xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 2022ca0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 static const struct vsock_transport *transport;
130 static DEFINE_MUTEX(vsock_register_mutex);
131 
132 /**** EXPORTS ****/
133 
134 /* Get the ID of the local context.  This is transport dependent. */
135 
136 int vm_sockets_get_local_cid(void)
137 {
138 	return transport->get_local_cid();
139 }
140 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
141 
142 /**** UTILS ****/
143 
144 /* Each bound VSocket is stored in the bind hash table and each connected
145  * VSocket is stored in the connected hash table.
146  *
147  * Unbound sockets are all put on the same list attached to the end of the hash
148  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
149  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
150  * represents the list that addr hashes to).
151  *
152  * Specifically, we initialize the vsock_bind_table array to a size of
153  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
154  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
155  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
156  * mods with VSOCK_HASH_SIZE to ensure this.
157  */
158 #define MAX_PORT_RETRIES        24
159 
160 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
161 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
162 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
163 
164 /* XXX This can probably be implemented in a better way. */
165 #define VSOCK_CONN_HASH(src, dst)				\
166 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
167 #define vsock_connected_sockets(src, dst)		\
168 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
169 #define vsock_connected_sockets_vsk(vsk)				\
170 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
171 
172 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
173 EXPORT_SYMBOL_GPL(vsock_bind_table);
174 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
175 EXPORT_SYMBOL_GPL(vsock_connected_table);
176 DEFINE_SPINLOCK(vsock_table_lock);
177 EXPORT_SYMBOL_GPL(vsock_table_lock);
178 
179 /* Autobind this socket to the local address if necessary. */
180 static int vsock_auto_bind(struct vsock_sock *vsk)
181 {
182 	struct sock *sk = sk_vsock(vsk);
183 	struct sockaddr_vm local_addr;
184 
185 	if (vsock_addr_bound(&vsk->local_addr))
186 		return 0;
187 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
188 	return __vsock_bind(sk, &local_addr);
189 }
190 
191 static int __init vsock_init_tables(void)
192 {
193 	int i;
194 
195 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
196 		INIT_LIST_HEAD(&vsock_bind_table[i]);
197 
198 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
199 		INIT_LIST_HEAD(&vsock_connected_table[i]);
200 	return 0;
201 }
202 
203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
234 		if (addr->svm_port == vsk->local_addr.svm_port)
235 			return sk_vsock(vsk);
236 
237 	return NULL;
238 }
239 
240 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
241 						  struct sockaddr_vm *dst)
242 {
243 	struct vsock_sock *vsk;
244 
245 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
246 			    connected_table) {
247 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
248 		    dst->svm_port == vsk->local_addr.svm_port) {
249 			return sk_vsock(vsk);
250 		}
251 	}
252 
253 	return NULL;
254 }
255 
256 static void vsock_insert_unbound(struct vsock_sock *vsk)
257 {
258 	spin_lock_bh(&vsock_table_lock);
259 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
260 	spin_unlock_bh(&vsock_table_lock);
261 }
262 
263 void vsock_insert_connected(struct vsock_sock *vsk)
264 {
265 	struct list_head *list = vsock_connected_sockets(
266 		&vsk->remote_addr, &vsk->local_addr);
267 
268 	spin_lock_bh(&vsock_table_lock);
269 	__vsock_insert_connected(list, vsk);
270 	spin_unlock_bh(&vsock_table_lock);
271 }
272 EXPORT_SYMBOL_GPL(vsock_insert_connected);
273 
274 void vsock_remove_bound(struct vsock_sock *vsk)
275 {
276 	spin_lock_bh(&vsock_table_lock);
277 	if (__vsock_in_bound_table(vsk))
278 		__vsock_remove_bound(vsk);
279 	spin_unlock_bh(&vsock_table_lock);
280 }
281 EXPORT_SYMBOL_GPL(vsock_remove_bound);
282 
283 void vsock_remove_connected(struct vsock_sock *vsk)
284 {
285 	spin_lock_bh(&vsock_table_lock);
286 	if (__vsock_in_connected_table(vsk))
287 		__vsock_remove_connected(vsk);
288 	spin_unlock_bh(&vsock_table_lock);
289 }
290 EXPORT_SYMBOL_GPL(vsock_remove_connected);
291 
292 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
293 {
294 	struct sock *sk;
295 
296 	spin_lock_bh(&vsock_table_lock);
297 	sk = __vsock_find_bound_socket(addr);
298 	if (sk)
299 		sock_hold(sk);
300 
301 	spin_unlock_bh(&vsock_table_lock);
302 
303 	return sk;
304 }
305 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
306 
307 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
308 					 struct sockaddr_vm *dst)
309 {
310 	struct sock *sk;
311 
312 	spin_lock_bh(&vsock_table_lock);
313 	sk = __vsock_find_connected_socket(src, dst);
314 	if (sk)
315 		sock_hold(sk);
316 
317 	spin_unlock_bh(&vsock_table_lock);
318 
319 	return sk;
320 }
321 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
322 
323 void vsock_remove_sock(struct vsock_sock *vsk)
324 {
325 	vsock_remove_bound(vsk);
326 	vsock_remove_connected(vsk);
327 }
328 EXPORT_SYMBOL_GPL(vsock_remove_sock);
329 
330 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
331 {
332 	int i;
333 
334 	spin_lock_bh(&vsock_table_lock);
335 
336 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
337 		struct vsock_sock *vsk;
338 		list_for_each_entry(vsk, &vsock_connected_table[i],
339 				    connected_table)
340 			fn(sk_vsock(vsk));
341 	}
342 
343 	spin_unlock_bh(&vsock_table_lock);
344 }
345 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
346 
347 void vsock_add_pending(struct sock *listener, struct sock *pending)
348 {
349 	struct vsock_sock *vlistener;
350 	struct vsock_sock *vpending;
351 
352 	vlistener = vsock_sk(listener);
353 	vpending = vsock_sk(pending);
354 
355 	sock_hold(pending);
356 	sock_hold(listener);
357 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
358 }
359 EXPORT_SYMBOL_GPL(vsock_add_pending);
360 
361 void vsock_remove_pending(struct sock *listener, struct sock *pending)
362 {
363 	struct vsock_sock *vpending = vsock_sk(pending);
364 
365 	list_del_init(&vpending->pending_links);
366 	sock_put(listener);
367 	sock_put(pending);
368 }
369 EXPORT_SYMBOL_GPL(vsock_remove_pending);
370 
371 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
372 {
373 	struct vsock_sock *vlistener;
374 	struct vsock_sock *vconnected;
375 
376 	vlistener = vsock_sk(listener);
377 	vconnected = vsock_sk(connected);
378 
379 	sock_hold(connected);
380 	sock_hold(listener);
381 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
382 }
383 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
384 
385 static struct sock *vsock_dequeue_accept(struct sock *listener)
386 {
387 	struct vsock_sock *vlistener;
388 	struct vsock_sock *vconnected;
389 
390 	vlistener = vsock_sk(listener);
391 
392 	if (list_empty(&vlistener->accept_queue))
393 		return NULL;
394 
395 	vconnected = list_entry(vlistener->accept_queue.next,
396 				struct vsock_sock, accept_queue);
397 
398 	list_del_init(&vconnected->accept_queue);
399 	sock_put(listener);
400 	/* The caller will need a reference on the connected socket so we let
401 	 * it call sock_put().
402 	 */
403 
404 	return sk_vsock(vconnected);
405 }
406 
407 static bool vsock_is_accept_queue_empty(struct sock *sk)
408 {
409 	struct vsock_sock *vsk = vsock_sk(sk);
410 	return list_empty(&vsk->accept_queue);
411 }
412 
413 static bool vsock_is_pending(struct sock *sk)
414 {
415 	struct vsock_sock *vsk = vsock_sk(sk);
416 	return !list_empty(&vsk->pending_links);
417 }
418 
419 static int vsock_send_shutdown(struct sock *sk, int mode)
420 {
421 	return transport->shutdown(vsock_sk(sk), mode);
422 }
423 
424 static void vsock_pending_work(struct work_struct *work)
425 {
426 	struct sock *sk;
427 	struct sock *listener;
428 	struct vsock_sock *vsk;
429 	bool cleanup;
430 
431 	vsk = container_of(work, struct vsock_sock, pending_work.work);
432 	sk = sk_vsock(vsk);
433 	listener = vsk->listener;
434 	cleanup = true;
435 
436 	lock_sock(listener);
437 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
438 
439 	if (vsock_is_pending(sk)) {
440 		vsock_remove_pending(listener, sk);
441 
442 		listener->sk_ack_backlog--;
443 	} else if (!vsk->rejected) {
444 		/* We are not on the pending list and accept() did not reject
445 		 * us, so we must have been accepted by our user process.  We
446 		 * just need to drop our references to the sockets and be on
447 		 * our way.
448 		 */
449 		cleanup = false;
450 		goto out;
451 	}
452 
453 	/* We need to remove ourself from the global connected sockets list so
454 	 * incoming packets can't find this socket, and to reduce the reference
455 	 * count.
456 	 */
457 	vsock_remove_connected(vsk);
458 
459 	sk->sk_state = TCP_CLOSE;
460 
461 out:
462 	release_sock(sk);
463 	release_sock(listener);
464 	if (cleanup)
465 		sock_put(sk);
466 
467 	sock_put(sk);
468 	sock_put(listener);
469 }
470 
471 /**** SOCKET OPERATIONS ****/
472 
473 static int __vsock_bind_stream(struct vsock_sock *vsk,
474 			       struct sockaddr_vm *addr)
475 {
476 	static u32 port;
477 	struct sockaddr_vm new_addr;
478 
479 	if (!port)
480 		port = LAST_RESERVED_PORT + 1 +
481 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
482 
483 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
484 
485 	if (addr->svm_port == VMADDR_PORT_ANY) {
486 		bool found = false;
487 		unsigned int i;
488 
489 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
490 			if (port <= LAST_RESERVED_PORT)
491 				port = LAST_RESERVED_PORT + 1;
492 
493 			new_addr.svm_port = port++;
494 
495 			if (!__vsock_find_bound_socket(&new_addr)) {
496 				found = true;
497 				break;
498 			}
499 		}
500 
501 		if (!found)
502 			return -EADDRNOTAVAIL;
503 	} else {
504 		/* If port is in reserved range, ensure caller
505 		 * has necessary privileges.
506 		 */
507 		if (addr->svm_port <= LAST_RESERVED_PORT &&
508 		    !capable(CAP_NET_BIND_SERVICE)) {
509 			return -EACCES;
510 		}
511 
512 		if (__vsock_find_bound_socket(&new_addr))
513 			return -EADDRINUSE;
514 	}
515 
516 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
517 
518 	/* Remove stream sockets from the unbound list and add them to the hash
519 	 * table for easy lookup by its address.  The unbound list is simply an
520 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
521 	 */
522 	__vsock_remove_bound(vsk);
523 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
524 
525 	return 0;
526 }
527 
528 static int __vsock_bind_dgram(struct vsock_sock *vsk,
529 			      struct sockaddr_vm *addr)
530 {
531 	return transport->dgram_bind(vsk, addr);
532 }
533 
534 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
535 {
536 	struct vsock_sock *vsk = vsock_sk(sk);
537 	u32 cid;
538 	int retval;
539 
540 	/* First ensure this socket isn't already bound. */
541 	if (vsock_addr_bound(&vsk->local_addr))
542 		return -EINVAL;
543 
544 	/* Now bind to the provided address or select appropriate values if
545 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
546 	 * like AF_INET prevents binding to a non-local IP address (in most
547 	 * cases), we only allow binding to the local CID.
548 	 */
549 	cid = transport->get_local_cid();
550 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
551 		return -EADDRNOTAVAIL;
552 
553 	switch (sk->sk_socket->type) {
554 	case SOCK_STREAM:
555 		spin_lock_bh(&vsock_table_lock);
556 		retval = __vsock_bind_stream(vsk, addr);
557 		spin_unlock_bh(&vsock_table_lock);
558 		break;
559 
560 	case SOCK_DGRAM:
561 		retval = __vsock_bind_dgram(vsk, addr);
562 		break;
563 
564 	default:
565 		retval = -EINVAL;
566 		break;
567 	}
568 
569 	return retval;
570 }
571 
572 static void vsock_connect_timeout(struct work_struct *work);
573 
574 struct sock *__vsock_create(struct net *net,
575 			    struct socket *sock,
576 			    struct sock *parent,
577 			    gfp_t priority,
578 			    unsigned short type,
579 			    int kern)
580 {
581 	struct sock *sk;
582 	struct vsock_sock *psk;
583 	struct vsock_sock *vsk;
584 
585 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
586 	if (!sk)
587 		return NULL;
588 
589 	sock_init_data(sock, sk);
590 
591 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
592 	 * non-NULL. We make sure that our sockets always have a type by
593 	 * setting it here if needed.
594 	 */
595 	if (!sock)
596 		sk->sk_type = type;
597 
598 	vsk = vsock_sk(sk);
599 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
600 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
601 
602 	sk->sk_destruct = vsock_sk_destruct;
603 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
604 	sock_reset_flag(sk, SOCK_DONE);
605 
606 	INIT_LIST_HEAD(&vsk->bound_table);
607 	INIT_LIST_HEAD(&vsk->connected_table);
608 	vsk->listener = NULL;
609 	INIT_LIST_HEAD(&vsk->pending_links);
610 	INIT_LIST_HEAD(&vsk->accept_queue);
611 	vsk->rejected = false;
612 	vsk->sent_request = false;
613 	vsk->ignore_connecting_rst = false;
614 	vsk->peer_shutdown = 0;
615 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
616 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
617 
618 	psk = parent ? vsock_sk(parent) : NULL;
619 	if (parent) {
620 		vsk->trusted = psk->trusted;
621 		vsk->owner = get_cred(psk->owner);
622 		vsk->connect_timeout = psk->connect_timeout;
623 	} else {
624 		vsk->trusted = capable(CAP_NET_ADMIN);
625 		vsk->owner = get_current_cred();
626 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
627 	}
628 
629 	if (transport->init(vsk, psk) < 0) {
630 		sk_free(sk);
631 		return NULL;
632 	}
633 
634 	if (sock)
635 		vsock_insert_unbound(vsk);
636 
637 	return sk;
638 }
639 EXPORT_SYMBOL_GPL(__vsock_create);
640 
641 static void __vsock_release(struct sock *sk, int level)
642 {
643 	if (sk) {
644 		struct sk_buff *skb;
645 		struct sock *pending;
646 		struct vsock_sock *vsk;
647 
648 		vsk = vsock_sk(sk);
649 		pending = NULL;	/* Compiler warning. */
650 
651 		/* The release call is supposed to use lock_sock_nested()
652 		 * rather than lock_sock(), if a sock lock should be acquired.
653 		 */
654 		transport->release(vsk);
655 
656 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
657 		 * version to avoid the warning "possible recursive locking
658 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
659 		 * is the same as lock_sock(sk).
660 		 */
661 		lock_sock_nested(sk, level);
662 		sock_orphan(sk);
663 		sk->sk_shutdown = SHUTDOWN_MASK;
664 
665 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
666 			kfree_skb(skb);
667 
668 		/* Clean up any sockets that never were accepted. */
669 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
670 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
671 			sock_put(pending);
672 		}
673 
674 		release_sock(sk);
675 		sock_put(sk);
676 	}
677 }
678 
679 static void vsock_sk_destruct(struct sock *sk)
680 {
681 	struct vsock_sock *vsk = vsock_sk(sk);
682 
683 	transport->destruct(vsk);
684 
685 	/* When clearing these addresses, there's no need to set the family and
686 	 * possibly register the address family with the kernel.
687 	 */
688 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
689 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
690 
691 	put_cred(vsk->owner);
692 }
693 
694 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
695 {
696 	int err;
697 
698 	err = sock_queue_rcv_skb(sk, skb);
699 	if (err)
700 		kfree_skb(skb);
701 
702 	return err;
703 }
704 
705 s64 vsock_stream_has_data(struct vsock_sock *vsk)
706 {
707 	return transport->stream_has_data(vsk);
708 }
709 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
710 
711 s64 vsock_stream_has_space(struct vsock_sock *vsk)
712 {
713 	return transport->stream_has_space(vsk);
714 }
715 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
716 
717 static int vsock_release(struct socket *sock)
718 {
719 	__vsock_release(sock->sk, 0);
720 	sock->sk = NULL;
721 	sock->state = SS_FREE;
722 
723 	return 0;
724 }
725 
726 static int
727 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
728 {
729 	int err;
730 	struct sock *sk;
731 	struct sockaddr_vm *vm_addr;
732 
733 	sk = sock->sk;
734 
735 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
736 		return -EINVAL;
737 
738 	lock_sock(sk);
739 	err = __vsock_bind(sk, vm_addr);
740 	release_sock(sk);
741 
742 	return err;
743 }
744 
745 static int vsock_getname(struct socket *sock,
746 			 struct sockaddr *addr, int peer)
747 {
748 	int err;
749 	struct sock *sk;
750 	struct vsock_sock *vsk;
751 	struct sockaddr_vm *vm_addr;
752 
753 	sk = sock->sk;
754 	vsk = vsock_sk(sk);
755 	err = 0;
756 
757 	lock_sock(sk);
758 
759 	if (peer) {
760 		if (sock->state != SS_CONNECTED) {
761 			err = -ENOTCONN;
762 			goto out;
763 		}
764 		vm_addr = &vsk->remote_addr;
765 	} else {
766 		vm_addr = &vsk->local_addr;
767 	}
768 
769 	if (!vm_addr) {
770 		err = -EINVAL;
771 		goto out;
772 	}
773 
774 	/* sys_getsockname() and sys_getpeername() pass us a
775 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
776 	 * that macro is defined in socket.c instead of .h, so we hardcode its
777 	 * value here.
778 	 */
779 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
780 	memcpy(addr, vm_addr, sizeof(*vm_addr));
781 	err = sizeof(*vm_addr);
782 
783 out:
784 	release_sock(sk);
785 	return err;
786 }
787 
788 static int vsock_shutdown(struct socket *sock, int mode)
789 {
790 	int err;
791 	struct sock *sk;
792 
793 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
794 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
795 	 * here like the other address families do.  Note also that the
796 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
797 	 * which is what we want.
798 	 */
799 	mode++;
800 
801 	if ((mode & ~SHUTDOWN_MASK) || !mode)
802 		return -EINVAL;
803 
804 	/* If this is a STREAM socket and it is not connected then bail out
805 	 * immediately.  If it is a DGRAM socket then we must first kick the
806 	 * socket so that it wakes up from any sleeping calls, for example
807 	 * recv(), and then afterwards return the error.
808 	 */
809 
810 	sk = sock->sk;
811 	if (sock->state == SS_UNCONNECTED) {
812 		err = -ENOTCONN;
813 		if (sk->sk_type == SOCK_STREAM)
814 			return err;
815 	} else {
816 		sock->state = SS_DISCONNECTING;
817 		err = 0;
818 	}
819 
820 	/* Receive and send shutdowns are treated alike. */
821 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
822 	if (mode) {
823 		lock_sock(sk);
824 		sk->sk_shutdown |= mode;
825 		sk->sk_state_change(sk);
826 		release_sock(sk);
827 
828 		if (sk->sk_type == SOCK_STREAM) {
829 			sock_reset_flag(sk, SOCK_DONE);
830 			vsock_send_shutdown(sk, mode);
831 		}
832 	}
833 
834 	return err;
835 }
836 
837 static __poll_t vsock_poll(struct file *file, struct socket *sock,
838 			       poll_table *wait)
839 {
840 	struct sock *sk;
841 	__poll_t mask;
842 	struct vsock_sock *vsk;
843 
844 	sk = sock->sk;
845 	vsk = vsock_sk(sk);
846 
847 	poll_wait(file, sk_sleep(sk), wait);
848 	mask = 0;
849 
850 	if (sk->sk_err)
851 		/* Signify that there has been an error on this socket. */
852 		mask |= EPOLLERR;
853 
854 	/* INET sockets treat local write shutdown and peer write shutdown as a
855 	 * case of EPOLLHUP set.
856 	 */
857 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
858 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
859 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
860 		mask |= EPOLLHUP;
861 	}
862 
863 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
864 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
865 		mask |= EPOLLRDHUP;
866 	}
867 
868 	if (sock->type == SOCK_DGRAM) {
869 		/* For datagram sockets we can read if there is something in
870 		 * the queue and write as long as the socket isn't shutdown for
871 		 * sending.
872 		 */
873 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
874 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
875 			mask |= EPOLLIN | EPOLLRDNORM;
876 		}
877 
878 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
879 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
880 
881 	} else if (sock->type == SOCK_STREAM) {
882 		lock_sock(sk);
883 
884 		/* Listening sockets that have connections in their accept
885 		 * queue can be read.
886 		 */
887 		if (sk->sk_state == TCP_LISTEN
888 		    && !vsock_is_accept_queue_empty(sk))
889 			mask |= EPOLLIN | EPOLLRDNORM;
890 
891 		/* If there is something in the queue then we can read. */
892 		if (transport->stream_is_active(vsk) &&
893 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
894 			bool data_ready_now = false;
895 			int ret = transport->notify_poll_in(
896 					vsk, 1, &data_ready_now);
897 			if (ret < 0) {
898 				mask |= EPOLLERR;
899 			} else {
900 				if (data_ready_now)
901 					mask |= EPOLLIN | EPOLLRDNORM;
902 
903 			}
904 		}
905 
906 		/* Sockets whose connections have been closed, reset, or
907 		 * terminated should also be considered read, and we check the
908 		 * shutdown flag for that.
909 		 */
910 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
911 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
912 			mask |= EPOLLIN | EPOLLRDNORM;
913 		}
914 
915 		/* Connected sockets that can produce data can be written. */
916 		if (sk->sk_state == TCP_ESTABLISHED) {
917 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
918 				bool space_avail_now = false;
919 				int ret = transport->notify_poll_out(
920 						vsk, 1, &space_avail_now);
921 				if (ret < 0) {
922 					mask |= EPOLLERR;
923 				} else {
924 					if (space_avail_now)
925 						/* Remove EPOLLWRBAND since INET
926 						 * sockets are not setting it.
927 						 */
928 						mask |= EPOLLOUT | EPOLLWRNORM;
929 
930 				}
931 			}
932 		}
933 
934 		/* Simulate INET socket poll behaviors, which sets
935 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
936 		 * but local send is not shutdown.
937 		 */
938 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
939 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
940 				mask |= EPOLLOUT | EPOLLWRNORM;
941 
942 		}
943 
944 		release_sock(sk);
945 	}
946 
947 	return mask;
948 }
949 
950 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
951 			       size_t len)
952 {
953 	int err;
954 	struct sock *sk;
955 	struct vsock_sock *vsk;
956 	struct sockaddr_vm *remote_addr;
957 
958 	if (msg->msg_flags & MSG_OOB)
959 		return -EOPNOTSUPP;
960 
961 	/* For now, MSG_DONTWAIT is always assumed... */
962 	err = 0;
963 	sk = sock->sk;
964 	vsk = vsock_sk(sk);
965 
966 	lock_sock(sk);
967 
968 	err = vsock_auto_bind(vsk);
969 	if (err)
970 		goto out;
971 
972 
973 	/* If the provided message contains an address, use that.  Otherwise
974 	 * fall back on the socket's remote handle (if it has been connected).
975 	 */
976 	if (msg->msg_name &&
977 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
978 			    &remote_addr) == 0) {
979 		/* Ensure this address is of the right type and is a valid
980 		 * destination.
981 		 */
982 
983 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
984 			remote_addr->svm_cid = transport->get_local_cid();
985 
986 		if (!vsock_addr_bound(remote_addr)) {
987 			err = -EINVAL;
988 			goto out;
989 		}
990 	} else if (sock->state == SS_CONNECTED) {
991 		remote_addr = &vsk->remote_addr;
992 
993 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
994 			remote_addr->svm_cid = transport->get_local_cid();
995 
996 		/* XXX Should connect() or this function ensure remote_addr is
997 		 * bound?
998 		 */
999 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1000 			err = -EINVAL;
1001 			goto out;
1002 		}
1003 	} else {
1004 		err = -EINVAL;
1005 		goto out;
1006 	}
1007 
1008 	if (!transport->dgram_allow(remote_addr->svm_cid,
1009 				    remote_addr->svm_port)) {
1010 		err = -EINVAL;
1011 		goto out;
1012 	}
1013 
1014 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1015 
1016 out:
1017 	release_sock(sk);
1018 	return err;
1019 }
1020 
1021 static int vsock_dgram_connect(struct socket *sock,
1022 			       struct sockaddr *addr, int addr_len, int flags)
1023 {
1024 	int err;
1025 	struct sock *sk;
1026 	struct vsock_sock *vsk;
1027 	struct sockaddr_vm *remote_addr;
1028 
1029 	sk = sock->sk;
1030 	vsk = vsock_sk(sk);
1031 
1032 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1033 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1034 		lock_sock(sk);
1035 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1036 				VMADDR_PORT_ANY);
1037 		sock->state = SS_UNCONNECTED;
1038 		release_sock(sk);
1039 		return 0;
1040 	} else if (err != 0)
1041 		return -EINVAL;
1042 
1043 	lock_sock(sk);
1044 
1045 	err = vsock_auto_bind(vsk);
1046 	if (err)
1047 		goto out;
1048 
1049 	if (!transport->dgram_allow(remote_addr->svm_cid,
1050 				    remote_addr->svm_port)) {
1051 		err = -EINVAL;
1052 		goto out;
1053 	}
1054 
1055 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1056 	sock->state = SS_CONNECTED;
1057 
1058 out:
1059 	release_sock(sk);
1060 	return err;
1061 }
1062 
1063 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1064 			       size_t len, int flags)
1065 {
1066 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1067 }
1068 
1069 static const struct proto_ops vsock_dgram_ops = {
1070 	.family = PF_VSOCK,
1071 	.owner = THIS_MODULE,
1072 	.release = vsock_release,
1073 	.bind = vsock_bind,
1074 	.connect = vsock_dgram_connect,
1075 	.socketpair = sock_no_socketpair,
1076 	.accept = sock_no_accept,
1077 	.getname = vsock_getname,
1078 	.poll = vsock_poll,
1079 	.ioctl = sock_no_ioctl,
1080 	.listen = sock_no_listen,
1081 	.shutdown = vsock_shutdown,
1082 	.setsockopt = sock_no_setsockopt,
1083 	.getsockopt = sock_no_getsockopt,
1084 	.sendmsg = vsock_dgram_sendmsg,
1085 	.recvmsg = vsock_dgram_recvmsg,
1086 	.mmap = sock_no_mmap,
1087 	.sendpage = sock_no_sendpage,
1088 };
1089 
1090 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1091 {
1092 	if (!transport->cancel_pkt)
1093 		return -EOPNOTSUPP;
1094 
1095 	return transport->cancel_pkt(vsk);
1096 }
1097 
1098 static void vsock_connect_timeout(struct work_struct *work)
1099 {
1100 	struct sock *sk;
1101 	struct vsock_sock *vsk;
1102 	int cancel = 0;
1103 
1104 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1105 	sk = sk_vsock(vsk);
1106 
1107 	lock_sock(sk);
1108 	if (sk->sk_state == TCP_SYN_SENT &&
1109 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1110 		sk->sk_state = TCP_CLOSE;
1111 		sk->sk_err = ETIMEDOUT;
1112 		sk->sk_error_report(sk);
1113 		cancel = 1;
1114 	}
1115 	release_sock(sk);
1116 	if (cancel)
1117 		vsock_transport_cancel_pkt(vsk);
1118 
1119 	sock_put(sk);
1120 }
1121 
1122 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1123 				int addr_len, int flags)
1124 {
1125 	int err;
1126 	struct sock *sk;
1127 	struct vsock_sock *vsk;
1128 	struct sockaddr_vm *remote_addr;
1129 	long timeout;
1130 	DEFINE_WAIT(wait);
1131 
1132 	err = 0;
1133 	sk = sock->sk;
1134 	vsk = vsock_sk(sk);
1135 
1136 	lock_sock(sk);
1137 
1138 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1139 	switch (sock->state) {
1140 	case SS_CONNECTED:
1141 		err = -EISCONN;
1142 		goto out;
1143 	case SS_DISCONNECTING:
1144 		err = -EINVAL;
1145 		goto out;
1146 	case SS_CONNECTING:
1147 		/* This continues on so we can move sock into the SS_CONNECTED
1148 		 * state once the connection has completed (at which point err
1149 		 * will be set to zero also).  Otherwise, we will either wait
1150 		 * for the connection or return -EALREADY should this be a
1151 		 * non-blocking call.
1152 		 */
1153 		err = -EALREADY;
1154 		break;
1155 	default:
1156 		if ((sk->sk_state == TCP_LISTEN) ||
1157 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1158 			err = -EINVAL;
1159 			goto out;
1160 		}
1161 
1162 		/* The hypervisor and well-known contexts do not have socket
1163 		 * endpoints.
1164 		 */
1165 		if (!transport->stream_allow(remote_addr->svm_cid,
1166 					     remote_addr->svm_port)) {
1167 			err = -ENETUNREACH;
1168 			goto out;
1169 		}
1170 
1171 		/* Set the remote address that we are connecting to. */
1172 		memcpy(&vsk->remote_addr, remote_addr,
1173 		       sizeof(vsk->remote_addr));
1174 
1175 		err = vsock_auto_bind(vsk);
1176 		if (err)
1177 			goto out;
1178 
1179 		sk->sk_state = TCP_SYN_SENT;
1180 
1181 		err = transport->connect(vsk);
1182 		if (err < 0)
1183 			goto out;
1184 
1185 		/* Mark sock as connecting and set the error code to in
1186 		 * progress in case this is a non-blocking connect.
1187 		 */
1188 		sock->state = SS_CONNECTING;
1189 		err = -EINPROGRESS;
1190 	}
1191 
1192 	/* The receive path will handle all communication until we are able to
1193 	 * enter the connected state.  Here we wait for the connection to be
1194 	 * completed or a notification of an error.
1195 	 */
1196 	timeout = vsk->connect_timeout;
1197 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1198 
1199 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1200 		if (flags & O_NONBLOCK) {
1201 			/* If we're not going to block, we schedule a timeout
1202 			 * function to generate a timeout on the connection
1203 			 * attempt, in case the peer doesn't respond in a
1204 			 * timely manner. We hold on to the socket until the
1205 			 * timeout fires.
1206 			 */
1207 			sock_hold(sk);
1208 			schedule_delayed_work(&vsk->connect_work, timeout);
1209 
1210 			/* Skip ahead to preserve error code set above. */
1211 			goto out_wait;
1212 		}
1213 
1214 		release_sock(sk);
1215 		timeout = schedule_timeout(timeout);
1216 		lock_sock(sk);
1217 
1218 		if (signal_pending(current)) {
1219 			err = sock_intr_errno(timeout);
1220 			sk->sk_state = TCP_CLOSE;
1221 			sock->state = SS_UNCONNECTED;
1222 			vsock_transport_cancel_pkt(vsk);
1223 			goto out_wait;
1224 		} else if (timeout == 0) {
1225 			err = -ETIMEDOUT;
1226 			sk->sk_state = TCP_CLOSE;
1227 			sock->state = SS_UNCONNECTED;
1228 			vsock_transport_cancel_pkt(vsk);
1229 			goto out_wait;
1230 		}
1231 
1232 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1233 	}
1234 
1235 	if (sk->sk_err) {
1236 		err = -sk->sk_err;
1237 		sk->sk_state = TCP_CLOSE;
1238 		sock->state = SS_UNCONNECTED;
1239 	} else {
1240 		err = 0;
1241 	}
1242 
1243 out_wait:
1244 	finish_wait(sk_sleep(sk), &wait);
1245 out:
1246 	release_sock(sk);
1247 	return err;
1248 }
1249 
1250 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1251 			bool kern)
1252 {
1253 	struct sock *listener;
1254 	int err;
1255 	struct sock *connected;
1256 	struct vsock_sock *vconnected;
1257 	long timeout;
1258 	DEFINE_WAIT(wait);
1259 
1260 	err = 0;
1261 	listener = sock->sk;
1262 
1263 	lock_sock(listener);
1264 
1265 	if (sock->type != SOCK_STREAM) {
1266 		err = -EOPNOTSUPP;
1267 		goto out;
1268 	}
1269 
1270 	if (listener->sk_state != TCP_LISTEN) {
1271 		err = -EINVAL;
1272 		goto out;
1273 	}
1274 
1275 	/* Wait for children sockets to appear; these are the new sockets
1276 	 * created upon connection establishment.
1277 	 */
1278 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1279 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1280 
1281 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1282 	       listener->sk_err == 0) {
1283 		release_sock(listener);
1284 		timeout = schedule_timeout(timeout);
1285 		finish_wait(sk_sleep(listener), &wait);
1286 		lock_sock(listener);
1287 
1288 		if (signal_pending(current)) {
1289 			err = sock_intr_errno(timeout);
1290 			goto out;
1291 		} else if (timeout == 0) {
1292 			err = -EAGAIN;
1293 			goto out;
1294 		}
1295 
1296 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297 	}
1298 	finish_wait(sk_sleep(listener), &wait);
1299 
1300 	if (listener->sk_err)
1301 		err = -listener->sk_err;
1302 
1303 	if (connected) {
1304 		listener->sk_ack_backlog--;
1305 
1306 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1307 		vconnected = vsock_sk(connected);
1308 
1309 		/* If the listener socket has received an error, then we should
1310 		 * reject this socket and return.  Note that we simply mark the
1311 		 * socket rejected, drop our reference, and let the cleanup
1312 		 * function handle the cleanup; the fact that we found it in
1313 		 * the listener's accept queue guarantees that the cleanup
1314 		 * function hasn't run yet.
1315 		 */
1316 		if (err) {
1317 			vconnected->rejected = true;
1318 		} else {
1319 			newsock->state = SS_CONNECTED;
1320 			sock_graft(connected, newsock);
1321 		}
1322 
1323 		release_sock(connected);
1324 		sock_put(connected);
1325 	}
1326 
1327 out:
1328 	release_sock(listener);
1329 	return err;
1330 }
1331 
1332 static int vsock_listen(struct socket *sock, int backlog)
1333 {
1334 	int err;
1335 	struct sock *sk;
1336 	struct vsock_sock *vsk;
1337 
1338 	sk = sock->sk;
1339 
1340 	lock_sock(sk);
1341 
1342 	if (sock->type != SOCK_STREAM) {
1343 		err = -EOPNOTSUPP;
1344 		goto out;
1345 	}
1346 
1347 	if (sock->state != SS_UNCONNECTED) {
1348 		err = -EINVAL;
1349 		goto out;
1350 	}
1351 
1352 	vsk = vsock_sk(sk);
1353 
1354 	if (!vsock_addr_bound(&vsk->local_addr)) {
1355 		err = -EINVAL;
1356 		goto out;
1357 	}
1358 
1359 	sk->sk_max_ack_backlog = backlog;
1360 	sk->sk_state = TCP_LISTEN;
1361 
1362 	err = 0;
1363 
1364 out:
1365 	release_sock(sk);
1366 	return err;
1367 }
1368 
1369 static int vsock_stream_setsockopt(struct socket *sock,
1370 				   int level,
1371 				   int optname,
1372 				   char __user *optval,
1373 				   unsigned int optlen)
1374 {
1375 	int err;
1376 	struct sock *sk;
1377 	struct vsock_sock *vsk;
1378 	u64 val;
1379 
1380 	if (level != AF_VSOCK)
1381 		return -ENOPROTOOPT;
1382 
1383 #define COPY_IN(_v)                                       \
1384 	do {						  \
1385 		if (optlen < sizeof(_v)) {		  \
1386 			err = -EINVAL;			  \
1387 			goto exit;			  \
1388 		}					  \
1389 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1390 			err = -EFAULT;					\
1391 			goto exit;					\
1392 		}							\
1393 	} while (0)
1394 
1395 	err = 0;
1396 	sk = sock->sk;
1397 	vsk = vsock_sk(sk);
1398 
1399 	lock_sock(sk);
1400 
1401 	switch (optname) {
1402 	case SO_VM_SOCKETS_BUFFER_SIZE:
1403 		COPY_IN(val);
1404 		transport->set_buffer_size(vsk, val);
1405 		break;
1406 
1407 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1408 		COPY_IN(val);
1409 		transport->set_max_buffer_size(vsk, val);
1410 		break;
1411 
1412 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1413 		COPY_IN(val);
1414 		transport->set_min_buffer_size(vsk, val);
1415 		break;
1416 
1417 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1418 		struct __kernel_old_timeval tv;
1419 		COPY_IN(tv);
1420 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1421 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1422 			vsk->connect_timeout = tv.tv_sec * HZ +
1423 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1424 			if (vsk->connect_timeout == 0)
1425 				vsk->connect_timeout =
1426 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1427 
1428 		} else {
1429 			err = -ERANGE;
1430 		}
1431 		break;
1432 	}
1433 
1434 	default:
1435 		err = -ENOPROTOOPT;
1436 		break;
1437 	}
1438 
1439 #undef COPY_IN
1440 
1441 exit:
1442 	release_sock(sk);
1443 	return err;
1444 }
1445 
1446 static int vsock_stream_getsockopt(struct socket *sock,
1447 				   int level, int optname,
1448 				   char __user *optval,
1449 				   int __user *optlen)
1450 {
1451 	int err;
1452 	int len;
1453 	struct sock *sk;
1454 	struct vsock_sock *vsk;
1455 	u64 val;
1456 
1457 	if (level != AF_VSOCK)
1458 		return -ENOPROTOOPT;
1459 
1460 	err = get_user(len, optlen);
1461 	if (err != 0)
1462 		return err;
1463 
1464 #define COPY_OUT(_v)                            \
1465 	do {					\
1466 		if (len < sizeof(_v))		\
1467 			return -EINVAL;		\
1468 						\
1469 		len = sizeof(_v);		\
1470 		if (copy_to_user(optval, &_v, len) != 0)	\
1471 			return -EFAULT;				\
1472 								\
1473 	} while (0)
1474 
1475 	err = 0;
1476 	sk = sock->sk;
1477 	vsk = vsock_sk(sk);
1478 
1479 	switch (optname) {
1480 	case SO_VM_SOCKETS_BUFFER_SIZE:
1481 		val = transport->get_buffer_size(vsk);
1482 		COPY_OUT(val);
1483 		break;
1484 
1485 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1486 		val = transport->get_max_buffer_size(vsk);
1487 		COPY_OUT(val);
1488 		break;
1489 
1490 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1491 		val = transport->get_min_buffer_size(vsk);
1492 		COPY_OUT(val);
1493 		break;
1494 
1495 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1496 		struct __kernel_old_timeval tv;
1497 		tv.tv_sec = vsk->connect_timeout / HZ;
1498 		tv.tv_usec =
1499 		    (vsk->connect_timeout -
1500 		     tv.tv_sec * HZ) * (1000000 / HZ);
1501 		COPY_OUT(tv);
1502 		break;
1503 	}
1504 	default:
1505 		return -ENOPROTOOPT;
1506 	}
1507 
1508 	err = put_user(len, optlen);
1509 	if (err != 0)
1510 		return -EFAULT;
1511 
1512 #undef COPY_OUT
1513 
1514 	return 0;
1515 }
1516 
1517 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1518 				size_t len)
1519 {
1520 	struct sock *sk;
1521 	struct vsock_sock *vsk;
1522 	ssize_t total_written;
1523 	long timeout;
1524 	int err;
1525 	struct vsock_transport_send_notify_data send_data;
1526 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1527 
1528 	sk = sock->sk;
1529 	vsk = vsock_sk(sk);
1530 	total_written = 0;
1531 	err = 0;
1532 
1533 	if (msg->msg_flags & MSG_OOB)
1534 		return -EOPNOTSUPP;
1535 
1536 	lock_sock(sk);
1537 
1538 	/* Callers should not provide a destination with stream sockets. */
1539 	if (msg->msg_namelen) {
1540 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1541 		goto out;
1542 	}
1543 
1544 	/* Send data only if both sides are not shutdown in the direction. */
1545 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1546 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1547 		err = -EPIPE;
1548 		goto out;
1549 	}
1550 
1551 	if (sk->sk_state != TCP_ESTABLISHED ||
1552 	    !vsock_addr_bound(&vsk->local_addr)) {
1553 		err = -ENOTCONN;
1554 		goto out;
1555 	}
1556 
1557 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1558 		err = -EDESTADDRREQ;
1559 		goto out;
1560 	}
1561 
1562 	/* Wait for room in the produce queue to enqueue our user's data. */
1563 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1564 
1565 	err = transport->notify_send_init(vsk, &send_data);
1566 	if (err < 0)
1567 		goto out;
1568 
1569 	while (total_written < len) {
1570 		ssize_t written;
1571 
1572 		add_wait_queue(sk_sleep(sk), &wait);
1573 		while (vsock_stream_has_space(vsk) == 0 &&
1574 		       sk->sk_err == 0 &&
1575 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1576 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1577 
1578 			/* Don't wait for non-blocking sockets. */
1579 			if (timeout == 0) {
1580 				err = -EAGAIN;
1581 				remove_wait_queue(sk_sleep(sk), &wait);
1582 				goto out_err;
1583 			}
1584 
1585 			err = transport->notify_send_pre_block(vsk, &send_data);
1586 			if (err < 0) {
1587 				remove_wait_queue(sk_sleep(sk), &wait);
1588 				goto out_err;
1589 			}
1590 
1591 			release_sock(sk);
1592 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1593 			lock_sock(sk);
1594 			if (signal_pending(current)) {
1595 				err = sock_intr_errno(timeout);
1596 				remove_wait_queue(sk_sleep(sk), &wait);
1597 				goto out_err;
1598 			} else if (timeout == 0) {
1599 				err = -EAGAIN;
1600 				remove_wait_queue(sk_sleep(sk), &wait);
1601 				goto out_err;
1602 			}
1603 		}
1604 		remove_wait_queue(sk_sleep(sk), &wait);
1605 
1606 		/* These checks occur both as part of and after the loop
1607 		 * conditional since we need to check before and after
1608 		 * sleeping.
1609 		 */
1610 		if (sk->sk_err) {
1611 			err = -sk->sk_err;
1612 			goto out_err;
1613 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1614 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1615 			err = -EPIPE;
1616 			goto out_err;
1617 		}
1618 
1619 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1620 		if (err < 0)
1621 			goto out_err;
1622 
1623 		/* Note that enqueue will only write as many bytes as are free
1624 		 * in the produce queue, so we don't need to ensure len is
1625 		 * smaller than the queue size.  It is the caller's
1626 		 * responsibility to check how many bytes we were able to send.
1627 		 */
1628 
1629 		written = transport->stream_enqueue(
1630 				vsk, msg,
1631 				len - total_written);
1632 		if (written < 0) {
1633 			err = -ENOMEM;
1634 			goto out_err;
1635 		}
1636 
1637 		total_written += written;
1638 
1639 		err = transport->notify_send_post_enqueue(
1640 				vsk, written, &send_data);
1641 		if (err < 0)
1642 			goto out_err;
1643 
1644 	}
1645 
1646 out_err:
1647 	if (total_written > 0)
1648 		err = total_written;
1649 out:
1650 	release_sock(sk);
1651 	return err;
1652 }
1653 
1654 
1655 static int
1656 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1657 		     int flags)
1658 {
1659 	struct sock *sk;
1660 	struct vsock_sock *vsk;
1661 	int err;
1662 	size_t target;
1663 	ssize_t copied;
1664 	long timeout;
1665 	struct vsock_transport_recv_notify_data recv_data;
1666 
1667 	DEFINE_WAIT(wait);
1668 
1669 	sk = sock->sk;
1670 	vsk = vsock_sk(sk);
1671 	err = 0;
1672 
1673 	lock_sock(sk);
1674 
1675 	if (sk->sk_state != TCP_ESTABLISHED) {
1676 		/* Recvmsg is supposed to return 0 if a peer performs an
1677 		 * orderly shutdown. Differentiate between that case and when a
1678 		 * peer has not connected or a local shutdown occured with the
1679 		 * SOCK_DONE flag.
1680 		 */
1681 		if (sock_flag(sk, SOCK_DONE))
1682 			err = 0;
1683 		else
1684 			err = -ENOTCONN;
1685 
1686 		goto out;
1687 	}
1688 
1689 	if (flags & MSG_OOB) {
1690 		err = -EOPNOTSUPP;
1691 		goto out;
1692 	}
1693 
1694 	/* We don't check peer_shutdown flag here since peer may actually shut
1695 	 * down, but there can be data in the queue that a local socket can
1696 	 * receive.
1697 	 */
1698 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1699 		err = 0;
1700 		goto out;
1701 	}
1702 
1703 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1704 	 * is not an error.  We may as well bail out now.
1705 	 */
1706 	if (!len) {
1707 		err = 0;
1708 		goto out;
1709 	}
1710 
1711 	/* We must not copy less than target bytes into the user's buffer
1712 	 * before returning successfully, so we wait for the consume queue to
1713 	 * have that much data to consume before dequeueing.  Note that this
1714 	 * makes it impossible to handle cases where target is greater than the
1715 	 * queue size.
1716 	 */
1717 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1718 	if (target >= transport->stream_rcvhiwat(vsk)) {
1719 		err = -ENOMEM;
1720 		goto out;
1721 	}
1722 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1723 	copied = 0;
1724 
1725 	err = transport->notify_recv_init(vsk, target, &recv_data);
1726 	if (err < 0)
1727 		goto out;
1728 
1729 
1730 	while (1) {
1731 		s64 ready;
1732 
1733 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1734 		ready = vsock_stream_has_data(vsk);
1735 
1736 		if (ready == 0) {
1737 			if (sk->sk_err != 0 ||
1738 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1739 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1740 				finish_wait(sk_sleep(sk), &wait);
1741 				break;
1742 			}
1743 			/* Don't wait for non-blocking sockets. */
1744 			if (timeout == 0) {
1745 				err = -EAGAIN;
1746 				finish_wait(sk_sleep(sk), &wait);
1747 				break;
1748 			}
1749 
1750 			err = transport->notify_recv_pre_block(
1751 					vsk, target, &recv_data);
1752 			if (err < 0) {
1753 				finish_wait(sk_sleep(sk), &wait);
1754 				break;
1755 			}
1756 			release_sock(sk);
1757 			timeout = schedule_timeout(timeout);
1758 			lock_sock(sk);
1759 
1760 			if (signal_pending(current)) {
1761 				err = sock_intr_errno(timeout);
1762 				finish_wait(sk_sleep(sk), &wait);
1763 				break;
1764 			} else if (timeout == 0) {
1765 				err = -EAGAIN;
1766 				finish_wait(sk_sleep(sk), &wait);
1767 				break;
1768 			}
1769 		} else {
1770 			ssize_t read;
1771 
1772 			finish_wait(sk_sleep(sk), &wait);
1773 
1774 			if (ready < 0) {
1775 				/* Invalid queue pair content. XXX This should
1776 				* be changed to a connection reset in a later
1777 				* change.
1778 				*/
1779 
1780 				err = -ENOMEM;
1781 				goto out;
1782 			}
1783 
1784 			err = transport->notify_recv_pre_dequeue(
1785 					vsk, target, &recv_data);
1786 			if (err < 0)
1787 				break;
1788 
1789 			read = transport->stream_dequeue(
1790 					vsk, msg,
1791 					len - copied, flags);
1792 			if (read < 0) {
1793 				err = -ENOMEM;
1794 				break;
1795 			}
1796 
1797 			copied += read;
1798 
1799 			err = transport->notify_recv_post_dequeue(
1800 					vsk, target, read,
1801 					!(flags & MSG_PEEK), &recv_data);
1802 			if (err < 0)
1803 				goto out;
1804 
1805 			if (read >= target || flags & MSG_PEEK)
1806 				break;
1807 
1808 			target -= read;
1809 		}
1810 	}
1811 
1812 	if (sk->sk_err)
1813 		err = -sk->sk_err;
1814 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1815 		err = 0;
1816 
1817 	if (copied > 0)
1818 		err = copied;
1819 
1820 out:
1821 	release_sock(sk);
1822 	return err;
1823 }
1824 
1825 static const struct proto_ops vsock_stream_ops = {
1826 	.family = PF_VSOCK,
1827 	.owner = THIS_MODULE,
1828 	.release = vsock_release,
1829 	.bind = vsock_bind,
1830 	.connect = vsock_stream_connect,
1831 	.socketpair = sock_no_socketpair,
1832 	.accept = vsock_accept,
1833 	.getname = vsock_getname,
1834 	.poll = vsock_poll,
1835 	.ioctl = sock_no_ioctl,
1836 	.listen = vsock_listen,
1837 	.shutdown = vsock_shutdown,
1838 	.setsockopt = vsock_stream_setsockopt,
1839 	.getsockopt = vsock_stream_getsockopt,
1840 	.sendmsg = vsock_stream_sendmsg,
1841 	.recvmsg = vsock_stream_recvmsg,
1842 	.mmap = sock_no_mmap,
1843 	.sendpage = sock_no_sendpage,
1844 };
1845 
1846 static int vsock_create(struct net *net, struct socket *sock,
1847 			int protocol, int kern)
1848 {
1849 	if (!sock)
1850 		return -EINVAL;
1851 
1852 	if (protocol && protocol != PF_VSOCK)
1853 		return -EPROTONOSUPPORT;
1854 
1855 	switch (sock->type) {
1856 	case SOCK_DGRAM:
1857 		sock->ops = &vsock_dgram_ops;
1858 		break;
1859 	case SOCK_STREAM:
1860 		sock->ops = &vsock_stream_ops;
1861 		break;
1862 	default:
1863 		return -ESOCKTNOSUPPORT;
1864 	}
1865 
1866 	sock->state = SS_UNCONNECTED;
1867 
1868 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1869 }
1870 
1871 static const struct net_proto_family vsock_family_ops = {
1872 	.family = AF_VSOCK,
1873 	.create = vsock_create,
1874 	.owner = THIS_MODULE,
1875 };
1876 
1877 static long vsock_dev_do_ioctl(struct file *filp,
1878 			       unsigned int cmd, void __user *ptr)
1879 {
1880 	u32 __user *p = ptr;
1881 	int retval = 0;
1882 
1883 	switch (cmd) {
1884 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1885 		if (put_user(transport->get_local_cid(), p) != 0)
1886 			retval = -EFAULT;
1887 		break;
1888 
1889 	default:
1890 		pr_err("Unknown ioctl %d\n", cmd);
1891 		retval = -EINVAL;
1892 	}
1893 
1894 	return retval;
1895 }
1896 
1897 static long vsock_dev_ioctl(struct file *filp,
1898 			    unsigned int cmd, unsigned long arg)
1899 {
1900 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1901 }
1902 
1903 #ifdef CONFIG_COMPAT
1904 static long vsock_dev_compat_ioctl(struct file *filp,
1905 				   unsigned int cmd, unsigned long arg)
1906 {
1907 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1908 }
1909 #endif
1910 
1911 static const struct file_operations vsock_device_ops = {
1912 	.owner		= THIS_MODULE,
1913 	.unlocked_ioctl	= vsock_dev_ioctl,
1914 #ifdef CONFIG_COMPAT
1915 	.compat_ioctl	= vsock_dev_compat_ioctl,
1916 #endif
1917 	.open		= nonseekable_open,
1918 };
1919 
1920 static struct miscdevice vsock_device = {
1921 	.name		= "vsock",
1922 	.fops		= &vsock_device_ops,
1923 };
1924 
1925 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1926 {
1927 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1928 
1929 	if (err)
1930 		return err;
1931 
1932 	if (transport) {
1933 		err = -EBUSY;
1934 		goto err_busy;
1935 	}
1936 
1937 	/* Transport must be the owner of the protocol so that it can't
1938 	 * unload while there are open sockets.
1939 	 */
1940 	vsock_proto.owner = owner;
1941 	transport = t;
1942 
1943 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1944 	err = misc_register(&vsock_device);
1945 	if (err) {
1946 		pr_err("Failed to register misc device\n");
1947 		goto err_reset_transport;
1948 	}
1949 
1950 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1951 	if (err) {
1952 		pr_err("Cannot register vsock protocol\n");
1953 		goto err_deregister_misc;
1954 	}
1955 
1956 	err = sock_register(&vsock_family_ops);
1957 	if (err) {
1958 		pr_err("could not register af_vsock (%d) address family: %d\n",
1959 		       AF_VSOCK, err);
1960 		goto err_unregister_proto;
1961 	}
1962 
1963 	mutex_unlock(&vsock_register_mutex);
1964 	return 0;
1965 
1966 err_unregister_proto:
1967 	proto_unregister(&vsock_proto);
1968 err_deregister_misc:
1969 	misc_deregister(&vsock_device);
1970 err_reset_transport:
1971 	transport = NULL;
1972 err_busy:
1973 	mutex_unlock(&vsock_register_mutex);
1974 	return err;
1975 }
1976 EXPORT_SYMBOL_GPL(__vsock_core_init);
1977 
1978 void vsock_core_exit(void)
1979 {
1980 	mutex_lock(&vsock_register_mutex);
1981 
1982 	misc_deregister(&vsock_device);
1983 	sock_unregister(AF_VSOCK);
1984 	proto_unregister(&vsock_proto);
1985 
1986 	/* We do not want the assignment below re-ordered. */
1987 	mb();
1988 	transport = NULL;
1989 
1990 	mutex_unlock(&vsock_register_mutex);
1991 }
1992 EXPORT_SYMBOL_GPL(vsock_core_exit);
1993 
1994 const struct vsock_transport *vsock_core_get_transport(void)
1995 {
1996 	/* vsock_register_mutex not taken since only the transport uses this
1997 	 * function and only while registered.
1998 	 */
1999 	return transport;
2000 }
2001 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2002 
2003 static void __exit vsock_exit(void)
2004 {
2005 	/* Do nothing.  This function makes this module removable. */
2006 }
2007 
2008 module_init(vsock_init_tables);
2009 module_exit(vsock_exit);
2010 
2011 MODULE_AUTHOR("VMware, Inc.");
2012 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013 MODULE_VERSION("1.0.2.0-k");
2014 MODULE_LICENSE("GPL v2");
2015