1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the VSOCK_SS_LISTEN state. When a 40 * connection request is received (the second kind of socket mentioned above), 41 * we create a new socket and refer to it as a pending socket. These pending 42 * sockets are placed on the pending connection list of the listener socket. 43 * When future packets are received for the address the listener socket is 44 * bound to, we check if the source of the packet is from one that has an 45 * existing pending connection. If it does, we process the packet for the 46 * pending socket. When that socket reaches the connected state, it is removed 47 * from the listener socket's pending list and enqueued in the listener 48 * socket's accept queue. Callers of accept(2) will accept connected sockets 49 * from the listener socket's accept queue. If the socket cannot be accepted 50 * for some reason then it is marked rejected. Once the connection is 51 * accepted, it is owned by the user process and the responsibility for cleanup 52 * falls with that user process. 53 * 54 * - It is possible that these pending sockets will never reach the connected 55 * state; in fact, we may never receive another packet after the connection 56 * request. Because of this, we must schedule a cleanup function to run in the 57 * future, after some amount of time passes where a connection should have been 58 * established. This function ensures that the socket is off all lists so it 59 * cannot be retrieved, then drops all references to the socket so it is cleaned 60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 61 * function will also cleanup rejected sockets, those that reach the connected 62 * state but leave it before they have been accepted. 63 * 64 * - Lock ordering for pending or accept queue sockets is: 65 * 66 * lock_sock(listener); 67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 68 * 69 * Using explicit nested locking keeps lockdep happy since normally only one 70 * lock of a given class may be taken at a time. 71 * 72 * - Sockets created by user action will be cleaned up when the user process 73 * calls close(2), causing our release implementation to be called. Our release 74 * implementation will perform some cleanup then drop the last reference so our 75 * sk_destruct implementation is invoked. Our sk_destruct implementation will 76 * perform additional cleanup that's common for both types of sockets. 77 * 78 * - A socket's reference count is what ensures that the structure won't be 79 * freed. Each entry in a list (such as the "global" bound and connected tables 80 * and the listener socket's pending list and connected queue) ensures a 81 * reference. When we defer work until process context and pass a socket as our 82 * argument, we must ensure the reference count is increased to ensure the 83 * socket isn't freed before the function is run; the deferred function will 84 * then drop the reference. 85 */ 86 87 #include <linux/types.h> 88 #include <linux/bitops.h> 89 #include <linux/cred.h> 90 #include <linux/init.h> 91 #include <linux/io.h> 92 #include <linux/kernel.h> 93 #include <linux/sched/signal.h> 94 #include <linux/kmod.h> 95 #include <linux/list.h> 96 #include <linux/miscdevice.h> 97 #include <linux/module.h> 98 #include <linux/mutex.h> 99 #include <linux/net.h> 100 #include <linux/poll.h> 101 #include <linux/skbuff.h> 102 #include <linux/smp.h> 103 #include <linux/socket.h> 104 #include <linux/stddef.h> 105 #include <linux/unistd.h> 106 #include <linux/wait.h> 107 #include <linux/workqueue.h> 108 #include <net/sock.h> 109 #include <net/af_vsock.h> 110 111 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 112 static void vsock_sk_destruct(struct sock *sk); 113 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 114 115 /* Protocol family. */ 116 static struct proto vsock_proto = { 117 .name = "AF_VSOCK", 118 .owner = THIS_MODULE, 119 .obj_size = sizeof(struct vsock_sock), 120 }; 121 122 /* The default peer timeout indicates how long we will wait for a peer response 123 * to a control message. 124 */ 125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 126 127 static const struct vsock_transport *transport; 128 static DEFINE_MUTEX(vsock_register_mutex); 129 130 /**** EXPORTS ****/ 131 132 /* Get the ID of the local context. This is transport dependent. */ 133 134 int vm_sockets_get_local_cid(void) 135 { 136 return transport->get_local_cid(); 137 } 138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 139 140 /**** UTILS ****/ 141 142 /* Each bound VSocket is stored in the bind hash table and each connected 143 * VSocket is stored in the connected hash table. 144 * 145 * Unbound sockets are all put on the same list attached to the end of the hash 146 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 147 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 148 * represents the list that addr hashes to). 149 * 150 * Specifically, we initialize the vsock_bind_table array to a size of 151 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 152 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 153 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 154 * mods with VSOCK_HASH_SIZE to ensure this. 155 */ 156 #define VSOCK_HASH_SIZE 251 157 #define MAX_PORT_RETRIES 24 158 159 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 161 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 162 163 /* XXX This can probably be implemented in a better way. */ 164 #define VSOCK_CONN_HASH(src, dst) \ 165 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 166 #define vsock_connected_sockets(src, dst) \ 167 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 168 #define vsock_connected_sockets_vsk(vsk) \ 169 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 170 171 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 172 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 173 static DEFINE_SPINLOCK(vsock_table_lock); 174 175 /* Autobind this socket to the local address if necessary. */ 176 static int vsock_auto_bind(struct vsock_sock *vsk) 177 { 178 struct sock *sk = sk_vsock(vsk); 179 struct sockaddr_vm local_addr; 180 181 if (vsock_addr_bound(&vsk->local_addr)) 182 return 0; 183 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 184 return __vsock_bind(sk, &local_addr); 185 } 186 187 static void vsock_init_tables(void) 188 { 189 int i; 190 191 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 192 INIT_LIST_HEAD(&vsock_bind_table[i]); 193 194 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 195 INIT_LIST_HEAD(&vsock_connected_table[i]); 196 } 197 198 static void __vsock_insert_bound(struct list_head *list, 199 struct vsock_sock *vsk) 200 { 201 sock_hold(&vsk->sk); 202 list_add(&vsk->bound_table, list); 203 } 204 205 static void __vsock_insert_connected(struct list_head *list, 206 struct vsock_sock *vsk) 207 { 208 sock_hold(&vsk->sk); 209 list_add(&vsk->connected_table, list); 210 } 211 212 static void __vsock_remove_bound(struct vsock_sock *vsk) 213 { 214 list_del_init(&vsk->bound_table); 215 sock_put(&vsk->sk); 216 } 217 218 static void __vsock_remove_connected(struct vsock_sock *vsk) 219 { 220 list_del_init(&vsk->connected_table); 221 sock_put(&vsk->sk); 222 } 223 224 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 225 { 226 struct vsock_sock *vsk; 227 228 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 229 if (addr->svm_port == vsk->local_addr.svm_port) 230 return sk_vsock(vsk); 231 232 return NULL; 233 } 234 235 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 236 struct sockaddr_vm *dst) 237 { 238 struct vsock_sock *vsk; 239 240 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 241 connected_table) { 242 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 243 dst->svm_port == vsk->local_addr.svm_port) { 244 return sk_vsock(vsk); 245 } 246 } 247 248 return NULL; 249 } 250 251 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 252 { 253 return !list_empty(&vsk->bound_table); 254 } 255 256 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 257 { 258 return !list_empty(&vsk->connected_table); 259 } 260 261 static void vsock_insert_unbound(struct vsock_sock *vsk) 262 { 263 spin_lock_bh(&vsock_table_lock); 264 __vsock_insert_bound(vsock_unbound_sockets, vsk); 265 spin_unlock_bh(&vsock_table_lock); 266 } 267 268 void vsock_insert_connected(struct vsock_sock *vsk) 269 { 270 struct list_head *list = vsock_connected_sockets( 271 &vsk->remote_addr, &vsk->local_addr); 272 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_connected(list, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 EXPORT_SYMBOL_GPL(vsock_insert_connected); 278 279 void vsock_remove_bound(struct vsock_sock *vsk) 280 { 281 spin_lock_bh(&vsock_table_lock); 282 __vsock_remove_bound(vsk); 283 spin_unlock_bh(&vsock_table_lock); 284 } 285 EXPORT_SYMBOL_GPL(vsock_remove_bound); 286 287 void vsock_remove_connected(struct vsock_sock *vsk) 288 { 289 spin_lock_bh(&vsock_table_lock); 290 __vsock_remove_connected(vsk); 291 spin_unlock_bh(&vsock_table_lock); 292 } 293 EXPORT_SYMBOL_GPL(vsock_remove_connected); 294 295 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 296 { 297 struct sock *sk; 298 299 spin_lock_bh(&vsock_table_lock); 300 sk = __vsock_find_bound_socket(addr); 301 if (sk) 302 sock_hold(sk); 303 304 spin_unlock_bh(&vsock_table_lock); 305 306 return sk; 307 } 308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 309 310 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 311 struct sockaddr_vm *dst) 312 { 313 struct sock *sk; 314 315 spin_lock_bh(&vsock_table_lock); 316 sk = __vsock_find_connected_socket(src, dst); 317 if (sk) 318 sock_hold(sk); 319 320 spin_unlock_bh(&vsock_table_lock); 321 322 return sk; 323 } 324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 325 326 static bool vsock_in_bound_table(struct vsock_sock *vsk) 327 { 328 bool ret; 329 330 spin_lock_bh(&vsock_table_lock); 331 ret = __vsock_in_bound_table(vsk); 332 spin_unlock_bh(&vsock_table_lock); 333 334 return ret; 335 } 336 337 static bool vsock_in_connected_table(struct vsock_sock *vsk) 338 { 339 bool ret; 340 341 spin_lock_bh(&vsock_table_lock); 342 ret = __vsock_in_connected_table(vsk); 343 spin_unlock_bh(&vsock_table_lock); 344 345 return ret; 346 } 347 348 void vsock_remove_sock(struct vsock_sock *vsk) 349 { 350 if (vsock_in_bound_table(vsk)) 351 vsock_remove_bound(vsk); 352 353 if (vsock_in_connected_table(vsk)) 354 vsock_remove_connected(vsk); 355 } 356 EXPORT_SYMBOL_GPL(vsock_remove_sock); 357 358 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 359 { 360 int i; 361 362 spin_lock_bh(&vsock_table_lock); 363 364 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 365 struct vsock_sock *vsk; 366 list_for_each_entry(vsk, &vsock_connected_table[i], 367 connected_table) 368 fn(sk_vsock(vsk)); 369 } 370 371 spin_unlock_bh(&vsock_table_lock); 372 } 373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 374 375 void vsock_add_pending(struct sock *listener, struct sock *pending) 376 { 377 struct vsock_sock *vlistener; 378 struct vsock_sock *vpending; 379 380 vlistener = vsock_sk(listener); 381 vpending = vsock_sk(pending); 382 383 sock_hold(pending); 384 sock_hold(listener); 385 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 386 } 387 EXPORT_SYMBOL_GPL(vsock_add_pending); 388 389 void vsock_remove_pending(struct sock *listener, struct sock *pending) 390 { 391 struct vsock_sock *vpending = vsock_sk(pending); 392 393 list_del_init(&vpending->pending_links); 394 sock_put(listener); 395 sock_put(pending); 396 } 397 EXPORT_SYMBOL_GPL(vsock_remove_pending); 398 399 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 400 { 401 struct vsock_sock *vlistener; 402 struct vsock_sock *vconnected; 403 404 vlistener = vsock_sk(listener); 405 vconnected = vsock_sk(connected); 406 407 sock_hold(connected); 408 sock_hold(listener); 409 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 410 } 411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 412 413 static struct sock *vsock_dequeue_accept(struct sock *listener) 414 { 415 struct vsock_sock *vlistener; 416 struct vsock_sock *vconnected; 417 418 vlistener = vsock_sk(listener); 419 420 if (list_empty(&vlistener->accept_queue)) 421 return NULL; 422 423 vconnected = list_entry(vlistener->accept_queue.next, 424 struct vsock_sock, accept_queue); 425 426 list_del_init(&vconnected->accept_queue); 427 sock_put(listener); 428 /* The caller will need a reference on the connected socket so we let 429 * it call sock_put(). 430 */ 431 432 return sk_vsock(vconnected); 433 } 434 435 static bool vsock_is_accept_queue_empty(struct sock *sk) 436 { 437 struct vsock_sock *vsk = vsock_sk(sk); 438 return list_empty(&vsk->accept_queue); 439 } 440 441 static bool vsock_is_pending(struct sock *sk) 442 { 443 struct vsock_sock *vsk = vsock_sk(sk); 444 return !list_empty(&vsk->pending_links); 445 } 446 447 static int vsock_send_shutdown(struct sock *sk, int mode) 448 { 449 return transport->shutdown(vsock_sk(sk), mode); 450 } 451 452 void vsock_pending_work(struct work_struct *work) 453 { 454 struct sock *sk; 455 struct sock *listener; 456 struct vsock_sock *vsk; 457 bool cleanup; 458 459 vsk = container_of(work, struct vsock_sock, dwork.work); 460 sk = sk_vsock(vsk); 461 listener = vsk->listener; 462 cleanup = true; 463 464 lock_sock(listener); 465 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 466 467 if (vsock_is_pending(sk)) { 468 vsock_remove_pending(listener, sk); 469 470 listener->sk_ack_backlog--; 471 } else if (!vsk->rejected) { 472 /* We are not on the pending list and accept() did not reject 473 * us, so we must have been accepted by our user process. We 474 * just need to drop our references to the sockets and be on 475 * our way. 476 */ 477 cleanup = false; 478 goto out; 479 } 480 481 /* We need to remove ourself from the global connected sockets list so 482 * incoming packets can't find this socket, and to reduce the reference 483 * count. 484 */ 485 if (vsock_in_connected_table(vsk)) 486 vsock_remove_connected(vsk); 487 488 sk->sk_state = SS_FREE; 489 490 out: 491 release_sock(sk); 492 release_sock(listener); 493 if (cleanup) 494 sock_put(sk); 495 496 sock_put(sk); 497 sock_put(listener); 498 } 499 EXPORT_SYMBOL_GPL(vsock_pending_work); 500 501 /**** SOCKET OPERATIONS ****/ 502 503 static int __vsock_bind_stream(struct vsock_sock *vsk, 504 struct sockaddr_vm *addr) 505 { 506 static u32 port = LAST_RESERVED_PORT + 1; 507 struct sockaddr_vm new_addr; 508 509 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 510 511 if (addr->svm_port == VMADDR_PORT_ANY) { 512 bool found = false; 513 unsigned int i; 514 515 for (i = 0; i < MAX_PORT_RETRIES; i++) { 516 if (port <= LAST_RESERVED_PORT) 517 port = LAST_RESERVED_PORT + 1; 518 519 new_addr.svm_port = port++; 520 521 if (!__vsock_find_bound_socket(&new_addr)) { 522 found = true; 523 break; 524 } 525 } 526 527 if (!found) 528 return -EADDRNOTAVAIL; 529 } else { 530 /* If port is in reserved range, ensure caller 531 * has necessary privileges. 532 */ 533 if (addr->svm_port <= LAST_RESERVED_PORT && 534 !capable(CAP_NET_BIND_SERVICE)) { 535 return -EACCES; 536 } 537 538 if (__vsock_find_bound_socket(&new_addr)) 539 return -EADDRINUSE; 540 } 541 542 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 543 544 /* Remove stream sockets from the unbound list and add them to the hash 545 * table for easy lookup by its address. The unbound list is simply an 546 * extra entry at the end of the hash table, a trick used by AF_UNIX. 547 */ 548 __vsock_remove_bound(vsk); 549 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 550 551 return 0; 552 } 553 554 static int __vsock_bind_dgram(struct vsock_sock *vsk, 555 struct sockaddr_vm *addr) 556 { 557 return transport->dgram_bind(vsk, addr); 558 } 559 560 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 561 { 562 struct vsock_sock *vsk = vsock_sk(sk); 563 u32 cid; 564 int retval; 565 566 /* First ensure this socket isn't already bound. */ 567 if (vsock_addr_bound(&vsk->local_addr)) 568 return -EINVAL; 569 570 /* Now bind to the provided address or select appropriate values if 571 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 572 * like AF_INET prevents binding to a non-local IP address (in most 573 * cases), we only allow binding to the local CID. 574 */ 575 cid = transport->get_local_cid(); 576 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 577 return -EADDRNOTAVAIL; 578 579 switch (sk->sk_socket->type) { 580 case SOCK_STREAM: 581 spin_lock_bh(&vsock_table_lock); 582 retval = __vsock_bind_stream(vsk, addr); 583 spin_unlock_bh(&vsock_table_lock); 584 break; 585 586 case SOCK_DGRAM: 587 retval = __vsock_bind_dgram(vsk, addr); 588 break; 589 590 default: 591 retval = -EINVAL; 592 break; 593 } 594 595 return retval; 596 } 597 598 struct sock *__vsock_create(struct net *net, 599 struct socket *sock, 600 struct sock *parent, 601 gfp_t priority, 602 unsigned short type, 603 int kern) 604 { 605 struct sock *sk; 606 struct vsock_sock *psk; 607 struct vsock_sock *vsk; 608 609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 610 if (!sk) 611 return NULL; 612 613 sock_init_data(sock, sk); 614 615 /* sk->sk_type is normally set in sock_init_data, but only if sock is 616 * non-NULL. We make sure that our sockets always have a type by 617 * setting it here if needed. 618 */ 619 if (!sock) 620 sk->sk_type = type; 621 622 vsk = vsock_sk(sk); 623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 625 626 sk->sk_destruct = vsock_sk_destruct; 627 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 628 sk->sk_state = 0; 629 sock_reset_flag(sk, SOCK_DONE); 630 631 INIT_LIST_HEAD(&vsk->bound_table); 632 INIT_LIST_HEAD(&vsk->connected_table); 633 vsk->listener = NULL; 634 INIT_LIST_HEAD(&vsk->pending_links); 635 INIT_LIST_HEAD(&vsk->accept_queue); 636 vsk->rejected = false; 637 vsk->sent_request = false; 638 vsk->ignore_connecting_rst = false; 639 vsk->peer_shutdown = 0; 640 641 psk = parent ? vsock_sk(parent) : NULL; 642 if (parent) { 643 vsk->trusted = psk->trusted; 644 vsk->owner = get_cred(psk->owner); 645 vsk->connect_timeout = psk->connect_timeout; 646 } else { 647 vsk->trusted = capable(CAP_NET_ADMIN); 648 vsk->owner = get_current_cred(); 649 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 650 } 651 652 if (transport->init(vsk, psk) < 0) { 653 sk_free(sk); 654 return NULL; 655 } 656 657 if (sock) 658 vsock_insert_unbound(vsk); 659 660 return sk; 661 } 662 EXPORT_SYMBOL_GPL(__vsock_create); 663 664 static void __vsock_release(struct sock *sk) 665 { 666 if (sk) { 667 struct sk_buff *skb; 668 struct sock *pending; 669 struct vsock_sock *vsk; 670 671 vsk = vsock_sk(sk); 672 pending = NULL; /* Compiler warning. */ 673 674 transport->release(vsk); 675 676 lock_sock(sk); 677 sock_orphan(sk); 678 sk->sk_shutdown = SHUTDOWN_MASK; 679 680 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 681 kfree_skb(skb); 682 683 /* Clean up any sockets that never were accepted. */ 684 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 685 __vsock_release(pending); 686 sock_put(pending); 687 } 688 689 release_sock(sk); 690 sock_put(sk); 691 } 692 } 693 694 static void vsock_sk_destruct(struct sock *sk) 695 { 696 struct vsock_sock *vsk = vsock_sk(sk); 697 698 transport->destruct(vsk); 699 700 /* When clearing these addresses, there's no need to set the family and 701 * possibly register the address family with the kernel. 702 */ 703 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 704 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 705 706 put_cred(vsk->owner); 707 } 708 709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 710 { 711 int err; 712 713 err = sock_queue_rcv_skb(sk, skb); 714 if (err) 715 kfree_skb(skb); 716 717 return err; 718 } 719 720 s64 vsock_stream_has_data(struct vsock_sock *vsk) 721 { 722 return transport->stream_has_data(vsk); 723 } 724 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 725 726 s64 vsock_stream_has_space(struct vsock_sock *vsk) 727 { 728 return transport->stream_has_space(vsk); 729 } 730 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 731 732 static int vsock_release(struct socket *sock) 733 { 734 __vsock_release(sock->sk); 735 sock->sk = NULL; 736 sock->state = SS_FREE; 737 738 return 0; 739 } 740 741 static int 742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 743 { 744 int err; 745 struct sock *sk; 746 struct sockaddr_vm *vm_addr; 747 748 sk = sock->sk; 749 750 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 751 return -EINVAL; 752 753 lock_sock(sk); 754 err = __vsock_bind(sk, vm_addr); 755 release_sock(sk); 756 757 return err; 758 } 759 760 static int vsock_getname(struct socket *sock, 761 struct sockaddr *addr, int *addr_len, int peer) 762 { 763 int err; 764 struct sock *sk; 765 struct vsock_sock *vsk; 766 struct sockaddr_vm *vm_addr; 767 768 sk = sock->sk; 769 vsk = vsock_sk(sk); 770 err = 0; 771 772 lock_sock(sk); 773 774 if (peer) { 775 if (sock->state != SS_CONNECTED) { 776 err = -ENOTCONN; 777 goto out; 778 } 779 vm_addr = &vsk->remote_addr; 780 } else { 781 vm_addr = &vsk->local_addr; 782 } 783 784 if (!vm_addr) { 785 err = -EINVAL; 786 goto out; 787 } 788 789 /* sys_getsockname() and sys_getpeername() pass us a 790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 791 * that macro is defined in socket.c instead of .h, so we hardcode its 792 * value here. 793 */ 794 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 795 memcpy(addr, vm_addr, sizeof(*vm_addr)); 796 *addr_len = sizeof(*vm_addr); 797 798 out: 799 release_sock(sk); 800 return err; 801 } 802 803 static int vsock_shutdown(struct socket *sock, int mode) 804 { 805 int err; 806 struct sock *sk; 807 808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 810 * here like the other address families do. Note also that the 811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 812 * which is what we want. 813 */ 814 mode++; 815 816 if ((mode & ~SHUTDOWN_MASK) || !mode) 817 return -EINVAL; 818 819 /* If this is a STREAM socket and it is not connected then bail out 820 * immediately. If it is a DGRAM socket then we must first kick the 821 * socket so that it wakes up from any sleeping calls, for example 822 * recv(), and then afterwards return the error. 823 */ 824 825 sk = sock->sk; 826 if (sock->state == SS_UNCONNECTED) { 827 err = -ENOTCONN; 828 if (sk->sk_type == SOCK_STREAM) 829 return err; 830 } else { 831 sock->state = SS_DISCONNECTING; 832 err = 0; 833 } 834 835 /* Receive and send shutdowns are treated alike. */ 836 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 837 if (mode) { 838 lock_sock(sk); 839 sk->sk_shutdown |= mode; 840 sk->sk_state_change(sk); 841 release_sock(sk); 842 843 if (sk->sk_type == SOCK_STREAM) { 844 sock_reset_flag(sk, SOCK_DONE); 845 vsock_send_shutdown(sk, mode); 846 } 847 } 848 849 return err; 850 } 851 852 static unsigned int vsock_poll(struct file *file, struct socket *sock, 853 poll_table *wait) 854 { 855 struct sock *sk; 856 unsigned int mask; 857 struct vsock_sock *vsk; 858 859 sk = sock->sk; 860 vsk = vsock_sk(sk); 861 862 poll_wait(file, sk_sleep(sk), wait); 863 mask = 0; 864 865 if (sk->sk_err) 866 /* Signify that there has been an error on this socket. */ 867 mask |= POLLERR; 868 869 /* INET sockets treat local write shutdown and peer write shutdown as a 870 * case of POLLHUP set. 871 */ 872 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 873 ((sk->sk_shutdown & SEND_SHUTDOWN) && 874 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 875 mask |= POLLHUP; 876 } 877 878 if (sk->sk_shutdown & RCV_SHUTDOWN || 879 vsk->peer_shutdown & SEND_SHUTDOWN) { 880 mask |= POLLRDHUP; 881 } 882 883 if (sock->type == SOCK_DGRAM) { 884 /* For datagram sockets we can read if there is something in 885 * the queue and write as long as the socket isn't shutdown for 886 * sending. 887 */ 888 if (!skb_queue_empty(&sk->sk_receive_queue) || 889 (sk->sk_shutdown & RCV_SHUTDOWN)) { 890 mask |= POLLIN | POLLRDNORM; 891 } 892 893 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 894 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 895 896 } else if (sock->type == SOCK_STREAM) { 897 lock_sock(sk); 898 899 /* Listening sockets that have connections in their accept 900 * queue can be read. 901 */ 902 if (sk->sk_state == VSOCK_SS_LISTEN 903 && !vsock_is_accept_queue_empty(sk)) 904 mask |= POLLIN | POLLRDNORM; 905 906 /* If there is something in the queue then we can read. */ 907 if (transport->stream_is_active(vsk) && 908 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 909 bool data_ready_now = false; 910 int ret = transport->notify_poll_in( 911 vsk, 1, &data_ready_now); 912 if (ret < 0) { 913 mask |= POLLERR; 914 } else { 915 if (data_ready_now) 916 mask |= POLLIN | POLLRDNORM; 917 918 } 919 } 920 921 /* Sockets whose connections have been closed, reset, or 922 * terminated should also be considered read, and we check the 923 * shutdown flag for that. 924 */ 925 if (sk->sk_shutdown & RCV_SHUTDOWN || 926 vsk->peer_shutdown & SEND_SHUTDOWN) { 927 mask |= POLLIN | POLLRDNORM; 928 } 929 930 /* Connected sockets that can produce data can be written. */ 931 if (sk->sk_state == SS_CONNECTED) { 932 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 933 bool space_avail_now = false; 934 int ret = transport->notify_poll_out( 935 vsk, 1, &space_avail_now); 936 if (ret < 0) { 937 mask |= POLLERR; 938 } else { 939 if (space_avail_now) 940 /* Remove POLLWRBAND since INET 941 * sockets are not setting it. 942 */ 943 mask |= POLLOUT | POLLWRNORM; 944 945 } 946 } 947 } 948 949 /* Simulate INET socket poll behaviors, which sets 950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 951 * but local send is not shutdown. 952 */ 953 if (sk->sk_state == SS_UNCONNECTED) { 954 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 955 mask |= POLLOUT | POLLWRNORM; 956 957 } 958 959 release_sock(sk); 960 } 961 962 return mask; 963 } 964 965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 966 size_t len) 967 { 968 int err; 969 struct sock *sk; 970 struct vsock_sock *vsk; 971 struct sockaddr_vm *remote_addr; 972 973 if (msg->msg_flags & MSG_OOB) 974 return -EOPNOTSUPP; 975 976 /* For now, MSG_DONTWAIT is always assumed... */ 977 err = 0; 978 sk = sock->sk; 979 vsk = vsock_sk(sk); 980 981 lock_sock(sk); 982 983 err = vsock_auto_bind(vsk); 984 if (err) 985 goto out; 986 987 988 /* If the provided message contains an address, use that. Otherwise 989 * fall back on the socket's remote handle (if it has been connected). 990 */ 991 if (msg->msg_name && 992 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 993 &remote_addr) == 0) { 994 /* Ensure this address is of the right type and is a valid 995 * destination. 996 */ 997 998 if (remote_addr->svm_cid == VMADDR_CID_ANY) 999 remote_addr->svm_cid = transport->get_local_cid(); 1000 1001 if (!vsock_addr_bound(remote_addr)) { 1002 err = -EINVAL; 1003 goto out; 1004 } 1005 } else if (sock->state == SS_CONNECTED) { 1006 remote_addr = &vsk->remote_addr; 1007 1008 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1009 remote_addr->svm_cid = transport->get_local_cid(); 1010 1011 /* XXX Should connect() or this function ensure remote_addr is 1012 * bound? 1013 */ 1014 if (!vsock_addr_bound(&vsk->remote_addr)) { 1015 err = -EINVAL; 1016 goto out; 1017 } 1018 } else { 1019 err = -EINVAL; 1020 goto out; 1021 } 1022 1023 if (!transport->dgram_allow(remote_addr->svm_cid, 1024 remote_addr->svm_port)) { 1025 err = -EINVAL; 1026 goto out; 1027 } 1028 1029 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1030 1031 out: 1032 release_sock(sk); 1033 return err; 1034 } 1035 1036 static int vsock_dgram_connect(struct socket *sock, 1037 struct sockaddr *addr, int addr_len, int flags) 1038 { 1039 int err; 1040 struct sock *sk; 1041 struct vsock_sock *vsk; 1042 struct sockaddr_vm *remote_addr; 1043 1044 sk = sock->sk; 1045 vsk = vsock_sk(sk); 1046 1047 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1048 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1049 lock_sock(sk); 1050 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1051 VMADDR_PORT_ANY); 1052 sock->state = SS_UNCONNECTED; 1053 release_sock(sk); 1054 return 0; 1055 } else if (err != 0) 1056 return -EINVAL; 1057 1058 lock_sock(sk); 1059 1060 err = vsock_auto_bind(vsk); 1061 if (err) 1062 goto out; 1063 1064 if (!transport->dgram_allow(remote_addr->svm_cid, 1065 remote_addr->svm_port)) { 1066 err = -EINVAL; 1067 goto out; 1068 } 1069 1070 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1071 sock->state = SS_CONNECTED; 1072 1073 out: 1074 release_sock(sk); 1075 return err; 1076 } 1077 1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1079 size_t len, int flags) 1080 { 1081 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1082 } 1083 1084 static const struct proto_ops vsock_dgram_ops = { 1085 .family = PF_VSOCK, 1086 .owner = THIS_MODULE, 1087 .release = vsock_release, 1088 .bind = vsock_bind, 1089 .connect = vsock_dgram_connect, 1090 .socketpair = sock_no_socketpair, 1091 .accept = sock_no_accept, 1092 .getname = vsock_getname, 1093 .poll = vsock_poll, 1094 .ioctl = sock_no_ioctl, 1095 .listen = sock_no_listen, 1096 .shutdown = vsock_shutdown, 1097 .setsockopt = sock_no_setsockopt, 1098 .getsockopt = sock_no_getsockopt, 1099 .sendmsg = vsock_dgram_sendmsg, 1100 .recvmsg = vsock_dgram_recvmsg, 1101 .mmap = sock_no_mmap, 1102 .sendpage = sock_no_sendpage, 1103 }; 1104 1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) 1106 { 1107 if (!transport->cancel_pkt) 1108 return -EOPNOTSUPP; 1109 1110 return transport->cancel_pkt(vsk); 1111 } 1112 1113 static void vsock_connect_timeout(struct work_struct *work) 1114 { 1115 struct sock *sk; 1116 struct vsock_sock *vsk; 1117 int cancel = 0; 1118 1119 vsk = container_of(work, struct vsock_sock, dwork.work); 1120 sk = sk_vsock(vsk); 1121 1122 lock_sock(sk); 1123 if (sk->sk_state == SS_CONNECTING && 1124 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1125 sk->sk_state = SS_UNCONNECTED; 1126 sk->sk_err = ETIMEDOUT; 1127 sk->sk_error_report(sk); 1128 cancel = 1; 1129 } 1130 release_sock(sk); 1131 if (cancel) 1132 vsock_transport_cancel_pkt(vsk); 1133 1134 sock_put(sk); 1135 } 1136 1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1138 int addr_len, int flags) 1139 { 1140 int err; 1141 struct sock *sk; 1142 struct vsock_sock *vsk; 1143 struct sockaddr_vm *remote_addr; 1144 long timeout; 1145 DEFINE_WAIT(wait); 1146 1147 err = 0; 1148 sk = sock->sk; 1149 vsk = vsock_sk(sk); 1150 1151 lock_sock(sk); 1152 1153 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1154 switch (sock->state) { 1155 case SS_CONNECTED: 1156 err = -EISCONN; 1157 goto out; 1158 case SS_DISCONNECTING: 1159 err = -EINVAL; 1160 goto out; 1161 case SS_CONNECTING: 1162 /* This continues on so we can move sock into the SS_CONNECTED 1163 * state once the connection has completed (at which point err 1164 * will be set to zero also). Otherwise, we will either wait 1165 * for the connection or return -EALREADY should this be a 1166 * non-blocking call. 1167 */ 1168 err = -EALREADY; 1169 break; 1170 default: 1171 if ((sk->sk_state == VSOCK_SS_LISTEN) || 1172 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1173 err = -EINVAL; 1174 goto out; 1175 } 1176 1177 /* The hypervisor and well-known contexts do not have socket 1178 * endpoints. 1179 */ 1180 if (!transport->stream_allow(remote_addr->svm_cid, 1181 remote_addr->svm_port)) { 1182 err = -ENETUNREACH; 1183 goto out; 1184 } 1185 1186 /* Set the remote address that we are connecting to. */ 1187 memcpy(&vsk->remote_addr, remote_addr, 1188 sizeof(vsk->remote_addr)); 1189 1190 err = vsock_auto_bind(vsk); 1191 if (err) 1192 goto out; 1193 1194 sk->sk_state = SS_CONNECTING; 1195 1196 err = transport->connect(vsk); 1197 if (err < 0) 1198 goto out; 1199 1200 /* Mark sock as connecting and set the error code to in 1201 * progress in case this is a non-blocking connect. 1202 */ 1203 sock->state = SS_CONNECTING; 1204 err = -EINPROGRESS; 1205 } 1206 1207 /* The receive path will handle all communication until we are able to 1208 * enter the connected state. Here we wait for the connection to be 1209 * completed or a notification of an error. 1210 */ 1211 timeout = vsk->connect_timeout; 1212 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1213 1214 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1215 if (flags & O_NONBLOCK) { 1216 /* If we're not going to block, we schedule a timeout 1217 * function to generate a timeout on the connection 1218 * attempt, in case the peer doesn't respond in a 1219 * timely manner. We hold on to the socket until the 1220 * timeout fires. 1221 */ 1222 sock_hold(sk); 1223 INIT_DELAYED_WORK(&vsk->dwork, 1224 vsock_connect_timeout); 1225 schedule_delayed_work(&vsk->dwork, timeout); 1226 1227 /* Skip ahead to preserve error code set above. */ 1228 goto out_wait; 1229 } 1230 1231 release_sock(sk); 1232 timeout = schedule_timeout(timeout); 1233 lock_sock(sk); 1234 1235 if (signal_pending(current)) { 1236 err = sock_intr_errno(timeout); 1237 sk->sk_state = SS_UNCONNECTED; 1238 sock->state = SS_UNCONNECTED; 1239 vsock_transport_cancel_pkt(vsk); 1240 goto out_wait; 1241 } else if (timeout == 0) { 1242 err = -ETIMEDOUT; 1243 sk->sk_state = SS_UNCONNECTED; 1244 sock->state = SS_UNCONNECTED; 1245 vsock_transport_cancel_pkt(vsk); 1246 goto out_wait; 1247 } 1248 1249 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1250 } 1251 1252 if (sk->sk_err) { 1253 err = -sk->sk_err; 1254 sk->sk_state = SS_UNCONNECTED; 1255 sock->state = SS_UNCONNECTED; 1256 } else { 1257 err = 0; 1258 } 1259 1260 out_wait: 1261 finish_wait(sk_sleep(sk), &wait); 1262 out: 1263 release_sock(sk); 1264 return err; 1265 } 1266 1267 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, 1268 bool kern) 1269 { 1270 struct sock *listener; 1271 int err; 1272 struct sock *connected; 1273 struct vsock_sock *vconnected; 1274 long timeout; 1275 DEFINE_WAIT(wait); 1276 1277 err = 0; 1278 listener = sock->sk; 1279 1280 lock_sock(listener); 1281 1282 if (sock->type != SOCK_STREAM) { 1283 err = -EOPNOTSUPP; 1284 goto out; 1285 } 1286 1287 if (listener->sk_state != VSOCK_SS_LISTEN) { 1288 err = -EINVAL; 1289 goto out; 1290 } 1291 1292 /* Wait for children sockets to appear; these are the new sockets 1293 * created upon connection establishment. 1294 */ 1295 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1296 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1297 1298 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1299 listener->sk_err == 0) { 1300 release_sock(listener); 1301 timeout = schedule_timeout(timeout); 1302 finish_wait(sk_sleep(listener), &wait); 1303 lock_sock(listener); 1304 1305 if (signal_pending(current)) { 1306 err = sock_intr_errno(timeout); 1307 goto out; 1308 } else if (timeout == 0) { 1309 err = -EAGAIN; 1310 goto out; 1311 } 1312 1313 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1314 } 1315 finish_wait(sk_sleep(listener), &wait); 1316 1317 if (listener->sk_err) 1318 err = -listener->sk_err; 1319 1320 if (connected) { 1321 listener->sk_ack_backlog--; 1322 1323 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1324 vconnected = vsock_sk(connected); 1325 1326 /* If the listener socket has received an error, then we should 1327 * reject this socket and return. Note that we simply mark the 1328 * socket rejected, drop our reference, and let the cleanup 1329 * function handle the cleanup; the fact that we found it in 1330 * the listener's accept queue guarantees that the cleanup 1331 * function hasn't run yet. 1332 */ 1333 if (err) { 1334 vconnected->rejected = true; 1335 } else { 1336 newsock->state = SS_CONNECTED; 1337 sock_graft(connected, newsock); 1338 } 1339 1340 release_sock(connected); 1341 sock_put(connected); 1342 } 1343 1344 out: 1345 release_sock(listener); 1346 return err; 1347 } 1348 1349 static int vsock_listen(struct socket *sock, int backlog) 1350 { 1351 int err; 1352 struct sock *sk; 1353 struct vsock_sock *vsk; 1354 1355 sk = sock->sk; 1356 1357 lock_sock(sk); 1358 1359 if (sock->type != SOCK_STREAM) { 1360 err = -EOPNOTSUPP; 1361 goto out; 1362 } 1363 1364 if (sock->state != SS_UNCONNECTED) { 1365 err = -EINVAL; 1366 goto out; 1367 } 1368 1369 vsk = vsock_sk(sk); 1370 1371 if (!vsock_addr_bound(&vsk->local_addr)) { 1372 err = -EINVAL; 1373 goto out; 1374 } 1375 1376 sk->sk_max_ack_backlog = backlog; 1377 sk->sk_state = VSOCK_SS_LISTEN; 1378 1379 err = 0; 1380 1381 out: 1382 release_sock(sk); 1383 return err; 1384 } 1385 1386 static int vsock_stream_setsockopt(struct socket *sock, 1387 int level, 1388 int optname, 1389 char __user *optval, 1390 unsigned int optlen) 1391 { 1392 int err; 1393 struct sock *sk; 1394 struct vsock_sock *vsk; 1395 u64 val; 1396 1397 if (level != AF_VSOCK) 1398 return -ENOPROTOOPT; 1399 1400 #define COPY_IN(_v) \ 1401 do { \ 1402 if (optlen < sizeof(_v)) { \ 1403 err = -EINVAL; \ 1404 goto exit; \ 1405 } \ 1406 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1407 err = -EFAULT; \ 1408 goto exit; \ 1409 } \ 1410 } while (0) 1411 1412 err = 0; 1413 sk = sock->sk; 1414 vsk = vsock_sk(sk); 1415 1416 lock_sock(sk); 1417 1418 switch (optname) { 1419 case SO_VM_SOCKETS_BUFFER_SIZE: 1420 COPY_IN(val); 1421 transport->set_buffer_size(vsk, val); 1422 break; 1423 1424 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1425 COPY_IN(val); 1426 transport->set_max_buffer_size(vsk, val); 1427 break; 1428 1429 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1430 COPY_IN(val); 1431 transport->set_min_buffer_size(vsk, val); 1432 break; 1433 1434 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1435 struct timeval tv; 1436 COPY_IN(tv); 1437 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1438 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1439 vsk->connect_timeout = tv.tv_sec * HZ + 1440 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1441 if (vsk->connect_timeout == 0) 1442 vsk->connect_timeout = 1443 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1444 1445 } else { 1446 err = -ERANGE; 1447 } 1448 break; 1449 } 1450 1451 default: 1452 err = -ENOPROTOOPT; 1453 break; 1454 } 1455 1456 #undef COPY_IN 1457 1458 exit: 1459 release_sock(sk); 1460 return err; 1461 } 1462 1463 static int vsock_stream_getsockopt(struct socket *sock, 1464 int level, int optname, 1465 char __user *optval, 1466 int __user *optlen) 1467 { 1468 int err; 1469 int len; 1470 struct sock *sk; 1471 struct vsock_sock *vsk; 1472 u64 val; 1473 1474 if (level != AF_VSOCK) 1475 return -ENOPROTOOPT; 1476 1477 err = get_user(len, optlen); 1478 if (err != 0) 1479 return err; 1480 1481 #define COPY_OUT(_v) \ 1482 do { \ 1483 if (len < sizeof(_v)) \ 1484 return -EINVAL; \ 1485 \ 1486 len = sizeof(_v); \ 1487 if (copy_to_user(optval, &_v, len) != 0) \ 1488 return -EFAULT; \ 1489 \ 1490 } while (0) 1491 1492 err = 0; 1493 sk = sock->sk; 1494 vsk = vsock_sk(sk); 1495 1496 switch (optname) { 1497 case SO_VM_SOCKETS_BUFFER_SIZE: 1498 val = transport->get_buffer_size(vsk); 1499 COPY_OUT(val); 1500 break; 1501 1502 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1503 val = transport->get_max_buffer_size(vsk); 1504 COPY_OUT(val); 1505 break; 1506 1507 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1508 val = transport->get_min_buffer_size(vsk); 1509 COPY_OUT(val); 1510 break; 1511 1512 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1513 struct timeval tv; 1514 tv.tv_sec = vsk->connect_timeout / HZ; 1515 tv.tv_usec = 1516 (vsk->connect_timeout - 1517 tv.tv_sec * HZ) * (1000000 / HZ); 1518 COPY_OUT(tv); 1519 break; 1520 } 1521 default: 1522 return -ENOPROTOOPT; 1523 } 1524 1525 err = put_user(len, optlen); 1526 if (err != 0) 1527 return -EFAULT; 1528 1529 #undef COPY_OUT 1530 1531 return 0; 1532 } 1533 1534 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1535 size_t len) 1536 { 1537 struct sock *sk; 1538 struct vsock_sock *vsk; 1539 ssize_t total_written; 1540 long timeout; 1541 int err; 1542 struct vsock_transport_send_notify_data send_data; 1543 1544 DEFINE_WAIT(wait); 1545 1546 sk = sock->sk; 1547 vsk = vsock_sk(sk); 1548 total_written = 0; 1549 err = 0; 1550 1551 if (msg->msg_flags & MSG_OOB) 1552 return -EOPNOTSUPP; 1553 1554 lock_sock(sk); 1555 1556 /* Callers should not provide a destination with stream sockets. */ 1557 if (msg->msg_namelen) { 1558 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1559 goto out; 1560 } 1561 1562 /* Send data only if both sides are not shutdown in the direction. */ 1563 if (sk->sk_shutdown & SEND_SHUTDOWN || 1564 vsk->peer_shutdown & RCV_SHUTDOWN) { 1565 err = -EPIPE; 1566 goto out; 1567 } 1568 1569 if (sk->sk_state != SS_CONNECTED || 1570 !vsock_addr_bound(&vsk->local_addr)) { 1571 err = -ENOTCONN; 1572 goto out; 1573 } 1574 1575 if (!vsock_addr_bound(&vsk->remote_addr)) { 1576 err = -EDESTADDRREQ; 1577 goto out; 1578 } 1579 1580 /* Wait for room in the produce queue to enqueue our user's data. */ 1581 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1582 1583 err = transport->notify_send_init(vsk, &send_data); 1584 if (err < 0) 1585 goto out; 1586 1587 1588 while (total_written < len) { 1589 ssize_t written; 1590 1591 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1592 while (vsock_stream_has_space(vsk) == 0 && 1593 sk->sk_err == 0 && 1594 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1595 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1596 1597 /* Don't wait for non-blocking sockets. */ 1598 if (timeout == 0) { 1599 err = -EAGAIN; 1600 finish_wait(sk_sleep(sk), &wait); 1601 goto out_err; 1602 } 1603 1604 err = transport->notify_send_pre_block(vsk, &send_data); 1605 if (err < 0) { 1606 finish_wait(sk_sleep(sk), &wait); 1607 goto out_err; 1608 } 1609 1610 release_sock(sk); 1611 timeout = schedule_timeout(timeout); 1612 lock_sock(sk); 1613 if (signal_pending(current)) { 1614 err = sock_intr_errno(timeout); 1615 finish_wait(sk_sleep(sk), &wait); 1616 goto out_err; 1617 } else if (timeout == 0) { 1618 err = -EAGAIN; 1619 finish_wait(sk_sleep(sk), &wait); 1620 goto out_err; 1621 } 1622 1623 prepare_to_wait(sk_sleep(sk), &wait, 1624 TASK_INTERRUPTIBLE); 1625 } 1626 finish_wait(sk_sleep(sk), &wait); 1627 1628 /* These checks occur both as part of and after the loop 1629 * conditional since we need to check before and after 1630 * sleeping. 1631 */ 1632 if (sk->sk_err) { 1633 err = -sk->sk_err; 1634 goto out_err; 1635 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1636 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1637 err = -EPIPE; 1638 goto out_err; 1639 } 1640 1641 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1642 if (err < 0) 1643 goto out_err; 1644 1645 /* Note that enqueue will only write as many bytes as are free 1646 * in the produce queue, so we don't need to ensure len is 1647 * smaller than the queue size. It is the caller's 1648 * responsibility to check how many bytes we were able to send. 1649 */ 1650 1651 written = transport->stream_enqueue( 1652 vsk, msg, 1653 len - total_written); 1654 if (written < 0) { 1655 err = -ENOMEM; 1656 goto out_err; 1657 } 1658 1659 total_written += written; 1660 1661 err = transport->notify_send_post_enqueue( 1662 vsk, written, &send_data); 1663 if (err < 0) 1664 goto out_err; 1665 1666 } 1667 1668 out_err: 1669 if (total_written > 0) 1670 err = total_written; 1671 out: 1672 release_sock(sk); 1673 return err; 1674 } 1675 1676 1677 static int 1678 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1679 int flags) 1680 { 1681 struct sock *sk; 1682 struct vsock_sock *vsk; 1683 int err; 1684 size_t target; 1685 ssize_t copied; 1686 long timeout; 1687 struct vsock_transport_recv_notify_data recv_data; 1688 1689 DEFINE_WAIT(wait); 1690 1691 sk = sock->sk; 1692 vsk = vsock_sk(sk); 1693 err = 0; 1694 1695 lock_sock(sk); 1696 1697 if (sk->sk_state != SS_CONNECTED) { 1698 /* Recvmsg is supposed to return 0 if a peer performs an 1699 * orderly shutdown. Differentiate between that case and when a 1700 * peer has not connected or a local shutdown occured with the 1701 * SOCK_DONE flag. 1702 */ 1703 if (sock_flag(sk, SOCK_DONE)) 1704 err = 0; 1705 else 1706 err = -ENOTCONN; 1707 1708 goto out; 1709 } 1710 1711 if (flags & MSG_OOB) { 1712 err = -EOPNOTSUPP; 1713 goto out; 1714 } 1715 1716 /* We don't check peer_shutdown flag here since peer may actually shut 1717 * down, but there can be data in the queue that a local socket can 1718 * receive. 1719 */ 1720 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1721 err = 0; 1722 goto out; 1723 } 1724 1725 /* It is valid on Linux to pass in a zero-length receive buffer. This 1726 * is not an error. We may as well bail out now. 1727 */ 1728 if (!len) { 1729 err = 0; 1730 goto out; 1731 } 1732 1733 /* We must not copy less than target bytes into the user's buffer 1734 * before returning successfully, so we wait for the consume queue to 1735 * have that much data to consume before dequeueing. Note that this 1736 * makes it impossible to handle cases where target is greater than the 1737 * queue size. 1738 */ 1739 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1740 if (target >= transport->stream_rcvhiwat(vsk)) { 1741 err = -ENOMEM; 1742 goto out; 1743 } 1744 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1745 copied = 0; 1746 1747 err = transport->notify_recv_init(vsk, target, &recv_data); 1748 if (err < 0) 1749 goto out; 1750 1751 1752 while (1) { 1753 s64 ready; 1754 1755 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1756 ready = vsock_stream_has_data(vsk); 1757 1758 if (ready == 0) { 1759 if (sk->sk_err != 0 || 1760 (sk->sk_shutdown & RCV_SHUTDOWN) || 1761 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1762 finish_wait(sk_sleep(sk), &wait); 1763 break; 1764 } 1765 /* Don't wait for non-blocking sockets. */ 1766 if (timeout == 0) { 1767 err = -EAGAIN; 1768 finish_wait(sk_sleep(sk), &wait); 1769 break; 1770 } 1771 1772 err = transport->notify_recv_pre_block( 1773 vsk, target, &recv_data); 1774 if (err < 0) { 1775 finish_wait(sk_sleep(sk), &wait); 1776 break; 1777 } 1778 release_sock(sk); 1779 timeout = schedule_timeout(timeout); 1780 lock_sock(sk); 1781 1782 if (signal_pending(current)) { 1783 err = sock_intr_errno(timeout); 1784 finish_wait(sk_sleep(sk), &wait); 1785 break; 1786 } else if (timeout == 0) { 1787 err = -EAGAIN; 1788 finish_wait(sk_sleep(sk), &wait); 1789 break; 1790 } 1791 } else { 1792 ssize_t read; 1793 1794 finish_wait(sk_sleep(sk), &wait); 1795 1796 if (ready < 0) { 1797 /* Invalid queue pair content. XXX This should 1798 * be changed to a connection reset in a later 1799 * change. 1800 */ 1801 1802 err = -ENOMEM; 1803 goto out; 1804 } 1805 1806 err = transport->notify_recv_pre_dequeue( 1807 vsk, target, &recv_data); 1808 if (err < 0) 1809 break; 1810 1811 read = transport->stream_dequeue( 1812 vsk, msg, 1813 len - copied, flags); 1814 if (read < 0) { 1815 err = -ENOMEM; 1816 break; 1817 } 1818 1819 copied += read; 1820 1821 err = transport->notify_recv_post_dequeue( 1822 vsk, target, read, 1823 !(flags & MSG_PEEK), &recv_data); 1824 if (err < 0) 1825 goto out; 1826 1827 if (read >= target || flags & MSG_PEEK) 1828 break; 1829 1830 target -= read; 1831 } 1832 } 1833 1834 if (sk->sk_err) 1835 err = -sk->sk_err; 1836 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1837 err = 0; 1838 1839 if (copied > 0) 1840 err = copied; 1841 1842 out: 1843 release_sock(sk); 1844 return err; 1845 } 1846 1847 static const struct proto_ops vsock_stream_ops = { 1848 .family = PF_VSOCK, 1849 .owner = THIS_MODULE, 1850 .release = vsock_release, 1851 .bind = vsock_bind, 1852 .connect = vsock_stream_connect, 1853 .socketpair = sock_no_socketpair, 1854 .accept = vsock_accept, 1855 .getname = vsock_getname, 1856 .poll = vsock_poll, 1857 .ioctl = sock_no_ioctl, 1858 .listen = vsock_listen, 1859 .shutdown = vsock_shutdown, 1860 .setsockopt = vsock_stream_setsockopt, 1861 .getsockopt = vsock_stream_getsockopt, 1862 .sendmsg = vsock_stream_sendmsg, 1863 .recvmsg = vsock_stream_recvmsg, 1864 .mmap = sock_no_mmap, 1865 .sendpage = sock_no_sendpage, 1866 }; 1867 1868 static int vsock_create(struct net *net, struct socket *sock, 1869 int protocol, int kern) 1870 { 1871 if (!sock) 1872 return -EINVAL; 1873 1874 if (protocol && protocol != PF_VSOCK) 1875 return -EPROTONOSUPPORT; 1876 1877 switch (sock->type) { 1878 case SOCK_DGRAM: 1879 sock->ops = &vsock_dgram_ops; 1880 break; 1881 case SOCK_STREAM: 1882 sock->ops = &vsock_stream_ops; 1883 break; 1884 default: 1885 return -ESOCKTNOSUPPORT; 1886 } 1887 1888 sock->state = SS_UNCONNECTED; 1889 1890 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1891 } 1892 1893 static const struct net_proto_family vsock_family_ops = { 1894 .family = AF_VSOCK, 1895 .create = vsock_create, 1896 .owner = THIS_MODULE, 1897 }; 1898 1899 static long vsock_dev_do_ioctl(struct file *filp, 1900 unsigned int cmd, void __user *ptr) 1901 { 1902 u32 __user *p = ptr; 1903 int retval = 0; 1904 1905 switch (cmd) { 1906 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1907 if (put_user(transport->get_local_cid(), p) != 0) 1908 retval = -EFAULT; 1909 break; 1910 1911 default: 1912 pr_err("Unknown ioctl %d\n", cmd); 1913 retval = -EINVAL; 1914 } 1915 1916 return retval; 1917 } 1918 1919 static long vsock_dev_ioctl(struct file *filp, 1920 unsigned int cmd, unsigned long arg) 1921 { 1922 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1923 } 1924 1925 #ifdef CONFIG_COMPAT 1926 static long vsock_dev_compat_ioctl(struct file *filp, 1927 unsigned int cmd, unsigned long arg) 1928 { 1929 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1930 } 1931 #endif 1932 1933 static const struct file_operations vsock_device_ops = { 1934 .owner = THIS_MODULE, 1935 .unlocked_ioctl = vsock_dev_ioctl, 1936 #ifdef CONFIG_COMPAT 1937 .compat_ioctl = vsock_dev_compat_ioctl, 1938 #endif 1939 .open = nonseekable_open, 1940 }; 1941 1942 static struct miscdevice vsock_device = { 1943 .name = "vsock", 1944 .fops = &vsock_device_ops, 1945 }; 1946 1947 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1948 { 1949 int err = mutex_lock_interruptible(&vsock_register_mutex); 1950 1951 if (err) 1952 return err; 1953 1954 if (transport) { 1955 err = -EBUSY; 1956 goto err_busy; 1957 } 1958 1959 /* Transport must be the owner of the protocol so that it can't 1960 * unload while there are open sockets. 1961 */ 1962 vsock_proto.owner = owner; 1963 transport = t; 1964 1965 vsock_init_tables(); 1966 1967 vsock_device.minor = MISC_DYNAMIC_MINOR; 1968 err = misc_register(&vsock_device); 1969 if (err) { 1970 pr_err("Failed to register misc device\n"); 1971 goto err_reset_transport; 1972 } 1973 1974 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1975 if (err) { 1976 pr_err("Cannot register vsock protocol\n"); 1977 goto err_deregister_misc; 1978 } 1979 1980 err = sock_register(&vsock_family_ops); 1981 if (err) { 1982 pr_err("could not register af_vsock (%d) address family: %d\n", 1983 AF_VSOCK, err); 1984 goto err_unregister_proto; 1985 } 1986 1987 mutex_unlock(&vsock_register_mutex); 1988 return 0; 1989 1990 err_unregister_proto: 1991 proto_unregister(&vsock_proto); 1992 err_deregister_misc: 1993 misc_deregister(&vsock_device); 1994 err_reset_transport: 1995 transport = NULL; 1996 err_busy: 1997 mutex_unlock(&vsock_register_mutex); 1998 return err; 1999 } 2000 EXPORT_SYMBOL_GPL(__vsock_core_init); 2001 2002 void vsock_core_exit(void) 2003 { 2004 mutex_lock(&vsock_register_mutex); 2005 2006 misc_deregister(&vsock_device); 2007 sock_unregister(AF_VSOCK); 2008 proto_unregister(&vsock_proto); 2009 2010 /* We do not want the assignment below re-ordered. */ 2011 mb(); 2012 transport = NULL; 2013 2014 mutex_unlock(&vsock_register_mutex); 2015 } 2016 EXPORT_SYMBOL_GPL(vsock_core_exit); 2017 2018 const struct vsock_transport *vsock_core_get_transport(void) 2019 { 2020 /* vsock_register_mutex not taken since only the transport uses this 2021 * function and only while registered. 2022 */ 2023 return transport; 2024 } 2025 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2026 2027 MODULE_AUTHOR("VMware, Inc."); 2028 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2029 MODULE_VERSION("1.0.2.0-k"); 2030 MODULE_LICENSE("GPL v2"); 2031