xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 1c2dd16a)
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the VSOCK_SS_LISTEN state.  When a
40  * connection request is received (the second kind of socket mentioned above),
41  * we create a new socket and refer to it as a pending socket.  These pending
42  * sockets are placed on the pending connection list of the listener socket.
43  * When future packets are received for the address the listener socket is
44  * bound to, we check if the source of the packet is from one that has an
45  * existing pending connection.  If it does, we process the packet for the
46  * pending socket.  When that socket reaches the connected state, it is removed
47  * from the listener socket's pending list and enqueued in the listener
48  * socket's accept queue.  Callers of accept(2) will accept connected sockets
49  * from the listener socket's accept queue.  If the socket cannot be accepted
50  * for some reason then it is marked rejected.  Once the connection is
51  * accepted, it is owned by the user process and the responsibility for cleanup
52  * falls with that user process.
53  *
54  * - It is possible that these pending sockets will never reach the connected
55  * state; in fact, we may never receive another packet after the connection
56  * request.  Because of this, we must schedule a cleanup function to run in the
57  * future, after some amount of time passes where a connection should have been
58  * established.  This function ensures that the socket is off all lists so it
59  * cannot be retrieved, then drops all references to the socket so it is cleaned
60  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
61  * function will also cleanup rejected sockets, those that reach the connected
62  * state but leave it before they have been accepted.
63  *
64  * - Lock ordering for pending or accept queue sockets is:
65  *
66  *     lock_sock(listener);
67  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68  *
69  * Using explicit nested locking keeps lockdep happy since normally only one
70  * lock of a given class may be taken at a time.
71  *
72  * - Sockets created by user action will be cleaned up when the user process
73  * calls close(2), causing our release implementation to be called. Our release
74  * implementation will perform some cleanup then drop the last reference so our
75  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
76  * perform additional cleanup that's common for both types of sockets.
77  *
78  * - A socket's reference count is what ensures that the structure won't be
79  * freed.  Each entry in a list (such as the "global" bound and connected tables
80  * and the listener socket's pending list and connected queue) ensures a
81  * reference.  When we defer work until process context and pass a socket as our
82  * argument, we must ensure the reference count is increased to ensure the
83  * socket isn't freed before the function is run; the deferred function will
84  * then drop the reference.
85  */
86 
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/sched/signal.h>
94 #include <linux/kmod.h>
95 #include <linux/list.h>
96 #include <linux/miscdevice.h>
97 #include <linux/module.h>
98 #include <linux/mutex.h>
99 #include <linux/net.h>
100 #include <linux/poll.h>
101 #include <linux/skbuff.h>
102 #include <linux/smp.h>
103 #include <linux/socket.h>
104 #include <linux/stddef.h>
105 #include <linux/unistd.h>
106 #include <linux/wait.h>
107 #include <linux/workqueue.h>
108 #include <net/sock.h>
109 #include <net/af_vsock.h>
110 
111 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
112 static void vsock_sk_destruct(struct sock *sk);
113 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
114 
115 /* Protocol family. */
116 static struct proto vsock_proto = {
117 	.name = "AF_VSOCK",
118 	.owner = THIS_MODULE,
119 	.obj_size = sizeof(struct vsock_sock),
120 };
121 
122 /* The default peer timeout indicates how long we will wait for a peer response
123  * to a control message.
124  */
125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126 
127 static const struct vsock_transport *transport;
128 static DEFINE_MUTEX(vsock_register_mutex);
129 
130 /**** EXPORTS ****/
131 
132 /* Get the ID of the local context.  This is transport dependent. */
133 
134 int vm_sockets_get_local_cid(void)
135 {
136 	return transport->get_local_cid();
137 }
138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
139 
140 /**** UTILS ****/
141 
142 /* Each bound VSocket is stored in the bind hash table and each connected
143  * VSocket is stored in the connected hash table.
144  *
145  * Unbound sockets are all put on the same list attached to the end of the hash
146  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
147  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
148  * represents the list that addr hashes to).
149  *
150  * Specifically, we initialize the vsock_bind_table array to a size of
151  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
152  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
153  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
154  * mods with VSOCK_HASH_SIZE to ensure this.
155  */
156 #define VSOCK_HASH_SIZE         251
157 #define MAX_PORT_RETRIES        24
158 
159 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
161 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
162 
163 /* XXX This can probably be implemented in a better way. */
164 #define VSOCK_CONN_HASH(src, dst)				\
165 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
166 #define vsock_connected_sockets(src, dst)		\
167 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
168 #define vsock_connected_sockets_vsk(vsk)				\
169 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170 
171 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
172 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
173 static DEFINE_SPINLOCK(vsock_table_lock);
174 
175 /* Autobind this socket to the local address if necessary. */
176 static int vsock_auto_bind(struct vsock_sock *vsk)
177 {
178 	struct sock *sk = sk_vsock(vsk);
179 	struct sockaddr_vm local_addr;
180 
181 	if (vsock_addr_bound(&vsk->local_addr))
182 		return 0;
183 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
184 	return __vsock_bind(sk, &local_addr);
185 }
186 
187 static void vsock_init_tables(void)
188 {
189 	int i;
190 
191 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
192 		INIT_LIST_HEAD(&vsock_bind_table[i]);
193 
194 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
195 		INIT_LIST_HEAD(&vsock_connected_table[i]);
196 }
197 
198 static void __vsock_insert_bound(struct list_head *list,
199 				 struct vsock_sock *vsk)
200 {
201 	sock_hold(&vsk->sk);
202 	list_add(&vsk->bound_table, list);
203 }
204 
205 static void __vsock_insert_connected(struct list_head *list,
206 				     struct vsock_sock *vsk)
207 {
208 	sock_hold(&vsk->sk);
209 	list_add(&vsk->connected_table, list);
210 }
211 
212 static void __vsock_remove_bound(struct vsock_sock *vsk)
213 {
214 	list_del_init(&vsk->bound_table);
215 	sock_put(&vsk->sk);
216 }
217 
218 static void __vsock_remove_connected(struct vsock_sock *vsk)
219 {
220 	list_del_init(&vsk->connected_table);
221 	sock_put(&vsk->sk);
222 }
223 
224 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
225 {
226 	struct vsock_sock *vsk;
227 
228 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
229 		if (addr->svm_port == vsk->local_addr.svm_port)
230 			return sk_vsock(vsk);
231 
232 	return NULL;
233 }
234 
235 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
236 						  struct sockaddr_vm *dst)
237 {
238 	struct vsock_sock *vsk;
239 
240 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
241 			    connected_table) {
242 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
243 		    dst->svm_port == vsk->local_addr.svm_port) {
244 			return sk_vsock(vsk);
245 		}
246 	}
247 
248 	return NULL;
249 }
250 
251 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
252 {
253 	return !list_empty(&vsk->bound_table);
254 }
255 
256 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
257 {
258 	return !list_empty(&vsk->connected_table);
259 }
260 
261 static void vsock_insert_unbound(struct vsock_sock *vsk)
262 {
263 	spin_lock_bh(&vsock_table_lock);
264 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
265 	spin_unlock_bh(&vsock_table_lock);
266 }
267 
268 void vsock_insert_connected(struct vsock_sock *vsk)
269 {
270 	struct list_head *list = vsock_connected_sockets(
271 		&vsk->remote_addr, &vsk->local_addr);
272 
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_connected(list, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 EXPORT_SYMBOL_GPL(vsock_insert_connected);
278 
279 void vsock_remove_bound(struct vsock_sock *vsk)
280 {
281 	spin_lock_bh(&vsock_table_lock);
282 	__vsock_remove_bound(vsk);
283 	spin_unlock_bh(&vsock_table_lock);
284 }
285 EXPORT_SYMBOL_GPL(vsock_remove_bound);
286 
287 void vsock_remove_connected(struct vsock_sock *vsk)
288 {
289 	spin_lock_bh(&vsock_table_lock);
290 	__vsock_remove_connected(vsk);
291 	spin_unlock_bh(&vsock_table_lock);
292 }
293 EXPORT_SYMBOL_GPL(vsock_remove_connected);
294 
295 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
296 {
297 	struct sock *sk;
298 
299 	spin_lock_bh(&vsock_table_lock);
300 	sk = __vsock_find_bound_socket(addr);
301 	if (sk)
302 		sock_hold(sk);
303 
304 	spin_unlock_bh(&vsock_table_lock);
305 
306 	return sk;
307 }
308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
309 
310 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
311 					 struct sockaddr_vm *dst)
312 {
313 	struct sock *sk;
314 
315 	spin_lock_bh(&vsock_table_lock);
316 	sk = __vsock_find_connected_socket(src, dst);
317 	if (sk)
318 		sock_hold(sk);
319 
320 	spin_unlock_bh(&vsock_table_lock);
321 
322 	return sk;
323 }
324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
325 
326 static bool vsock_in_bound_table(struct vsock_sock *vsk)
327 {
328 	bool ret;
329 
330 	spin_lock_bh(&vsock_table_lock);
331 	ret = __vsock_in_bound_table(vsk);
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return ret;
335 }
336 
337 static bool vsock_in_connected_table(struct vsock_sock *vsk)
338 {
339 	bool ret;
340 
341 	spin_lock_bh(&vsock_table_lock);
342 	ret = __vsock_in_connected_table(vsk);
343 	spin_unlock_bh(&vsock_table_lock);
344 
345 	return ret;
346 }
347 
348 void vsock_remove_sock(struct vsock_sock *vsk)
349 {
350 	if (vsock_in_bound_table(vsk))
351 		vsock_remove_bound(vsk);
352 
353 	if (vsock_in_connected_table(vsk))
354 		vsock_remove_connected(vsk);
355 }
356 EXPORT_SYMBOL_GPL(vsock_remove_sock);
357 
358 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
359 {
360 	int i;
361 
362 	spin_lock_bh(&vsock_table_lock);
363 
364 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
365 		struct vsock_sock *vsk;
366 		list_for_each_entry(vsk, &vsock_connected_table[i],
367 				    connected_table)
368 			fn(sk_vsock(vsk));
369 	}
370 
371 	spin_unlock_bh(&vsock_table_lock);
372 }
373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
374 
375 void vsock_add_pending(struct sock *listener, struct sock *pending)
376 {
377 	struct vsock_sock *vlistener;
378 	struct vsock_sock *vpending;
379 
380 	vlistener = vsock_sk(listener);
381 	vpending = vsock_sk(pending);
382 
383 	sock_hold(pending);
384 	sock_hold(listener);
385 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
386 }
387 EXPORT_SYMBOL_GPL(vsock_add_pending);
388 
389 void vsock_remove_pending(struct sock *listener, struct sock *pending)
390 {
391 	struct vsock_sock *vpending = vsock_sk(pending);
392 
393 	list_del_init(&vpending->pending_links);
394 	sock_put(listener);
395 	sock_put(pending);
396 }
397 EXPORT_SYMBOL_GPL(vsock_remove_pending);
398 
399 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
400 {
401 	struct vsock_sock *vlistener;
402 	struct vsock_sock *vconnected;
403 
404 	vlistener = vsock_sk(listener);
405 	vconnected = vsock_sk(connected);
406 
407 	sock_hold(connected);
408 	sock_hold(listener);
409 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
410 }
411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
412 
413 static struct sock *vsock_dequeue_accept(struct sock *listener)
414 {
415 	struct vsock_sock *vlistener;
416 	struct vsock_sock *vconnected;
417 
418 	vlistener = vsock_sk(listener);
419 
420 	if (list_empty(&vlistener->accept_queue))
421 		return NULL;
422 
423 	vconnected = list_entry(vlistener->accept_queue.next,
424 				struct vsock_sock, accept_queue);
425 
426 	list_del_init(&vconnected->accept_queue);
427 	sock_put(listener);
428 	/* The caller will need a reference on the connected socket so we let
429 	 * it call sock_put().
430 	 */
431 
432 	return sk_vsock(vconnected);
433 }
434 
435 static bool vsock_is_accept_queue_empty(struct sock *sk)
436 {
437 	struct vsock_sock *vsk = vsock_sk(sk);
438 	return list_empty(&vsk->accept_queue);
439 }
440 
441 static bool vsock_is_pending(struct sock *sk)
442 {
443 	struct vsock_sock *vsk = vsock_sk(sk);
444 	return !list_empty(&vsk->pending_links);
445 }
446 
447 static int vsock_send_shutdown(struct sock *sk, int mode)
448 {
449 	return transport->shutdown(vsock_sk(sk), mode);
450 }
451 
452 void vsock_pending_work(struct work_struct *work)
453 {
454 	struct sock *sk;
455 	struct sock *listener;
456 	struct vsock_sock *vsk;
457 	bool cleanup;
458 
459 	vsk = container_of(work, struct vsock_sock, dwork.work);
460 	sk = sk_vsock(vsk);
461 	listener = vsk->listener;
462 	cleanup = true;
463 
464 	lock_sock(listener);
465 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
466 
467 	if (vsock_is_pending(sk)) {
468 		vsock_remove_pending(listener, sk);
469 
470 		listener->sk_ack_backlog--;
471 	} else if (!vsk->rejected) {
472 		/* We are not on the pending list and accept() did not reject
473 		 * us, so we must have been accepted by our user process.  We
474 		 * just need to drop our references to the sockets and be on
475 		 * our way.
476 		 */
477 		cleanup = false;
478 		goto out;
479 	}
480 
481 	/* We need to remove ourself from the global connected sockets list so
482 	 * incoming packets can't find this socket, and to reduce the reference
483 	 * count.
484 	 */
485 	if (vsock_in_connected_table(vsk))
486 		vsock_remove_connected(vsk);
487 
488 	sk->sk_state = SS_FREE;
489 
490 out:
491 	release_sock(sk);
492 	release_sock(listener);
493 	if (cleanup)
494 		sock_put(sk);
495 
496 	sock_put(sk);
497 	sock_put(listener);
498 }
499 EXPORT_SYMBOL_GPL(vsock_pending_work);
500 
501 /**** SOCKET OPERATIONS ****/
502 
503 static int __vsock_bind_stream(struct vsock_sock *vsk,
504 			       struct sockaddr_vm *addr)
505 {
506 	static u32 port = LAST_RESERVED_PORT + 1;
507 	struct sockaddr_vm new_addr;
508 
509 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
510 
511 	if (addr->svm_port == VMADDR_PORT_ANY) {
512 		bool found = false;
513 		unsigned int i;
514 
515 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
516 			if (port <= LAST_RESERVED_PORT)
517 				port = LAST_RESERVED_PORT + 1;
518 
519 			new_addr.svm_port = port++;
520 
521 			if (!__vsock_find_bound_socket(&new_addr)) {
522 				found = true;
523 				break;
524 			}
525 		}
526 
527 		if (!found)
528 			return -EADDRNOTAVAIL;
529 	} else {
530 		/* If port is in reserved range, ensure caller
531 		 * has necessary privileges.
532 		 */
533 		if (addr->svm_port <= LAST_RESERVED_PORT &&
534 		    !capable(CAP_NET_BIND_SERVICE)) {
535 			return -EACCES;
536 		}
537 
538 		if (__vsock_find_bound_socket(&new_addr))
539 			return -EADDRINUSE;
540 	}
541 
542 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
543 
544 	/* Remove stream sockets from the unbound list and add them to the hash
545 	 * table for easy lookup by its address.  The unbound list is simply an
546 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
547 	 */
548 	__vsock_remove_bound(vsk);
549 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
550 
551 	return 0;
552 }
553 
554 static int __vsock_bind_dgram(struct vsock_sock *vsk,
555 			      struct sockaddr_vm *addr)
556 {
557 	return transport->dgram_bind(vsk, addr);
558 }
559 
560 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
561 {
562 	struct vsock_sock *vsk = vsock_sk(sk);
563 	u32 cid;
564 	int retval;
565 
566 	/* First ensure this socket isn't already bound. */
567 	if (vsock_addr_bound(&vsk->local_addr))
568 		return -EINVAL;
569 
570 	/* Now bind to the provided address or select appropriate values if
571 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
572 	 * like AF_INET prevents binding to a non-local IP address (in most
573 	 * cases), we only allow binding to the local CID.
574 	 */
575 	cid = transport->get_local_cid();
576 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
577 		return -EADDRNOTAVAIL;
578 
579 	switch (sk->sk_socket->type) {
580 	case SOCK_STREAM:
581 		spin_lock_bh(&vsock_table_lock);
582 		retval = __vsock_bind_stream(vsk, addr);
583 		spin_unlock_bh(&vsock_table_lock);
584 		break;
585 
586 	case SOCK_DGRAM:
587 		retval = __vsock_bind_dgram(vsk, addr);
588 		break;
589 
590 	default:
591 		retval = -EINVAL;
592 		break;
593 	}
594 
595 	return retval;
596 }
597 
598 struct sock *__vsock_create(struct net *net,
599 			    struct socket *sock,
600 			    struct sock *parent,
601 			    gfp_t priority,
602 			    unsigned short type,
603 			    int kern)
604 {
605 	struct sock *sk;
606 	struct vsock_sock *psk;
607 	struct vsock_sock *vsk;
608 
609 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
610 	if (!sk)
611 		return NULL;
612 
613 	sock_init_data(sock, sk);
614 
615 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
616 	 * non-NULL. We make sure that our sockets always have a type by
617 	 * setting it here if needed.
618 	 */
619 	if (!sock)
620 		sk->sk_type = type;
621 
622 	vsk = vsock_sk(sk);
623 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
624 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625 
626 	sk->sk_destruct = vsock_sk_destruct;
627 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
628 	sk->sk_state = 0;
629 	sock_reset_flag(sk, SOCK_DONE);
630 
631 	INIT_LIST_HEAD(&vsk->bound_table);
632 	INIT_LIST_HEAD(&vsk->connected_table);
633 	vsk->listener = NULL;
634 	INIT_LIST_HEAD(&vsk->pending_links);
635 	INIT_LIST_HEAD(&vsk->accept_queue);
636 	vsk->rejected = false;
637 	vsk->sent_request = false;
638 	vsk->ignore_connecting_rst = false;
639 	vsk->peer_shutdown = 0;
640 
641 	psk = parent ? vsock_sk(parent) : NULL;
642 	if (parent) {
643 		vsk->trusted = psk->trusted;
644 		vsk->owner = get_cred(psk->owner);
645 		vsk->connect_timeout = psk->connect_timeout;
646 	} else {
647 		vsk->trusted = capable(CAP_NET_ADMIN);
648 		vsk->owner = get_current_cred();
649 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
650 	}
651 
652 	if (transport->init(vsk, psk) < 0) {
653 		sk_free(sk);
654 		return NULL;
655 	}
656 
657 	if (sock)
658 		vsock_insert_unbound(vsk);
659 
660 	return sk;
661 }
662 EXPORT_SYMBOL_GPL(__vsock_create);
663 
664 static void __vsock_release(struct sock *sk)
665 {
666 	if (sk) {
667 		struct sk_buff *skb;
668 		struct sock *pending;
669 		struct vsock_sock *vsk;
670 
671 		vsk = vsock_sk(sk);
672 		pending = NULL;	/* Compiler warning. */
673 
674 		transport->release(vsk);
675 
676 		lock_sock(sk);
677 		sock_orphan(sk);
678 		sk->sk_shutdown = SHUTDOWN_MASK;
679 
680 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
681 			kfree_skb(skb);
682 
683 		/* Clean up any sockets that never were accepted. */
684 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
685 			__vsock_release(pending);
686 			sock_put(pending);
687 		}
688 
689 		release_sock(sk);
690 		sock_put(sk);
691 	}
692 }
693 
694 static void vsock_sk_destruct(struct sock *sk)
695 {
696 	struct vsock_sock *vsk = vsock_sk(sk);
697 
698 	transport->destruct(vsk);
699 
700 	/* When clearing these addresses, there's no need to set the family and
701 	 * possibly register the address family with the kernel.
702 	 */
703 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
704 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 
706 	put_cred(vsk->owner);
707 }
708 
709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 {
711 	int err;
712 
713 	err = sock_queue_rcv_skb(sk, skb);
714 	if (err)
715 		kfree_skb(skb);
716 
717 	return err;
718 }
719 
720 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 {
722 	return transport->stream_has_data(vsk);
723 }
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725 
726 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 {
728 	return transport->stream_has_space(vsk);
729 }
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731 
732 static int vsock_release(struct socket *sock)
733 {
734 	__vsock_release(sock->sk);
735 	sock->sk = NULL;
736 	sock->state = SS_FREE;
737 
738 	return 0;
739 }
740 
741 static int
742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 {
744 	int err;
745 	struct sock *sk;
746 	struct sockaddr_vm *vm_addr;
747 
748 	sk = sock->sk;
749 
750 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
751 		return -EINVAL;
752 
753 	lock_sock(sk);
754 	err = __vsock_bind(sk, vm_addr);
755 	release_sock(sk);
756 
757 	return err;
758 }
759 
760 static int vsock_getname(struct socket *sock,
761 			 struct sockaddr *addr, int *addr_len, int peer)
762 {
763 	int err;
764 	struct sock *sk;
765 	struct vsock_sock *vsk;
766 	struct sockaddr_vm *vm_addr;
767 
768 	sk = sock->sk;
769 	vsk = vsock_sk(sk);
770 	err = 0;
771 
772 	lock_sock(sk);
773 
774 	if (peer) {
775 		if (sock->state != SS_CONNECTED) {
776 			err = -ENOTCONN;
777 			goto out;
778 		}
779 		vm_addr = &vsk->remote_addr;
780 	} else {
781 		vm_addr = &vsk->local_addr;
782 	}
783 
784 	if (!vm_addr) {
785 		err = -EINVAL;
786 		goto out;
787 	}
788 
789 	/* sys_getsockname() and sys_getpeername() pass us a
790 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
791 	 * that macro is defined in socket.c instead of .h, so we hardcode its
792 	 * value here.
793 	 */
794 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
795 	memcpy(addr, vm_addr, sizeof(*vm_addr));
796 	*addr_len = sizeof(*vm_addr);
797 
798 out:
799 	release_sock(sk);
800 	return err;
801 }
802 
803 static int vsock_shutdown(struct socket *sock, int mode)
804 {
805 	int err;
806 	struct sock *sk;
807 
808 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 	 * here like the other address families do.  Note also that the
811 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 	 * which is what we want.
813 	 */
814 	mode++;
815 
816 	if ((mode & ~SHUTDOWN_MASK) || !mode)
817 		return -EINVAL;
818 
819 	/* If this is a STREAM socket and it is not connected then bail out
820 	 * immediately.  If it is a DGRAM socket then we must first kick the
821 	 * socket so that it wakes up from any sleeping calls, for example
822 	 * recv(), and then afterwards return the error.
823 	 */
824 
825 	sk = sock->sk;
826 	if (sock->state == SS_UNCONNECTED) {
827 		err = -ENOTCONN;
828 		if (sk->sk_type == SOCK_STREAM)
829 			return err;
830 	} else {
831 		sock->state = SS_DISCONNECTING;
832 		err = 0;
833 	}
834 
835 	/* Receive and send shutdowns are treated alike. */
836 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
837 	if (mode) {
838 		lock_sock(sk);
839 		sk->sk_shutdown |= mode;
840 		sk->sk_state_change(sk);
841 		release_sock(sk);
842 
843 		if (sk->sk_type == SOCK_STREAM) {
844 			sock_reset_flag(sk, SOCK_DONE);
845 			vsock_send_shutdown(sk, mode);
846 		}
847 	}
848 
849 	return err;
850 }
851 
852 static unsigned int vsock_poll(struct file *file, struct socket *sock,
853 			       poll_table *wait)
854 {
855 	struct sock *sk;
856 	unsigned int mask;
857 	struct vsock_sock *vsk;
858 
859 	sk = sock->sk;
860 	vsk = vsock_sk(sk);
861 
862 	poll_wait(file, sk_sleep(sk), wait);
863 	mask = 0;
864 
865 	if (sk->sk_err)
866 		/* Signify that there has been an error on this socket. */
867 		mask |= POLLERR;
868 
869 	/* INET sockets treat local write shutdown and peer write shutdown as a
870 	 * case of POLLHUP set.
871 	 */
872 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
873 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
874 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
875 		mask |= POLLHUP;
876 	}
877 
878 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
879 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
880 		mask |= POLLRDHUP;
881 	}
882 
883 	if (sock->type == SOCK_DGRAM) {
884 		/* For datagram sockets we can read if there is something in
885 		 * the queue and write as long as the socket isn't shutdown for
886 		 * sending.
887 		 */
888 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
889 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
890 			mask |= POLLIN | POLLRDNORM;
891 		}
892 
893 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
894 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895 
896 	} else if (sock->type == SOCK_STREAM) {
897 		lock_sock(sk);
898 
899 		/* Listening sockets that have connections in their accept
900 		 * queue can be read.
901 		 */
902 		if (sk->sk_state == VSOCK_SS_LISTEN
903 		    && !vsock_is_accept_queue_empty(sk))
904 			mask |= POLLIN | POLLRDNORM;
905 
906 		/* If there is something in the queue then we can read. */
907 		if (transport->stream_is_active(vsk) &&
908 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
909 			bool data_ready_now = false;
910 			int ret = transport->notify_poll_in(
911 					vsk, 1, &data_ready_now);
912 			if (ret < 0) {
913 				mask |= POLLERR;
914 			} else {
915 				if (data_ready_now)
916 					mask |= POLLIN | POLLRDNORM;
917 
918 			}
919 		}
920 
921 		/* Sockets whose connections have been closed, reset, or
922 		 * terminated should also be considered read, and we check the
923 		 * shutdown flag for that.
924 		 */
925 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
926 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
927 			mask |= POLLIN | POLLRDNORM;
928 		}
929 
930 		/* Connected sockets that can produce data can be written. */
931 		if (sk->sk_state == SS_CONNECTED) {
932 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
933 				bool space_avail_now = false;
934 				int ret = transport->notify_poll_out(
935 						vsk, 1, &space_avail_now);
936 				if (ret < 0) {
937 					mask |= POLLERR;
938 				} else {
939 					if (space_avail_now)
940 						/* Remove POLLWRBAND since INET
941 						 * sockets are not setting it.
942 						 */
943 						mask |= POLLOUT | POLLWRNORM;
944 
945 				}
946 			}
947 		}
948 
949 		/* Simulate INET socket poll behaviors, which sets
950 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 		 * but local send is not shutdown.
952 		 */
953 		if (sk->sk_state == SS_UNCONNECTED) {
954 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
955 				mask |= POLLOUT | POLLWRNORM;
956 
957 		}
958 
959 		release_sock(sk);
960 	}
961 
962 	return mask;
963 }
964 
965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
966 			       size_t len)
967 {
968 	int err;
969 	struct sock *sk;
970 	struct vsock_sock *vsk;
971 	struct sockaddr_vm *remote_addr;
972 
973 	if (msg->msg_flags & MSG_OOB)
974 		return -EOPNOTSUPP;
975 
976 	/* For now, MSG_DONTWAIT is always assumed... */
977 	err = 0;
978 	sk = sock->sk;
979 	vsk = vsock_sk(sk);
980 
981 	lock_sock(sk);
982 
983 	err = vsock_auto_bind(vsk);
984 	if (err)
985 		goto out;
986 
987 
988 	/* If the provided message contains an address, use that.  Otherwise
989 	 * fall back on the socket's remote handle (if it has been connected).
990 	 */
991 	if (msg->msg_name &&
992 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
993 			    &remote_addr) == 0) {
994 		/* Ensure this address is of the right type and is a valid
995 		 * destination.
996 		 */
997 
998 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
999 			remote_addr->svm_cid = transport->get_local_cid();
1000 
1001 		if (!vsock_addr_bound(remote_addr)) {
1002 			err = -EINVAL;
1003 			goto out;
1004 		}
1005 	} else if (sock->state == SS_CONNECTED) {
1006 		remote_addr = &vsk->remote_addr;
1007 
1008 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1009 			remote_addr->svm_cid = transport->get_local_cid();
1010 
1011 		/* XXX Should connect() or this function ensure remote_addr is
1012 		 * bound?
1013 		 */
1014 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1015 			err = -EINVAL;
1016 			goto out;
1017 		}
1018 	} else {
1019 		err = -EINVAL;
1020 		goto out;
1021 	}
1022 
1023 	if (!transport->dgram_allow(remote_addr->svm_cid,
1024 				    remote_addr->svm_port)) {
1025 		err = -EINVAL;
1026 		goto out;
1027 	}
1028 
1029 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030 
1031 out:
1032 	release_sock(sk);
1033 	return err;
1034 }
1035 
1036 static int vsock_dgram_connect(struct socket *sock,
1037 			       struct sockaddr *addr, int addr_len, int flags)
1038 {
1039 	int err;
1040 	struct sock *sk;
1041 	struct vsock_sock *vsk;
1042 	struct sockaddr_vm *remote_addr;
1043 
1044 	sk = sock->sk;
1045 	vsk = vsock_sk(sk);
1046 
1047 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1048 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1049 		lock_sock(sk);
1050 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1051 				VMADDR_PORT_ANY);
1052 		sock->state = SS_UNCONNECTED;
1053 		release_sock(sk);
1054 		return 0;
1055 	} else if (err != 0)
1056 		return -EINVAL;
1057 
1058 	lock_sock(sk);
1059 
1060 	err = vsock_auto_bind(vsk);
1061 	if (err)
1062 		goto out;
1063 
1064 	if (!transport->dgram_allow(remote_addr->svm_cid,
1065 				    remote_addr->svm_port)) {
1066 		err = -EINVAL;
1067 		goto out;
1068 	}
1069 
1070 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1071 	sock->state = SS_CONNECTED;
1072 
1073 out:
1074 	release_sock(sk);
1075 	return err;
1076 }
1077 
1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1079 			       size_t len, int flags)
1080 {
1081 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1082 }
1083 
1084 static const struct proto_ops vsock_dgram_ops = {
1085 	.family = PF_VSOCK,
1086 	.owner = THIS_MODULE,
1087 	.release = vsock_release,
1088 	.bind = vsock_bind,
1089 	.connect = vsock_dgram_connect,
1090 	.socketpair = sock_no_socketpair,
1091 	.accept = sock_no_accept,
1092 	.getname = vsock_getname,
1093 	.poll = vsock_poll,
1094 	.ioctl = sock_no_ioctl,
1095 	.listen = sock_no_listen,
1096 	.shutdown = vsock_shutdown,
1097 	.setsockopt = sock_no_setsockopt,
1098 	.getsockopt = sock_no_getsockopt,
1099 	.sendmsg = vsock_dgram_sendmsg,
1100 	.recvmsg = vsock_dgram_recvmsg,
1101 	.mmap = sock_no_mmap,
1102 	.sendpage = sock_no_sendpage,
1103 };
1104 
1105 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1106 {
1107 	if (!transport->cancel_pkt)
1108 		return -EOPNOTSUPP;
1109 
1110 	return transport->cancel_pkt(vsk);
1111 }
1112 
1113 static void vsock_connect_timeout(struct work_struct *work)
1114 {
1115 	struct sock *sk;
1116 	struct vsock_sock *vsk;
1117 	int cancel = 0;
1118 
1119 	vsk = container_of(work, struct vsock_sock, dwork.work);
1120 	sk = sk_vsock(vsk);
1121 
1122 	lock_sock(sk);
1123 	if (sk->sk_state == SS_CONNECTING &&
1124 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1125 		sk->sk_state = SS_UNCONNECTED;
1126 		sk->sk_err = ETIMEDOUT;
1127 		sk->sk_error_report(sk);
1128 		cancel = 1;
1129 	}
1130 	release_sock(sk);
1131 	if (cancel)
1132 		vsock_transport_cancel_pkt(vsk);
1133 
1134 	sock_put(sk);
1135 }
1136 
1137 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1138 				int addr_len, int flags)
1139 {
1140 	int err;
1141 	struct sock *sk;
1142 	struct vsock_sock *vsk;
1143 	struct sockaddr_vm *remote_addr;
1144 	long timeout;
1145 	DEFINE_WAIT(wait);
1146 
1147 	err = 0;
1148 	sk = sock->sk;
1149 	vsk = vsock_sk(sk);
1150 
1151 	lock_sock(sk);
1152 
1153 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 	switch (sock->state) {
1155 	case SS_CONNECTED:
1156 		err = -EISCONN;
1157 		goto out;
1158 	case SS_DISCONNECTING:
1159 		err = -EINVAL;
1160 		goto out;
1161 	case SS_CONNECTING:
1162 		/* This continues on so we can move sock into the SS_CONNECTED
1163 		 * state once the connection has completed (at which point err
1164 		 * will be set to zero also).  Otherwise, we will either wait
1165 		 * for the connection or return -EALREADY should this be a
1166 		 * non-blocking call.
1167 		 */
1168 		err = -EALREADY;
1169 		break;
1170 	default:
1171 		if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1172 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1173 			err = -EINVAL;
1174 			goto out;
1175 		}
1176 
1177 		/* The hypervisor and well-known contexts do not have socket
1178 		 * endpoints.
1179 		 */
1180 		if (!transport->stream_allow(remote_addr->svm_cid,
1181 					     remote_addr->svm_port)) {
1182 			err = -ENETUNREACH;
1183 			goto out;
1184 		}
1185 
1186 		/* Set the remote address that we are connecting to. */
1187 		memcpy(&vsk->remote_addr, remote_addr,
1188 		       sizeof(vsk->remote_addr));
1189 
1190 		err = vsock_auto_bind(vsk);
1191 		if (err)
1192 			goto out;
1193 
1194 		sk->sk_state = SS_CONNECTING;
1195 
1196 		err = transport->connect(vsk);
1197 		if (err < 0)
1198 			goto out;
1199 
1200 		/* Mark sock as connecting and set the error code to in
1201 		 * progress in case this is a non-blocking connect.
1202 		 */
1203 		sock->state = SS_CONNECTING;
1204 		err = -EINPROGRESS;
1205 	}
1206 
1207 	/* The receive path will handle all communication until we are able to
1208 	 * enter the connected state.  Here we wait for the connection to be
1209 	 * completed or a notification of an error.
1210 	 */
1211 	timeout = vsk->connect_timeout;
1212 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1213 
1214 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1215 		if (flags & O_NONBLOCK) {
1216 			/* If we're not going to block, we schedule a timeout
1217 			 * function to generate a timeout on the connection
1218 			 * attempt, in case the peer doesn't respond in a
1219 			 * timely manner. We hold on to the socket until the
1220 			 * timeout fires.
1221 			 */
1222 			sock_hold(sk);
1223 			INIT_DELAYED_WORK(&vsk->dwork,
1224 					  vsock_connect_timeout);
1225 			schedule_delayed_work(&vsk->dwork, timeout);
1226 
1227 			/* Skip ahead to preserve error code set above. */
1228 			goto out_wait;
1229 		}
1230 
1231 		release_sock(sk);
1232 		timeout = schedule_timeout(timeout);
1233 		lock_sock(sk);
1234 
1235 		if (signal_pending(current)) {
1236 			err = sock_intr_errno(timeout);
1237 			sk->sk_state = SS_UNCONNECTED;
1238 			sock->state = SS_UNCONNECTED;
1239 			vsock_transport_cancel_pkt(vsk);
1240 			goto out_wait;
1241 		} else if (timeout == 0) {
1242 			err = -ETIMEDOUT;
1243 			sk->sk_state = SS_UNCONNECTED;
1244 			sock->state = SS_UNCONNECTED;
1245 			vsock_transport_cancel_pkt(vsk);
1246 			goto out_wait;
1247 		}
1248 
1249 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1250 	}
1251 
1252 	if (sk->sk_err) {
1253 		err = -sk->sk_err;
1254 		sk->sk_state = SS_UNCONNECTED;
1255 		sock->state = SS_UNCONNECTED;
1256 	} else {
1257 		err = 0;
1258 	}
1259 
1260 out_wait:
1261 	finish_wait(sk_sleep(sk), &wait);
1262 out:
1263 	release_sock(sk);
1264 	return err;
1265 }
1266 
1267 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1268 			bool kern)
1269 {
1270 	struct sock *listener;
1271 	int err;
1272 	struct sock *connected;
1273 	struct vsock_sock *vconnected;
1274 	long timeout;
1275 	DEFINE_WAIT(wait);
1276 
1277 	err = 0;
1278 	listener = sock->sk;
1279 
1280 	lock_sock(listener);
1281 
1282 	if (sock->type != SOCK_STREAM) {
1283 		err = -EOPNOTSUPP;
1284 		goto out;
1285 	}
1286 
1287 	if (listener->sk_state != VSOCK_SS_LISTEN) {
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 
1292 	/* Wait for children sockets to appear; these are the new sockets
1293 	 * created upon connection establishment.
1294 	 */
1295 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1296 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1297 
1298 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1299 	       listener->sk_err == 0) {
1300 		release_sock(listener);
1301 		timeout = schedule_timeout(timeout);
1302 		finish_wait(sk_sleep(listener), &wait);
1303 		lock_sock(listener);
1304 
1305 		if (signal_pending(current)) {
1306 			err = sock_intr_errno(timeout);
1307 			goto out;
1308 		} else if (timeout == 0) {
1309 			err = -EAGAIN;
1310 			goto out;
1311 		}
1312 
1313 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1314 	}
1315 	finish_wait(sk_sleep(listener), &wait);
1316 
1317 	if (listener->sk_err)
1318 		err = -listener->sk_err;
1319 
1320 	if (connected) {
1321 		listener->sk_ack_backlog--;
1322 
1323 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1324 		vconnected = vsock_sk(connected);
1325 
1326 		/* If the listener socket has received an error, then we should
1327 		 * reject this socket and return.  Note that we simply mark the
1328 		 * socket rejected, drop our reference, and let the cleanup
1329 		 * function handle the cleanup; the fact that we found it in
1330 		 * the listener's accept queue guarantees that the cleanup
1331 		 * function hasn't run yet.
1332 		 */
1333 		if (err) {
1334 			vconnected->rejected = true;
1335 		} else {
1336 			newsock->state = SS_CONNECTED;
1337 			sock_graft(connected, newsock);
1338 		}
1339 
1340 		release_sock(connected);
1341 		sock_put(connected);
1342 	}
1343 
1344 out:
1345 	release_sock(listener);
1346 	return err;
1347 }
1348 
1349 static int vsock_listen(struct socket *sock, int backlog)
1350 {
1351 	int err;
1352 	struct sock *sk;
1353 	struct vsock_sock *vsk;
1354 
1355 	sk = sock->sk;
1356 
1357 	lock_sock(sk);
1358 
1359 	if (sock->type != SOCK_STREAM) {
1360 		err = -EOPNOTSUPP;
1361 		goto out;
1362 	}
1363 
1364 	if (sock->state != SS_UNCONNECTED) {
1365 		err = -EINVAL;
1366 		goto out;
1367 	}
1368 
1369 	vsk = vsock_sk(sk);
1370 
1371 	if (!vsock_addr_bound(&vsk->local_addr)) {
1372 		err = -EINVAL;
1373 		goto out;
1374 	}
1375 
1376 	sk->sk_max_ack_backlog = backlog;
1377 	sk->sk_state = VSOCK_SS_LISTEN;
1378 
1379 	err = 0;
1380 
1381 out:
1382 	release_sock(sk);
1383 	return err;
1384 }
1385 
1386 static int vsock_stream_setsockopt(struct socket *sock,
1387 				   int level,
1388 				   int optname,
1389 				   char __user *optval,
1390 				   unsigned int optlen)
1391 {
1392 	int err;
1393 	struct sock *sk;
1394 	struct vsock_sock *vsk;
1395 	u64 val;
1396 
1397 	if (level != AF_VSOCK)
1398 		return -ENOPROTOOPT;
1399 
1400 #define COPY_IN(_v)                                       \
1401 	do {						  \
1402 		if (optlen < sizeof(_v)) {		  \
1403 			err = -EINVAL;			  \
1404 			goto exit;			  \
1405 		}					  \
1406 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1407 			err = -EFAULT;					\
1408 			goto exit;					\
1409 		}							\
1410 	} while (0)
1411 
1412 	err = 0;
1413 	sk = sock->sk;
1414 	vsk = vsock_sk(sk);
1415 
1416 	lock_sock(sk);
1417 
1418 	switch (optname) {
1419 	case SO_VM_SOCKETS_BUFFER_SIZE:
1420 		COPY_IN(val);
1421 		transport->set_buffer_size(vsk, val);
1422 		break;
1423 
1424 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1425 		COPY_IN(val);
1426 		transport->set_max_buffer_size(vsk, val);
1427 		break;
1428 
1429 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1430 		COPY_IN(val);
1431 		transport->set_min_buffer_size(vsk, val);
1432 		break;
1433 
1434 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1435 		struct timeval tv;
1436 		COPY_IN(tv);
1437 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1438 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1439 			vsk->connect_timeout = tv.tv_sec * HZ +
1440 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1441 			if (vsk->connect_timeout == 0)
1442 				vsk->connect_timeout =
1443 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1444 
1445 		} else {
1446 			err = -ERANGE;
1447 		}
1448 		break;
1449 	}
1450 
1451 	default:
1452 		err = -ENOPROTOOPT;
1453 		break;
1454 	}
1455 
1456 #undef COPY_IN
1457 
1458 exit:
1459 	release_sock(sk);
1460 	return err;
1461 }
1462 
1463 static int vsock_stream_getsockopt(struct socket *sock,
1464 				   int level, int optname,
1465 				   char __user *optval,
1466 				   int __user *optlen)
1467 {
1468 	int err;
1469 	int len;
1470 	struct sock *sk;
1471 	struct vsock_sock *vsk;
1472 	u64 val;
1473 
1474 	if (level != AF_VSOCK)
1475 		return -ENOPROTOOPT;
1476 
1477 	err = get_user(len, optlen);
1478 	if (err != 0)
1479 		return err;
1480 
1481 #define COPY_OUT(_v)                            \
1482 	do {					\
1483 		if (len < sizeof(_v))		\
1484 			return -EINVAL;		\
1485 						\
1486 		len = sizeof(_v);		\
1487 		if (copy_to_user(optval, &_v, len) != 0)	\
1488 			return -EFAULT;				\
1489 								\
1490 	} while (0)
1491 
1492 	err = 0;
1493 	sk = sock->sk;
1494 	vsk = vsock_sk(sk);
1495 
1496 	switch (optname) {
1497 	case SO_VM_SOCKETS_BUFFER_SIZE:
1498 		val = transport->get_buffer_size(vsk);
1499 		COPY_OUT(val);
1500 		break;
1501 
1502 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1503 		val = transport->get_max_buffer_size(vsk);
1504 		COPY_OUT(val);
1505 		break;
1506 
1507 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1508 		val = transport->get_min_buffer_size(vsk);
1509 		COPY_OUT(val);
1510 		break;
1511 
1512 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1513 		struct timeval tv;
1514 		tv.tv_sec = vsk->connect_timeout / HZ;
1515 		tv.tv_usec =
1516 		    (vsk->connect_timeout -
1517 		     tv.tv_sec * HZ) * (1000000 / HZ);
1518 		COPY_OUT(tv);
1519 		break;
1520 	}
1521 	default:
1522 		return -ENOPROTOOPT;
1523 	}
1524 
1525 	err = put_user(len, optlen);
1526 	if (err != 0)
1527 		return -EFAULT;
1528 
1529 #undef COPY_OUT
1530 
1531 	return 0;
1532 }
1533 
1534 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1535 				size_t len)
1536 {
1537 	struct sock *sk;
1538 	struct vsock_sock *vsk;
1539 	ssize_t total_written;
1540 	long timeout;
1541 	int err;
1542 	struct vsock_transport_send_notify_data send_data;
1543 
1544 	DEFINE_WAIT(wait);
1545 
1546 	sk = sock->sk;
1547 	vsk = vsock_sk(sk);
1548 	total_written = 0;
1549 	err = 0;
1550 
1551 	if (msg->msg_flags & MSG_OOB)
1552 		return -EOPNOTSUPP;
1553 
1554 	lock_sock(sk);
1555 
1556 	/* Callers should not provide a destination with stream sockets. */
1557 	if (msg->msg_namelen) {
1558 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1559 		goto out;
1560 	}
1561 
1562 	/* Send data only if both sides are not shutdown in the direction. */
1563 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1564 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1565 		err = -EPIPE;
1566 		goto out;
1567 	}
1568 
1569 	if (sk->sk_state != SS_CONNECTED ||
1570 	    !vsock_addr_bound(&vsk->local_addr)) {
1571 		err = -ENOTCONN;
1572 		goto out;
1573 	}
1574 
1575 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1576 		err = -EDESTADDRREQ;
1577 		goto out;
1578 	}
1579 
1580 	/* Wait for room in the produce queue to enqueue our user's data. */
1581 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1582 
1583 	err = transport->notify_send_init(vsk, &send_data);
1584 	if (err < 0)
1585 		goto out;
1586 
1587 
1588 	while (total_written < len) {
1589 		ssize_t written;
1590 
1591 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1592 		while (vsock_stream_has_space(vsk) == 0 &&
1593 		       sk->sk_err == 0 &&
1594 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1595 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1596 
1597 			/* Don't wait for non-blocking sockets. */
1598 			if (timeout == 0) {
1599 				err = -EAGAIN;
1600 				finish_wait(sk_sleep(sk), &wait);
1601 				goto out_err;
1602 			}
1603 
1604 			err = transport->notify_send_pre_block(vsk, &send_data);
1605 			if (err < 0) {
1606 				finish_wait(sk_sleep(sk), &wait);
1607 				goto out_err;
1608 			}
1609 
1610 			release_sock(sk);
1611 			timeout = schedule_timeout(timeout);
1612 			lock_sock(sk);
1613 			if (signal_pending(current)) {
1614 				err = sock_intr_errno(timeout);
1615 				finish_wait(sk_sleep(sk), &wait);
1616 				goto out_err;
1617 			} else if (timeout == 0) {
1618 				err = -EAGAIN;
1619 				finish_wait(sk_sleep(sk), &wait);
1620 				goto out_err;
1621 			}
1622 
1623 			prepare_to_wait(sk_sleep(sk), &wait,
1624 					TASK_INTERRUPTIBLE);
1625 		}
1626 		finish_wait(sk_sleep(sk), &wait);
1627 
1628 		/* These checks occur both as part of and after the loop
1629 		 * conditional since we need to check before and after
1630 		 * sleeping.
1631 		 */
1632 		if (sk->sk_err) {
1633 			err = -sk->sk_err;
1634 			goto out_err;
1635 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1636 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1637 			err = -EPIPE;
1638 			goto out_err;
1639 		}
1640 
1641 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1642 		if (err < 0)
1643 			goto out_err;
1644 
1645 		/* Note that enqueue will only write as many bytes as are free
1646 		 * in the produce queue, so we don't need to ensure len is
1647 		 * smaller than the queue size.  It is the caller's
1648 		 * responsibility to check how many bytes we were able to send.
1649 		 */
1650 
1651 		written = transport->stream_enqueue(
1652 				vsk, msg,
1653 				len - total_written);
1654 		if (written < 0) {
1655 			err = -ENOMEM;
1656 			goto out_err;
1657 		}
1658 
1659 		total_written += written;
1660 
1661 		err = transport->notify_send_post_enqueue(
1662 				vsk, written, &send_data);
1663 		if (err < 0)
1664 			goto out_err;
1665 
1666 	}
1667 
1668 out_err:
1669 	if (total_written > 0)
1670 		err = total_written;
1671 out:
1672 	release_sock(sk);
1673 	return err;
1674 }
1675 
1676 
1677 static int
1678 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1679 		     int flags)
1680 {
1681 	struct sock *sk;
1682 	struct vsock_sock *vsk;
1683 	int err;
1684 	size_t target;
1685 	ssize_t copied;
1686 	long timeout;
1687 	struct vsock_transport_recv_notify_data recv_data;
1688 
1689 	DEFINE_WAIT(wait);
1690 
1691 	sk = sock->sk;
1692 	vsk = vsock_sk(sk);
1693 	err = 0;
1694 
1695 	lock_sock(sk);
1696 
1697 	if (sk->sk_state != SS_CONNECTED) {
1698 		/* Recvmsg is supposed to return 0 if a peer performs an
1699 		 * orderly shutdown. Differentiate between that case and when a
1700 		 * peer has not connected or a local shutdown occured with the
1701 		 * SOCK_DONE flag.
1702 		 */
1703 		if (sock_flag(sk, SOCK_DONE))
1704 			err = 0;
1705 		else
1706 			err = -ENOTCONN;
1707 
1708 		goto out;
1709 	}
1710 
1711 	if (flags & MSG_OOB) {
1712 		err = -EOPNOTSUPP;
1713 		goto out;
1714 	}
1715 
1716 	/* We don't check peer_shutdown flag here since peer may actually shut
1717 	 * down, but there can be data in the queue that a local socket can
1718 	 * receive.
1719 	 */
1720 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1721 		err = 0;
1722 		goto out;
1723 	}
1724 
1725 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1726 	 * is not an error.  We may as well bail out now.
1727 	 */
1728 	if (!len) {
1729 		err = 0;
1730 		goto out;
1731 	}
1732 
1733 	/* We must not copy less than target bytes into the user's buffer
1734 	 * before returning successfully, so we wait for the consume queue to
1735 	 * have that much data to consume before dequeueing.  Note that this
1736 	 * makes it impossible to handle cases where target is greater than the
1737 	 * queue size.
1738 	 */
1739 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1740 	if (target >= transport->stream_rcvhiwat(vsk)) {
1741 		err = -ENOMEM;
1742 		goto out;
1743 	}
1744 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1745 	copied = 0;
1746 
1747 	err = transport->notify_recv_init(vsk, target, &recv_data);
1748 	if (err < 0)
1749 		goto out;
1750 
1751 
1752 	while (1) {
1753 		s64 ready;
1754 
1755 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1756 		ready = vsock_stream_has_data(vsk);
1757 
1758 		if (ready == 0) {
1759 			if (sk->sk_err != 0 ||
1760 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1761 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1762 				finish_wait(sk_sleep(sk), &wait);
1763 				break;
1764 			}
1765 			/* Don't wait for non-blocking sockets. */
1766 			if (timeout == 0) {
1767 				err = -EAGAIN;
1768 				finish_wait(sk_sleep(sk), &wait);
1769 				break;
1770 			}
1771 
1772 			err = transport->notify_recv_pre_block(
1773 					vsk, target, &recv_data);
1774 			if (err < 0) {
1775 				finish_wait(sk_sleep(sk), &wait);
1776 				break;
1777 			}
1778 			release_sock(sk);
1779 			timeout = schedule_timeout(timeout);
1780 			lock_sock(sk);
1781 
1782 			if (signal_pending(current)) {
1783 				err = sock_intr_errno(timeout);
1784 				finish_wait(sk_sleep(sk), &wait);
1785 				break;
1786 			} else if (timeout == 0) {
1787 				err = -EAGAIN;
1788 				finish_wait(sk_sleep(sk), &wait);
1789 				break;
1790 			}
1791 		} else {
1792 			ssize_t read;
1793 
1794 			finish_wait(sk_sleep(sk), &wait);
1795 
1796 			if (ready < 0) {
1797 				/* Invalid queue pair content. XXX This should
1798 				* be changed to a connection reset in a later
1799 				* change.
1800 				*/
1801 
1802 				err = -ENOMEM;
1803 				goto out;
1804 			}
1805 
1806 			err = transport->notify_recv_pre_dequeue(
1807 					vsk, target, &recv_data);
1808 			if (err < 0)
1809 				break;
1810 
1811 			read = transport->stream_dequeue(
1812 					vsk, msg,
1813 					len - copied, flags);
1814 			if (read < 0) {
1815 				err = -ENOMEM;
1816 				break;
1817 			}
1818 
1819 			copied += read;
1820 
1821 			err = transport->notify_recv_post_dequeue(
1822 					vsk, target, read,
1823 					!(flags & MSG_PEEK), &recv_data);
1824 			if (err < 0)
1825 				goto out;
1826 
1827 			if (read >= target || flags & MSG_PEEK)
1828 				break;
1829 
1830 			target -= read;
1831 		}
1832 	}
1833 
1834 	if (sk->sk_err)
1835 		err = -sk->sk_err;
1836 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1837 		err = 0;
1838 
1839 	if (copied > 0)
1840 		err = copied;
1841 
1842 out:
1843 	release_sock(sk);
1844 	return err;
1845 }
1846 
1847 static const struct proto_ops vsock_stream_ops = {
1848 	.family = PF_VSOCK,
1849 	.owner = THIS_MODULE,
1850 	.release = vsock_release,
1851 	.bind = vsock_bind,
1852 	.connect = vsock_stream_connect,
1853 	.socketpair = sock_no_socketpair,
1854 	.accept = vsock_accept,
1855 	.getname = vsock_getname,
1856 	.poll = vsock_poll,
1857 	.ioctl = sock_no_ioctl,
1858 	.listen = vsock_listen,
1859 	.shutdown = vsock_shutdown,
1860 	.setsockopt = vsock_stream_setsockopt,
1861 	.getsockopt = vsock_stream_getsockopt,
1862 	.sendmsg = vsock_stream_sendmsg,
1863 	.recvmsg = vsock_stream_recvmsg,
1864 	.mmap = sock_no_mmap,
1865 	.sendpage = sock_no_sendpage,
1866 };
1867 
1868 static int vsock_create(struct net *net, struct socket *sock,
1869 			int protocol, int kern)
1870 {
1871 	if (!sock)
1872 		return -EINVAL;
1873 
1874 	if (protocol && protocol != PF_VSOCK)
1875 		return -EPROTONOSUPPORT;
1876 
1877 	switch (sock->type) {
1878 	case SOCK_DGRAM:
1879 		sock->ops = &vsock_dgram_ops;
1880 		break;
1881 	case SOCK_STREAM:
1882 		sock->ops = &vsock_stream_ops;
1883 		break;
1884 	default:
1885 		return -ESOCKTNOSUPPORT;
1886 	}
1887 
1888 	sock->state = SS_UNCONNECTED;
1889 
1890 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1891 }
1892 
1893 static const struct net_proto_family vsock_family_ops = {
1894 	.family = AF_VSOCK,
1895 	.create = vsock_create,
1896 	.owner = THIS_MODULE,
1897 };
1898 
1899 static long vsock_dev_do_ioctl(struct file *filp,
1900 			       unsigned int cmd, void __user *ptr)
1901 {
1902 	u32 __user *p = ptr;
1903 	int retval = 0;
1904 
1905 	switch (cmd) {
1906 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1907 		if (put_user(transport->get_local_cid(), p) != 0)
1908 			retval = -EFAULT;
1909 		break;
1910 
1911 	default:
1912 		pr_err("Unknown ioctl %d\n", cmd);
1913 		retval = -EINVAL;
1914 	}
1915 
1916 	return retval;
1917 }
1918 
1919 static long vsock_dev_ioctl(struct file *filp,
1920 			    unsigned int cmd, unsigned long arg)
1921 {
1922 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1923 }
1924 
1925 #ifdef CONFIG_COMPAT
1926 static long vsock_dev_compat_ioctl(struct file *filp,
1927 				   unsigned int cmd, unsigned long arg)
1928 {
1929 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1930 }
1931 #endif
1932 
1933 static const struct file_operations vsock_device_ops = {
1934 	.owner		= THIS_MODULE,
1935 	.unlocked_ioctl	= vsock_dev_ioctl,
1936 #ifdef CONFIG_COMPAT
1937 	.compat_ioctl	= vsock_dev_compat_ioctl,
1938 #endif
1939 	.open		= nonseekable_open,
1940 };
1941 
1942 static struct miscdevice vsock_device = {
1943 	.name		= "vsock",
1944 	.fops		= &vsock_device_ops,
1945 };
1946 
1947 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1948 {
1949 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1950 
1951 	if (err)
1952 		return err;
1953 
1954 	if (transport) {
1955 		err = -EBUSY;
1956 		goto err_busy;
1957 	}
1958 
1959 	/* Transport must be the owner of the protocol so that it can't
1960 	 * unload while there are open sockets.
1961 	 */
1962 	vsock_proto.owner = owner;
1963 	transport = t;
1964 
1965 	vsock_init_tables();
1966 
1967 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1968 	err = misc_register(&vsock_device);
1969 	if (err) {
1970 		pr_err("Failed to register misc device\n");
1971 		goto err_reset_transport;
1972 	}
1973 
1974 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1975 	if (err) {
1976 		pr_err("Cannot register vsock protocol\n");
1977 		goto err_deregister_misc;
1978 	}
1979 
1980 	err = sock_register(&vsock_family_ops);
1981 	if (err) {
1982 		pr_err("could not register af_vsock (%d) address family: %d\n",
1983 		       AF_VSOCK, err);
1984 		goto err_unregister_proto;
1985 	}
1986 
1987 	mutex_unlock(&vsock_register_mutex);
1988 	return 0;
1989 
1990 err_unregister_proto:
1991 	proto_unregister(&vsock_proto);
1992 err_deregister_misc:
1993 	misc_deregister(&vsock_device);
1994 err_reset_transport:
1995 	transport = NULL;
1996 err_busy:
1997 	mutex_unlock(&vsock_register_mutex);
1998 	return err;
1999 }
2000 EXPORT_SYMBOL_GPL(__vsock_core_init);
2001 
2002 void vsock_core_exit(void)
2003 {
2004 	mutex_lock(&vsock_register_mutex);
2005 
2006 	misc_deregister(&vsock_device);
2007 	sock_unregister(AF_VSOCK);
2008 	proto_unregister(&vsock_proto);
2009 
2010 	/* We do not want the assignment below re-ordered. */
2011 	mb();
2012 	transport = NULL;
2013 
2014 	mutex_unlock(&vsock_register_mutex);
2015 }
2016 EXPORT_SYMBOL_GPL(vsock_core_exit);
2017 
2018 const struct vsock_transport *vsock_core_get_transport(void)
2019 {
2020 	/* vsock_register_mutex not taken since only the transport uses this
2021 	 * function and only while registered.
2022 	 */
2023 	return transport;
2024 }
2025 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2026 
2027 MODULE_AUTHOR("VMware, Inc.");
2028 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2029 MODULE_VERSION("1.0.2.0-k");
2030 MODULE_LICENSE("GPL v2");
2031