1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware vSockets Driver 4 * 5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 6 */ 7 8 /* Implementation notes: 9 * 10 * - There are two kinds of sockets: those created by user action (such as 11 * calling socket(2)) and those created by incoming connection request packets. 12 * 13 * - There are two "global" tables, one for bound sockets (sockets that have 14 * specified an address that they are responsible for) and one for connected 15 * sockets (sockets that have established a connection with another socket). 16 * These tables are "global" in that all sockets on the system are placed 17 * within them. - Note, though, that the bound table contains an extra entry 18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 19 * that list. The bound table is used solely for lookup of sockets when packets 20 * are received and that's not necessary for SOCK_DGRAM sockets since we create 21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 22 * sockets out of the bound hash buckets will reduce the chance of collisions 23 * when looking for SOCK_STREAM sockets and prevents us from having to check the 24 * socket type in the hash table lookups. 25 * 26 * - Sockets created by user action will either be "client" sockets that 27 * initiate a connection or "server" sockets that listen for connections; we do 28 * not support simultaneous connects (two "client" sockets connecting). 29 * 30 * - "Server" sockets are referred to as listener sockets throughout this 31 * implementation because they are in the TCP_LISTEN state. When a 32 * connection request is received (the second kind of socket mentioned above), 33 * we create a new socket and refer to it as a pending socket. These pending 34 * sockets are placed on the pending connection list of the listener socket. 35 * When future packets are received for the address the listener socket is 36 * bound to, we check if the source of the packet is from one that has an 37 * existing pending connection. If it does, we process the packet for the 38 * pending socket. When that socket reaches the connected state, it is removed 39 * from the listener socket's pending list and enqueued in the listener 40 * socket's accept queue. Callers of accept(2) will accept connected sockets 41 * from the listener socket's accept queue. If the socket cannot be accepted 42 * for some reason then it is marked rejected. Once the connection is 43 * accepted, it is owned by the user process and the responsibility for cleanup 44 * falls with that user process. 45 * 46 * - It is possible that these pending sockets will never reach the connected 47 * state; in fact, we may never receive another packet after the connection 48 * request. Because of this, we must schedule a cleanup function to run in the 49 * future, after some amount of time passes where a connection should have been 50 * established. This function ensures that the socket is off all lists so it 51 * cannot be retrieved, then drops all references to the socket so it is cleaned 52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 53 * function will also cleanup rejected sockets, those that reach the connected 54 * state but leave it before they have been accepted. 55 * 56 * - Lock ordering for pending or accept queue sockets is: 57 * 58 * lock_sock(listener); 59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 60 * 61 * Using explicit nested locking keeps lockdep happy since normally only one 62 * lock of a given class may be taken at a time. 63 * 64 * - Sockets created by user action will be cleaned up when the user process 65 * calls close(2), causing our release implementation to be called. Our release 66 * implementation will perform some cleanup then drop the last reference so our 67 * sk_destruct implementation is invoked. Our sk_destruct implementation will 68 * perform additional cleanup that's common for both types of sockets. 69 * 70 * - A socket's reference count is what ensures that the structure won't be 71 * freed. Each entry in a list (such as the "global" bound and connected tables 72 * and the listener socket's pending list and connected queue) ensures a 73 * reference. When we defer work until process context and pass a socket as our 74 * argument, we must ensure the reference count is increased to ensure the 75 * socket isn't freed before the function is run; the deferred function will 76 * then drop the reference. 77 * 78 * - sk->sk_state uses the TCP state constants because they are widely used by 79 * other address families and exposed to userspace tools like ss(8): 80 * 81 * TCP_CLOSE - unconnected 82 * TCP_SYN_SENT - connecting 83 * TCP_ESTABLISHED - connected 84 * TCP_CLOSING - disconnecting 85 * TCP_LISTEN - listening 86 */ 87 88 #include <linux/compat.h> 89 #include <linux/types.h> 90 #include <linux/bitops.h> 91 #include <linux/cred.h> 92 #include <linux/init.h> 93 #include <linux/io.h> 94 #include <linux/kernel.h> 95 #include <linux/sched/signal.h> 96 #include <linux/kmod.h> 97 #include <linux/list.h> 98 #include <linux/miscdevice.h> 99 #include <linux/module.h> 100 #include <linux/mutex.h> 101 #include <linux/net.h> 102 #include <linux/poll.h> 103 #include <linux/random.h> 104 #include <linux/skbuff.h> 105 #include <linux/smp.h> 106 #include <linux/socket.h> 107 #include <linux/stddef.h> 108 #include <linux/unistd.h> 109 #include <linux/wait.h> 110 #include <linux/workqueue.h> 111 #include <net/sock.h> 112 #include <net/af_vsock.h> 113 114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 115 static void vsock_sk_destruct(struct sock *sk); 116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 117 118 /* Protocol family. */ 119 static struct proto vsock_proto = { 120 .name = "AF_VSOCK", 121 .owner = THIS_MODULE, 122 .obj_size = sizeof(struct vsock_sock), 123 }; 124 125 /* The default peer timeout indicates how long we will wait for a peer response 126 * to a control message. 127 */ 128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 129 130 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256) 131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256) 132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128 133 134 /* Transport used for host->guest communication */ 135 static const struct vsock_transport *transport_h2g; 136 /* Transport used for guest->host communication */ 137 static const struct vsock_transport *transport_g2h; 138 /* Transport used for DGRAM communication */ 139 static const struct vsock_transport *transport_dgram; 140 /* Transport used for local communication */ 141 static const struct vsock_transport *transport_local; 142 static DEFINE_MUTEX(vsock_register_mutex); 143 144 /**** UTILS ****/ 145 146 /* Each bound VSocket is stored in the bind hash table and each connected 147 * VSocket is stored in the connected hash table. 148 * 149 * Unbound sockets are all put on the same list attached to the end of the hash 150 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 151 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 152 * represents the list that addr hashes to). 153 * 154 * Specifically, we initialize the vsock_bind_table array to a size of 155 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 156 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 157 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 158 * mods with VSOCK_HASH_SIZE to ensure this. 159 */ 160 #define MAX_PORT_RETRIES 24 161 162 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 164 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 165 166 /* XXX This can probably be implemented in a better way. */ 167 #define VSOCK_CONN_HASH(src, dst) \ 168 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 169 #define vsock_connected_sockets(src, dst) \ 170 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 171 #define vsock_connected_sockets_vsk(vsk) \ 172 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 173 174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 175 EXPORT_SYMBOL_GPL(vsock_bind_table); 176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 177 EXPORT_SYMBOL_GPL(vsock_connected_table); 178 DEFINE_SPINLOCK(vsock_table_lock); 179 EXPORT_SYMBOL_GPL(vsock_table_lock); 180 181 /* Autobind this socket to the local address if necessary. */ 182 static int vsock_auto_bind(struct vsock_sock *vsk) 183 { 184 struct sock *sk = sk_vsock(vsk); 185 struct sockaddr_vm local_addr; 186 187 if (vsock_addr_bound(&vsk->local_addr)) 188 return 0; 189 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 190 return __vsock_bind(sk, &local_addr); 191 } 192 193 static void vsock_init_tables(void) 194 { 195 int i; 196 197 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 198 INIT_LIST_HEAD(&vsock_bind_table[i]); 199 200 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 201 INIT_LIST_HEAD(&vsock_connected_table[i]); 202 } 203 204 static void __vsock_insert_bound(struct list_head *list, 205 struct vsock_sock *vsk) 206 { 207 sock_hold(&vsk->sk); 208 list_add(&vsk->bound_table, list); 209 } 210 211 static void __vsock_insert_connected(struct list_head *list, 212 struct vsock_sock *vsk) 213 { 214 sock_hold(&vsk->sk); 215 list_add(&vsk->connected_table, list); 216 } 217 218 static void __vsock_remove_bound(struct vsock_sock *vsk) 219 { 220 list_del_init(&vsk->bound_table); 221 sock_put(&vsk->sk); 222 } 223 224 static void __vsock_remove_connected(struct vsock_sock *vsk) 225 { 226 list_del_init(&vsk->connected_table); 227 sock_put(&vsk->sk); 228 } 229 230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 231 { 232 struct vsock_sock *vsk; 233 234 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) { 235 if (vsock_addr_equals_addr(addr, &vsk->local_addr)) 236 return sk_vsock(vsk); 237 238 if (addr->svm_port == vsk->local_addr.svm_port && 239 (vsk->local_addr.svm_cid == VMADDR_CID_ANY || 240 addr->svm_cid == VMADDR_CID_ANY)) 241 return sk_vsock(vsk); 242 } 243 244 return NULL; 245 } 246 247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 248 struct sockaddr_vm *dst) 249 { 250 struct vsock_sock *vsk; 251 252 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 253 connected_table) { 254 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 255 dst->svm_port == vsk->local_addr.svm_port) { 256 return sk_vsock(vsk); 257 } 258 } 259 260 return NULL; 261 } 262 263 static void vsock_insert_unbound(struct vsock_sock *vsk) 264 { 265 spin_lock_bh(&vsock_table_lock); 266 __vsock_insert_bound(vsock_unbound_sockets, vsk); 267 spin_unlock_bh(&vsock_table_lock); 268 } 269 270 void vsock_insert_connected(struct vsock_sock *vsk) 271 { 272 struct list_head *list = vsock_connected_sockets( 273 &vsk->remote_addr, &vsk->local_addr); 274 275 spin_lock_bh(&vsock_table_lock); 276 __vsock_insert_connected(list, vsk); 277 spin_unlock_bh(&vsock_table_lock); 278 } 279 EXPORT_SYMBOL_GPL(vsock_insert_connected); 280 281 void vsock_remove_bound(struct vsock_sock *vsk) 282 { 283 spin_lock_bh(&vsock_table_lock); 284 if (__vsock_in_bound_table(vsk)) 285 __vsock_remove_bound(vsk); 286 spin_unlock_bh(&vsock_table_lock); 287 } 288 EXPORT_SYMBOL_GPL(vsock_remove_bound); 289 290 void vsock_remove_connected(struct vsock_sock *vsk) 291 { 292 spin_lock_bh(&vsock_table_lock); 293 if (__vsock_in_connected_table(vsk)) 294 __vsock_remove_connected(vsk); 295 spin_unlock_bh(&vsock_table_lock); 296 } 297 EXPORT_SYMBOL_GPL(vsock_remove_connected); 298 299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 300 { 301 struct sock *sk; 302 303 spin_lock_bh(&vsock_table_lock); 304 sk = __vsock_find_bound_socket(addr); 305 if (sk) 306 sock_hold(sk); 307 308 spin_unlock_bh(&vsock_table_lock); 309 310 return sk; 311 } 312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 313 314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 315 struct sockaddr_vm *dst) 316 { 317 struct sock *sk; 318 319 spin_lock_bh(&vsock_table_lock); 320 sk = __vsock_find_connected_socket(src, dst); 321 if (sk) 322 sock_hold(sk); 323 324 spin_unlock_bh(&vsock_table_lock); 325 326 return sk; 327 } 328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 329 330 void vsock_remove_sock(struct vsock_sock *vsk) 331 { 332 vsock_remove_bound(vsk); 333 vsock_remove_connected(vsk); 334 } 335 EXPORT_SYMBOL_GPL(vsock_remove_sock); 336 337 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 338 { 339 int i; 340 341 spin_lock_bh(&vsock_table_lock); 342 343 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 344 struct vsock_sock *vsk; 345 list_for_each_entry(vsk, &vsock_connected_table[i], 346 connected_table) 347 fn(sk_vsock(vsk)); 348 } 349 350 spin_unlock_bh(&vsock_table_lock); 351 } 352 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 353 354 void vsock_add_pending(struct sock *listener, struct sock *pending) 355 { 356 struct vsock_sock *vlistener; 357 struct vsock_sock *vpending; 358 359 vlistener = vsock_sk(listener); 360 vpending = vsock_sk(pending); 361 362 sock_hold(pending); 363 sock_hold(listener); 364 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 365 } 366 EXPORT_SYMBOL_GPL(vsock_add_pending); 367 368 void vsock_remove_pending(struct sock *listener, struct sock *pending) 369 { 370 struct vsock_sock *vpending = vsock_sk(pending); 371 372 list_del_init(&vpending->pending_links); 373 sock_put(listener); 374 sock_put(pending); 375 } 376 EXPORT_SYMBOL_GPL(vsock_remove_pending); 377 378 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 379 { 380 struct vsock_sock *vlistener; 381 struct vsock_sock *vconnected; 382 383 vlistener = vsock_sk(listener); 384 vconnected = vsock_sk(connected); 385 386 sock_hold(connected); 387 sock_hold(listener); 388 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 389 } 390 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 391 392 static bool vsock_use_local_transport(unsigned int remote_cid) 393 { 394 if (!transport_local) 395 return false; 396 397 if (remote_cid == VMADDR_CID_LOCAL) 398 return true; 399 400 if (transport_g2h) { 401 return remote_cid == transport_g2h->get_local_cid(); 402 } else { 403 return remote_cid == VMADDR_CID_HOST; 404 } 405 } 406 407 static void vsock_deassign_transport(struct vsock_sock *vsk) 408 { 409 if (!vsk->transport) 410 return; 411 412 vsk->transport->destruct(vsk); 413 module_put(vsk->transport->module); 414 vsk->transport = NULL; 415 } 416 417 /* Assign a transport to a socket and call the .init transport callback. 418 * 419 * Note: for connection oriented socket this must be called when vsk->remote_addr 420 * is set (e.g. during the connect() or when a connection request on a listener 421 * socket is received). 422 * The vsk->remote_addr is used to decide which transport to use: 423 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if 424 * g2h is not loaded, will use local transport; 425 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field 426 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport; 427 * - remote CID > VMADDR_CID_HOST will use host->guest transport; 428 */ 429 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk) 430 { 431 const struct vsock_transport *new_transport; 432 struct sock *sk = sk_vsock(vsk); 433 unsigned int remote_cid = vsk->remote_addr.svm_cid; 434 __u8 remote_flags; 435 int ret; 436 437 /* If the packet is coming with the source and destination CIDs higher 438 * than VMADDR_CID_HOST, then a vsock channel where all the packets are 439 * forwarded to the host should be established. Then the host will 440 * need to forward the packets to the guest. 441 * 442 * The flag is set on the (listen) receive path (psk is not NULL). On 443 * the connect path the flag can be set by the user space application. 444 */ 445 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST && 446 vsk->remote_addr.svm_cid > VMADDR_CID_HOST) 447 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST; 448 449 remote_flags = vsk->remote_addr.svm_flags; 450 451 switch (sk->sk_type) { 452 case SOCK_DGRAM: 453 new_transport = transport_dgram; 454 break; 455 case SOCK_STREAM: 456 case SOCK_SEQPACKET: 457 if (vsock_use_local_transport(remote_cid)) 458 new_transport = transport_local; 459 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g || 460 (remote_flags & VMADDR_FLAG_TO_HOST)) 461 new_transport = transport_g2h; 462 else 463 new_transport = transport_h2g; 464 break; 465 default: 466 return -ESOCKTNOSUPPORT; 467 } 468 469 if (vsk->transport) { 470 if (vsk->transport == new_transport) 471 return 0; 472 473 /* transport->release() must be called with sock lock acquired. 474 * This path can only be taken during vsock_connect(), where we 475 * have already held the sock lock. In the other cases, this 476 * function is called on a new socket which is not assigned to 477 * any transport. 478 */ 479 vsk->transport->release(vsk); 480 vsock_deassign_transport(vsk); 481 } 482 483 /* We increase the module refcnt to prevent the transport unloading 484 * while there are open sockets assigned to it. 485 */ 486 if (!new_transport || !try_module_get(new_transport->module)) 487 return -ENODEV; 488 489 if (sk->sk_type == SOCK_SEQPACKET) { 490 if (!new_transport->seqpacket_allow || 491 !new_transport->seqpacket_allow(remote_cid)) { 492 module_put(new_transport->module); 493 return -ESOCKTNOSUPPORT; 494 } 495 } 496 497 ret = new_transport->init(vsk, psk); 498 if (ret) { 499 module_put(new_transport->module); 500 return ret; 501 } 502 503 vsk->transport = new_transport; 504 505 return 0; 506 } 507 EXPORT_SYMBOL_GPL(vsock_assign_transport); 508 509 bool vsock_find_cid(unsigned int cid) 510 { 511 if (transport_g2h && cid == transport_g2h->get_local_cid()) 512 return true; 513 514 if (transport_h2g && cid == VMADDR_CID_HOST) 515 return true; 516 517 if (transport_local && cid == VMADDR_CID_LOCAL) 518 return true; 519 520 return false; 521 } 522 EXPORT_SYMBOL_GPL(vsock_find_cid); 523 524 static struct sock *vsock_dequeue_accept(struct sock *listener) 525 { 526 struct vsock_sock *vlistener; 527 struct vsock_sock *vconnected; 528 529 vlistener = vsock_sk(listener); 530 531 if (list_empty(&vlistener->accept_queue)) 532 return NULL; 533 534 vconnected = list_entry(vlistener->accept_queue.next, 535 struct vsock_sock, accept_queue); 536 537 list_del_init(&vconnected->accept_queue); 538 sock_put(listener); 539 /* The caller will need a reference on the connected socket so we let 540 * it call sock_put(). 541 */ 542 543 return sk_vsock(vconnected); 544 } 545 546 static bool vsock_is_accept_queue_empty(struct sock *sk) 547 { 548 struct vsock_sock *vsk = vsock_sk(sk); 549 return list_empty(&vsk->accept_queue); 550 } 551 552 static bool vsock_is_pending(struct sock *sk) 553 { 554 struct vsock_sock *vsk = vsock_sk(sk); 555 return !list_empty(&vsk->pending_links); 556 } 557 558 static int vsock_send_shutdown(struct sock *sk, int mode) 559 { 560 struct vsock_sock *vsk = vsock_sk(sk); 561 562 if (!vsk->transport) 563 return -ENODEV; 564 565 return vsk->transport->shutdown(vsk, mode); 566 } 567 568 static void vsock_pending_work(struct work_struct *work) 569 { 570 struct sock *sk; 571 struct sock *listener; 572 struct vsock_sock *vsk; 573 bool cleanup; 574 575 vsk = container_of(work, struct vsock_sock, pending_work.work); 576 sk = sk_vsock(vsk); 577 listener = vsk->listener; 578 cleanup = true; 579 580 lock_sock(listener); 581 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 582 583 if (vsock_is_pending(sk)) { 584 vsock_remove_pending(listener, sk); 585 586 sk_acceptq_removed(listener); 587 } else if (!vsk->rejected) { 588 /* We are not on the pending list and accept() did not reject 589 * us, so we must have been accepted by our user process. We 590 * just need to drop our references to the sockets and be on 591 * our way. 592 */ 593 cleanup = false; 594 goto out; 595 } 596 597 /* We need to remove ourself from the global connected sockets list so 598 * incoming packets can't find this socket, and to reduce the reference 599 * count. 600 */ 601 vsock_remove_connected(vsk); 602 603 sk->sk_state = TCP_CLOSE; 604 605 out: 606 release_sock(sk); 607 release_sock(listener); 608 if (cleanup) 609 sock_put(sk); 610 611 sock_put(sk); 612 sock_put(listener); 613 } 614 615 /**** SOCKET OPERATIONS ****/ 616 617 static int __vsock_bind_connectible(struct vsock_sock *vsk, 618 struct sockaddr_vm *addr) 619 { 620 static u32 port; 621 struct sockaddr_vm new_addr; 622 623 if (!port) 624 port = LAST_RESERVED_PORT + 1 + 625 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT); 626 627 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 628 629 if (addr->svm_port == VMADDR_PORT_ANY) { 630 bool found = false; 631 unsigned int i; 632 633 for (i = 0; i < MAX_PORT_RETRIES; i++) { 634 if (port <= LAST_RESERVED_PORT) 635 port = LAST_RESERVED_PORT + 1; 636 637 new_addr.svm_port = port++; 638 639 if (!__vsock_find_bound_socket(&new_addr)) { 640 found = true; 641 break; 642 } 643 } 644 645 if (!found) 646 return -EADDRNOTAVAIL; 647 } else { 648 /* If port is in reserved range, ensure caller 649 * has necessary privileges. 650 */ 651 if (addr->svm_port <= LAST_RESERVED_PORT && 652 !capable(CAP_NET_BIND_SERVICE)) { 653 return -EACCES; 654 } 655 656 if (__vsock_find_bound_socket(&new_addr)) 657 return -EADDRINUSE; 658 } 659 660 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 661 662 /* Remove connection oriented sockets from the unbound list and add them 663 * to the hash table for easy lookup by its address. The unbound list 664 * is simply an extra entry at the end of the hash table, a trick used 665 * by AF_UNIX. 666 */ 667 __vsock_remove_bound(vsk); 668 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 669 670 return 0; 671 } 672 673 static int __vsock_bind_dgram(struct vsock_sock *vsk, 674 struct sockaddr_vm *addr) 675 { 676 return vsk->transport->dgram_bind(vsk, addr); 677 } 678 679 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 680 { 681 struct vsock_sock *vsk = vsock_sk(sk); 682 int retval; 683 684 /* First ensure this socket isn't already bound. */ 685 if (vsock_addr_bound(&vsk->local_addr)) 686 return -EINVAL; 687 688 /* Now bind to the provided address or select appropriate values if 689 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 690 * like AF_INET prevents binding to a non-local IP address (in most 691 * cases), we only allow binding to a local CID. 692 */ 693 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid)) 694 return -EADDRNOTAVAIL; 695 696 switch (sk->sk_socket->type) { 697 case SOCK_STREAM: 698 case SOCK_SEQPACKET: 699 spin_lock_bh(&vsock_table_lock); 700 retval = __vsock_bind_connectible(vsk, addr); 701 spin_unlock_bh(&vsock_table_lock); 702 break; 703 704 case SOCK_DGRAM: 705 retval = __vsock_bind_dgram(vsk, addr); 706 break; 707 708 default: 709 retval = -EINVAL; 710 break; 711 } 712 713 return retval; 714 } 715 716 static void vsock_connect_timeout(struct work_struct *work); 717 718 static struct sock *__vsock_create(struct net *net, 719 struct socket *sock, 720 struct sock *parent, 721 gfp_t priority, 722 unsigned short type, 723 int kern) 724 { 725 struct sock *sk; 726 struct vsock_sock *psk; 727 struct vsock_sock *vsk; 728 729 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 730 if (!sk) 731 return NULL; 732 733 sock_init_data(sock, sk); 734 735 /* sk->sk_type is normally set in sock_init_data, but only if sock is 736 * non-NULL. We make sure that our sockets always have a type by 737 * setting it here if needed. 738 */ 739 if (!sock) 740 sk->sk_type = type; 741 742 vsk = vsock_sk(sk); 743 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 744 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 745 746 sk->sk_destruct = vsock_sk_destruct; 747 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 748 sock_reset_flag(sk, SOCK_DONE); 749 750 INIT_LIST_HEAD(&vsk->bound_table); 751 INIT_LIST_HEAD(&vsk->connected_table); 752 vsk->listener = NULL; 753 INIT_LIST_HEAD(&vsk->pending_links); 754 INIT_LIST_HEAD(&vsk->accept_queue); 755 vsk->rejected = false; 756 vsk->sent_request = false; 757 vsk->ignore_connecting_rst = false; 758 vsk->peer_shutdown = 0; 759 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); 760 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); 761 762 psk = parent ? vsock_sk(parent) : NULL; 763 if (parent) { 764 vsk->trusted = psk->trusted; 765 vsk->owner = get_cred(psk->owner); 766 vsk->connect_timeout = psk->connect_timeout; 767 vsk->buffer_size = psk->buffer_size; 768 vsk->buffer_min_size = psk->buffer_min_size; 769 vsk->buffer_max_size = psk->buffer_max_size; 770 security_sk_clone(parent, sk); 771 } else { 772 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN); 773 vsk->owner = get_current_cred(); 774 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 775 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE; 776 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE; 777 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE; 778 } 779 780 return sk; 781 } 782 783 static bool sock_type_connectible(u16 type) 784 { 785 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET); 786 } 787 788 static void __vsock_release(struct sock *sk, int level) 789 { 790 if (sk) { 791 struct sock *pending; 792 struct vsock_sock *vsk; 793 794 vsk = vsock_sk(sk); 795 pending = NULL; /* Compiler warning. */ 796 797 /* When "level" is SINGLE_DEPTH_NESTING, use the nested 798 * version to avoid the warning "possible recursive locking 799 * detected". When "level" is 0, lock_sock_nested(sk, level) 800 * is the same as lock_sock(sk). 801 */ 802 lock_sock_nested(sk, level); 803 804 if (vsk->transport) 805 vsk->transport->release(vsk); 806 else if (sock_type_connectible(sk->sk_type)) 807 vsock_remove_sock(vsk); 808 809 sock_orphan(sk); 810 sk->sk_shutdown = SHUTDOWN_MASK; 811 812 skb_queue_purge(&sk->sk_receive_queue); 813 814 /* Clean up any sockets that never were accepted. */ 815 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 816 __vsock_release(pending, SINGLE_DEPTH_NESTING); 817 sock_put(pending); 818 } 819 820 release_sock(sk); 821 sock_put(sk); 822 } 823 } 824 825 static void vsock_sk_destruct(struct sock *sk) 826 { 827 struct vsock_sock *vsk = vsock_sk(sk); 828 829 vsock_deassign_transport(vsk); 830 831 /* When clearing these addresses, there's no need to set the family and 832 * possibly register the address family with the kernel. 833 */ 834 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 835 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 836 837 put_cred(vsk->owner); 838 } 839 840 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 841 { 842 int err; 843 844 err = sock_queue_rcv_skb(sk, skb); 845 if (err) 846 kfree_skb(skb); 847 848 return err; 849 } 850 851 struct sock *vsock_create_connected(struct sock *parent) 852 { 853 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL, 854 parent->sk_type, 0); 855 } 856 EXPORT_SYMBOL_GPL(vsock_create_connected); 857 858 s64 vsock_stream_has_data(struct vsock_sock *vsk) 859 { 860 return vsk->transport->stream_has_data(vsk); 861 } 862 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 863 864 static s64 vsock_connectible_has_data(struct vsock_sock *vsk) 865 { 866 struct sock *sk = sk_vsock(vsk); 867 868 if (sk->sk_type == SOCK_SEQPACKET) 869 return vsk->transport->seqpacket_has_data(vsk); 870 else 871 return vsock_stream_has_data(vsk); 872 } 873 874 s64 vsock_stream_has_space(struct vsock_sock *vsk) 875 { 876 return vsk->transport->stream_has_space(vsk); 877 } 878 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 879 880 static int vsock_release(struct socket *sock) 881 { 882 __vsock_release(sock->sk, 0); 883 sock->sk = NULL; 884 sock->state = SS_FREE; 885 886 return 0; 887 } 888 889 static int 890 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 891 { 892 int err; 893 struct sock *sk; 894 struct sockaddr_vm *vm_addr; 895 896 sk = sock->sk; 897 898 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 899 return -EINVAL; 900 901 lock_sock(sk); 902 err = __vsock_bind(sk, vm_addr); 903 release_sock(sk); 904 905 return err; 906 } 907 908 static int vsock_getname(struct socket *sock, 909 struct sockaddr *addr, int peer) 910 { 911 int err; 912 struct sock *sk; 913 struct vsock_sock *vsk; 914 struct sockaddr_vm *vm_addr; 915 916 sk = sock->sk; 917 vsk = vsock_sk(sk); 918 err = 0; 919 920 lock_sock(sk); 921 922 if (peer) { 923 if (sock->state != SS_CONNECTED) { 924 err = -ENOTCONN; 925 goto out; 926 } 927 vm_addr = &vsk->remote_addr; 928 } else { 929 vm_addr = &vsk->local_addr; 930 } 931 932 if (!vm_addr) { 933 err = -EINVAL; 934 goto out; 935 } 936 937 /* sys_getsockname() and sys_getpeername() pass us a 938 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 939 * that macro is defined in socket.c instead of .h, so we hardcode its 940 * value here. 941 */ 942 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 943 memcpy(addr, vm_addr, sizeof(*vm_addr)); 944 err = sizeof(*vm_addr); 945 946 out: 947 release_sock(sk); 948 return err; 949 } 950 951 static int vsock_shutdown(struct socket *sock, int mode) 952 { 953 int err; 954 struct sock *sk; 955 956 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 957 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 958 * here like the other address families do. Note also that the 959 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 960 * which is what we want. 961 */ 962 mode++; 963 964 if ((mode & ~SHUTDOWN_MASK) || !mode) 965 return -EINVAL; 966 967 /* If this is a connection oriented socket and it is not connected then 968 * bail out immediately. If it is a DGRAM socket then we must first 969 * kick the socket so that it wakes up from any sleeping calls, for 970 * example recv(), and then afterwards return the error. 971 */ 972 973 sk = sock->sk; 974 975 lock_sock(sk); 976 if (sock->state == SS_UNCONNECTED) { 977 err = -ENOTCONN; 978 if (sock_type_connectible(sk->sk_type)) 979 goto out; 980 } else { 981 sock->state = SS_DISCONNECTING; 982 err = 0; 983 } 984 985 /* Receive and send shutdowns are treated alike. */ 986 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 987 if (mode) { 988 sk->sk_shutdown |= mode; 989 sk->sk_state_change(sk); 990 991 if (sock_type_connectible(sk->sk_type)) { 992 sock_reset_flag(sk, SOCK_DONE); 993 vsock_send_shutdown(sk, mode); 994 } 995 } 996 997 out: 998 release_sock(sk); 999 return err; 1000 } 1001 1002 static __poll_t vsock_poll(struct file *file, struct socket *sock, 1003 poll_table *wait) 1004 { 1005 struct sock *sk; 1006 __poll_t mask; 1007 struct vsock_sock *vsk; 1008 1009 sk = sock->sk; 1010 vsk = vsock_sk(sk); 1011 1012 poll_wait(file, sk_sleep(sk), wait); 1013 mask = 0; 1014 1015 if (sk->sk_err) 1016 /* Signify that there has been an error on this socket. */ 1017 mask |= EPOLLERR; 1018 1019 /* INET sockets treat local write shutdown and peer write shutdown as a 1020 * case of EPOLLHUP set. 1021 */ 1022 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 1023 ((sk->sk_shutdown & SEND_SHUTDOWN) && 1024 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 1025 mask |= EPOLLHUP; 1026 } 1027 1028 if (sk->sk_shutdown & RCV_SHUTDOWN || 1029 vsk->peer_shutdown & SEND_SHUTDOWN) { 1030 mask |= EPOLLRDHUP; 1031 } 1032 1033 if (sock->type == SOCK_DGRAM) { 1034 /* For datagram sockets we can read if there is something in 1035 * the queue and write as long as the socket isn't shutdown for 1036 * sending. 1037 */ 1038 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || 1039 (sk->sk_shutdown & RCV_SHUTDOWN)) { 1040 mask |= EPOLLIN | EPOLLRDNORM; 1041 } 1042 1043 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1044 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 1045 1046 } else if (sock_type_connectible(sk->sk_type)) { 1047 const struct vsock_transport *transport; 1048 1049 lock_sock(sk); 1050 1051 transport = vsk->transport; 1052 1053 /* Listening sockets that have connections in their accept 1054 * queue can be read. 1055 */ 1056 if (sk->sk_state == TCP_LISTEN 1057 && !vsock_is_accept_queue_empty(sk)) 1058 mask |= EPOLLIN | EPOLLRDNORM; 1059 1060 /* If there is something in the queue then we can read. */ 1061 if (transport && transport->stream_is_active(vsk) && 1062 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1063 bool data_ready_now = false; 1064 int ret = transport->notify_poll_in( 1065 vsk, 1, &data_ready_now); 1066 if (ret < 0) { 1067 mask |= EPOLLERR; 1068 } else { 1069 if (data_ready_now) 1070 mask |= EPOLLIN | EPOLLRDNORM; 1071 1072 } 1073 } 1074 1075 /* Sockets whose connections have been closed, reset, or 1076 * terminated should also be considered read, and we check the 1077 * shutdown flag for that. 1078 */ 1079 if (sk->sk_shutdown & RCV_SHUTDOWN || 1080 vsk->peer_shutdown & SEND_SHUTDOWN) { 1081 mask |= EPOLLIN | EPOLLRDNORM; 1082 } 1083 1084 /* Connected sockets that can produce data can be written. */ 1085 if (transport && sk->sk_state == TCP_ESTABLISHED) { 1086 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1087 bool space_avail_now = false; 1088 int ret = transport->notify_poll_out( 1089 vsk, 1, &space_avail_now); 1090 if (ret < 0) { 1091 mask |= EPOLLERR; 1092 } else { 1093 if (space_avail_now) 1094 /* Remove EPOLLWRBAND since INET 1095 * sockets are not setting it. 1096 */ 1097 mask |= EPOLLOUT | EPOLLWRNORM; 1098 1099 } 1100 } 1101 } 1102 1103 /* Simulate INET socket poll behaviors, which sets 1104 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, 1105 * but local send is not shutdown. 1106 */ 1107 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { 1108 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 1109 mask |= EPOLLOUT | EPOLLWRNORM; 1110 1111 } 1112 1113 release_sock(sk); 1114 } 1115 1116 return mask; 1117 } 1118 1119 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1120 size_t len) 1121 { 1122 int err; 1123 struct sock *sk; 1124 struct vsock_sock *vsk; 1125 struct sockaddr_vm *remote_addr; 1126 const struct vsock_transport *transport; 1127 1128 if (msg->msg_flags & MSG_OOB) 1129 return -EOPNOTSUPP; 1130 1131 /* For now, MSG_DONTWAIT is always assumed... */ 1132 err = 0; 1133 sk = sock->sk; 1134 vsk = vsock_sk(sk); 1135 1136 lock_sock(sk); 1137 1138 transport = vsk->transport; 1139 1140 err = vsock_auto_bind(vsk); 1141 if (err) 1142 goto out; 1143 1144 1145 /* If the provided message contains an address, use that. Otherwise 1146 * fall back on the socket's remote handle (if it has been connected). 1147 */ 1148 if (msg->msg_name && 1149 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 1150 &remote_addr) == 0) { 1151 /* Ensure this address is of the right type and is a valid 1152 * destination. 1153 */ 1154 1155 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1156 remote_addr->svm_cid = transport->get_local_cid(); 1157 1158 if (!vsock_addr_bound(remote_addr)) { 1159 err = -EINVAL; 1160 goto out; 1161 } 1162 } else if (sock->state == SS_CONNECTED) { 1163 remote_addr = &vsk->remote_addr; 1164 1165 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1166 remote_addr->svm_cid = transport->get_local_cid(); 1167 1168 /* XXX Should connect() or this function ensure remote_addr is 1169 * bound? 1170 */ 1171 if (!vsock_addr_bound(&vsk->remote_addr)) { 1172 err = -EINVAL; 1173 goto out; 1174 } 1175 } else { 1176 err = -EINVAL; 1177 goto out; 1178 } 1179 1180 if (!transport->dgram_allow(remote_addr->svm_cid, 1181 remote_addr->svm_port)) { 1182 err = -EINVAL; 1183 goto out; 1184 } 1185 1186 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1187 1188 out: 1189 release_sock(sk); 1190 return err; 1191 } 1192 1193 static int vsock_dgram_connect(struct socket *sock, 1194 struct sockaddr *addr, int addr_len, int flags) 1195 { 1196 int err; 1197 struct sock *sk; 1198 struct vsock_sock *vsk; 1199 struct sockaddr_vm *remote_addr; 1200 1201 sk = sock->sk; 1202 vsk = vsock_sk(sk); 1203 1204 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1205 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1206 lock_sock(sk); 1207 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1208 VMADDR_PORT_ANY); 1209 sock->state = SS_UNCONNECTED; 1210 release_sock(sk); 1211 return 0; 1212 } else if (err != 0) 1213 return -EINVAL; 1214 1215 lock_sock(sk); 1216 1217 err = vsock_auto_bind(vsk); 1218 if (err) 1219 goto out; 1220 1221 if (!vsk->transport->dgram_allow(remote_addr->svm_cid, 1222 remote_addr->svm_port)) { 1223 err = -EINVAL; 1224 goto out; 1225 } 1226 1227 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1228 sock->state = SS_CONNECTED; 1229 1230 out: 1231 release_sock(sk); 1232 return err; 1233 } 1234 1235 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1236 size_t len, int flags) 1237 { 1238 struct vsock_sock *vsk = vsock_sk(sock->sk); 1239 1240 return vsk->transport->dgram_dequeue(vsk, msg, len, flags); 1241 } 1242 1243 static const struct proto_ops vsock_dgram_ops = { 1244 .family = PF_VSOCK, 1245 .owner = THIS_MODULE, 1246 .release = vsock_release, 1247 .bind = vsock_bind, 1248 .connect = vsock_dgram_connect, 1249 .socketpair = sock_no_socketpair, 1250 .accept = sock_no_accept, 1251 .getname = vsock_getname, 1252 .poll = vsock_poll, 1253 .ioctl = sock_no_ioctl, 1254 .listen = sock_no_listen, 1255 .shutdown = vsock_shutdown, 1256 .sendmsg = vsock_dgram_sendmsg, 1257 .recvmsg = vsock_dgram_recvmsg, 1258 .mmap = sock_no_mmap, 1259 .sendpage = sock_no_sendpage, 1260 }; 1261 1262 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1263 { 1264 const struct vsock_transport *transport = vsk->transport; 1265 1266 if (!transport || !transport->cancel_pkt) 1267 return -EOPNOTSUPP; 1268 1269 return transport->cancel_pkt(vsk); 1270 } 1271 1272 static void vsock_connect_timeout(struct work_struct *work) 1273 { 1274 struct sock *sk; 1275 struct vsock_sock *vsk; 1276 1277 vsk = container_of(work, struct vsock_sock, connect_work.work); 1278 sk = sk_vsock(vsk); 1279 1280 lock_sock(sk); 1281 if (sk->sk_state == TCP_SYN_SENT && 1282 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1283 sk->sk_state = TCP_CLOSE; 1284 sk->sk_err = ETIMEDOUT; 1285 sk_error_report(sk); 1286 vsock_transport_cancel_pkt(vsk); 1287 } 1288 release_sock(sk); 1289 1290 sock_put(sk); 1291 } 1292 1293 static int vsock_connect(struct socket *sock, struct sockaddr *addr, 1294 int addr_len, int flags) 1295 { 1296 int err; 1297 struct sock *sk; 1298 struct vsock_sock *vsk; 1299 const struct vsock_transport *transport; 1300 struct sockaddr_vm *remote_addr; 1301 long timeout; 1302 DEFINE_WAIT(wait); 1303 1304 err = 0; 1305 sk = sock->sk; 1306 vsk = vsock_sk(sk); 1307 1308 lock_sock(sk); 1309 1310 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1311 switch (sock->state) { 1312 case SS_CONNECTED: 1313 err = -EISCONN; 1314 goto out; 1315 case SS_DISCONNECTING: 1316 err = -EINVAL; 1317 goto out; 1318 case SS_CONNECTING: 1319 /* This continues on so we can move sock into the SS_CONNECTED 1320 * state once the connection has completed (at which point err 1321 * will be set to zero also). Otherwise, we will either wait 1322 * for the connection or return -EALREADY should this be a 1323 * non-blocking call. 1324 */ 1325 err = -EALREADY; 1326 if (flags & O_NONBLOCK) 1327 goto out; 1328 break; 1329 default: 1330 if ((sk->sk_state == TCP_LISTEN) || 1331 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1332 err = -EINVAL; 1333 goto out; 1334 } 1335 1336 /* Set the remote address that we are connecting to. */ 1337 memcpy(&vsk->remote_addr, remote_addr, 1338 sizeof(vsk->remote_addr)); 1339 1340 err = vsock_assign_transport(vsk, NULL); 1341 if (err) 1342 goto out; 1343 1344 transport = vsk->transport; 1345 1346 /* The hypervisor and well-known contexts do not have socket 1347 * endpoints. 1348 */ 1349 if (!transport || 1350 !transport->stream_allow(remote_addr->svm_cid, 1351 remote_addr->svm_port)) { 1352 err = -ENETUNREACH; 1353 goto out; 1354 } 1355 1356 err = vsock_auto_bind(vsk); 1357 if (err) 1358 goto out; 1359 1360 sk->sk_state = TCP_SYN_SENT; 1361 1362 err = transport->connect(vsk); 1363 if (err < 0) 1364 goto out; 1365 1366 /* Mark sock as connecting and set the error code to in 1367 * progress in case this is a non-blocking connect. 1368 */ 1369 sock->state = SS_CONNECTING; 1370 err = -EINPROGRESS; 1371 } 1372 1373 /* The receive path will handle all communication until we are able to 1374 * enter the connected state. Here we wait for the connection to be 1375 * completed or a notification of an error. 1376 */ 1377 timeout = vsk->connect_timeout; 1378 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1379 1380 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { 1381 if (flags & O_NONBLOCK) { 1382 /* If we're not going to block, we schedule a timeout 1383 * function to generate a timeout on the connection 1384 * attempt, in case the peer doesn't respond in a 1385 * timely manner. We hold on to the socket until the 1386 * timeout fires. 1387 */ 1388 sock_hold(sk); 1389 schedule_delayed_work(&vsk->connect_work, timeout); 1390 1391 /* Skip ahead to preserve error code set above. */ 1392 goto out_wait; 1393 } 1394 1395 release_sock(sk); 1396 timeout = schedule_timeout(timeout); 1397 lock_sock(sk); 1398 1399 if (signal_pending(current)) { 1400 err = sock_intr_errno(timeout); 1401 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE; 1402 sock->state = SS_UNCONNECTED; 1403 vsock_transport_cancel_pkt(vsk); 1404 goto out_wait; 1405 } else if (timeout == 0) { 1406 err = -ETIMEDOUT; 1407 sk->sk_state = TCP_CLOSE; 1408 sock->state = SS_UNCONNECTED; 1409 vsock_transport_cancel_pkt(vsk); 1410 goto out_wait; 1411 } 1412 1413 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1414 } 1415 1416 if (sk->sk_err) { 1417 err = -sk->sk_err; 1418 sk->sk_state = TCP_CLOSE; 1419 sock->state = SS_UNCONNECTED; 1420 } else { 1421 err = 0; 1422 } 1423 1424 out_wait: 1425 finish_wait(sk_sleep(sk), &wait); 1426 out: 1427 release_sock(sk); 1428 return err; 1429 } 1430 1431 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, 1432 bool kern) 1433 { 1434 struct sock *listener; 1435 int err; 1436 struct sock *connected; 1437 struct vsock_sock *vconnected; 1438 long timeout; 1439 DEFINE_WAIT(wait); 1440 1441 err = 0; 1442 listener = sock->sk; 1443 1444 lock_sock(listener); 1445 1446 if (!sock_type_connectible(sock->type)) { 1447 err = -EOPNOTSUPP; 1448 goto out; 1449 } 1450 1451 if (listener->sk_state != TCP_LISTEN) { 1452 err = -EINVAL; 1453 goto out; 1454 } 1455 1456 /* Wait for children sockets to appear; these are the new sockets 1457 * created upon connection establishment. 1458 */ 1459 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK); 1460 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1461 1462 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1463 listener->sk_err == 0) { 1464 release_sock(listener); 1465 timeout = schedule_timeout(timeout); 1466 finish_wait(sk_sleep(listener), &wait); 1467 lock_sock(listener); 1468 1469 if (signal_pending(current)) { 1470 err = sock_intr_errno(timeout); 1471 goto out; 1472 } else if (timeout == 0) { 1473 err = -EAGAIN; 1474 goto out; 1475 } 1476 1477 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1478 } 1479 finish_wait(sk_sleep(listener), &wait); 1480 1481 if (listener->sk_err) 1482 err = -listener->sk_err; 1483 1484 if (connected) { 1485 sk_acceptq_removed(listener); 1486 1487 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1488 vconnected = vsock_sk(connected); 1489 1490 /* If the listener socket has received an error, then we should 1491 * reject this socket and return. Note that we simply mark the 1492 * socket rejected, drop our reference, and let the cleanup 1493 * function handle the cleanup; the fact that we found it in 1494 * the listener's accept queue guarantees that the cleanup 1495 * function hasn't run yet. 1496 */ 1497 if (err) { 1498 vconnected->rejected = true; 1499 } else { 1500 newsock->state = SS_CONNECTED; 1501 sock_graft(connected, newsock); 1502 } 1503 1504 release_sock(connected); 1505 sock_put(connected); 1506 } 1507 1508 out: 1509 release_sock(listener); 1510 return err; 1511 } 1512 1513 static int vsock_listen(struct socket *sock, int backlog) 1514 { 1515 int err; 1516 struct sock *sk; 1517 struct vsock_sock *vsk; 1518 1519 sk = sock->sk; 1520 1521 lock_sock(sk); 1522 1523 if (!sock_type_connectible(sk->sk_type)) { 1524 err = -EOPNOTSUPP; 1525 goto out; 1526 } 1527 1528 if (sock->state != SS_UNCONNECTED) { 1529 err = -EINVAL; 1530 goto out; 1531 } 1532 1533 vsk = vsock_sk(sk); 1534 1535 if (!vsock_addr_bound(&vsk->local_addr)) { 1536 err = -EINVAL; 1537 goto out; 1538 } 1539 1540 sk->sk_max_ack_backlog = backlog; 1541 sk->sk_state = TCP_LISTEN; 1542 1543 err = 0; 1544 1545 out: 1546 release_sock(sk); 1547 return err; 1548 } 1549 1550 static void vsock_update_buffer_size(struct vsock_sock *vsk, 1551 const struct vsock_transport *transport, 1552 u64 val) 1553 { 1554 if (val > vsk->buffer_max_size) 1555 val = vsk->buffer_max_size; 1556 1557 if (val < vsk->buffer_min_size) 1558 val = vsk->buffer_min_size; 1559 1560 if (val != vsk->buffer_size && 1561 transport && transport->notify_buffer_size) 1562 transport->notify_buffer_size(vsk, &val); 1563 1564 vsk->buffer_size = val; 1565 } 1566 1567 static int vsock_connectible_setsockopt(struct socket *sock, 1568 int level, 1569 int optname, 1570 sockptr_t optval, 1571 unsigned int optlen) 1572 { 1573 int err; 1574 struct sock *sk; 1575 struct vsock_sock *vsk; 1576 const struct vsock_transport *transport; 1577 u64 val; 1578 1579 if (level != AF_VSOCK) 1580 return -ENOPROTOOPT; 1581 1582 #define COPY_IN(_v) \ 1583 do { \ 1584 if (optlen < sizeof(_v)) { \ 1585 err = -EINVAL; \ 1586 goto exit; \ 1587 } \ 1588 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \ 1589 err = -EFAULT; \ 1590 goto exit; \ 1591 } \ 1592 } while (0) 1593 1594 err = 0; 1595 sk = sock->sk; 1596 vsk = vsock_sk(sk); 1597 1598 lock_sock(sk); 1599 1600 transport = vsk->transport; 1601 1602 switch (optname) { 1603 case SO_VM_SOCKETS_BUFFER_SIZE: 1604 COPY_IN(val); 1605 vsock_update_buffer_size(vsk, transport, val); 1606 break; 1607 1608 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1609 COPY_IN(val); 1610 vsk->buffer_max_size = val; 1611 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1612 break; 1613 1614 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1615 COPY_IN(val); 1616 vsk->buffer_min_size = val; 1617 vsock_update_buffer_size(vsk, transport, vsk->buffer_size); 1618 break; 1619 1620 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1621 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: { 1622 struct __kernel_sock_timeval tv; 1623 1624 err = sock_copy_user_timeval(&tv, optval, optlen, 1625 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1626 if (err) 1627 break; 1628 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1629 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1630 vsk->connect_timeout = tv.tv_sec * HZ + 1631 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ)); 1632 if (vsk->connect_timeout == 0) 1633 vsk->connect_timeout = 1634 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1635 1636 } else { 1637 err = -ERANGE; 1638 } 1639 break; 1640 } 1641 1642 default: 1643 err = -ENOPROTOOPT; 1644 break; 1645 } 1646 1647 #undef COPY_IN 1648 1649 exit: 1650 release_sock(sk); 1651 return err; 1652 } 1653 1654 static int vsock_connectible_getsockopt(struct socket *sock, 1655 int level, int optname, 1656 char __user *optval, 1657 int __user *optlen) 1658 { 1659 struct sock *sk = sock->sk; 1660 struct vsock_sock *vsk = vsock_sk(sk); 1661 1662 union { 1663 u64 val64; 1664 struct old_timeval32 tm32; 1665 struct __kernel_old_timeval tm; 1666 struct __kernel_sock_timeval stm; 1667 } v; 1668 1669 int lv = sizeof(v.val64); 1670 int len; 1671 1672 if (level != AF_VSOCK) 1673 return -ENOPROTOOPT; 1674 1675 if (get_user(len, optlen)) 1676 return -EFAULT; 1677 1678 memset(&v, 0, sizeof(v)); 1679 1680 switch (optname) { 1681 case SO_VM_SOCKETS_BUFFER_SIZE: 1682 v.val64 = vsk->buffer_size; 1683 break; 1684 1685 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1686 v.val64 = vsk->buffer_max_size; 1687 break; 1688 1689 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1690 v.val64 = vsk->buffer_min_size; 1691 break; 1692 1693 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW: 1694 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: 1695 lv = sock_get_timeout(vsk->connect_timeout, &v, 1696 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD); 1697 break; 1698 1699 default: 1700 return -ENOPROTOOPT; 1701 } 1702 1703 if (len < lv) 1704 return -EINVAL; 1705 if (len > lv) 1706 len = lv; 1707 if (copy_to_user(optval, &v, len)) 1708 return -EFAULT; 1709 1710 if (put_user(len, optlen)) 1711 return -EFAULT; 1712 1713 return 0; 1714 } 1715 1716 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg, 1717 size_t len) 1718 { 1719 struct sock *sk; 1720 struct vsock_sock *vsk; 1721 const struct vsock_transport *transport; 1722 ssize_t total_written; 1723 long timeout; 1724 int err; 1725 struct vsock_transport_send_notify_data send_data; 1726 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1727 1728 sk = sock->sk; 1729 vsk = vsock_sk(sk); 1730 total_written = 0; 1731 err = 0; 1732 1733 if (msg->msg_flags & MSG_OOB) 1734 return -EOPNOTSUPP; 1735 1736 lock_sock(sk); 1737 1738 transport = vsk->transport; 1739 1740 /* Callers should not provide a destination with connection oriented 1741 * sockets. 1742 */ 1743 if (msg->msg_namelen) { 1744 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 1745 goto out; 1746 } 1747 1748 /* Send data only if both sides are not shutdown in the direction. */ 1749 if (sk->sk_shutdown & SEND_SHUTDOWN || 1750 vsk->peer_shutdown & RCV_SHUTDOWN) { 1751 err = -EPIPE; 1752 goto out; 1753 } 1754 1755 if (!transport || sk->sk_state != TCP_ESTABLISHED || 1756 !vsock_addr_bound(&vsk->local_addr)) { 1757 err = -ENOTCONN; 1758 goto out; 1759 } 1760 1761 if (!vsock_addr_bound(&vsk->remote_addr)) { 1762 err = -EDESTADDRREQ; 1763 goto out; 1764 } 1765 1766 /* Wait for room in the produce queue to enqueue our user's data. */ 1767 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1768 1769 err = transport->notify_send_init(vsk, &send_data); 1770 if (err < 0) 1771 goto out; 1772 1773 while (total_written < len) { 1774 ssize_t written; 1775 1776 add_wait_queue(sk_sleep(sk), &wait); 1777 while (vsock_stream_has_space(vsk) == 0 && 1778 sk->sk_err == 0 && 1779 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1780 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1781 1782 /* Don't wait for non-blocking sockets. */ 1783 if (timeout == 0) { 1784 err = -EAGAIN; 1785 remove_wait_queue(sk_sleep(sk), &wait); 1786 goto out_err; 1787 } 1788 1789 err = transport->notify_send_pre_block(vsk, &send_data); 1790 if (err < 0) { 1791 remove_wait_queue(sk_sleep(sk), &wait); 1792 goto out_err; 1793 } 1794 1795 release_sock(sk); 1796 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); 1797 lock_sock(sk); 1798 if (signal_pending(current)) { 1799 err = sock_intr_errno(timeout); 1800 remove_wait_queue(sk_sleep(sk), &wait); 1801 goto out_err; 1802 } else if (timeout == 0) { 1803 err = -EAGAIN; 1804 remove_wait_queue(sk_sleep(sk), &wait); 1805 goto out_err; 1806 } 1807 } 1808 remove_wait_queue(sk_sleep(sk), &wait); 1809 1810 /* These checks occur both as part of and after the loop 1811 * conditional since we need to check before and after 1812 * sleeping. 1813 */ 1814 if (sk->sk_err) { 1815 err = -sk->sk_err; 1816 goto out_err; 1817 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1818 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1819 err = -EPIPE; 1820 goto out_err; 1821 } 1822 1823 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1824 if (err < 0) 1825 goto out_err; 1826 1827 /* Note that enqueue will only write as many bytes as are free 1828 * in the produce queue, so we don't need to ensure len is 1829 * smaller than the queue size. It is the caller's 1830 * responsibility to check how many bytes we were able to send. 1831 */ 1832 1833 if (sk->sk_type == SOCK_SEQPACKET) { 1834 written = transport->seqpacket_enqueue(vsk, 1835 msg, len - total_written); 1836 } else { 1837 written = transport->stream_enqueue(vsk, 1838 msg, len - total_written); 1839 } 1840 if (written < 0) { 1841 err = -ENOMEM; 1842 goto out_err; 1843 } 1844 1845 total_written += written; 1846 1847 err = transport->notify_send_post_enqueue( 1848 vsk, written, &send_data); 1849 if (err < 0) 1850 goto out_err; 1851 1852 } 1853 1854 out_err: 1855 if (total_written > 0) { 1856 /* Return number of written bytes only if: 1857 * 1) SOCK_STREAM socket. 1858 * 2) SOCK_SEQPACKET socket when whole buffer is sent. 1859 */ 1860 if (sk->sk_type == SOCK_STREAM || total_written == len) 1861 err = total_written; 1862 } 1863 out: 1864 release_sock(sk); 1865 return err; 1866 } 1867 1868 static int vsock_connectible_wait_data(struct sock *sk, 1869 struct wait_queue_entry *wait, 1870 long timeout, 1871 struct vsock_transport_recv_notify_data *recv_data, 1872 size_t target) 1873 { 1874 const struct vsock_transport *transport; 1875 struct vsock_sock *vsk; 1876 s64 data; 1877 int err; 1878 1879 vsk = vsock_sk(sk); 1880 err = 0; 1881 transport = vsk->transport; 1882 1883 while ((data = vsock_connectible_has_data(vsk)) == 0) { 1884 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE); 1885 1886 if (sk->sk_err != 0 || 1887 (sk->sk_shutdown & RCV_SHUTDOWN) || 1888 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1889 break; 1890 } 1891 1892 /* Don't wait for non-blocking sockets. */ 1893 if (timeout == 0) { 1894 err = -EAGAIN; 1895 break; 1896 } 1897 1898 if (recv_data) { 1899 err = transport->notify_recv_pre_block(vsk, target, recv_data); 1900 if (err < 0) 1901 break; 1902 } 1903 1904 release_sock(sk); 1905 timeout = schedule_timeout(timeout); 1906 lock_sock(sk); 1907 1908 if (signal_pending(current)) { 1909 err = sock_intr_errno(timeout); 1910 break; 1911 } else if (timeout == 0) { 1912 err = -EAGAIN; 1913 break; 1914 } 1915 } 1916 1917 finish_wait(sk_sleep(sk), wait); 1918 1919 if (err) 1920 return err; 1921 1922 /* Internal transport error when checking for available 1923 * data. XXX This should be changed to a connection 1924 * reset in a later change. 1925 */ 1926 if (data < 0) 1927 return -ENOMEM; 1928 1929 return data; 1930 } 1931 1932 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg, 1933 size_t len, int flags) 1934 { 1935 struct vsock_transport_recv_notify_data recv_data; 1936 const struct vsock_transport *transport; 1937 struct vsock_sock *vsk; 1938 ssize_t copied; 1939 size_t target; 1940 long timeout; 1941 int err; 1942 1943 DEFINE_WAIT(wait); 1944 1945 vsk = vsock_sk(sk); 1946 transport = vsk->transport; 1947 1948 /* We must not copy less than target bytes into the user's buffer 1949 * before returning successfully, so we wait for the consume queue to 1950 * have that much data to consume before dequeueing. Note that this 1951 * makes it impossible to handle cases where target is greater than the 1952 * queue size. 1953 */ 1954 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1955 if (target >= transport->stream_rcvhiwat(vsk)) { 1956 err = -ENOMEM; 1957 goto out; 1958 } 1959 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1960 copied = 0; 1961 1962 err = transport->notify_recv_init(vsk, target, &recv_data); 1963 if (err < 0) 1964 goto out; 1965 1966 1967 while (1) { 1968 ssize_t read; 1969 1970 err = vsock_connectible_wait_data(sk, &wait, timeout, 1971 &recv_data, target); 1972 if (err <= 0) 1973 break; 1974 1975 err = transport->notify_recv_pre_dequeue(vsk, target, 1976 &recv_data); 1977 if (err < 0) 1978 break; 1979 1980 read = transport->stream_dequeue(vsk, msg, len - copied, flags); 1981 if (read < 0) { 1982 err = -ENOMEM; 1983 break; 1984 } 1985 1986 copied += read; 1987 1988 err = transport->notify_recv_post_dequeue(vsk, target, read, 1989 !(flags & MSG_PEEK), &recv_data); 1990 if (err < 0) 1991 goto out; 1992 1993 if (read >= target || flags & MSG_PEEK) 1994 break; 1995 1996 target -= read; 1997 } 1998 1999 if (sk->sk_err) 2000 err = -sk->sk_err; 2001 else if (sk->sk_shutdown & RCV_SHUTDOWN) 2002 err = 0; 2003 2004 if (copied > 0) 2005 err = copied; 2006 2007 out: 2008 return err; 2009 } 2010 2011 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg, 2012 size_t len, int flags) 2013 { 2014 const struct vsock_transport *transport; 2015 struct vsock_sock *vsk; 2016 ssize_t msg_len; 2017 long timeout; 2018 int err = 0; 2019 DEFINE_WAIT(wait); 2020 2021 vsk = vsock_sk(sk); 2022 transport = vsk->transport; 2023 2024 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2025 2026 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0); 2027 if (err <= 0) 2028 goto out; 2029 2030 msg_len = transport->seqpacket_dequeue(vsk, msg, flags); 2031 2032 if (msg_len < 0) { 2033 err = -ENOMEM; 2034 goto out; 2035 } 2036 2037 if (sk->sk_err) { 2038 err = -sk->sk_err; 2039 } else if (sk->sk_shutdown & RCV_SHUTDOWN) { 2040 err = 0; 2041 } else { 2042 /* User sets MSG_TRUNC, so return real length of 2043 * packet. 2044 */ 2045 if (flags & MSG_TRUNC) 2046 err = msg_len; 2047 else 2048 err = len - msg_data_left(msg); 2049 2050 /* Always set MSG_TRUNC if real length of packet is 2051 * bigger than user's buffer. 2052 */ 2053 if (msg_len > len) 2054 msg->msg_flags |= MSG_TRUNC; 2055 } 2056 2057 out: 2058 return err; 2059 } 2060 2061 static int 2062 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2063 int flags) 2064 { 2065 struct sock *sk; 2066 struct vsock_sock *vsk; 2067 const struct vsock_transport *transport; 2068 int err; 2069 2070 DEFINE_WAIT(wait); 2071 2072 sk = sock->sk; 2073 vsk = vsock_sk(sk); 2074 err = 0; 2075 2076 lock_sock(sk); 2077 2078 transport = vsk->transport; 2079 2080 if (!transport || sk->sk_state != TCP_ESTABLISHED) { 2081 /* Recvmsg is supposed to return 0 if a peer performs an 2082 * orderly shutdown. Differentiate between that case and when a 2083 * peer has not connected or a local shutdown occurred with the 2084 * SOCK_DONE flag. 2085 */ 2086 if (sock_flag(sk, SOCK_DONE)) 2087 err = 0; 2088 else 2089 err = -ENOTCONN; 2090 2091 goto out; 2092 } 2093 2094 if (flags & MSG_OOB) { 2095 err = -EOPNOTSUPP; 2096 goto out; 2097 } 2098 2099 /* We don't check peer_shutdown flag here since peer may actually shut 2100 * down, but there can be data in the queue that a local socket can 2101 * receive. 2102 */ 2103 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2104 err = 0; 2105 goto out; 2106 } 2107 2108 /* It is valid on Linux to pass in a zero-length receive buffer. This 2109 * is not an error. We may as well bail out now. 2110 */ 2111 if (!len) { 2112 err = 0; 2113 goto out; 2114 } 2115 2116 if (sk->sk_type == SOCK_STREAM) 2117 err = __vsock_stream_recvmsg(sk, msg, len, flags); 2118 else 2119 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags); 2120 2121 out: 2122 release_sock(sk); 2123 return err; 2124 } 2125 2126 static const struct proto_ops vsock_stream_ops = { 2127 .family = PF_VSOCK, 2128 .owner = THIS_MODULE, 2129 .release = vsock_release, 2130 .bind = vsock_bind, 2131 .connect = vsock_connect, 2132 .socketpair = sock_no_socketpair, 2133 .accept = vsock_accept, 2134 .getname = vsock_getname, 2135 .poll = vsock_poll, 2136 .ioctl = sock_no_ioctl, 2137 .listen = vsock_listen, 2138 .shutdown = vsock_shutdown, 2139 .setsockopt = vsock_connectible_setsockopt, 2140 .getsockopt = vsock_connectible_getsockopt, 2141 .sendmsg = vsock_connectible_sendmsg, 2142 .recvmsg = vsock_connectible_recvmsg, 2143 .mmap = sock_no_mmap, 2144 .sendpage = sock_no_sendpage, 2145 }; 2146 2147 static const struct proto_ops vsock_seqpacket_ops = { 2148 .family = PF_VSOCK, 2149 .owner = THIS_MODULE, 2150 .release = vsock_release, 2151 .bind = vsock_bind, 2152 .connect = vsock_connect, 2153 .socketpair = sock_no_socketpair, 2154 .accept = vsock_accept, 2155 .getname = vsock_getname, 2156 .poll = vsock_poll, 2157 .ioctl = sock_no_ioctl, 2158 .listen = vsock_listen, 2159 .shutdown = vsock_shutdown, 2160 .setsockopt = vsock_connectible_setsockopt, 2161 .getsockopt = vsock_connectible_getsockopt, 2162 .sendmsg = vsock_connectible_sendmsg, 2163 .recvmsg = vsock_connectible_recvmsg, 2164 .mmap = sock_no_mmap, 2165 .sendpage = sock_no_sendpage, 2166 }; 2167 2168 static int vsock_create(struct net *net, struct socket *sock, 2169 int protocol, int kern) 2170 { 2171 struct vsock_sock *vsk; 2172 struct sock *sk; 2173 int ret; 2174 2175 if (!sock) 2176 return -EINVAL; 2177 2178 if (protocol && protocol != PF_VSOCK) 2179 return -EPROTONOSUPPORT; 2180 2181 switch (sock->type) { 2182 case SOCK_DGRAM: 2183 sock->ops = &vsock_dgram_ops; 2184 break; 2185 case SOCK_STREAM: 2186 sock->ops = &vsock_stream_ops; 2187 break; 2188 case SOCK_SEQPACKET: 2189 sock->ops = &vsock_seqpacket_ops; 2190 break; 2191 default: 2192 return -ESOCKTNOSUPPORT; 2193 } 2194 2195 sock->state = SS_UNCONNECTED; 2196 2197 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern); 2198 if (!sk) 2199 return -ENOMEM; 2200 2201 vsk = vsock_sk(sk); 2202 2203 if (sock->type == SOCK_DGRAM) { 2204 ret = vsock_assign_transport(vsk, NULL); 2205 if (ret < 0) { 2206 sock_put(sk); 2207 return ret; 2208 } 2209 } 2210 2211 vsock_insert_unbound(vsk); 2212 2213 return 0; 2214 } 2215 2216 static const struct net_proto_family vsock_family_ops = { 2217 .family = AF_VSOCK, 2218 .create = vsock_create, 2219 .owner = THIS_MODULE, 2220 }; 2221 2222 static long vsock_dev_do_ioctl(struct file *filp, 2223 unsigned int cmd, void __user *ptr) 2224 { 2225 u32 __user *p = ptr; 2226 u32 cid = VMADDR_CID_ANY; 2227 int retval = 0; 2228 2229 switch (cmd) { 2230 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 2231 /* To be compatible with the VMCI behavior, we prioritize the 2232 * guest CID instead of well-know host CID (VMADDR_CID_HOST). 2233 */ 2234 if (transport_g2h) 2235 cid = transport_g2h->get_local_cid(); 2236 else if (transport_h2g) 2237 cid = transport_h2g->get_local_cid(); 2238 2239 if (put_user(cid, p) != 0) 2240 retval = -EFAULT; 2241 break; 2242 2243 default: 2244 retval = -ENOIOCTLCMD; 2245 } 2246 2247 return retval; 2248 } 2249 2250 static long vsock_dev_ioctl(struct file *filp, 2251 unsigned int cmd, unsigned long arg) 2252 { 2253 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 2254 } 2255 2256 #ifdef CONFIG_COMPAT 2257 static long vsock_dev_compat_ioctl(struct file *filp, 2258 unsigned int cmd, unsigned long arg) 2259 { 2260 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 2261 } 2262 #endif 2263 2264 static const struct file_operations vsock_device_ops = { 2265 .owner = THIS_MODULE, 2266 .unlocked_ioctl = vsock_dev_ioctl, 2267 #ifdef CONFIG_COMPAT 2268 .compat_ioctl = vsock_dev_compat_ioctl, 2269 #endif 2270 .open = nonseekable_open, 2271 }; 2272 2273 static struct miscdevice vsock_device = { 2274 .name = "vsock", 2275 .fops = &vsock_device_ops, 2276 }; 2277 2278 static int __init vsock_init(void) 2279 { 2280 int err = 0; 2281 2282 vsock_init_tables(); 2283 2284 vsock_proto.owner = THIS_MODULE; 2285 vsock_device.minor = MISC_DYNAMIC_MINOR; 2286 err = misc_register(&vsock_device); 2287 if (err) { 2288 pr_err("Failed to register misc device\n"); 2289 goto err_reset_transport; 2290 } 2291 2292 err = proto_register(&vsock_proto, 1); /* we want our slab */ 2293 if (err) { 2294 pr_err("Cannot register vsock protocol\n"); 2295 goto err_deregister_misc; 2296 } 2297 2298 err = sock_register(&vsock_family_ops); 2299 if (err) { 2300 pr_err("could not register af_vsock (%d) address family: %d\n", 2301 AF_VSOCK, err); 2302 goto err_unregister_proto; 2303 } 2304 2305 return 0; 2306 2307 err_unregister_proto: 2308 proto_unregister(&vsock_proto); 2309 err_deregister_misc: 2310 misc_deregister(&vsock_device); 2311 err_reset_transport: 2312 return err; 2313 } 2314 2315 static void __exit vsock_exit(void) 2316 { 2317 misc_deregister(&vsock_device); 2318 sock_unregister(AF_VSOCK); 2319 proto_unregister(&vsock_proto); 2320 } 2321 2322 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk) 2323 { 2324 return vsk->transport; 2325 } 2326 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2327 2328 int vsock_core_register(const struct vsock_transport *t, int features) 2329 { 2330 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local; 2331 int err = mutex_lock_interruptible(&vsock_register_mutex); 2332 2333 if (err) 2334 return err; 2335 2336 t_h2g = transport_h2g; 2337 t_g2h = transport_g2h; 2338 t_dgram = transport_dgram; 2339 t_local = transport_local; 2340 2341 if (features & VSOCK_TRANSPORT_F_H2G) { 2342 if (t_h2g) { 2343 err = -EBUSY; 2344 goto err_busy; 2345 } 2346 t_h2g = t; 2347 } 2348 2349 if (features & VSOCK_TRANSPORT_F_G2H) { 2350 if (t_g2h) { 2351 err = -EBUSY; 2352 goto err_busy; 2353 } 2354 t_g2h = t; 2355 } 2356 2357 if (features & VSOCK_TRANSPORT_F_DGRAM) { 2358 if (t_dgram) { 2359 err = -EBUSY; 2360 goto err_busy; 2361 } 2362 t_dgram = t; 2363 } 2364 2365 if (features & VSOCK_TRANSPORT_F_LOCAL) { 2366 if (t_local) { 2367 err = -EBUSY; 2368 goto err_busy; 2369 } 2370 t_local = t; 2371 } 2372 2373 transport_h2g = t_h2g; 2374 transport_g2h = t_g2h; 2375 transport_dgram = t_dgram; 2376 transport_local = t_local; 2377 2378 err_busy: 2379 mutex_unlock(&vsock_register_mutex); 2380 return err; 2381 } 2382 EXPORT_SYMBOL_GPL(vsock_core_register); 2383 2384 void vsock_core_unregister(const struct vsock_transport *t) 2385 { 2386 mutex_lock(&vsock_register_mutex); 2387 2388 if (transport_h2g == t) 2389 transport_h2g = NULL; 2390 2391 if (transport_g2h == t) 2392 transport_g2h = NULL; 2393 2394 if (transport_dgram == t) 2395 transport_dgram = NULL; 2396 2397 if (transport_local == t) 2398 transport_local = NULL; 2399 2400 mutex_unlock(&vsock_register_mutex); 2401 } 2402 EXPORT_SYMBOL_GPL(vsock_core_unregister); 2403 2404 module_init(vsock_init); 2405 module_exit(vsock_exit); 2406 2407 MODULE_AUTHOR("VMware, Inc."); 2408 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2409 MODULE_VERSION("1.0.2.0-k"); 2410 MODULE_LICENSE("GPL v2"); 2411