xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 4f205687)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the VSOCK_SS_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  */
86 
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
109 
110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
111 static void vsock_sk_destruct(struct sock *sk);
112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
113 
114 /* Protocol family. */
115 static struct proto vsock_proto = {
116 	.name = "AF_VSOCK",
117 	.owner = THIS_MODULE,
118 	.obj_size = sizeof(struct vsock_sock),
119 };
120 
121 /* The default peer timeout indicates how long we will wait for a peer response
122  * to a control message.
123  */
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
125 
126 static const struct vsock_transport *transport;
127 static DEFINE_MUTEX(vsock_register_mutex);
128 
129 /**** EXPORTS ****/
130 
131 /* Get the ID of the local context.  This is transport dependent. */
132 
133 int vm_sockets_get_local_cid(void)
134 {
135 	return transport->get_local_cid();
136 }
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
138 
139 /**** UTILS ****/
140 
141 /* Each bound VSocket is stored in the bind hash table and each connected
142  * VSocket is stored in the connected hash table.
143  *
144  * Unbound sockets are all put on the same list attached to the end of the hash
145  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
146  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147  * represents the list that addr hashes to).
148  *
149  * Specifically, we initialize the vsock_bind_table array to a size of
150  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
153  * mods with VSOCK_HASH_SIZE to ensure this.
154  */
155 #define VSOCK_HASH_SIZE         251
156 #define MAX_PORT_RETRIES        24
157 
158 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
161 
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst)				\
164 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst)		\
166 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk)				\
168 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
169 
170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
172 static DEFINE_SPINLOCK(vsock_table_lock);
173 
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock *vsk)
176 {
177 	struct sock *sk = sk_vsock(vsk);
178 	struct sockaddr_vm local_addr;
179 
180 	if (vsock_addr_bound(&vsk->local_addr))
181 		return 0;
182 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
183 	return __vsock_bind(sk, &local_addr);
184 }
185 
186 static void vsock_init_tables(void)
187 {
188 	int i;
189 
190 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
191 		INIT_LIST_HEAD(&vsock_bind_table[i]);
192 
193 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
194 		INIT_LIST_HEAD(&vsock_connected_table[i]);
195 }
196 
197 static void __vsock_insert_bound(struct list_head *list,
198 				 struct vsock_sock *vsk)
199 {
200 	sock_hold(&vsk->sk);
201 	list_add(&vsk->bound_table, list);
202 }
203 
204 static void __vsock_insert_connected(struct list_head *list,
205 				     struct vsock_sock *vsk)
206 {
207 	sock_hold(&vsk->sk);
208 	list_add(&vsk->connected_table, list);
209 }
210 
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
212 {
213 	list_del_init(&vsk->bound_table);
214 	sock_put(&vsk->sk);
215 }
216 
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->connected_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
224 {
225 	struct vsock_sock *vsk;
226 
227 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 		if (addr->svm_port == vsk->local_addr.svm_port)
229 			return sk_vsock(vsk);
230 
231 	return NULL;
232 }
233 
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 						  struct sockaddr_vm *dst)
236 {
237 	struct vsock_sock *vsk;
238 
239 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 			    connected_table) {
241 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 		    dst->svm_port == vsk->local_addr.svm_port) {
243 			return sk_vsock(vsk);
244 		}
245 	}
246 
247 	return NULL;
248 }
249 
250 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
251 {
252 	return !list_empty(&vsk->bound_table);
253 }
254 
255 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
256 {
257 	return !list_empty(&vsk->connected_table);
258 }
259 
260 static void vsock_insert_unbound(struct vsock_sock *vsk)
261 {
262 	spin_lock_bh(&vsock_table_lock);
263 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
264 	spin_unlock_bh(&vsock_table_lock);
265 }
266 
267 void vsock_insert_connected(struct vsock_sock *vsk)
268 {
269 	struct list_head *list = vsock_connected_sockets(
270 		&vsk->remote_addr, &vsk->local_addr);
271 
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_connected(list, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 EXPORT_SYMBOL_GPL(vsock_insert_connected);
277 
278 void vsock_remove_bound(struct vsock_sock *vsk)
279 {
280 	spin_lock_bh(&vsock_table_lock);
281 	__vsock_remove_bound(vsk);
282 	spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_remove_bound);
285 
286 void vsock_remove_connected(struct vsock_sock *vsk)
287 {
288 	spin_lock_bh(&vsock_table_lock);
289 	__vsock_remove_connected(vsk);
290 	spin_unlock_bh(&vsock_table_lock);
291 }
292 EXPORT_SYMBOL_GPL(vsock_remove_connected);
293 
294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
295 {
296 	struct sock *sk;
297 
298 	spin_lock_bh(&vsock_table_lock);
299 	sk = __vsock_find_bound_socket(addr);
300 	if (sk)
301 		sock_hold(sk);
302 
303 	spin_unlock_bh(&vsock_table_lock);
304 
305 	return sk;
306 }
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
308 
309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
310 					 struct sockaddr_vm *dst)
311 {
312 	struct sock *sk;
313 
314 	spin_lock_bh(&vsock_table_lock);
315 	sk = __vsock_find_connected_socket(src, dst);
316 	if (sk)
317 		sock_hold(sk);
318 
319 	spin_unlock_bh(&vsock_table_lock);
320 
321 	return sk;
322 }
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
324 
325 static bool vsock_in_bound_table(struct vsock_sock *vsk)
326 {
327 	bool ret;
328 
329 	spin_lock_bh(&vsock_table_lock);
330 	ret = __vsock_in_bound_table(vsk);
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return ret;
334 }
335 
336 static bool vsock_in_connected_table(struct vsock_sock *vsk)
337 {
338 	bool ret;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 	ret = __vsock_in_connected_table(vsk);
342 	spin_unlock_bh(&vsock_table_lock);
343 
344 	return ret;
345 }
346 
347 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
348 {
349 	int i;
350 
351 	spin_lock_bh(&vsock_table_lock);
352 
353 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
354 		struct vsock_sock *vsk;
355 		list_for_each_entry(vsk, &vsock_connected_table[i],
356 				    connected_table)
357 			fn(sk_vsock(vsk));
358 	}
359 
360 	spin_unlock_bh(&vsock_table_lock);
361 }
362 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
363 
364 void vsock_add_pending(struct sock *listener, struct sock *pending)
365 {
366 	struct vsock_sock *vlistener;
367 	struct vsock_sock *vpending;
368 
369 	vlistener = vsock_sk(listener);
370 	vpending = vsock_sk(pending);
371 
372 	sock_hold(pending);
373 	sock_hold(listener);
374 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
375 }
376 EXPORT_SYMBOL_GPL(vsock_add_pending);
377 
378 void vsock_remove_pending(struct sock *listener, struct sock *pending)
379 {
380 	struct vsock_sock *vpending = vsock_sk(pending);
381 
382 	list_del_init(&vpending->pending_links);
383 	sock_put(listener);
384 	sock_put(pending);
385 }
386 EXPORT_SYMBOL_GPL(vsock_remove_pending);
387 
388 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
389 {
390 	struct vsock_sock *vlistener;
391 	struct vsock_sock *vconnected;
392 
393 	vlistener = vsock_sk(listener);
394 	vconnected = vsock_sk(connected);
395 
396 	sock_hold(connected);
397 	sock_hold(listener);
398 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
399 }
400 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
401 
402 static struct sock *vsock_dequeue_accept(struct sock *listener)
403 {
404 	struct vsock_sock *vlistener;
405 	struct vsock_sock *vconnected;
406 
407 	vlistener = vsock_sk(listener);
408 
409 	if (list_empty(&vlistener->accept_queue))
410 		return NULL;
411 
412 	vconnected = list_entry(vlistener->accept_queue.next,
413 				struct vsock_sock, accept_queue);
414 
415 	list_del_init(&vconnected->accept_queue);
416 	sock_put(listener);
417 	/* The caller will need a reference on the connected socket so we let
418 	 * it call sock_put().
419 	 */
420 
421 	return sk_vsock(vconnected);
422 }
423 
424 static bool vsock_is_accept_queue_empty(struct sock *sk)
425 {
426 	struct vsock_sock *vsk = vsock_sk(sk);
427 	return list_empty(&vsk->accept_queue);
428 }
429 
430 static bool vsock_is_pending(struct sock *sk)
431 {
432 	struct vsock_sock *vsk = vsock_sk(sk);
433 	return !list_empty(&vsk->pending_links);
434 }
435 
436 static int vsock_send_shutdown(struct sock *sk, int mode)
437 {
438 	return transport->shutdown(vsock_sk(sk), mode);
439 }
440 
441 void vsock_pending_work(struct work_struct *work)
442 {
443 	struct sock *sk;
444 	struct sock *listener;
445 	struct vsock_sock *vsk;
446 	bool cleanup;
447 
448 	vsk = container_of(work, struct vsock_sock, dwork.work);
449 	sk = sk_vsock(vsk);
450 	listener = vsk->listener;
451 	cleanup = true;
452 
453 	lock_sock(listener);
454 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
455 
456 	if (vsock_is_pending(sk)) {
457 		vsock_remove_pending(listener, sk);
458 	} else if (!vsk->rejected) {
459 		/* We are not on the pending list and accept() did not reject
460 		 * us, so we must have been accepted by our user process.  We
461 		 * just need to drop our references to the sockets and be on
462 		 * our way.
463 		 */
464 		cleanup = false;
465 		goto out;
466 	}
467 
468 	listener->sk_ack_backlog--;
469 
470 	/* We need to remove ourself from the global connected sockets list so
471 	 * incoming packets can't find this socket, and to reduce the reference
472 	 * count.
473 	 */
474 	if (vsock_in_connected_table(vsk))
475 		vsock_remove_connected(vsk);
476 
477 	sk->sk_state = SS_FREE;
478 
479 out:
480 	release_sock(sk);
481 	release_sock(listener);
482 	if (cleanup)
483 		sock_put(sk);
484 
485 	sock_put(sk);
486 	sock_put(listener);
487 }
488 EXPORT_SYMBOL_GPL(vsock_pending_work);
489 
490 /**** SOCKET OPERATIONS ****/
491 
492 static int __vsock_bind_stream(struct vsock_sock *vsk,
493 			       struct sockaddr_vm *addr)
494 {
495 	static u32 port = LAST_RESERVED_PORT + 1;
496 	struct sockaddr_vm new_addr;
497 
498 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
499 
500 	if (addr->svm_port == VMADDR_PORT_ANY) {
501 		bool found = false;
502 		unsigned int i;
503 
504 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
505 			if (port <= LAST_RESERVED_PORT)
506 				port = LAST_RESERVED_PORT + 1;
507 
508 			new_addr.svm_port = port++;
509 
510 			if (!__vsock_find_bound_socket(&new_addr)) {
511 				found = true;
512 				break;
513 			}
514 		}
515 
516 		if (!found)
517 			return -EADDRNOTAVAIL;
518 	} else {
519 		/* If port is in reserved range, ensure caller
520 		 * has necessary privileges.
521 		 */
522 		if (addr->svm_port <= LAST_RESERVED_PORT &&
523 		    !capable(CAP_NET_BIND_SERVICE)) {
524 			return -EACCES;
525 		}
526 
527 		if (__vsock_find_bound_socket(&new_addr))
528 			return -EADDRINUSE;
529 	}
530 
531 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
532 
533 	/* Remove stream sockets from the unbound list and add them to the hash
534 	 * table for easy lookup by its address.  The unbound list is simply an
535 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
536 	 */
537 	__vsock_remove_bound(vsk);
538 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
539 
540 	return 0;
541 }
542 
543 static int __vsock_bind_dgram(struct vsock_sock *vsk,
544 			      struct sockaddr_vm *addr)
545 {
546 	return transport->dgram_bind(vsk, addr);
547 }
548 
549 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
550 {
551 	struct vsock_sock *vsk = vsock_sk(sk);
552 	u32 cid;
553 	int retval;
554 
555 	/* First ensure this socket isn't already bound. */
556 	if (vsock_addr_bound(&vsk->local_addr))
557 		return -EINVAL;
558 
559 	/* Now bind to the provided address or select appropriate values if
560 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
561 	 * like AF_INET prevents binding to a non-local IP address (in most
562 	 * cases), we only allow binding to the local CID.
563 	 */
564 	cid = transport->get_local_cid();
565 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
566 		return -EADDRNOTAVAIL;
567 
568 	switch (sk->sk_socket->type) {
569 	case SOCK_STREAM:
570 		spin_lock_bh(&vsock_table_lock);
571 		retval = __vsock_bind_stream(vsk, addr);
572 		spin_unlock_bh(&vsock_table_lock);
573 		break;
574 
575 	case SOCK_DGRAM:
576 		retval = __vsock_bind_dgram(vsk, addr);
577 		break;
578 
579 	default:
580 		retval = -EINVAL;
581 		break;
582 	}
583 
584 	return retval;
585 }
586 
587 struct sock *__vsock_create(struct net *net,
588 			    struct socket *sock,
589 			    struct sock *parent,
590 			    gfp_t priority,
591 			    unsigned short type,
592 			    int kern)
593 {
594 	struct sock *sk;
595 	struct vsock_sock *psk;
596 	struct vsock_sock *vsk;
597 
598 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
599 	if (!sk)
600 		return NULL;
601 
602 	sock_init_data(sock, sk);
603 
604 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
605 	 * non-NULL. We make sure that our sockets always have a type by
606 	 * setting it here if needed.
607 	 */
608 	if (!sock)
609 		sk->sk_type = type;
610 
611 	vsk = vsock_sk(sk);
612 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
613 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
614 
615 	sk->sk_destruct = vsock_sk_destruct;
616 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
617 	sk->sk_state = 0;
618 	sock_reset_flag(sk, SOCK_DONE);
619 
620 	INIT_LIST_HEAD(&vsk->bound_table);
621 	INIT_LIST_HEAD(&vsk->connected_table);
622 	vsk->listener = NULL;
623 	INIT_LIST_HEAD(&vsk->pending_links);
624 	INIT_LIST_HEAD(&vsk->accept_queue);
625 	vsk->rejected = false;
626 	vsk->sent_request = false;
627 	vsk->ignore_connecting_rst = false;
628 	vsk->peer_shutdown = 0;
629 
630 	psk = parent ? vsock_sk(parent) : NULL;
631 	if (parent) {
632 		vsk->trusted = psk->trusted;
633 		vsk->owner = get_cred(psk->owner);
634 		vsk->connect_timeout = psk->connect_timeout;
635 	} else {
636 		vsk->trusted = capable(CAP_NET_ADMIN);
637 		vsk->owner = get_current_cred();
638 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
639 	}
640 
641 	if (transport->init(vsk, psk) < 0) {
642 		sk_free(sk);
643 		return NULL;
644 	}
645 
646 	if (sock)
647 		vsock_insert_unbound(vsk);
648 
649 	return sk;
650 }
651 EXPORT_SYMBOL_GPL(__vsock_create);
652 
653 static void __vsock_release(struct sock *sk)
654 {
655 	if (sk) {
656 		struct sk_buff *skb;
657 		struct sock *pending;
658 		struct vsock_sock *vsk;
659 
660 		vsk = vsock_sk(sk);
661 		pending = NULL;	/* Compiler warning. */
662 
663 		if (vsock_in_bound_table(vsk))
664 			vsock_remove_bound(vsk);
665 
666 		if (vsock_in_connected_table(vsk))
667 			vsock_remove_connected(vsk);
668 
669 		transport->release(vsk);
670 
671 		lock_sock(sk);
672 		sock_orphan(sk);
673 		sk->sk_shutdown = SHUTDOWN_MASK;
674 
675 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
676 			kfree_skb(skb);
677 
678 		/* Clean up any sockets that never were accepted. */
679 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
680 			__vsock_release(pending);
681 			sock_put(pending);
682 		}
683 
684 		release_sock(sk);
685 		sock_put(sk);
686 	}
687 }
688 
689 static void vsock_sk_destruct(struct sock *sk)
690 {
691 	struct vsock_sock *vsk = vsock_sk(sk);
692 
693 	transport->destruct(vsk);
694 
695 	/* When clearing these addresses, there's no need to set the family and
696 	 * possibly register the address family with the kernel.
697 	 */
698 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
699 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
700 
701 	put_cred(vsk->owner);
702 }
703 
704 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
705 {
706 	int err;
707 
708 	err = sock_queue_rcv_skb(sk, skb);
709 	if (err)
710 		kfree_skb(skb);
711 
712 	return err;
713 }
714 
715 s64 vsock_stream_has_data(struct vsock_sock *vsk)
716 {
717 	return transport->stream_has_data(vsk);
718 }
719 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
720 
721 s64 vsock_stream_has_space(struct vsock_sock *vsk)
722 {
723 	return transport->stream_has_space(vsk);
724 }
725 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
726 
727 static int vsock_release(struct socket *sock)
728 {
729 	__vsock_release(sock->sk);
730 	sock->sk = NULL;
731 	sock->state = SS_FREE;
732 
733 	return 0;
734 }
735 
736 static int
737 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
738 {
739 	int err;
740 	struct sock *sk;
741 	struct sockaddr_vm *vm_addr;
742 
743 	sk = sock->sk;
744 
745 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
746 		return -EINVAL;
747 
748 	lock_sock(sk);
749 	err = __vsock_bind(sk, vm_addr);
750 	release_sock(sk);
751 
752 	return err;
753 }
754 
755 static int vsock_getname(struct socket *sock,
756 			 struct sockaddr *addr, int *addr_len, int peer)
757 {
758 	int err;
759 	struct sock *sk;
760 	struct vsock_sock *vsk;
761 	struct sockaddr_vm *vm_addr;
762 
763 	sk = sock->sk;
764 	vsk = vsock_sk(sk);
765 	err = 0;
766 
767 	lock_sock(sk);
768 
769 	if (peer) {
770 		if (sock->state != SS_CONNECTED) {
771 			err = -ENOTCONN;
772 			goto out;
773 		}
774 		vm_addr = &vsk->remote_addr;
775 	} else {
776 		vm_addr = &vsk->local_addr;
777 	}
778 
779 	if (!vm_addr) {
780 		err = -EINVAL;
781 		goto out;
782 	}
783 
784 	/* sys_getsockname() and sys_getpeername() pass us a
785 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
786 	 * that macro is defined in socket.c instead of .h, so we hardcode its
787 	 * value here.
788 	 */
789 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
790 	memcpy(addr, vm_addr, sizeof(*vm_addr));
791 	*addr_len = sizeof(*vm_addr);
792 
793 out:
794 	release_sock(sk);
795 	return err;
796 }
797 
798 static int vsock_shutdown(struct socket *sock, int mode)
799 {
800 	int err;
801 	struct sock *sk;
802 
803 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
804 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
805 	 * here like the other address families do.  Note also that the
806 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
807 	 * which is what we want.
808 	 */
809 	mode++;
810 
811 	if ((mode & ~SHUTDOWN_MASK) || !mode)
812 		return -EINVAL;
813 
814 	/* If this is a STREAM socket and it is not connected then bail out
815 	 * immediately.  If it is a DGRAM socket then we must first kick the
816 	 * socket so that it wakes up from any sleeping calls, for example
817 	 * recv(), and then afterwards return the error.
818 	 */
819 
820 	sk = sock->sk;
821 	if (sock->state == SS_UNCONNECTED) {
822 		err = -ENOTCONN;
823 		if (sk->sk_type == SOCK_STREAM)
824 			return err;
825 	} else {
826 		sock->state = SS_DISCONNECTING;
827 		err = 0;
828 	}
829 
830 	/* Receive and send shutdowns are treated alike. */
831 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
832 	if (mode) {
833 		lock_sock(sk);
834 		sk->sk_shutdown |= mode;
835 		sk->sk_state_change(sk);
836 		release_sock(sk);
837 
838 		if (sk->sk_type == SOCK_STREAM) {
839 			sock_reset_flag(sk, SOCK_DONE);
840 			vsock_send_shutdown(sk, mode);
841 		}
842 	}
843 
844 	return err;
845 }
846 
847 static unsigned int vsock_poll(struct file *file, struct socket *sock,
848 			       poll_table *wait)
849 {
850 	struct sock *sk;
851 	unsigned int mask;
852 	struct vsock_sock *vsk;
853 
854 	sk = sock->sk;
855 	vsk = vsock_sk(sk);
856 
857 	poll_wait(file, sk_sleep(sk), wait);
858 	mask = 0;
859 
860 	if (sk->sk_err)
861 		/* Signify that there has been an error on this socket. */
862 		mask |= POLLERR;
863 
864 	/* INET sockets treat local write shutdown and peer write shutdown as a
865 	 * case of POLLHUP set.
866 	 */
867 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
868 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
869 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
870 		mask |= POLLHUP;
871 	}
872 
873 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
874 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
875 		mask |= POLLRDHUP;
876 	}
877 
878 	if (sock->type == SOCK_DGRAM) {
879 		/* For datagram sockets we can read if there is something in
880 		 * the queue and write as long as the socket isn't shutdown for
881 		 * sending.
882 		 */
883 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
884 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
885 			mask |= POLLIN | POLLRDNORM;
886 		}
887 
888 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
889 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
890 
891 	} else if (sock->type == SOCK_STREAM) {
892 		lock_sock(sk);
893 
894 		/* Listening sockets that have connections in their accept
895 		 * queue can be read.
896 		 */
897 		if (sk->sk_state == VSOCK_SS_LISTEN
898 		    && !vsock_is_accept_queue_empty(sk))
899 			mask |= POLLIN | POLLRDNORM;
900 
901 		/* If there is something in the queue then we can read. */
902 		if (transport->stream_is_active(vsk) &&
903 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
904 			bool data_ready_now = false;
905 			int ret = transport->notify_poll_in(
906 					vsk, 1, &data_ready_now);
907 			if (ret < 0) {
908 				mask |= POLLERR;
909 			} else {
910 				if (data_ready_now)
911 					mask |= POLLIN | POLLRDNORM;
912 
913 			}
914 		}
915 
916 		/* Sockets whose connections have been closed, reset, or
917 		 * terminated should also be considered read, and we check the
918 		 * shutdown flag for that.
919 		 */
920 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
921 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
922 			mask |= POLLIN | POLLRDNORM;
923 		}
924 
925 		/* Connected sockets that can produce data can be written. */
926 		if (sk->sk_state == SS_CONNECTED) {
927 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
928 				bool space_avail_now = false;
929 				int ret = transport->notify_poll_out(
930 						vsk, 1, &space_avail_now);
931 				if (ret < 0) {
932 					mask |= POLLERR;
933 				} else {
934 					if (space_avail_now)
935 						/* Remove POLLWRBAND since INET
936 						 * sockets are not setting it.
937 						 */
938 						mask |= POLLOUT | POLLWRNORM;
939 
940 				}
941 			}
942 		}
943 
944 		/* Simulate INET socket poll behaviors, which sets
945 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
946 		 * but local send is not shutdown.
947 		 */
948 		if (sk->sk_state == SS_UNCONNECTED) {
949 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
950 				mask |= POLLOUT | POLLWRNORM;
951 
952 		}
953 
954 		release_sock(sk);
955 	}
956 
957 	return mask;
958 }
959 
960 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
961 			       size_t len)
962 {
963 	int err;
964 	struct sock *sk;
965 	struct vsock_sock *vsk;
966 	struct sockaddr_vm *remote_addr;
967 
968 	if (msg->msg_flags & MSG_OOB)
969 		return -EOPNOTSUPP;
970 
971 	/* For now, MSG_DONTWAIT is always assumed... */
972 	err = 0;
973 	sk = sock->sk;
974 	vsk = vsock_sk(sk);
975 
976 	lock_sock(sk);
977 
978 	err = vsock_auto_bind(vsk);
979 	if (err)
980 		goto out;
981 
982 
983 	/* If the provided message contains an address, use that.  Otherwise
984 	 * fall back on the socket's remote handle (if it has been connected).
985 	 */
986 	if (msg->msg_name &&
987 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
988 			    &remote_addr) == 0) {
989 		/* Ensure this address is of the right type and is a valid
990 		 * destination.
991 		 */
992 
993 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
994 			remote_addr->svm_cid = transport->get_local_cid();
995 
996 		if (!vsock_addr_bound(remote_addr)) {
997 			err = -EINVAL;
998 			goto out;
999 		}
1000 	} else if (sock->state == SS_CONNECTED) {
1001 		remote_addr = &vsk->remote_addr;
1002 
1003 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1004 			remote_addr->svm_cid = transport->get_local_cid();
1005 
1006 		/* XXX Should connect() or this function ensure remote_addr is
1007 		 * bound?
1008 		 */
1009 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1010 			err = -EINVAL;
1011 			goto out;
1012 		}
1013 	} else {
1014 		err = -EINVAL;
1015 		goto out;
1016 	}
1017 
1018 	if (!transport->dgram_allow(remote_addr->svm_cid,
1019 				    remote_addr->svm_port)) {
1020 		err = -EINVAL;
1021 		goto out;
1022 	}
1023 
1024 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1025 
1026 out:
1027 	release_sock(sk);
1028 	return err;
1029 }
1030 
1031 static int vsock_dgram_connect(struct socket *sock,
1032 			       struct sockaddr *addr, int addr_len, int flags)
1033 {
1034 	int err;
1035 	struct sock *sk;
1036 	struct vsock_sock *vsk;
1037 	struct sockaddr_vm *remote_addr;
1038 
1039 	sk = sock->sk;
1040 	vsk = vsock_sk(sk);
1041 
1042 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1043 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1044 		lock_sock(sk);
1045 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1046 				VMADDR_PORT_ANY);
1047 		sock->state = SS_UNCONNECTED;
1048 		release_sock(sk);
1049 		return 0;
1050 	} else if (err != 0)
1051 		return -EINVAL;
1052 
1053 	lock_sock(sk);
1054 
1055 	err = vsock_auto_bind(vsk);
1056 	if (err)
1057 		goto out;
1058 
1059 	if (!transport->dgram_allow(remote_addr->svm_cid,
1060 				    remote_addr->svm_port)) {
1061 		err = -EINVAL;
1062 		goto out;
1063 	}
1064 
1065 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1066 	sock->state = SS_CONNECTED;
1067 
1068 out:
1069 	release_sock(sk);
1070 	return err;
1071 }
1072 
1073 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1074 			       size_t len, int flags)
1075 {
1076 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1077 }
1078 
1079 static const struct proto_ops vsock_dgram_ops = {
1080 	.family = PF_VSOCK,
1081 	.owner = THIS_MODULE,
1082 	.release = vsock_release,
1083 	.bind = vsock_bind,
1084 	.connect = vsock_dgram_connect,
1085 	.socketpair = sock_no_socketpair,
1086 	.accept = sock_no_accept,
1087 	.getname = vsock_getname,
1088 	.poll = vsock_poll,
1089 	.ioctl = sock_no_ioctl,
1090 	.listen = sock_no_listen,
1091 	.shutdown = vsock_shutdown,
1092 	.setsockopt = sock_no_setsockopt,
1093 	.getsockopt = sock_no_getsockopt,
1094 	.sendmsg = vsock_dgram_sendmsg,
1095 	.recvmsg = vsock_dgram_recvmsg,
1096 	.mmap = sock_no_mmap,
1097 	.sendpage = sock_no_sendpage,
1098 };
1099 
1100 static void vsock_connect_timeout(struct work_struct *work)
1101 {
1102 	struct sock *sk;
1103 	struct vsock_sock *vsk;
1104 
1105 	vsk = container_of(work, struct vsock_sock, dwork.work);
1106 	sk = sk_vsock(vsk);
1107 
1108 	lock_sock(sk);
1109 	if (sk->sk_state == SS_CONNECTING &&
1110 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1111 		sk->sk_state = SS_UNCONNECTED;
1112 		sk->sk_err = ETIMEDOUT;
1113 		sk->sk_error_report(sk);
1114 	}
1115 	release_sock(sk);
1116 
1117 	sock_put(sk);
1118 }
1119 
1120 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1121 				int addr_len, int flags)
1122 {
1123 	int err;
1124 	struct sock *sk;
1125 	struct vsock_sock *vsk;
1126 	struct sockaddr_vm *remote_addr;
1127 	long timeout;
1128 	DEFINE_WAIT(wait);
1129 
1130 	err = 0;
1131 	sk = sock->sk;
1132 	vsk = vsock_sk(sk);
1133 
1134 	lock_sock(sk);
1135 
1136 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1137 	switch (sock->state) {
1138 	case SS_CONNECTED:
1139 		err = -EISCONN;
1140 		goto out;
1141 	case SS_DISCONNECTING:
1142 		err = -EINVAL;
1143 		goto out;
1144 	case SS_CONNECTING:
1145 		/* This continues on so we can move sock into the SS_CONNECTED
1146 		 * state once the connection has completed (at which point err
1147 		 * will be set to zero also).  Otherwise, we will either wait
1148 		 * for the connection or return -EALREADY should this be a
1149 		 * non-blocking call.
1150 		 */
1151 		err = -EALREADY;
1152 		break;
1153 	default:
1154 		if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1155 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1156 			err = -EINVAL;
1157 			goto out;
1158 		}
1159 
1160 		/* The hypervisor and well-known contexts do not have socket
1161 		 * endpoints.
1162 		 */
1163 		if (!transport->stream_allow(remote_addr->svm_cid,
1164 					     remote_addr->svm_port)) {
1165 			err = -ENETUNREACH;
1166 			goto out;
1167 		}
1168 
1169 		/* Set the remote address that we are connecting to. */
1170 		memcpy(&vsk->remote_addr, remote_addr,
1171 		       sizeof(vsk->remote_addr));
1172 
1173 		err = vsock_auto_bind(vsk);
1174 		if (err)
1175 			goto out;
1176 
1177 		sk->sk_state = SS_CONNECTING;
1178 
1179 		err = transport->connect(vsk);
1180 		if (err < 0)
1181 			goto out;
1182 
1183 		/* Mark sock as connecting and set the error code to in
1184 		 * progress in case this is a non-blocking connect.
1185 		 */
1186 		sock->state = SS_CONNECTING;
1187 		err = -EINPROGRESS;
1188 	}
1189 
1190 	/* The receive path will handle all communication until we are able to
1191 	 * enter the connected state.  Here we wait for the connection to be
1192 	 * completed or a notification of an error.
1193 	 */
1194 	timeout = vsk->connect_timeout;
1195 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1196 
1197 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1198 		if (flags & O_NONBLOCK) {
1199 			/* If we're not going to block, we schedule a timeout
1200 			 * function to generate a timeout on the connection
1201 			 * attempt, in case the peer doesn't respond in a
1202 			 * timely manner. We hold on to the socket until the
1203 			 * timeout fires.
1204 			 */
1205 			sock_hold(sk);
1206 			INIT_DELAYED_WORK(&vsk->dwork,
1207 					  vsock_connect_timeout);
1208 			schedule_delayed_work(&vsk->dwork, timeout);
1209 
1210 			/* Skip ahead to preserve error code set above. */
1211 			goto out_wait;
1212 		}
1213 
1214 		release_sock(sk);
1215 		timeout = schedule_timeout(timeout);
1216 		lock_sock(sk);
1217 
1218 		if (signal_pending(current)) {
1219 			err = sock_intr_errno(timeout);
1220 			sk->sk_state = SS_UNCONNECTED;
1221 			sock->state = SS_UNCONNECTED;
1222 			goto out_wait;
1223 		} else if (timeout == 0) {
1224 			err = -ETIMEDOUT;
1225 			sk->sk_state = SS_UNCONNECTED;
1226 			sock->state = SS_UNCONNECTED;
1227 			goto out_wait;
1228 		}
1229 
1230 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1231 	}
1232 
1233 	if (sk->sk_err) {
1234 		err = -sk->sk_err;
1235 		sk->sk_state = SS_UNCONNECTED;
1236 		sock->state = SS_UNCONNECTED;
1237 	} else {
1238 		err = 0;
1239 	}
1240 
1241 out_wait:
1242 	finish_wait(sk_sleep(sk), &wait);
1243 out:
1244 	release_sock(sk);
1245 	return err;
1246 }
1247 
1248 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1249 {
1250 	struct sock *listener;
1251 	int err;
1252 	struct sock *connected;
1253 	struct vsock_sock *vconnected;
1254 	long timeout;
1255 	DEFINE_WAIT(wait);
1256 
1257 	err = 0;
1258 	listener = sock->sk;
1259 
1260 	lock_sock(listener);
1261 
1262 	if (sock->type != SOCK_STREAM) {
1263 		err = -EOPNOTSUPP;
1264 		goto out;
1265 	}
1266 
1267 	if (listener->sk_state != VSOCK_SS_LISTEN) {
1268 		err = -EINVAL;
1269 		goto out;
1270 	}
1271 
1272 	/* Wait for children sockets to appear; these are the new sockets
1273 	 * created upon connection establishment.
1274 	 */
1275 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1276 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1277 
1278 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1279 	       listener->sk_err == 0) {
1280 		release_sock(listener);
1281 		timeout = schedule_timeout(timeout);
1282 		finish_wait(sk_sleep(listener), &wait);
1283 		lock_sock(listener);
1284 
1285 		if (signal_pending(current)) {
1286 			err = sock_intr_errno(timeout);
1287 			goto out;
1288 		} else if (timeout == 0) {
1289 			err = -EAGAIN;
1290 			goto out;
1291 		}
1292 
1293 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1294 	}
1295 	finish_wait(sk_sleep(listener), &wait);
1296 
1297 	if (listener->sk_err)
1298 		err = -listener->sk_err;
1299 
1300 	if (connected) {
1301 		listener->sk_ack_backlog--;
1302 
1303 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1304 		vconnected = vsock_sk(connected);
1305 
1306 		/* If the listener socket has received an error, then we should
1307 		 * reject this socket and return.  Note that we simply mark the
1308 		 * socket rejected, drop our reference, and let the cleanup
1309 		 * function handle the cleanup; the fact that we found it in
1310 		 * the listener's accept queue guarantees that the cleanup
1311 		 * function hasn't run yet.
1312 		 */
1313 		if (err) {
1314 			vconnected->rejected = true;
1315 		} else {
1316 			newsock->state = SS_CONNECTED;
1317 			sock_graft(connected, newsock);
1318 		}
1319 
1320 		release_sock(connected);
1321 		sock_put(connected);
1322 	}
1323 
1324 out:
1325 	release_sock(listener);
1326 	return err;
1327 }
1328 
1329 static int vsock_listen(struct socket *sock, int backlog)
1330 {
1331 	int err;
1332 	struct sock *sk;
1333 	struct vsock_sock *vsk;
1334 
1335 	sk = sock->sk;
1336 
1337 	lock_sock(sk);
1338 
1339 	if (sock->type != SOCK_STREAM) {
1340 		err = -EOPNOTSUPP;
1341 		goto out;
1342 	}
1343 
1344 	if (sock->state != SS_UNCONNECTED) {
1345 		err = -EINVAL;
1346 		goto out;
1347 	}
1348 
1349 	vsk = vsock_sk(sk);
1350 
1351 	if (!vsock_addr_bound(&vsk->local_addr)) {
1352 		err = -EINVAL;
1353 		goto out;
1354 	}
1355 
1356 	sk->sk_max_ack_backlog = backlog;
1357 	sk->sk_state = VSOCK_SS_LISTEN;
1358 
1359 	err = 0;
1360 
1361 out:
1362 	release_sock(sk);
1363 	return err;
1364 }
1365 
1366 static int vsock_stream_setsockopt(struct socket *sock,
1367 				   int level,
1368 				   int optname,
1369 				   char __user *optval,
1370 				   unsigned int optlen)
1371 {
1372 	int err;
1373 	struct sock *sk;
1374 	struct vsock_sock *vsk;
1375 	u64 val;
1376 
1377 	if (level != AF_VSOCK)
1378 		return -ENOPROTOOPT;
1379 
1380 #define COPY_IN(_v)                                       \
1381 	do {						  \
1382 		if (optlen < sizeof(_v)) {		  \
1383 			err = -EINVAL;			  \
1384 			goto exit;			  \
1385 		}					  \
1386 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1387 			err = -EFAULT;					\
1388 			goto exit;					\
1389 		}							\
1390 	} while (0)
1391 
1392 	err = 0;
1393 	sk = sock->sk;
1394 	vsk = vsock_sk(sk);
1395 
1396 	lock_sock(sk);
1397 
1398 	switch (optname) {
1399 	case SO_VM_SOCKETS_BUFFER_SIZE:
1400 		COPY_IN(val);
1401 		transport->set_buffer_size(vsk, val);
1402 		break;
1403 
1404 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1405 		COPY_IN(val);
1406 		transport->set_max_buffer_size(vsk, val);
1407 		break;
1408 
1409 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1410 		COPY_IN(val);
1411 		transport->set_min_buffer_size(vsk, val);
1412 		break;
1413 
1414 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1415 		struct timeval tv;
1416 		COPY_IN(tv);
1417 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1418 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1419 			vsk->connect_timeout = tv.tv_sec * HZ +
1420 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1421 			if (vsk->connect_timeout == 0)
1422 				vsk->connect_timeout =
1423 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1424 
1425 		} else {
1426 			err = -ERANGE;
1427 		}
1428 		break;
1429 	}
1430 
1431 	default:
1432 		err = -ENOPROTOOPT;
1433 		break;
1434 	}
1435 
1436 #undef COPY_IN
1437 
1438 exit:
1439 	release_sock(sk);
1440 	return err;
1441 }
1442 
1443 static int vsock_stream_getsockopt(struct socket *sock,
1444 				   int level, int optname,
1445 				   char __user *optval,
1446 				   int __user *optlen)
1447 {
1448 	int err;
1449 	int len;
1450 	struct sock *sk;
1451 	struct vsock_sock *vsk;
1452 	u64 val;
1453 
1454 	if (level != AF_VSOCK)
1455 		return -ENOPROTOOPT;
1456 
1457 	err = get_user(len, optlen);
1458 	if (err != 0)
1459 		return err;
1460 
1461 #define COPY_OUT(_v)                            \
1462 	do {					\
1463 		if (len < sizeof(_v))		\
1464 			return -EINVAL;		\
1465 						\
1466 		len = sizeof(_v);		\
1467 		if (copy_to_user(optval, &_v, len) != 0)	\
1468 			return -EFAULT;				\
1469 								\
1470 	} while (0)
1471 
1472 	err = 0;
1473 	sk = sock->sk;
1474 	vsk = vsock_sk(sk);
1475 
1476 	switch (optname) {
1477 	case SO_VM_SOCKETS_BUFFER_SIZE:
1478 		val = transport->get_buffer_size(vsk);
1479 		COPY_OUT(val);
1480 		break;
1481 
1482 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1483 		val = transport->get_max_buffer_size(vsk);
1484 		COPY_OUT(val);
1485 		break;
1486 
1487 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1488 		val = transport->get_min_buffer_size(vsk);
1489 		COPY_OUT(val);
1490 		break;
1491 
1492 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1493 		struct timeval tv;
1494 		tv.tv_sec = vsk->connect_timeout / HZ;
1495 		tv.tv_usec =
1496 		    (vsk->connect_timeout -
1497 		     tv.tv_sec * HZ) * (1000000 / HZ);
1498 		COPY_OUT(tv);
1499 		break;
1500 	}
1501 	default:
1502 		return -ENOPROTOOPT;
1503 	}
1504 
1505 	err = put_user(len, optlen);
1506 	if (err != 0)
1507 		return -EFAULT;
1508 
1509 #undef COPY_OUT
1510 
1511 	return 0;
1512 }
1513 
1514 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1515 				size_t len)
1516 {
1517 	struct sock *sk;
1518 	struct vsock_sock *vsk;
1519 	ssize_t total_written;
1520 	long timeout;
1521 	int err;
1522 	struct vsock_transport_send_notify_data send_data;
1523 
1524 	DEFINE_WAIT(wait);
1525 
1526 	sk = sock->sk;
1527 	vsk = vsock_sk(sk);
1528 	total_written = 0;
1529 	err = 0;
1530 
1531 	if (msg->msg_flags & MSG_OOB)
1532 		return -EOPNOTSUPP;
1533 
1534 	lock_sock(sk);
1535 
1536 	/* Callers should not provide a destination with stream sockets. */
1537 	if (msg->msg_namelen) {
1538 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1539 		goto out;
1540 	}
1541 
1542 	/* Send data only if both sides are not shutdown in the direction. */
1543 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1544 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1545 		err = -EPIPE;
1546 		goto out;
1547 	}
1548 
1549 	if (sk->sk_state != SS_CONNECTED ||
1550 	    !vsock_addr_bound(&vsk->local_addr)) {
1551 		err = -ENOTCONN;
1552 		goto out;
1553 	}
1554 
1555 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1556 		err = -EDESTADDRREQ;
1557 		goto out;
1558 	}
1559 
1560 	/* Wait for room in the produce queue to enqueue our user's data. */
1561 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1562 
1563 	err = transport->notify_send_init(vsk, &send_data);
1564 	if (err < 0)
1565 		goto out;
1566 
1567 
1568 	while (total_written < len) {
1569 		ssize_t written;
1570 
1571 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1572 		while (vsock_stream_has_space(vsk) == 0 &&
1573 		       sk->sk_err == 0 &&
1574 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1575 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1576 
1577 			/* Don't wait for non-blocking sockets. */
1578 			if (timeout == 0) {
1579 				err = -EAGAIN;
1580 				finish_wait(sk_sleep(sk), &wait);
1581 				goto out_err;
1582 			}
1583 
1584 			err = transport->notify_send_pre_block(vsk, &send_data);
1585 			if (err < 0) {
1586 				finish_wait(sk_sleep(sk), &wait);
1587 				goto out_err;
1588 			}
1589 
1590 			release_sock(sk);
1591 			timeout = schedule_timeout(timeout);
1592 			lock_sock(sk);
1593 			if (signal_pending(current)) {
1594 				err = sock_intr_errno(timeout);
1595 				finish_wait(sk_sleep(sk), &wait);
1596 				goto out_err;
1597 			} else if (timeout == 0) {
1598 				err = -EAGAIN;
1599 				finish_wait(sk_sleep(sk), &wait);
1600 				goto out_err;
1601 			}
1602 
1603 			prepare_to_wait(sk_sleep(sk), &wait,
1604 					TASK_INTERRUPTIBLE);
1605 		}
1606 		finish_wait(sk_sleep(sk), &wait);
1607 
1608 		/* These checks occur both as part of and after the loop
1609 		 * conditional since we need to check before and after
1610 		 * sleeping.
1611 		 */
1612 		if (sk->sk_err) {
1613 			err = -sk->sk_err;
1614 			goto out_err;
1615 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1616 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1617 			err = -EPIPE;
1618 			goto out_err;
1619 		}
1620 
1621 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1622 		if (err < 0)
1623 			goto out_err;
1624 
1625 		/* Note that enqueue will only write as many bytes as are free
1626 		 * in the produce queue, so we don't need to ensure len is
1627 		 * smaller than the queue size.  It is the caller's
1628 		 * responsibility to check how many bytes we were able to send.
1629 		 */
1630 
1631 		written = transport->stream_enqueue(
1632 				vsk, msg,
1633 				len - total_written);
1634 		if (written < 0) {
1635 			err = -ENOMEM;
1636 			goto out_err;
1637 		}
1638 
1639 		total_written += written;
1640 
1641 		err = transport->notify_send_post_enqueue(
1642 				vsk, written, &send_data);
1643 		if (err < 0)
1644 			goto out_err;
1645 
1646 	}
1647 
1648 out_err:
1649 	if (total_written > 0)
1650 		err = total_written;
1651 out:
1652 	release_sock(sk);
1653 	return err;
1654 }
1655 
1656 
1657 static int
1658 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1659 		     int flags)
1660 {
1661 	struct sock *sk;
1662 	struct vsock_sock *vsk;
1663 	int err;
1664 	size_t target;
1665 	ssize_t copied;
1666 	long timeout;
1667 	struct vsock_transport_recv_notify_data recv_data;
1668 
1669 	DEFINE_WAIT(wait);
1670 
1671 	sk = sock->sk;
1672 	vsk = vsock_sk(sk);
1673 	err = 0;
1674 
1675 	lock_sock(sk);
1676 
1677 	if (sk->sk_state != SS_CONNECTED) {
1678 		/* Recvmsg is supposed to return 0 if a peer performs an
1679 		 * orderly shutdown. Differentiate between that case and when a
1680 		 * peer has not connected or a local shutdown occured with the
1681 		 * SOCK_DONE flag.
1682 		 */
1683 		if (sock_flag(sk, SOCK_DONE))
1684 			err = 0;
1685 		else
1686 			err = -ENOTCONN;
1687 
1688 		goto out;
1689 	}
1690 
1691 	if (flags & MSG_OOB) {
1692 		err = -EOPNOTSUPP;
1693 		goto out;
1694 	}
1695 
1696 	/* We don't check peer_shutdown flag here since peer may actually shut
1697 	 * down, but there can be data in the queue that a local socket can
1698 	 * receive.
1699 	 */
1700 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1701 		err = 0;
1702 		goto out;
1703 	}
1704 
1705 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1706 	 * is not an error.  We may as well bail out now.
1707 	 */
1708 	if (!len) {
1709 		err = 0;
1710 		goto out;
1711 	}
1712 
1713 	/* We must not copy less than target bytes into the user's buffer
1714 	 * before returning successfully, so we wait for the consume queue to
1715 	 * have that much data to consume before dequeueing.  Note that this
1716 	 * makes it impossible to handle cases where target is greater than the
1717 	 * queue size.
1718 	 */
1719 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1720 	if (target >= transport->stream_rcvhiwat(vsk)) {
1721 		err = -ENOMEM;
1722 		goto out;
1723 	}
1724 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1725 	copied = 0;
1726 
1727 	err = transport->notify_recv_init(vsk, target, &recv_data);
1728 	if (err < 0)
1729 		goto out;
1730 
1731 
1732 	while (1) {
1733 		s64 ready;
1734 
1735 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1736 		ready = vsock_stream_has_data(vsk);
1737 
1738 		if (ready == 0) {
1739 			if (sk->sk_err != 0 ||
1740 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1741 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1742 				finish_wait(sk_sleep(sk), &wait);
1743 				break;
1744 			}
1745 			/* Don't wait for non-blocking sockets. */
1746 			if (timeout == 0) {
1747 				err = -EAGAIN;
1748 				finish_wait(sk_sleep(sk), &wait);
1749 				break;
1750 			}
1751 
1752 			err = transport->notify_recv_pre_block(
1753 					vsk, target, &recv_data);
1754 			if (err < 0) {
1755 				finish_wait(sk_sleep(sk), &wait);
1756 				break;
1757 			}
1758 			release_sock(sk);
1759 			timeout = schedule_timeout(timeout);
1760 			lock_sock(sk);
1761 
1762 			if (signal_pending(current)) {
1763 				err = sock_intr_errno(timeout);
1764 				finish_wait(sk_sleep(sk), &wait);
1765 				break;
1766 			} else if (timeout == 0) {
1767 				err = -EAGAIN;
1768 				finish_wait(sk_sleep(sk), &wait);
1769 				break;
1770 			}
1771 		} else {
1772 			ssize_t read;
1773 
1774 			finish_wait(sk_sleep(sk), &wait);
1775 
1776 			if (ready < 0) {
1777 				/* Invalid queue pair content. XXX This should
1778 				* be changed to a connection reset in a later
1779 				* change.
1780 				*/
1781 
1782 				err = -ENOMEM;
1783 				goto out;
1784 			}
1785 
1786 			err = transport->notify_recv_pre_dequeue(
1787 					vsk, target, &recv_data);
1788 			if (err < 0)
1789 				break;
1790 
1791 			read = transport->stream_dequeue(
1792 					vsk, msg,
1793 					len - copied, flags);
1794 			if (read < 0) {
1795 				err = -ENOMEM;
1796 				break;
1797 			}
1798 
1799 			copied += read;
1800 
1801 			err = transport->notify_recv_post_dequeue(
1802 					vsk, target, read,
1803 					!(flags & MSG_PEEK), &recv_data);
1804 			if (err < 0)
1805 				goto out;
1806 
1807 			if (read >= target || flags & MSG_PEEK)
1808 				break;
1809 
1810 			target -= read;
1811 		}
1812 	}
1813 
1814 	if (sk->sk_err)
1815 		err = -sk->sk_err;
1816 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1817 		err = 0;
1818 
1819 	if (copied > 0)
1820 		err = copied;
1821 
1822 out:
1823 	release_sock(sk);
1824 	return err;
1825 }
1826 
1827 static const struct proto_ops vsock_stream_ops = {
1828 	.family = PF_VSOCK,
1829 	.owner = THIS_MODULE,
1830 	.release = vsock_release,
1831 	.bind = vsock_bind,
1832 	.connect = vsock_stream_connect,
1833 	.socketpair = sock_no_socketpair,
1834 	.accept = vsock_accept,
1835 	.getname = vsock_getname,
1836 	.poll = vsock_poll,
1837 	.ioctl = sock_no_ioctl,
1838 	.listen = vsock_listen,
1839 	.shutdown = vsock_shutdown,
1840 	.setsockopt = vsock_stream_setsockopt,
1841 	.getsockopt = vsock_stream_getsockopt,
1842 	.sendmsg = vsock_stream_sendmsg,
1843 	.recvmsg = vsock_stream_recvmsg,
1844 	.mmap = sock_no_mmap,
1845 	.sendpage = sock_no_sendpage,
1846 };
1847 
1848 static int vsock_create(struct net *net, struct socket *sock,
1849 			int protocol, int kern)
1850 {
1851 	if (!sock)
1852 		return -EINVAL;
1853 
1854 	if (protocol && protocol != PF_VSOCK)
1855 		return -EPROTONOSUPPORT;
1856 
1857 	switch (sock->type) {
1858 	case SOCK_DGRAM:
1859 		sock->ops = &vsock_dgram_ops;
1860 		break;
1861 	case SOCK_STREAM:
1862 		sock->ops = &vsock_stream_ops;
1863 		break;
1864 	default:
1865 		return -ESOCKTNOSUPPORT;
1866 	}
1867 
1868 	sock->state = SS_UNCONNECTED;
1869 
1870 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1871 }
1872 
1873 static const struct net_proto_family vsock_family_ops = {
1874 	.family = AF_VSOCK,
1875 	.create = vsock_create,
1876 	.owner = THIS_MODULE,
1877 };
1878 
1879 static long vsock_dev_do_ioctl(struct file *filp,
1880 			       unsigned int cmd, void __user *ptr)
1881 {
1882 	u32 __user *p = ptr;
1883 	int retval = 0;
1884 
1885 	switch (cmd) {
1886 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1887 		if (put_user(transport->get_local_cid(), p) != 0)
1888 			retval = -EFAULT;
1889 		break;
1890 
1891 	default:
1892 		pr_err("Unknown ioctl %d\n", cmd);
1893 		retval = -EINVAL;
1894 	}
1895 
1896 	return retval;
1897 }
1898 
1899 static long vsock_dev_ioctl(struct file *filp,
1900 			    unsigned int cmd, unsigned long arg)
1901 {
1902 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1903 }
1904 
1905 #ifdef CONFIG_COMPAT
1906 static long vsock_dev_compat_ioctl(struct file *filp,
1907 				   unsigned int cmd, unsigned long arg)
1908 {
1909 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1910 }
1911 #endif
1912 
1913 static const struct file_operations vsock_device_ops = {
1914 	.owner		= THIS_MODULE,
1915 	.unlocked_ioctl	= vsock_dev_ioctl,
1916 #ifdef CONFIG_COMPAT
1917 	.compat_ioctl	= vsock_dev_compat_ioctl,
1918 #endif
1919 	.open		= nonseekable_open,
1920 };
1921 
1922 static struct miscdevice vsock_device = {
1923 	.name		= "vsock",
1924 	.fops		= &vsock_device_ops,
1925 };
1926 
1927 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1928 {
1929 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1930 
1931 	if (err)
1932 		return err;
1933 
1934 	if (transport) {
1935 		err = -EBUSY;
1936 		goto err_busy;
1937 	}
1938 
1939 	/* Transport must be the owner of the protocol so that it can't
1940 	 * unload while there are open sockets.
1941 	 */
1942 	vsock_proto.owner = owner;
1943 	transport = t;
1944 
1945 	vsock_init_tables();
1946 
1947 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1948 	err = misc_register(&vsock_device);
1949 	if (err) {
1950 		pr_err("Failed to register misc device\n");
1951 		goto err_reset_transport;
1952 	}
1953 
1954 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1955 	if (err) {
1956 		pr_err("Cannot register vsock protocol\n");
1957 		goto err_deregister_misc;
1958 	}
1959 
1960 	err = sock_register(&vsock_family_ops);
1961 	if (err) {
1962 		pr_err("could not register af_vsock (%d) address family: %d\n",
1963 		       AF_VSOCK, err);
1964 		goto err_unregister_proto;
1965 	}
1966 
1967 	mutex_unlock(&vsock_register_mutex);
1968 	return 0;
1969 
1970 err_unregister_proto:
1971 	proto_unregister(&vsock_proto);
1972 err_deregister_misc:
1973 	misc_deregister(&vsock_device);
1974 err_reset_transport:
1975 	transport = NULL;
1976 err_busy:
1977 	mutex_unlock(&vsock_register_mutex);
1978 	return err;
1979 }
1980 EXPORT_SYMBOL_GPL(__vsock_core_init);
1981 
1982 void vsock_core_exit(void)
1983 {
1984 	mutex_lock(&vsock_register_mutex);
1985 
1986 	misc_deregister(&vsock_device);
1987 	sock_unregister(AF_VSOCK);
1988 	proto_unregister(&vsock_proto);
1989 
1990 	/* We do not want the assignment below re-ordered. */
1991 	mb();
1992 	transport = NULL;
1993 
1994 	mutex_unlock(&vsock_register_mutex);
1995 }
1996 EXPORT_SYMBOL_GPL(vsock_core_exit);
1997 
1998 MODULE_AUTHOR("VMware, Inc.");
1999 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2000 MODULE_VERSION("1.0.1.0-k");
2001 MODULE_LICENSE("GPL v2");
2002