put(). 419 */ 420 421 return sk_vsock(vconnected); 422 } 423 424 static bool vsock_is_accept_queue_empty(struct sock *sk) 425 { 426 struct vsock_sock *vsk = vsock_sk(sk); 427 return list_empty(&vsk->accept_queue); 428 } 429 430 static bool vsock_is_pending(struct sock *sk) 431 { 432 struct vsock_sock *vsk = vsock_sk(sk); 433 return !list_empty(&vsk->pending_links); 434 } 435 436 static int vsock_send_shutdown(struct sock *sk, int mode) 437 { 438 return transport->shutdown(vsock_sk(sk), mode); 439 } 440 441 void vsock_pending_work(struct work_struct *work) 442 { 443 struct sock *sk; 444 struct sock *listener; 445 struct vsock_sock *vsk; 446 bool cleanup; 447 448 vsk = container_of(work, struct vsock_sock, dwork.work); 449 sk = sk_vsock(vsk); 450 listener = vsk->listener; 451 cleanup = true; 452 453 lock_sock(listener); 454 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 455 456 if (vsock_is_pending(sk)) { 457 vsock_remove_pending(listener, sk); 458 } else if (!vsk->rejected) { 459 /* We are not on the pending list and accept() did not reject 460 * us, so we must have been accepted by our user process. We 461 * just need to drop our references to the sockets and be on 462 * our way. 463 */ 464 cleanup = false; 465 goto out; 466 } 467 468 listener->sk_ack_backlog--; 469 470 /* We need to remove ourself from the global connected sockets list so 471 * incoming packets can't find this socket, and to reduce the reference 472 * count. 473 */ 474 if (vsock_in_connected_table(vsk)) 475 vsock_remove_connected(vsk); 476 477 sk->sk_state = SS_FREE; 478 479 out: 480 release_sock(sk); 481 release_sock(listener); 482 if (cleanup) 483 sock_put(sk); 484 485 sock_put(sk); 486 sock_put(listener); 487 } 488 EXPORT_SYMBOL_GPL(vsock_pending_work); 489 490 /**** SOCKET OPERATIONS ****/ 491 492 static int __vsock_bind_stream(struct vsock_sock *vsk, 493 struct sockaddr_vm *addr) 494 { 495 static u32 port = LAST_RESERVED_PORT + 1; 496 struct sockaddr_vm new_addr; 497 498 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 499 500 if (addr->svm_port == VMADDR_PORT_ANY) { 501 bool found = false; 502 unsigned int i; 503 504 for (i = 0; i < MAX_PORT_RETRIES; i++) { 505 if (port <= LAST_RESERVED_PORT) 506 port = LAST_RESERVED_PORT + 1; 507 508 new_addr.svm_port = port++; 509 510 if (!__vsock_find_bound_socket(&new_addr)) { 511 found = true; 512 break; 513 } 514 } 515 516 if (!found) 517 return -EADDRNOTAVAIL; 518 } else { 519 /* If port is in reserved range, ensure caller 520 * has necessary privileges. 521 */ 522 if (addr->svm_port <= LAST_RESERVED_PORT && 523 !capable(CAP_NET_BIND_SERVICE)) { 524 return -EACCES; 525 } 526 527 if (__vsock_find_bound_socket(&new_addr)) 528 return -EADDRINUSE; 529 } 530 531 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 532 533 /* Remove stream sockets from the unbound list and add them to the hash 534 * table for easy lookup by its address. The unbound list is simply an 535 * extra entry at the end of the hash table, a trick used by AF_UNIX. 536 */ 537 __vsock_remove_bound(vsk); 538 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 539 540 return 0; 541 } 542 543 static int __vsock_bind_dgram(struct vsock_sock *vsk, 544 struct sockaddr_vm *addr) 545 { 546 return transport->dgram_bind(vsk, addr); 547 } 548 549 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 550 { 551 struct vsock_sock *vsk = vsock_sk(sk); 552 u32 cid; 553 int retval; 554 555 /* First ensure this socket isn't already bound. */ 556 if (vsock_addr_bound(&vsk->local_addr)) 557 return -EINVAL; 558 559 /* Now bind to the provided address or select appropriate values if 560 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 561 * like AF_INET prevents binding to a non-local IP address (in most 562 * cases), we only allow binding to the local CID. 563 */ 564 cid = transport->get_local_cid(); 565 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 566 return -EADDRNOTAVAIL; 567 568 switch (sk->sk_socket->type) { 569 case SOCK_STREAM: 570 spin_lock_bh(&vsock_table_lock); 571 retval = __vsock_bind_stream(vsk, addr); 572 spin_unlock_bh(&vsock_table_lock); 573 break; 574 575 case SOCK_DGRAM: 576 retval = __vsock_bind_dgram(vsk, addr); 577 break; 578 579 default: 580 retval = -EINVAL; 581 break; 582 } 583 584 return retval; 585 } 586 587 struct sock *__vsock_create(struct net *net, 588 struct socket *sock, 589 struct sock *parent, 590 gfp_t priority, 591 unsigned short type, 592 int kern) 593 { 594 struct sock *sk; 595 struct vsock_sock *psk; 596 struct vsock_sock *vsk; 597 598 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 599 if (!sk) 600 return NULL; 601 602 sock_init_data(sock, sk); 603 604 /* sk->sk_type is normally set in sock_init_data, but only if sock is 605 * non-NULL. We make sure that our sockets always have a type by 606 * setting it here if needed. 607 */ 608 if (!sock) 609 sk->sk_type = type; 610 611 vsk = vsock_sk(sk); 612 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 613 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 614 615 sk->sk_destruct = vsock_sk_destruct; 616 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 617 sk->sk_state = 0; 618 sock_reset_flag(sk, SOCK_DONE); 619 620 INIT_LIST_HEAD(&vsk->bound_table); 621 INIT_LIST_HEAD(&vsk->connected_table); 622 vsk->listener = NULL; 623 INIT_LIST_HEAD(&vsk->pending_links); 624 INIT_LIST_HEAD(&vsk->accept_queue); 625 vsk->rejected = false; 626 vsk->sent_request = false; 627 vsk->ignore_connecting_rst = false; 628 vsk->peer_shutdown = 0; 629 630 psk = parent ? vsock_sk(parent) : NULL; 631 if (parent) { 632 vsk->trusted = psk->trusted; 633 vsk->owner = get_cred(psk->owner); 634 vsk->connect_timeout = psk->connect_timeout; 635 } else { 636 vsk->trusted = capable(CAP_NET_ADMIN); 637 vsk->owner = get_current_cred(); 638 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 639 } 640 641 if (transport->init(vsk, psk) < 0) { 642 sk_free(sk); 643 return NULL; 644 } 645 646 if (sock) 647 vsock_insert_unbound(vsk); 648 649 return sk; 650 } 651 EXPORT_SYMBOL_GPL(__vsock_create); 652 653 static void __vsock_release(struct sock *sk) 654 { 655 if (sk) { 656 struct sk_buff *skb; 657 struct sock *pending; 658 struct vsock_sock *vsk; 659 660 vsk = vsock_sk(sk); 661 pending = NULL; /* Compiler warning. */ 662 663 if (vsock_in_bound_table(vsk)) 664 vsock_remove_bound(vsk); 665 666 if (vsock_in_connected_table(vsk)) 667 vsock_remove_connected(vsk); 668 669 transport->release(vsk); 670 671 lock_sock(sk); 672 sock_orphan(sk); 673 sk->sk_shutdown = SHUTDOWN_MASK; 674 675 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 676 kfree_skb(skb); 677 678 /* Clean up any sockets that never were accepted. */ 679 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 680 __vsock_release(pending); 681 sock_put(pending); 682 } 683 684 release_sock(sk); 685 sock_put(sk); 686 } 687 } 688 689 static void vsock_sk_destruct(struct sock *sk) 690 { 691 struct vsock_sock *vsk = vsock_sk(sk); 692 693 transport->destruct(vsk); 694 695 /* When clearing these addresses, there's no need to set the family and 696 * possibly register the address family with the kernel. 697 */ 698 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 699 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 700 701 put_cred(vsk->owner); 702 } 703 704 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 705 { 706 int err; 707 708 err = sock_queue_rcv_skb(sk, skb); 709 if (err) 710 kfree_skb(skb); 711 712 return err; 713 } 714 715 s64 vsock_stream_has_data(struct vsock_sock *vsk) 716 { 717 return transport->stream_has_data(vsk); 718 } 719 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 720 721 s64 vsock_stream_has_space(struct vsock_sock *vsk) 722 { 723 return transport->stream_has_space(vsk); 724 } 725 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 726 727 static int vsock_release(struct socket *sock) 728 { 729 __vsock_release(sock->sk); 730 sock->sk = NULL; 731 sock->state = SS_FREE; 732 733 return 0; 734 } 735 736 static int 737 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 738 { 739 int err; 740 struct sock *sk; 741 struct sockaddr_vm *vm_addr; 742 743 sk = sock->sk; 744 745 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 746 return -EINVAL; 747 748 lock_sock(sk); 749 err = __vsock_bind(sk, vm_addr); 750 release_sock(sk); 751 752 return err; 753 } 754 755 static int vsock_getname(struct socket *sock, 756 struct sockaddr *addr, int *addr_len, int peer) 757 { 758 int err; 759 struct sock *sk; 760 struct vsock_sock *vsk; 761 struct sockaddr_vm *vm_addr; 762 763 sk = sock->sk; 764 vsk = vsock_sk(sk); 765 err = 0; 766 767 lock_sock(sk); 768 769 if (peer) { 770 if (sock->state != SS_CONNECTED) { 771 err = -ENOTCONN; 772 goto out; 773 } 774 vm_addr = &vsk->remote_addr; 775 } else { 776 vm_addr = &vsk->local_addr; 777 } 778 779 if (!vm_addr) { 780 err = -EINVAL; 781 goto out; 782 } 783 784 /* sys_getsockname() and sys_getpeername() pass us a 785 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 786 * that macro is defined in socket.c instead of .h, so we hardcode its 787 * value here. 788 */ 789 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 790 memcpy(addr, vm_addr, sizeof(*vm_addr)); 791 *addr_len = sizeof(*vm_addr); 792 793 out: 794 release_sock(sk); 795 return err; 796 } 797 798 static int vsock_shutdown(struct socket *sock, int mode) 799 { 800 int err; 801 struct sock *sk; 802 803 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 804 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 805 * here like the other address families do. Note also that the 806 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 807 * which is what we want. 808 */ 809 mode++; 810 811 if ((mode & ~SHUTDOWN_MASK) || !mode) 812 return -EINVAL; 813 814 /* If this is a STREAM socket and it is not connected then bail out 815 * immediately. If it is a DGRAM socket then we must first kick the 816 * socket so that it wakes up from any sleeping calls, for example 817 * recv(), and then afterwards return the error. 818 */ 819 820 sk = sock->sk; 821 if (sock->state == SS_UNCONNECTED) { 822 err = -ENOTCONN; 823 if (sk->sk_type == SOCK_STREAM) 824 return err; 825 } else { 826 sock->state = SS_DISCONNECTING; 827 err = 0; 828 } 829 830 /* Receive and send shutdowns are treated alike. */ 831 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 832 if (mode) { 833 lock_sock(sk); 834 sk->sk_shutdown |= mode; 835 sk->sk_state_change(sk); 836 release_sock(sk); 837 838 if (sk->sk_type == SOCK_STREAM) { 839 sock_reset_flag(sk, SOCK_DONE); 840 vsock_send_shutdown(sk, mode); 841 } 842 } 843 844 return err; 845 } 846 847 static unsigned int vsock_poll(struct file *file, struct socket *sock, 848 poll_table *wait) 849 { 850 struct sock *sk; 851 unsigned int mask; 852 struct vsock_sock *vsk; 853 854 sk = sock->sk; 855 vsk = vsock_sk(sk); 856 857 poll_wait(file, sk_sleep(sk), wait); 858 mask = 0; 859 860 if (sk->sk_err) 861 /* Signify that there has been an error on this socket. */ 862 mask |= POLLERR; 863 864 /* INET sockets treat local write shutdown and peer write shutdown as a 865 * case of POLLHUP set. 866 */ 867 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 868 ((sk->sk_shutdown & SEND_SHUTDOWN) && 869 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 870 mask |= POLLHUP; 871 } 872 873 if (sk->sk_shutdown & RCV_SHUTDOWN || 874 vsk->peer_shutdown & SEND_SHUTDOWN) { 875 mask |= POLLRDHUP; 876 } 877 878 if (sock->type == SOCK_DGRAM) { 879 /* For datagram sockets we can read if there is something in 880 * the queue and write as long as the socket isn't shutdown for 881 * sending. 882 */ 883 if (!skb_queue_empty(&sk->sk_receive_queue) || 884 (sk->sk_shutdown & RCV_SHUTDOWN)) { 885 mask |= POLLIN | POLLRDNORM; 886 } 887 888 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 889 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 890 891 } else if (sock->type == SOCK_STREAM) { 892 lock_sock(sk); 893 894 /* Listening sockets that have connections in their accept 895 * queue can be read. 896 */ 897 if (sk->sk_state == VSOCK_SS_LISTEN 898 && !vsock_is_accept_queue_empty(sk)) 899 mask |= POLLIN | POLLRDNORM; 900 901 /* If there is something in the queue then we can read. */ 902 if (transport->stream_is_active(vsk) && 903 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 904 bool data_ready_now = false; 905 int ret = transport->notify_poll_in( 906 vsk, 1, &data_ready_now); 907 if (ret < 0) { 908 mask |= POLLERR; 909 } else { 910 if (data_ready_now) 911 mask |= POLLIN | POLLRDNORM; 912 913 } 914 } 915 916 /* Sockets whose connections have been closed, reset, or 917 * terminated should also be considered read, and we check the 918 * shutdown flag for that. 919 */ 920 if (sk->sk_shutdown & RCV_SHUTDOWN || 921 vsk->peer_shutdown & SEND_SHUTDOWN) { 922 mask |= POLLIN | POLLRDNORM; 923 } 924 925 /* Connected sockets that can produce data can be written. */ 926 if (sk->sk_state == SS_CONNECTED) { 927 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 928 bool space_avail_now = false; 929 int ret = transport->notify_poll_out( 930 vsk, 1, &space_avail_now); 931 if (ret < 0) { 932 mask |= POLLERR; 933 } else { 934 if (space_avail_now) 935 /* Remove POLLWRBAND since INET 936 * sockets are not setting it. 937 */ 938 mask |= POLLOUT | POLLWRNORM; 939 940 } 941 } 942 } 943 944 /* Simulate INET socket poll behaviors, which sets 945 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 946 * but local send is not shutdown. 947 */ 948 if (sk->sk_state == SS_UNCONNECTED) { 949 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 950 mask |= POLLOUT | POLLWRNORM; 951 952 } 953 954 release_sock(sk); 955 } 956 957 return mask; 958 } 959 960 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 961 size_t len) 962 { 963 int err; 964 struct sock *sk; 965 struct vsock_sock *vsk; 966 struct sockaddr_vm *remote_addr; 967 968 if (msg->msg_flags & MSG_OOB) 969 return -EOPNOTSUPP; 970 971 /* For now, MSG_DONTWAIT is always assumed... */ 972 err = 0; 973 sk = sock->sk; 974 vsk = vsock_sk(sk); 975 976 lock_sock(sk); 977 978 err = vsock_auto_bind(vsk); 979 if (err) 980 goto out; 981 982 983 /* If the provided message contains an address, use that. Otherwise 984 * fall back on the socket's remote handle (if it has been connected). 985 */ 986 if (msg->msg_name && 987 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 988 &remote_addr) == 0) { 989 /* Ensure this address is of the right type and is a valid 990 * destination. 991 */ 992 993 if (remote_addr->svm_cid == VMADDR_CID_ANY) 994 remote_addr->svm_cid = transport->get_local_cid(); 995 996 if (!vsock_addr_bound(remote_addr)) { 997 err = -EINVAL; 998 goto out; 999 } 1000 } else if (sock->state == SS_CONNECTED) { 1001 remote_addr = &vsk->remote_addr; 1002 1003 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1004 remote_addr->svm_cid = transport->get_local_cid(); 1005 1006 /* XXX Should connect() or this function ensure remote_addr is 1007 * bound? 1008 */ 1009 if (!vsock_addr_bound(&vsk->remote_addr)) { 1010 err = -EINVAL; 1011 goto out; 1012 } 1013 } else { 1014 err = -EINVAL; 1015 goto out; 1016 } 1017 1018 if (!transport->dgram_allow(remote_addr->svm_cid, 1019 remote_addr->svm_port)) { 1020 err = -EINVAL; 1021 goto out; 1022 } 1023 1024 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1025 1026 out: 1027 release_sock(sk); 1028 return err; 1029 } 1030 1031 static int vsock_dgram_connect(struct socket *sock, 1032 struct sockaddr *addr, int addr_len, int flags) 1033 { 1034 int err; 1035 struct sock *sk; 1036 struct vsock_sock *vsk; 1037 struct sockaddr_vm *remote_addr; 1038 1039 sk = sock->sk; 1040 vsk = vsock_sk(sk); 1041 1042 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1043 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1044 lock_sock(sk); 1045 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1046 VMADDR_PORT_ANY); 1047 sock->state = SS_UNCONNECTED; 1048 release_sock(sk); 1049 return 0; 1050 } else if (err != 0) 1051 return -EINVAL; 1052 1053 lock_sock(sk); 1054 1055 err = vsock_auto_bind(vsk); 1056 if (err) 1057 goto out; 1058 1059 if (!transport->dgram_allow(remote_addr->svm_cid, 1060 remote_addr->svm_port)) { 1061 err = -EINVAL; 1062 goto out; 1063 } 1064 1065 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1066 sock->state = SS_CONNECTED; 1067 1068 out: 1069 release_sock(sk); 1070 return err; 1071 } 1072 1073 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1074 size_t len, int flags) 1075 { 1076 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1077 } 1078 1079 static const struct proto_ops vsock_dgram_ops = { 1080 .family = PF_VSOCK, 1081 .owner = THIS_MODULE, 1082 .release = vsock_release, 1083 .bind = vsock_bind, 1084 .connect = vsock_dgram_connect, 1085 .socketpair = sock_no_socketpair, 1086 .accept = sock_no_accept, 1087 .getname = vsock_getname, 1088 .poll = vsock_poll, 1089 .ioctl = sock_no_ioctl, 1090 .listen = sock_no_listen, 1091 .shutdown = vsock_shutdown, 1092 .setsockopt = sock_no_setsockopt, 1093 .getsockopt = sock_no_getsockopt, 1094 .sendmsg = vsock_dgram_sendmsg, 1095 .recvmsg = vsock_dgram_recvmsg, 1096 .mmap = sock_no_mmap, 1097 .sendpage = sock_no_sendpage, 1098 }; 1099 1100 static void vsock_connect_timeout(struct work_struct *work) 1101 { 1102 struct sock *sk; 1103 struct vsock_sock *vsk; 1104 1105 vsk = container_of(work, struct vsock_sock, dwork.work); 1106 sk = sk_vsock(vsk); 1107 1108 lock_sock(sk); 1109 if (sk->sk_state == SS_CONNECTING && 1110 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1111 sk->sk_state = SS_UNCONNECTED; 1112 sk->sk_err = ETIMEDOUT; 1113 sk->sk_error_report(sk); 1114 } 1115 release_sock(sk); 1116 1117 sock_put(sk); 1118 } 1119 1120 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1121 int addr_len, int flags) 1122 { 1123 int err; 1124 struct sock *sk; 1125 struct vsock_sock *vsk; 1126 struct sockaddr_vm *remote_addr; 1127 long timeout; 1128 DEFINE_WAIT(wait); 1129 1130 err = 0; 1131 sk = sock->sk; 1132 vsk = vsock_sk(sk); 1133 1134 lock_sock(sk); 1135 1136 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1137 switch (sock->state) { 1138 case SS_CONNECTED: 1139 err = -EISCONN; 1140 goto out; 1141 case SS_DISCONNECTING: 1142 err = -EINVAL; 1143 goto out; 1144 case SS_CONNECTING: 1145 /* This continues on so we can move sock into the SS_CONNECTED 1146 * state once the connection has completed (at which point err 1147 * will be set to zero also). Otherwise, we will either wait 1148 * for the connection or return -EALREADY should this be a 1149 * non-blocking call. 1150 */ 1151 err = -EALREADY; 1152 break; 1153 default: 1154 if ((sk->sk_state == VSOCK_SS_LISTEN) || 1155 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1156 err = -EINVAL; 1157 goto out; 1158 } 1159 1160 /* The hypervisor and well-known contexts do not have socket 1161 * endpoints. 1162 */ 1163 if (!transport->stream_allow(remote_addr->svm_cid, 1164 remote_addr->svm_port)) { 1165 err = -ENETUNREACH; 1166 goto out; 1167 } 1168 1169 /* Set the remote address that we are connecting to. */ 1170 memcpy(&vsk->remote_addr, remote_addr, 1171 sizeof(vsk->remote_addr)); 1172 1173 err = vsock_auto_bind(vsk); 1174 if (err) 1175 goto out; 1176 1177 sk->sk_state = SS_CONNECTING; 1178 1179 err = transport->connect(vsk); 1180 if (err < 0) 1181 goto out; 1182 1183 /* Mark sock as connecting and set the error code to in 1184 * progress in case this is a non-blocking connect. 1185 */ 1186 sock->state = SS_CONNECTING; 1187 err = -EINPROGRESS; 1188 } 1189 1190 /* The receive path will handle all communication until we are able to 1191 * enter the connected state. Here we wait for the connection to be 1192 * completed or a notification of an error. 1193 */ 1194 timeout = vsk->connect_timeout; 1195 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1196 1197 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1198 if (flags & O_NONBLOCK) { 1199 /* If we're not going to block, we schedule a timeout 1200 * function to generate a timeout on the connection 1201 * attempt, in case the peer doesn't respond in a 1202 * timely manner. We hold on to the socket until the 1203 * timeout fires. 1204 */ 1205 sock_hold(sk); 1206 INIT_DELAYED_WORK(&vsk->dwork, 1207 vsock_connect_timeout); 1208 schedule_delayed_work(&vsk->dwork, timeout); 1209 1210 /* Skip ahead to preserve error code set above. */ 1211 goto out_wait; 1212 } 1213 1214 release_sock(sk); 1215 timeout = schedule_timeout(timeout); 1216 lock_sock(sk); 1217 1218 if (signal_pending(current)) { 1219 err = sock_intr_errno(timeout); 1220 sk->sk_state = SS_UNCONNECTED; 1221 sock->state = SS_UNCONNECTED; 1222 goto out_wait; 1223 } else if (timeout == 0) { 1224 err = -ETIMEDOUT; 1225 sk->sk_state = SS_UNCONNECTED; 1226 sock->state = SS_UNCONNECTED; 1227 goto out_wait; 1228 } 1229 1230 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1231 } 1232 1233 if (sk->sk_err) { 1234 err = -sk->sk_err; 1235 sk->sk_state = SS_UNCONNECTED; 1236 sock->state = SS_UNCONNECTED; 1237 } else { 1238 err = 0; 1239 } 1240 1241 out_wait: 1242 finish_wait(sk_sleep(sk), &wait); 1243 out: 1244 release_sock(sk); 1245 return err; 1246 } 1247 1248 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1249 { 1250 struct sock *listener; 1251 int err; 1252 struct sock *connected; 1253 struct vsock_sock *vconnected; 1254 long timeout; 1255 DEFINE_WAIT(wait); 1256 1257 err = 0; 1258 listener = sock->sk; 1259 1260 lock_sock(listener); 1261 1262 if (sock->type != SOCK_STREAM) { 1263 err = -EOPNOTSUPP; 1264 goto out; 1265 } 1266 1267 if (listener->sk_state != VSOCK_SS_LISTEN) { 1268 err = -EINVAL; 1269 goto out; 1270 } 1271 1272 /* Wait for children sockets to appear; these are the new sockets 1273 * created upon connection establishment. 1274 */ 1275 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1276 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1277 1278 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1279 listener->sk_err == 0) { 1280 release_sock(listener); 1281 timeout = schedule_timeout(timeout); 1282 finish_wait(sk_sleep(listener), &wait); 1283 lock_sock(listener); 1284 1285 if (signal_pending(current)) { 1286 err = sock_intr_errno(timeout); 1287 goto out; 1288 } else if (timeout == 0) { 1289 err = -EAGAIN; 1290 goto out; 1291 } 1292 1293 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1294 } 1295 finish_wait(sk_sleep(listener), &wait); 1296 1297 if (listener->sk_err) 1298 err = -listener->sk_err; 1299 1300 if (connected) { 1301 listener->sk_ack_backlog--; 1302 1303 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1304 vconnected = vsock_sk(connected); 1305 1306 /* If the listener socket has received an error, then we should 1307 * reject this socket and return. Note that we simply mark the 1308 * socket rejected, drop our reference, and let the cleanup 1309 * function handle the cleanup; the fact that we found it in 1310 * the listener's accept queue guarantees that the cleanup 1311 * function hasn't run yet. 1312 */ 1313 if (err) { 1314 vconnected->rejected = true; 1315 } else { 1316 newsock->state = SS_CONNECTED; 1317 sock_graft(connected, newsock); 1318 } 1319 1320 release_sock(connected); 1321 sock_put(connected); 1322 } 1323 1324 out: 1325 release_sock(listener); 1326 return err; 1327 } 1328 1329 static int vsock_listen(struct socket *sock, int backlog) 1330 { 1331 int err; 1332 struct sock *sk; 1333 struct vsock_sock *vsk; 1334 1335 sk = sock->sk; 1336 1337 lock_sock(sk); 1338 1339 if (sock->type != SOCK_STREAM) { 1340 err = -EOPNOTSUPP; 1341 goto out; 1342 } 1343 1344 if (sock->state != SS_UNCONNECTED) { 1345 err = -EINVAL; 1346 goto out; 1347 } 1348 1349 vsk = vsock_sk(sk); 1350 1351 if (!vsock_addr_bound(&vsk->local_addr)) { 1352 err = -EINVAL; 1353 goto out; 1354 } 1355 1356 sk->sk_max_ack_backlog = backlog; 1357 sk->sk_state = VSOCK_SS_LISTEN; 1358 1359 err = 0; 1360 1361 out: 1362 release_sock(sk); 1363 return err; 1364 } 1365 1366 static int vsock_stream_setsockopt(struct socket *sock, 1367 int level, 1368 int optname, 1369 char __user *optval, 1370 unsigned int optlen) 1371 { 1372 int err; 1373 struct sock *sk; 1374 struct vsock_sock *vsk; 1375 u64 val; 1376 1377 if (level != AF_VSOCK) 1378 return -ENOPROTOOPT; 1379 1380 #define COPY_IN(_v) \ 1381 do { \ 1382 if (optlen < sizeof(_v)) { \ 1383 err = -EINVAL; \ 1384 goto exit; \ 1385 } \ 1386 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1387 err = -EFAULT; \ 1388 goto exit; \ 1389 } \ 1390 } while (0) 1391 1392 err = 0; 1393 sk = sock->sk; 1394 vsk = vsock_sk(sk); 1395 1396 lock_sock(sk); 1397 1398 switch (optname) { 1399 case SO_VM_SOCKETS_BUFFER_SIZE: 1400 COPY_IN(val); 1401 transport->set_buffer_size(vsk, val); 1402 break; 1403 1404 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1405 COPY_IN(val); 1406 transport->set_max_buffer_size(vsk, val); 1407 break; 1408 1409 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1410 COPY_IN(val); 1411 transport->set_min_buffer_size(vsk, val); 1412 break; 1413 1414 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1415 struct timeval tv; 1416 COPY_IN(tv); 1417 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1418 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1419 vsk->connect_timeout = tv.tv_sec * HZ + 1420 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1421 if (vsk->connect_timeout == 0) 1422 vsk->connect_timeout = 1423 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1424 1425 } else { 1426 err = -ERANGE; 1427 } 1428 break; 1429 } 1430 1431 default: 1432 err = -ENOPROTOOPT; 1433 break; 1434 } 1435 1436 #undef COPY_IN 1437 1438 exit: 1439 release_sock(sk); 1440 return err; 1441 } 1442 1443 static int vsock_stream_getsockopt(struct socket *sock, 1444 int level, int optname, 1445 char __user *optval, 1446 int __user *optlen) 1447 { 1448 int err; 1449 int len; 1450 struct sock *sk; 1451 struct vsock_sock *vsk; 1452 u64 val; 1453 1454 if (level != AF_VSOCK) 1455 return -ENOPROTOOPT; 1456 1457 err = get_user(len, optlen); 1458 if (err != 0) 1459 return err; 1460 1461 #define COPY_OUT(_v) \ 1462 do { \ 1463 if (len < sizeof(_v)) \ 1464 return -EINVAL; \ 1465 \ 1466 len = sizeof(_v); \ 1467 if (copy_to_user(optval, &_v, len) != 0) \ 1468 return -EFAULT; \ 1469 \ 1470 } while (0) 1471 1472 err = 0; 1473 sk = sock->sk; 1474 vsk = vsock_sk(sk); 1475 1476 switch (optname) { 1477 case SO_VM_SOCKETS_BUFFER_SIZE: 1478 val = transport->get_buffer_size(vsk); 1479 COPY_OUT(val); 1480 break; 1481 1482 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1483 val = transport->get_max_buffer_size(vsk); 1484 COPY_OUT(val); 1485 break; 1486 1487 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1488 val = transport->get_min_buffer_size(vsk); 1489 COPY_OUT(val); 1490 break; 1491 1492 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1493 struct timeval tv; 1494 tv.tv_sec = vsk->connect_timeout / HZ; 1495 tv.tv_usec = 1496 (vsk->connect_timeout - 1497 tv.tv_sec * HZ) * (1000000 / HZ); 1498 COPY_OUT(tv); 1499 break; 1500 } 1501 default: 1502 return -ENOPROTOOPT; 1503 } 1504 1505 err = put_user(len, optlen); 1506 if (err != 0) 1507 return -EFAULT; 1508 1509 #undef COPY_OUT 1510 1511 return 0; 1512 } 1513 1514 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1515 size_t len) 1516 { 1517 struct sock *sk; 1518 struct vsock_sock *vsk; 1519 ssize_t total_written; 1520 long timeout; 1521 int err; 1522 struct vsock_transport_send_notify_data send_data; 1523 1524 DEFINE_WAIT(wait); 1525 1526 sk = sock->sk; 1527 vsk = vsock_sk(sk); 1528 total_written = 0; 1529 err = 0; 1530 1531 if (msg->msg_flags & MSG_OOB) 1532 return -EOPNOTSUPP; 1533 1534 lock_sock(sk); 1535 1536 /* Callers should not provide a destination with stream sockets. */ 1537 if (msg->msg_namelen) { 1538 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1539 goto out; 1540 } 1541 1542 /* Send data only if both sides are not shutdown in the direction. */ 1543 if (sk->sk_shutdown & SEND_SHUTDOWN || 1544 vsk->peer_shutdown & RCV_SHUTDOWN) { 1545 err = -EPIPE; 1546 goto out; 1547 } 1548 1549 if (sk->sk_state != SS_CONNECTED || 1550 !vsock_addr_bound(&vsk->local_addr)) { 1551 err = -ENOTCONN; 1552 goto out; 1553 } 1554 1555 if (!vsock_addr_bound(&vsk->remote_addr)) { 1556 err = -EDESTADDRREQ; 1557 goto out; 1558 } 1559 1560 /* Wait for room in the produce queue to enqueue our user's data. */ 1561 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1562 1563 err = transport->notify_send_init(vsk, &send_data); 1564 if (err < 0) 1565 goto out; 1566 1567 1568 while (total_written < len) { 1569 ssize_t written; 1570 1571 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1572 while (vsock_stream_has_space(vsk) == 0 && 1573 sk->sk_err == 0 && 1574 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1575 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1576 1577 /* Don't wait for non-blocking sockets. */ 1578 if (timeout == 0) { 1579 err = -EAGAIN; 1580 finish_wait(sk_sleep(sk), &wait); 1581 goto out_err; 1582 } 1583 1584 err = transport->notify_send_pre_block(vsk, &send_data); 1585 if (err < 0) { 1586 finish_wait(sk_sleep(sk), &wait); 1587 goto out_err; 1588 } 1589 1590 release_sock(sk); 1591 timeout = schedule_timeout(timeout); 1592 lock_sock(sk); 1593 if (signal_pending(current)) { 1594 err = sock_intr_errno(timeout); 1595 finish_wait(sk_sleep(sk), &wait); 1596 goto out_err; 1597 } else if (timeout == 0) { 1598 err = -EAGAIN; 1599 finish_wait(sk_sleep(sk), &wait); 1600 goto out_err; 1601 } 1602 1603 prepare_to_wait(sk_sleep(sk), &wait, 1604 TASK_INTERRUPTIBLE); 1605 } 1606 finish_wait(sk_sleep(sk), &wait); 1607 1608 /* These checks occur both as part of and after the loop 1609 * conditional since we need to check before and after 1610 * sleeping. 1611 */ 1612 if (sk->sk_err) { 1613 err = -sk->sk_err; 1614 goto out_err; 1615 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1616 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1617 err = -EPIPE; 1618 goto out_err; 1619 } 1620 1621 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1622 if (err < 0) 1623 goto out_err; 1624 1625 /* Note that enqueue will only write as many bytes as are free 1626 * in the produce queue, so we don't need to ensure len is 1627 * smaller than the queue size. It is the caller's 1628 * responsibility to check how many bytes we were able to send. 1629 */ 1630 1631 written = transport->stream_enqueue( 1632 vsk, msg, 1633 len - total_written); 1634 if (written < 0) { 1635 err = -ENOMEM; 1636 goto out_err; 1637 } 1638 1639 total_written += written; 1640 1641 err = transport->notify_send_post_enqueue( 1642 vsk, written, &send_data); 1643 if (err < 0) 1644 goto out_err; 1645 1646 } 1647 1648 out_err: 1649 if (total_written > 0) 1650 err = total_written; 1651 out: 1652 release_sock(sk); 1653 return err; 1654 } 1655 1656 1657 static int 1658 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1659 int flags) 1660 { 1661 struct sock *sk; 1662 struct vsock_sock *vsk; 1663 int err; 1664 size_t target; 1665 ssize_t copied; 1666 long timeout; 1667 struct vsock_transport_recv_notify_data recv_data; 1668 1669 DEFINE_WAIT(wait); 1670 1671 sk = sock->sk; 1672 vsk = vsock_sk(sk); 1673 err = 0; 1674 1675 lock_sock(sk); 1676 1677 if (sk->sk_state != SS_CONNECTED) { 1678 /* Recvmsg is supposed to return 0 if a peer performs an 1679 * orderly shutdown. Differentiate between that case and when a 1680 * peer has not connected or a local shutdown occured with the 1681 * SOCK_DONE flag. 1682 */ 1683 if (sock_flag(sk, SOCK_DONE)) 1684 err = 0; 1685 else 1686 err = -ENOTCONN; 1687 1688 goto out; 1689 } 1690 1691 if (flags & MSG_OOB) { 1692 err = -EOPNOTSUPP; 1693 goto out; 1694 } 1695 1696 /* We don't check peer_shutdown flag here since peer may actually shut 1697 * down, but there can be data in the queue that a local socket can 1698 * receive. 1699 */ 1700 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1701 err = 0; 1702 goto out; 1703 } 1704 1705 /* It is valid on Linux to pass in a zero-length receive buffer. This 1706 * is not an error. We may as well bail out now. 1707 */ 1708 if (!len) { 1709 err = 0; 1710 goto out; 1711 } 1712 1713 /* We must not copy less than target bytes into the user's buffer 1714 * before returning successfully, so we wait for the consume queue to 1715 * have that much data to consume before dequeueing. Note that this 1716 * makes it impossible to handle cases where target is greater than the 1717 * queue size. 1718 */ 1719 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1720 if (target >= transport->stream_rcvhiwat(vsk)) { 1721 err = -ENOMEM; 1722 goto out; 1723 } 1724 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1725 copied = 0; 1726 1727 err = transport->notify_recv_init(vsk, target, &recv_data); 1728 if (err < 0) 1729 goto out; 1730 1731 1732 while (1) { 1733 s64 ready; 1734 1735 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1736 ready = vsock_stream_has_data(vsk); 1737 1738 if (ready == 0) { 1739 if (sk->sk_err != 0 || 1740 (sk->sk_shutdown & RCV_SHUTDOWN) || 1741 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1742 finish_wait(sk_sleep(sk), &wait); 1743 break; 1744 } 1745 /* Don't wait for non-blocking sockets. */ 1746 if (timeout == 0) { 1747 err = -EAGAIN; 1748 finish_wait(sk_sleep(sk), &wait); 1749 break; 1750 } 1751 1752 err = transport->notify_recv_pre_block( 1753 vsk, target, &recv_data); 1754 if (err < 0) { 1755 finish_wait(sk_sleep(sk), &wait); 1756 break; 1757 } 1758 release_sock(sk); 1759 timeout = schedule_timeout(timeout); 1760 lock_sock(sk); 1761 1762 if (signal_pending(current)) { 1763 err = sock_intr_errno(timeout); 1764 finish_wait(sk_sleep(sk), &wait); 1765 break; 1766 } else if (timeout == 0) { 1767 err = -EAGAIN; 1768 finish_wait(sk_sleep(sk), &wait); 1769 break; 1770 } 1771 } else { 1772 ssize_t read; 1773 1774 finish_wait(sk_sleep(sk), &wait); 1775 1776 if (ready < 0) { 1777 /* Invalid queue pair content. XXX This should 1778 * be changed to a connection reset in a later 1779 * change. 1780 */ 1781 1782 err = -ENOMEM; 1783 goto out; 1784 } 1785 1786 err = transport->notify_recv_pre_dequeue( 1787 vsk, target, &recv_data); 1788 if (err < 0) 1789 break; 1790 1791 read = transport->stream_dequeue( 1792 vsk, msg, 1793 len - copied, flags); 1794 if (read < 0) { 1795 err = -ENOMEM; 1796 break; 1797 } 1798 1799 copied += read; 1800 1801 err = transport->notify_recv_post_dequeue( 1802 vsk, target, read, 1803 !(flags & MSG_PEEK), &recv_data); 1804 if (err < 0) 1805 goto out; 1806 1807 if (read >= target || flags & MSG_PEEK) 1808 break; 1809 1810 target -= read; 1811 } 1812 } 1813 1814 if (sk->sk_err) 1815 err = -sk->sk_err; 1816 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1817 err = 0; 1818 1819 if (copied > 0) 1820 err = copied; 1821 1822 out: 1823 release_sock(sk); 1824 return err; 1825 } 1826 1827 static const struct proto_ops vsock_stream_ops = { 1828 .family = PF_VSOCK, 1829 .owner = THIS_MODULE, 1830 .release = vsock_release, 1831 .bind = vsock_bind, 1832 .connect = vsock_stream_connect, 1833 .socketpair = sock_no_socketpair, 1834 .accept = vsock_accept, 1835 .getname = vsock_getname, 1836 .poll = vsock_poll, 1837 .ioctl = sock_no_ioctl, 1838 .listen = vsock_listen, 1839 .shutdown = vsock_shutdown, 1840 .setsockopt = vsock_stream_setsockopt, 1841 .getsockopt = vsock_stream_getsockopt, 1842 .sendmsg = vsock_stream_sendmsg, 1843 .recvmsg = vsock_stream_recvmsg, 1844 .mmap = sock_no_mmap, 1845 .sendpage = sock_no_sendpage, 1846 }; 1847 1848 static int vsock_create(struct net *net, struct socket *sock, 1849 int protocol, int kern) 1850 { 1851 if (!sock) 1852 return -EINVAL; 1853 1854 if (protocol && protocol != PF_VSOCK) 1855 return -EPROTONOSUPPORT; 1856 1857 switch (sock->type) { 1858 case SOCK_DGRAM: 1859 sock->ops = &vsock_dgram_ops; 1860 break; 1861 case SOCK_STREAM: 1862 sock->ops = &vsock_stream_ops; 1863 break; 1864 default: 1865 return -ESOCKTNOSUPPORT; 1866 } 1867 1868 sock->state = SS_UNCONNECTED; 1869 1870 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1871 } 1872 1873 static const struct net_proto_family vsock_family_ops = { 1874 .family = AF_VSOCK, 1875 .create = vsock_create, 1876 .owner = THIS_MODULE, 1877 }; 1878 1879 static long vsock_dev_do_ioctl(struct file *filp, 1880 unsigned int cmd, void __user *ptr) 1881 { 1882 u32 __user *p = ptr; 1883 int retval = 0; 1884 1885 switch (cmd) { 1886 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1887 if (put_user(transport->get_local_cid(), p) != 0) 1888 retval = -EFAULT; 1889 break; 1890 1891 default: 1892 pr_err("Unknown ioctl %d\n", cmd); 1893 retval = -EINVAL; 1894 } 1895 1896 return retval; 1897 } 1898 1899 static long vsock_dev_ioctl(struct file *filp, 1900 unsigned int cmd, unsigned long arg) 1901 { 1902 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1903 } 1904 1905 #ifdef CONFIG_COMPAT 1906 static long vsock_dev_compat_ioctl(struct file *filp, 1907 unsigned int cmd, unsigned long arg) 1908 { 1909 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1910 } 1911 #endif 1912 1913 static const struct file_operations vsock_device_ops = { 1914 .owner = THIS_MODULE, 1915 .unlocked_ioctl = vsock_dev_ioctl, 1916 #ifdef CONFIG_COMPAT 1917 .compat_ioctl = vsock_dev_compat_ioctl, 1918 #endif 1919 .open = nonseekable_open, 1920 }; 1921 1922 static struct miscdevice vsock_device = { 1923 .name = "vsock", 1924 .fops = &vsock_device_ops, 1925 }; 1926 1927 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1928 { 1929 int err = mutex_lock_interruptible(&vsock_register_mutex); 1930 1931 if (err) 1932 return err; 1933 1934 if (transport) { 1935 err = -EBUSY; 1936 goto err_busy; 1937 } 1938 1939 /* Transport must be the owner of the protocol so that it can't 1940 * unload while there are open sockets. 1941 */ 1942 vsock_proto.owner = owner; 1943 transport = t; 1944 1945 vsock_init_tables(); 1946 1947 vsock_device.minor = MISC_DYNAMIC_MINOR; 1948 err = misc_register(&vsock_device); 1949 if (err) { 1950 pr_err("Failed to register misc device\n"); 1951 goto err_reset_transport; 1952 } 1953 1954 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1955 if (err) { 1956 pr_err("Cannot register vsock protocol\n"); 1957 goto err_deregister_misc; 1958 } 1959 1960 err = sock_register(&vsock_family_ops); 1961 if (err) { 1962 pr_err("could not register af_vsock (%d) address family: %d\n", 1963 AF_VSOCK, err); 1964 goto err_unregister_proto; 1965 } 1966 1967 mutex_unlock(&vsock_register_mutex); 1968 return 0; 1969 1970 err_unregister_proto: 1971 proto_unregister(&vsock_proto); 1972 err_deregister_misc: 1973 misc_deregister(&vsock_device); 1974 err_reset_transport: 1975 transport = NULL; 1976 err_busy: 1977 mutex_unlock(&vsock_register_mutex); 1978 return err; 1979 } 1980 EXPORT_SYMBOL_GPL(__vsock_core_init); 1981 1982 void vsock_core_exit(void) 1983 { 1984 mutex_lock(&vsock_register_mutex); 1985 1986 misc_deregister(&vsock_device); 1987 sock_unregister(AF_VSOCK); 1988 proto_unregister(&vsock_proto); 1989 1990 /* We do not want the assignment below re-ordered. */ 1991 mb(); 1992 transport = NULL; 1993 1994 mutex_unlock(&vsock_register_mutex); 1995 } 1996 EXPORT_SYMBOL_GPL(vsock_core_exit); 1997 1998 MODULE_AUTHOR("VMware, Inc."); 1999 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2000 MODULE_VERSION("1.0.1.0-k"); 2001 MODULE_LICENSE("GPL v2"); 2002