xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 1b5f2ab9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 	int i;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 
342 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 		struct vsock_sock *vsk;
344 		list_for_each_entry(vsk, &vsock_connected_table[i],
345 				    connected_table)
346 			fn(sk_vsock(vsk));
347 	}
348 
349 	spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352 
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 	struct vsock_sock *vlistener;
356 	struct vsock_sock *vpending;
357 
358 	vlistener = vsock_sk(listener);
359 	vpending = vsock_sk(pending);
360 
361 	sock_hold(pending);
362 	sock_hold(listener);
363 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366 
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vpending = vsock_sk(pending);
370 
371 	list_del_init(&vpending->pending_links);
372 	sock_put(listener);
373 	sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376 
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vconnected;
381 
382 	vlistener = vsock_sk(listener);
383 	vconnected = vsock_sk(connected);
384 
385 	sock_hold(connected);
386 	sock_hold(listener);
387 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390 
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 	if (!transport_local)
394 		return false;
395 
396 	if (remote_cid == VMADDR_CID_LOCAL)
397 		return true;
398 
399 	if (transport_g2h) {
400 		return remote_cid == transport_g2h->get_local_cid();
401 	} else {
402 		return remote_cid == VMADDR_CID_HOST;
403 	}
404 }
405 
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 	if (!vsk->transport)
409 		return;
410 
411 	vsk->transport->destruct(vsk);
412 	module_put(vsk->transport->module);
413 	vsk->transport = NULL;
414 }
415 
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
426  */
427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 	const struct vsock_transport *new_transport;
430 	struct sock *sk = sk_vsock(vsk);
431 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 	int ret;
433 
434 	/* If the packet is coming with the source and destination CIDs higher
435 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
436 	 * forwarded to the host should be established. Then the host will
437 	 * need to forward the packets to the guest.
438 	 *
439 	 * The flag is set on the (listen) receive path (psk is not NULL). On
440 	 * the connect path the flag can be set by the user space application.
441 	 */
442 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
443 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
444 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
445 
446 	switch (sk->sk_type) {
447 	case SOCK_DGRAM:
448 		new_transport = transport_dgram;
449 		break;
450 	case SOCK_STREAM:
451 		if (vsock_use_local_transport(remote_cid))
452 			new_transport = transport_local;
453 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
454 			new_transport = transport_g2h;
455 		else
456 			new_transport = transport_h2g;
457 		break;
458 	default:
459 		return -ESOCKTNOSUPPORT;
460 	}
461 
462 	if (vsk->transport) {
463 		if (vsk->transport == new_transport)
464 			return 0;
465 
466 		/* transport->release() must be called with sock lock acquired.
467 		 * This path can only be taken during vsock_stream_connect(),
468 		 * where we have already held the sock lock.
469 		 * In the other cases, this function is called on a new socket
470 		 * which is not assigned to any transport.
471 		 */
472 		vsk->transport->release(vsk);
473 		vsock_deassign_transport(vsk);
474 	}
475 
476 	/* We increase the module refcnt to prevent the transport unloading
477 	 * while there are open sockets assigned to it.
478 	 */
479 	if (!new_transport || !try_module_get(new_transport->module))
480 		return -ENODEV;
481 
482 	ret = new_transport->init(vsk, psk);
483 	if (ret) {
484 		module_put(new_transport->module);
485 		return ret;
486 	}
487 
488 	vsk->transport = new_transport;
489 
490 	return 0;
491 }
492 EXPORT_SYMBOL_GPL(vsock_assign_transport);
493 
494 bool vsock_find_cid(unsigned int cid)
495 {
496 	if (transport_g2h && cid == transport_g2h->get_local_cid())
497 		return true;
498 
499 	if (transport_h2g && cid == VMADDR_CID_HOST)
500 		return true;
501 
502 	if (transport_local && cid == VMADDR_CID_LOCAL)
503 		return true;
504 
505 	return false;
506 }
507 EXPORT_SYMBOL_GPL(vsock_find_cid);
508 
509 static struct sock *vsock_dequeue_accept(struct sock *listener)
510 {
511 	struct vsock_sock *vlistener;
512 	struct vsock_sock *vconnected;
513 
514 	vlistener = vsock_sk(listener);
515 
516 	if (list_empty(&vlistener->accept_queue))
517 		return NULL;
518 
519 	vconnected = list_entry(vlistener->accept_queue.next,
520 				struct vsock_sock, accept_queue);
521 
522 	list_del_init(&vconnected->accept_queue);
523 	sock_put(listener);
524 	/* The caller will need a reference on the connected socket so we let
525 	 * it call sock_put().
526 	 */
527 
528 	return sk_vsock(vconnected);
529 }
530 
531 static bool vsock_is_accept_queue_empty(struct sock *sk)
532 {
533 	struct vsock_sock *vsk = vsock_sk(sk);
534 	return list_empty(&vsk->accept_queue);
535 }
536 
537 static bool vsock_is_pending(struct sock *sk)
538 {
539 	struct vsock_sock *vsk = vsock_sk(sk);
540 	return !list_empty(&vsk->pending_links);
541 }
542 
543 static int vsock_send_shutdown(struct sock *sk, int mode)
544 {
545 	struct vsock_sock *vsk = vsock_sk(sk);
546 
547 	if (!vsk->transport)
548 		return -ENODEV;
549 
550 	return vsk->transport->shutdown(vsk, mode);
551 }
552 
553 static void vsock_pending_work(struct work_struct *work)
554 {
555 	struct sock *sk;
556 	struct sock *listener;
557 	struct vsock_sock *vsk;
558 	bool cleanup;
559 
560 	vsk = container_of(work, struct vsock_sock, pending_work.work);
561 	sk = sk_vsock(vsk);
562 	listener = vsk->listener;
563 	cleanup = true;
564 
565 	lock_sock(listener);
566 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
567 
568 	if (vsock_is_pending(sk)) {
569 		vsock_remove_pending(listener, sk);
570 
571 		sk_acceptq_removed(listener);
572 	} else if (!vsk->rejected) {
573 		/* We are not on the pending list and accept() did not reject
574 		 * us, so we must have been accepted by our user process.  We
575 		 * just need to drop our references to the sockets and be on
576 		 * our way.
577 		 */
578 		cleanup = false;
579 		goto out;
580 	}
581 
582 	/* We need to remove ourself from the global connected sockets list so
583 	 * incoming packets can't find this socket, and to reduce the reference
584 	 * count.
585 	 */
586 	vsock_remove_connected(vsk);
587 
588 	sk->sk_state = TCP_CLOSE;
589 
590 out:
591 	release_sock(sk);
592 	release_sock(listener);
593 	if (cleanup)
594 		sock_put(sk);
595 
596 	sock_put(sk);
597 	sock_put(listener);
598 }
599 
600 /**** SOCKET OPERATIONS ****/
601 
602 static int __vsock_bind_stream(struct vsock_sock *vsk,
603 			       struct sockaddr_vm *addr)
604 {
605 	static u32 port;
606 	struct sockaddr_vm new_addr;
607 
608 	if (!port)
609 		port = LAST_RESERVED_PORT + 1 +
610 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
611 
612 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
613 
614 	if (addr->svm_port == VMADDR_PORT_ANY) {
615 		bool found = false;
616 		unsigned int i;
617 
618 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
619 			if (port <= LAST_RESERVED_PORT)
620 				port = LAST_RESERVED_PORT + 1;
621 
622 			new_addr.svm_port = port++;
623 
624 			if (!__vsock_find_bound_socket(&new_addr)) {
625 				found = true;
626 				break;
627 			}
628 		}
629 
630 		if (!found)
631 			return -EADDRNOTAVAIL;
632 	} else {
633 		/* If port is in reserved range, ensure caller
634 		 * has necessary privileges.
635 		 */
636 		if (addr->svm_port <= LAST_RESERVED_PORT &&
637 		    !capable(CAP_NET_BIND_SERVICE)) {
638 			return -EACCES;
639 		}
640 
641 		if (__vsock_find_bound_socket(&new_addr))
642 			return -EADDRINUSE;
643 	}
644 
645 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
646 
647 	/* Remove stream sockets from the unbound list and add them to the hash
648 	 * table for easy lookup by its address.  The unbound list is simply an
649 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
650 	 */
651 	__vsock_remove_bound(vsk);
652 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
653 
654 	return 0;
655 }
656 
657 static int __vsock_bind_dgram(struct vsock_sock *vsk,
658 			      struct sockaddr_vm *addr)
659 {
660 	return vsk->transport->dgram_bind(vsk, addr);
661 }
662 
663 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
664 {
665 	struct vsock_sock *vsk = vsock_sk(sk);
666 	int retval;
667 
668 	/* First ensure this socket isn't already bound. */
669 	if (vsock_addr_bound(&vsk->local_addr))
670 		return -EINVAL;
671 
672 	/* Now bind to the provided address or select appropriate values if
673 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
674 	 * like AF_INET prevents binding to a non-local IP address (in most
675 	 * cases), we only allow binding to a local CID.
676 	 */
677 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
678 		return -EADDRNOTAVAIL;
679 
680 	switch (sk->sk_socket->type) {
681 	case SOCK_STREAM:
682 		spin_lock_bh(&vsock_table_lock);
683 		retval = __vsock_bind_stream(vsk, addr);
684 		spin_unlock_bh(&vsock_table_lock);
685 		break;
686 
687 	case SOCK_DGRAM:
688 		retval = __vsock_bind_dgram(vsk, addr);
689 		break;
690 
691 	default:
692 		retval = -EINVAL;
693 		break;
694 	}
695 
696 	return retval;
697 }
698 
699 static void vsock_connect_timeout(struct work_struct *work);
700 
701 static struct sock *__vsock_create(struct net *net,
702 				   struct socket *sock,
703 				   struct sock *parent,
704 				   gfp_t priority,
705 				   unsigned short type,
706 				   int kern)
707 {
708 	struct sock *sk;
709 	struct vsock_sock *psk;
710 	struct vsock_sock *vsk;
711 
712 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
713 	if (!sk)
714 		return NULL;
715 
716 	sock_init_data(sock, sk);
717 
718 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
719 	 * non-NULL. We make sure that our sockets always have a type by
720 	 * setting it here if needed.
721 	 */
722 	if (!sock)
723 		sk->sk_type = type;
724 
725 	vsk = vsock_sk(sk);
726 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
727 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
728 
729 	sk->sk_destruct = vsock_sk_destruct;
730 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
731 	sock_reset_flag(sk, SOCK_DONE);
732 
733 	INIT_LIST_HEAD(&vsk->bound_table);
734 	INIT_LIST_HEAD(&vsk->connected_table);
735 	vsk->listener = NULL;
736 	INIT_LIST_HEAD(&vsk->pending_links);
737 	INIT_LIST_HEAD(&vsk->accept_queue);
738 	vsk->rejected = false;
739 	vsk->sent_request = false;
740 	vsk->ignore_connecting_rst = false;
741 	vsk->peer_shutdown = 0;
742 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
743 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
744 
745 	psk = parent ? vsock_sk(parent) : NULL;
746 	if (parent) {
747 		vsk->trusted = psk->trusted;
748 		vsk->owner = get_cred(psk->owner);
749 		vsk->connect_timeout = psk->connect_timeout;
750 		vsk->buffer_size = psk->buffer_size;
751 		vsk->buffer_min_size = psk->buffer_min_size;
752 		vsk->buffer_max_size = psk->buffer_max_size;
753 	} else {
754 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
755 		vsk->owner = get_current_cred();
756 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
757 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
758 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
759 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
760 	}
761 
762 	return sk;
763 }
764 
765 static void __vsock_release(struct sock *sk, int level)
766 {
767 	if (sk) {
768 		struct sock *pending;
769 		struct vsock_sock *vsk;
770 
771 		vsk = vsock_sk(sk);
772 		pending = NULL;	/* Compiler warning. */
773 
774 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
775 		 * version to avoid the warning "possible recursive locking
776 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
777 		 * is the same as lock_sock(sk).
778 		 */
779 		lock_sock_nested(sk, level);
780 
781 		if (vsk->transport)
782 			vsk->transport->release(vsk);
783 		else if (sk->sk_type == SOCK_STREAM)
784 			vsock_remove_sock(vsk);
785 
786 		sock_orphan(sk);
787 		sk->sk_shutdown = SHUTDOWN_MASK;
788 
789 		skb_queue_purge(&sk->sk_receive_queue);
790 
791 		/* Clean up any sockets that never were accepted. */
792 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
793 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
794 			sock_put(pending);
795 		}
796 
797 		release_sock(sk);
798 		sock_put(sk);
799 	}
800 }
801 
802 static void vsock_sk_destruct(struct sock *sk)
803 {
804 	struct vsock_sock *vsk = vsock_sk(sk);
805 
806 	vsock_deassign_transport(vsk);
807 
808 	/* When clearing these addresses, there's no need to set the family and
809 	 * possibly register the address family with the kernel.
810 	 */
811 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
812 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
813 
814 	put_cred(vsk->owner);
815 }
816 
817 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
818 {
819 	int err;
820 
821 	err = sock_queue_rcv_skb(sk, skb);
822 	if (err)
823 		kfree_skb(skb);
824 
825 	return err;
826 }
827 
828 struct sock *vsock_create_connected(struct sock *parent)
829 {
830 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
831 			      parent->sk_type, 0);
832 }
833 EXPORT_SYMBOL_GPL(vsock_create_connected);
834 
835 s64 vsock_stream_has_data(struct vsock_sock *vsk)
836 {
837 	return vsk->transport->stream_has_data(vsk);
838 }
839 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
840 
841 s64 vsock_stream_has_space(struct vsock_sock *vsk)
842 {
843 	return vsk->transport->stream_has_space(vsk);
844 }
845 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
846 
847 static int vsock_release(struct socket *sock)
848 {
849 	__vsock_release(sock->sk, 0);
850 	sock->sk = NULL;
851 	sock->state = SS_FREE;
852 
853 	return 0;
854 }
855 
856 static int
857 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
858 {
859 	int err;
860 	struct sock *sk;
861 	struct sockaddr_vm *vm_addr;
862 
863 	sk = sock->sk;
864 
865 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
866 		return -EINVAL;
867 
868 	lock_sock(sk);
869 	err = __vsock_bind(sk, vm_addr);
870 	release_sock(sk);
871 
872 	return err;
873 }
874 
875 static int vsock_getname(struct socket *sock,
876 			 struct sockaddr *addr, int peer)
877 {
878 	int err;
879 	struct sock *sk;
880 	struct vsock_sock *vsk;
881 	struct sockaddr_vm *vm_addr;
882 
883 	sk = sock->sk;
884 	vsk = vsock_sk(sk);
885 	err = 0;
886 
887 	lock_sock(sk);
888 
889 	if (peer) {
890 		if (sock->state != SS_CONNECTED) {
891 			err = -ENOTCONN;
892 			goto out;
893 		}
894 		vm_addr = &vsk->remote_addr;
895 	} else {
896 		vm_addr = &vsk->local_addr;
897 	}
898 
899 	if (!vm_addr) {
900 		err = -EINVAL;
901 		goto out;
902 	}
903 
904 	/* sys_getsockname() and sys_getpeername() pass us a
905 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
906 	 * that macro is defined in socket.c instead of .h, so we hardcode its
907 	 * value here.
908 	 */
909 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
910 	memcpy(addr, vm_addr, sizeof(*vm_addr));
911 	err = sizeof(*vm_addr);
912 
913 out:
914 	release_sock(sk);
915 	return err;
916 }
917 
918 static int vsock_shutdown(struct socket *sock, int mode)
919 {
920 	int err;
921 	struct sock *sk;
922 
923 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
924 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
925 	 * here like the other address families do.  Note also that the
926 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
927 	 * which is what we want.
928 	 */
929 	mode++;
930 
931 	if ((mode & ~SHUTDOWN_MASK) || !mode)
932 		return -EINVAL;
933 
934 	/* If this is a STREAM socket and it is not connected then bail out
935 	 * immediately.  If it is a DGRAM socket then we must first kick the
936 	 * socket so that it wakes up from any sleeping calls, for example
937 	 * recv(), and then afterwards return the error.
938 	 */
939 
940 	sk = sock->sk;
941 	if (sock->state == SS_UNCONNECTED) {
942 		err = -ENOTCONN;
943 		if (sk->sk_type == SOCK_STREAM)
944 			return err;
945 	} else {
946 		sock->state = SS_DISCONNECTING;
947 		err = 0;
948 	}
949 
950 	/* Receive and send shutdowns are treated alike. */
951 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
952 	if (mode) {
953 		lock_sock(sk);
954 		sk->sk_shutdown |= mode;
955 		sk->sk_state_change(sk);
956 		release_sock(sk);
957 
958 		if (sk->sk_type == SOCK_STREAM) {
959 			sock_reset_flag(sk, SOCK_DONE);
960 			vsock_send_shutdown(sk, mode);
961 		}
962 	}
963 
964 	return err;
965 }
966 
967 static __poll_t vsock_poll(struct file *file, struct socket *sock,
968 			       poll_table *wait)
969 {
970 	struct sock *sk;
971 	__poll_t mask;
972 	struct vsock_sock *vsk;
973 
974 	sk = sock->sk;
975 	vsk = vsock_sk(sk);
976 
977 	poll_wait(file, sk_sleep(sk), wait);
978 	mask = 0;
979 
980 	if (sk->sk_err)
981 		/* Signify that there has been an error on this socket. */
982 		mask |= EPOLLERR;
983 
984 	/* INET sockets treat local write shutdown and peer write shutdown as a
985 	 * case of EPOLLHUP set.
986 	 */
987 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
988 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
989 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
990 		mask |= EPOLLHUP;
991 	}
992 
993 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
994 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
995 		mask |= EPOLLRDHUP;
996 	}
997 
998 	if (sock->type == SOCK_DGRAM) {
999 		/* For datagram sockets we can read if there is something in
1000 		 * the queue and write as long as the socket isn't shutdown for
1001 		 * sending.
1002 		 */
1003 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1004 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1005 			mask |= EPOLLIN | EPOLLRDNORM;
1006 		}
1007 
1008 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1009 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1010 
1011 	} else if (sock->type == SOCK_STREAM) {
1012 		const struct vsock_transport *transport = vsk->transport;
1013 		lock_sock(sk);
1014 
1015 		/* Listening sockets that have connections in their accept
1016 		 * queue can be read.
1017 		 */
1018 		if (sk->sk_state == TCP_LISTEN
1019 		    && !vsock_is_accept_queue_empty(sk))
1020 			mask |= EPOLLIN | EPOLLRDNORM;
1021 
1022 		/* If there is something in the queue then we can read. */
1023 		if (transport && transport->stream_is_active(vsk) &&
1024 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1025 			bool data_ready_now = false;
1026 			int ret = transport->notify_poll_in(
1027 					vsk, 1, &data_ready_now);
1028 			if (ret < 0) {
1029 				mask |= EPOLLERR;
1030 			} else {
1031 				if (data_ready_now)
1032 					mask |= EPOLLIN | EPOLLRDNORM;
1033 
1034 			}
1035 		}
1036 
1037 		/* Sockets whose connections have been closed, reset, or
1038 		 * terminated should also be considered read, and we check the
1039 		 * shutdown flag for that.
1040 		 */
1041 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1042 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1043 			mask |= EPOLLIN | EPOLLRDNORM;
1044 		}
1045 
1046 		/* Connected sockets that can produce data can be written. */
1047 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1048 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1049 				bool space_avail_now = false;
1050 				int ret = transport->notify_poll_out(
1051 						vsk, 1, &space_avail_now);
1052 				if (ret < 0) {
1053 					mask |= EPOLLERR;
1054 				} else {
1055 					if (space_avail_now)
1056 						/* Remove EPOLLWRBAND since INET
1057 						 * sockets are not setting it.
1058 						 */
1059 						mask |= EPOLLOUT | EPOLLWRNORM;
1060 
1061 				}
1062 			}
1063 		}
1064 
1065 		/* Simulate INET socket poll behaviors, which sets
1066 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1067 		 * but local send is not shutdown.
1068 		 */
1069 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1070 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1071 				mask |= EPOLLOUT | EPOLLWRNORM;
1072 
1073 		}
1074 
1075 		release_sock(sk);
1076 	}
1077 
1078 	return mask;
1079 }
1080 
1081 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1082 			       size_t len)
1083 {
1084 	int err;
1085 	struct sock *sk;
1086 	struct vsock_sock *vsk;
1087 	struct sockaddr_vm *remote_addr;
1088 	const struct vsock_transport *transport;
1089 
1090 	if (msg->msg_flags & MSG_OOB)
1091 		return -EOPNOTSUPP;
1092 
1093 	/* For now, MSG_DONTWAIT is always assumed... */
1094 	err = 0;
1095 	sk = sock->sk;
1096 	vsk = vsock_sk(sk);
1097 	transport = vsk->transport;
1098 
1099 	lock_sock(sk);
1100 
1101 	err = vsock_auto_bind(vsk);
1102 	if (err)
1103 		goto out;
1104 
1105 
1106 	/* If the provided message contains an address, use that.  Otherwise
1107 	 * fall back on the socket's remote handle (if it has been connected).
1108 	 */
1109 	if (msg->msg_name &&
1110 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1111 			    &remote_addr) == 0) {
1112 		/* Ensure this address is of the right type and is a valid
1113 		 * destination.
1114 		 */
1115 
1116 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1117 			remote_addr->svm_cid = transport->get_local_cid();
1118 
1119 		if (!vsock_addr_bound(remote_addr)) {
1120 			err = -EINVAL;
1121 			goto out;
1122 		}
1123 	} else if (sock->state == SS_CONNECTED) {
1124 		remote_addr = &vsk->remote_addr;
1125 
1126 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1127 			remote_addr->svm_cid = transport->get_local_cid();
1128 
1129 		/* XXX Should connect() or this function ensure remote_addr is
1130 		 * bound?
1131 		 */
1132 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1133 			err = -EINVAL;
1134 			goto out;
1135 		}
1136 	} else {
1137 		err = -EINVAL;
1138 		goto out;
1139 	}
1140 
1141 	if (!transport->dgram_allow(remote_addr->svm_cid,
1142 				    remote_addr->svm_port)) {
1143 		err = -EINVAL;
1144 		goto out;
1145 	}
1146 
1147 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1148 
1149 out:
1150 	release_sock(sk);
1151 	return err;
1152 }
1153 
1154 static int vsock_dgram_connect(struct socket *sock,
1155 			       struct sockaddr *addr, int addr_len, int flags)
1156 {
1157 	int err;
1158 	struct sock *sk;
1159 	struct vsock_sock *vsk;
1160 	struct sockaddr_vm *remote_addr;
1161 
1162 	sk = sock->sk;
1163 	vsk = vsock_sk(sk);
1164 
1165 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1166 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1167 		lock_sock(sk);
1168 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1169 				VMADDR_PORT_ANY);
1170 		sock->state = SS_UNCONNECTED;
1171 		release_sock(sk);
1172 		return 0;
1173 	} else if (err != 0)
1174 		return -EINVAL;
1175 
1176 	lock_sock(sk);
1177 
1178 	err = vsock_auto_bind(vsk);
1179 	if (err)
1180 		goto out;
1181 
1182 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1183 					 remote_addr->svm_port)) {
1184 		err = -EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1189 	sock->state = SS_CONNECTED;
1190 
1191 out:
1192 	release_sock(sk);
1193 	return err;
1194 }
1195 
1196 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1197 			       size_t len, int flags)
1198 {
1199 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1200 
1201 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1202 }
1203 
1204 static const struct proto_ops vsock_dgram_ops = {
1205 	.family = PF_VSOCK,
1206 	.owner = THIS_MODULE,
1207 	.release = vsock_release,
1208 	.bind = vsock_bind,
1209 	.connect = vsock_dgram_connect,
1210 	.socketpair = sock_no_socketpair,
1211 	.accept = sock_no_accept,
1212 	.getname = vsock_getname,
1213 	.poll = vsock_poll,
1214 	.ioctl = sock_no_ioctl,
1215 	.listen = sock_no_listen,
1216 	.shutdown = vsock_shutdown,
1217 	.sendmsg = vsock_dgram_sendmsg,
1218 	.recvmsg = vsock_dgram_recvmsg,
1219 	.mmap = sock_no_mmap,
1220 	.sendpage = sock_no_sendpage,
1221 };
1222 
1223 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1224 {
1225 	const struct vsock_transport *transport = vsk->transport;
1226 
1227 	if (!transport->cancel_pkt)
1228 		return -EOPNOTSUPP;
1229 
1230 	return transport->cancel_pkt(vsk);
1231 }
1232 
1233 static void vsock_connect_timeout(struct work_struct *work)
1234 {
1235 	struct sock *sk;
1236 	struct vsock_sock *vsk;
1237 	int cancel = 0;
1238 
1239 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1240 	sk = sk_vsock(vsk);
1241 
1242 	lock_sock(sk);
1243 	if (sk->sk_state == TCP_SYN_SENT &&
1244 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1245 		sk->sk_state = TCP_CLOSE;
1246 		sk->sk_err = ETIMEDOUT;
1247 		sk->sk_error_report(sk);
1248 		cancel = 1;
1249 	}
1250 	release_sock(sk);
1251 	if (cancel)
1252 		vsock_transport_cancel_pkt(vsk);
1253 
1254 	sock_put(sk);
1255 }
1256 
1257 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1258 				int addr_len, int flags)
1259 {
1260 	int err;
1261 	struct sock *sk;
1262 	struct vsock_sock *vsk;
1263 	const struct vsock_transport *transport;
1264 	struct sockaddr_vm *remote_addr;
1265 	long timeout;
1266 	DEFINE_WAIT(wait);
1267 
1268 	err = 0;
1269 	sk = sock->sk;
1270 	vsk = vsock_sk(sk);
1271 
1272 	lock_sock(sk);
1273 
1274 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1275 	switch (sock->state) {
1276 	case SS_CONNECTED:
1277 		err = -EISCONN;
1278 		goto out;
1279 	case SS_DISCONNECTING:
1280 		err = -EINVAL;
1281 		goto out;
1282 	case SS_CONNECTING:
1283 		/* This continues on so we can move sock into the SS_CONNECTED
1284 		 * state once the connection has completed (at which point err
1285 		 * will be set to zero also).  Otherwise, we will either wait
1286 		 * for the connection or return -EALREADY should this be a
1287 		 * non-blocking call.
1288 		 */
1289 		err = -EALREADY;
1290 		break;
1291 	default:
1292 		if ((sk->sk_state == TCP_LISTEN) ||
1293 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1294 			err = -EINVAL;
1295 			goto out;
1296 		}
1297 
1298 		/* Set the remote address that we are connecting to. */
1299 		memcpy(&vsk->remote_addr, remote_addr,
1300 		       sizeof(vsk->remote_addr));
1301 
1302 		err = vsock_assign_transport(vsk, NULL);
1303 		if (err)
1304 			goto out;
1305 
1306 		transport = vsk->transport;
1307 
1308 		/* The hypervisor and well-known contexts do not have socket
1309 		 * endpoints.
1310 		 */
1311 		if (!transport ||
1312 		    !transport->stream_allow(remote_addr->svm_cid,
1313 					     remote_addr->svm_port)) {
1314 			err = -ENETUNREACH;
1315 			goto out;
1316 		}
1317 
1318 		err = vsock_auto_bind(vsk);
1319 		if (err)
1320 			goto out;
1321 
1322 		sk->sk_state = TCP_SYN_SENT;
1323 
1324 		err = transport->connect(vsk);
1325 		if (err < 0)
1326 			goto out;
1327 
1328 		/* Mark sock as connecting and set the error code to in
1329 		 * progress in case this is a non-blocking connect.
1330 		 */
1331 		sock->state = SS_CONNECTING;
1332 		err = -EINPROGRESS;
1333 	}
1334 
1335 	/* The receive path will handle all communication until we are able to
1336 	 * enter the connected state.  Here we wait for the connection to be
1337 	 * completed or a notification of an error.
1338 	 */
1339 	timeout = vsk->connect_timeout;
1340 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1341 
1342 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1343 		if (flags & O_NONBLOCK) {
1344 			/* If we're not going to block, we schedule a timeout
1345 			 * function to generate a timeout on the connection
1346 			 * attempt, in case the peer doesn't respond in a
1347 			 * timely manner. We hold on to the socket until the
1348 			 * timeout fires.
1349 			 */
1350 			sock_hold(sk);
1351 			schedule_delayed_work(&vsk->connect_work, timeout);
1352 
1353 			/* Skip ahead to preserve error code set above. */
1354 			goto out_wait;
1355 		}
1356 
1357 		release_sock(sk);
1358 		timeout = schedule_timeout(timeout);
1359 		lock_sock(sk);
1360 
1361 		if (signal_pending(current)) {
1362 			err = sock_intr_errno(timeout);
1363 			sk->sk_state = TCP_CLOSE;
1364 			sock->state = SS_UNCONNECTED;
1365 			vsock_transport_cancel_pkt(vsk);
1366 			goto out_wait;
1367 		} else if (timeout == 0) {
1368 			err = -ETIMEDOUT;
1369 			sk->sk_state = TCP_CLOSE;
1370 			sock->state = SS_UNCONNECTED;
1371 			vsock_transport_cancel_pkt(vsk);
1372 			goto out_wait;
1373 		}
1374 
1375 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1376 	}
1377 
1378 	if (sk->sk_err) {
1379 		err = -sk->sk_err;
1380 		sk->sk_state = TCP_CLOSE;
1381 		sock->state = SS_UNCONNECTED;
1382 	} else {
1383 		err = 0;
1384 	}
1385 
1386 out_wait:
1387 	finish_wait(sk_sleep(sk), &wait);
1388 out:
1389 	release_sock(sk);
1390 	return err;
1391 }
1392 
1393 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1394 			bool kern)
1395 {
1396 	struct sock *listener;
1397 	int err;
1398 	struct sock *connected;
1399 	struct vsock_sock *vconnected;
1400 	long timeout;
1401 	DEFINE_WAIT(wait);
1402 
1403 	err = 0;
1404 	listener = sock->sk;
1405 
1406 	lock_sock(listener);
1407 
1408 	if (sock->type != SOCK_STREAM) {
1409 		err = -EOPNOTSUPP;
1410 		goto out;
1411 	}
1412 
1413 	if (listener->sk_state != TCP_LISTEN) {
1414 		err = -EINVAL;
1415 		goto out;
1416 	}
1417 
1418 	/* Wait for children sockets to appear; these are the new sockets
1419 	 * created upon connection establishment.
1420 	 */
1421 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1422 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1423 
1424 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1425 	       listener->sk_err == 0) {
1426 		release_sock(listener);
1427 		timeout = schedule_timeout(timeout);
1428 		finish_wait(sk_sleep(listener), &wait);
1429 		lock_sock(listener);
1430 
1431 		if (signal_pending(current)) {
1432 			err = sock_intr_errno(timeout);
1433 			goto out;
1434 		} else if (timeout == 0) {
1435 			err = -EAGAIN;
1436 			goto out;
1437 		}
1438 
1439 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1440 	}
1441 	finish_wait(sk_sleep(listener), &wait);
1442 
1443 	if (listener->sk_err)
1444 		err = -listener->sk_err;
1445 
1446 	if (connected) {
1447 		sk_acceptq_removed(listener);
1448 
1449 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1450 		vconnected = vsock_sk(connected);
1451 
1452 		/* If the listener socket has received an error, then we should
1453 		 * reject this socket and return.  Note that we simply mark the
1454 		 * socket rejected, drop our reference, and let the cleanup
1455 		 * function handle the cleanup; the fact that we found it in
1456 		 * the listener's accept queue guarantees that the cleanup
1457 		 * function hasn't run yet.
1458 		 */
1459 		if (err) {
1460 			vconnected->rejected = true;
1461 		} else {
1462 			newsock->state = SS_CONNECTED;
1463 			sock_graft(connected, newsock);
1464 		}
1465 
1466 		release_sock(connected);
1467 		sock_put(connected);
1468 	}
1469 
1470 out:
1471 	release_sock(listener);
1472 	return err;
1473 }
1474 
1475 static int vsock_listen(struct socket *sock, int backlog)
1476 {
1477 	int err;
1478 	struct sock *sk;
1479 	struct vsock_sock *vsk;
1480 
1481 	sk = sock->sk;
1482 
1483 	lock_sock(sk);
1484 
1485 	if (sock->type != SOCK_STREAM) {
1486 		err = -EOPNOTSUPP;
1487 		goto out;
1488 	}
1489 
1490 	if (sock->state != SS_UNCONNECTED) {
1491 		err = -EINVAL;
1492 		goto out;
1493 	}
1494 
1495 	vsk = vsock_sk(sk);
1496 
1497 	if (!vsock_addr_bound(&vsk->local_addr)) {
1498 		err = -EINVAL;
1499 		goto out;
1500 	}
1501 
1502 	sk->sk_max_ack_backlog = backlog;
1503 	sk->sk_state = TCP_LISTEN;
1504 
1505 	err = 0;
1506 
1507 out:
1508 	release_sock(sk);
1509 	return err;
1510 }
1511 
1512 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1513 				     const struct vsock_transport *transport,
1514 				     u64 val)
1515 {
1516 	if (val > vsk->buffer_max_size)
1517 		val = vsk->buffer_max_size;
1518 
1519 	if (val < vsk->buffer_min_size)
1520 		val = vsk->buffer_min_size;
1521 
1522 	if (val != vsk->buffer_size &&
1523 	    transport && transport->notify_buffer_size)
1524 		transport->notify_buffer_size(vsk, &val);
1525 
1526 	vsk->buffer_size = val;
1527 }
1528 
1529 static int vsock_stream_setsockopt(struct socket *sock,
1530 				   int level,
1531 				   int optname,
1532 				   sockptr_t optval,
1533 				   unsigned int optlen)
1534 {
1535 	int err;
1536 	struct sock *sk;
1537 	struct vsock_sock *vsk;
1538 	const struct vsock_transport *transport;
1539 	u64 val;
1540 
1541 	if (level != AF_VSOCK)
1542 		return -ENOPROTOOPT;
1543 
1544 #define COPY_IN(_v)                                       \
1545 	do {						  \
1546 		if (optlen < sizeof(_v)) {		  \
1547 			err = -EINVAL;			  \
1548 			goto exit;			  \
1549 		}					  \
1550 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1551 			err = -EFAULT;					\
1552 			goto exit;					\
1553 		}							\
1554 	} while (0)
1555 
1556 	err = 0;
1557 	sk = sock->sk;
1558 	vsk = vsock_sk(sk);
1559 	transport = vsk->transport;
1560 
1561 	lock_sock(sk);
1562 
1563 	switch (optname) {
1564 	case SO_VM_SOCKETS_BUFFER_SIZE:
1565 		COPY_IN(val);
1566 		vsock_update_buffer_size(vsk, transport, val);
1567 		break;
1568 
1569 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1570 		COPY_IN(val);
1571 		vsk->buffer_max_size = val;
1572 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1573 		break;
1574 
1575 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1576 		COPY_IN(val);
1577 		vsk->buffer_min_size = val;
1578 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1579 		break;
1580 
1581 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1582 		struct __kernel_old_timeval tv;
1583 		COPY_IN(tv);
1584 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1585 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1586 			vsk->connect_timeout = tv.tv_sec * HZ +
1587 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1588 			if (vsk->connect_timeout == 0)
1589 				vsk->connect_timeout =
1590 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1591 
1592 		} else {
1593 			err = -ERANGE;
1594 		}
1595 		break;
1596 	}
1597 
1598 	default:
1599 		err = -ENOPROTOOPT;
1600 		break;
1601 	}
1602 
1603 #undef COPY_IN
1604 
1605 exit:
1606 	release_sock(sk);
1607 	return err;
1608 }
1609 
1610 static int vsock_stream_getsockopt(struct socket *sock,
1611 				   int level, int optname,
1612 				   char __user *optval,
1613 				   int __user *optlen)
1614 {
1615 	int err;
1616 	int len;
1617 	struct sock *sk;
1618 	struct vsock_sock *vsk;
1619 	u64 val;
1620 
1621 	if (level != AF_VSOCK)
1622 		return -ENOPROTOOPT;
1623 
1624 	err = get_user(len, optlen);
1625 	if (err != 0)
1626 		return err;
1627 
1628 #define COPY_OUT(_v)                            \
1629 	do {					\
1630 		if (len < sizeof(_v))		\
1631 			return -EINVAL;		\
1632 						\
1633 		len = sizeof(_v);		\
1634 		if (copy_to_user(optval, &_v, len) != 0)	\
1635 			return -EFAULT;				\
1636 								\
1637 	} while (0)
1638 
1639 	err = 0;
1640 	sk = sock->sk;
1641 	vsk = vsock_sk(sk);
1642 
1643 	switch (optname) {
1644 	case SO_VM_SOCKETS_BUFFER_SIZE:
1645 		val = vsk->buffer_size;
1646 		COPY_OUT(val);
1647 		break;
1648 
1649 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1650 		val = vsk->buffer_max_size;
1651 		COPY_OUT(val);
1652 		break;
1653 
1654 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1655 		val = vsk->buffer_min_size;
1656 		COPY_OUT(val);
1657 		break;
1658 
1659 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1660 		struct __kernel_old_timeval tv;
1661 		tv.tv_sec = vsk->connect_timeout / HZ;
1662 		tv.tv_usec =
1663 		    (vsk->connect_timeout -
1664 		     tv.tv_sec * HZ) * (1000000 / HZ);
1665 		COPY_OUT(tv);
1666 		break;
1667 	}
1668 	default:
1669 		return -ENOPROTOOPT;
1670 	}
1671 
1672 	err = put_user(len, optlen);
1673 	if (err != 0)
1674 		return -EFAULT;
1675 
1676 #undef COPY_OUT
1677 
1678 	return 0;
1679 }
1680 
1681 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1682 				size_t len)
1683 {
1684 	struct sock *sk;
1685 	struct vsock_sock *vsk;
1686 	const struct vsock_transport *transport;
1687 	ssize_t total_written;
1688 	long timeout;
1689 	int err;
1690 	struct vsock_transport_send_notify_data send_data;
1691 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1692 
1693 	sk = sock->sk;
1694 	vsk = vsock_sk(sk);
1695 	transport = vsk->transport;
1696 	total_written = 0;
1697 	err = 0;
1698 
1699 	if (msg->msg_flags & MSG_OOB)
1700 		return -EOPNOTSUPP;
1701 
1702 	lock_sock(sk);
1703 
1704 	/* Callers should not provide a destination with stream sockets. */
1705 	if (msg->msg_namelen) {
1706 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1707 		goto out;
1708 	}
1709 
1710 	/* Send data only if both sides are not shutdown in the direction. */
1711 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1712 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1713 		err = -EPIPE;
1714 		goto out;
1715 	}
1716 
1717 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1718 	    !vsock_addr_bound(&vsk->local_addr)) {
1719 		err = -ENOTCONN;
1720 		goto out;
1721 	}
1722 
1723 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1724 		err = -EDESTADDRREQ;
1725 		goto out;
1726 	}
1727 
1728 	/* Wait for room in the produce queue to enqueue our user's data. */
1729 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1730 
1731 	err = transport->notify_send_init(vsk, &send_data);
1732 	if (err < 0)
1733 		goto out;
1734 
1735 	while (total_written < len) {
1736 		ssize_t written;
1737 
1738 		add_wait_queue(sk_sleep(sk), &wait);
1739 		while (vsock_stream_has_space(vsk) == 0 &&
1740 		       sk->sk_err == 0 &&
1741 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1742 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1743 
1744 			/* Don't wait for non-blocking sockets. */
1745 			if (timeout == 0) {
1746 				err = -EAGAIN;
1747 				remove_wait_queue(sk_sleep(sk), &wait);
1748 				goto out_err;
1749 			}
1750 
1751 			err = transport->notify_send_pre_block(vsk, &send_data);
1752 			if (err < 0) {
1753 				remove_wait_queue(sk_sleep(sk), &wait);
1754 				goto out_err;
1755 			}
1756 
1757 			release_sock(sk);
1758 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1759 			lock_sock(sk);
1760 			if (signal_pending(current)) {
1761 				err = sock_intr_errno(timeout);
1762 				remove_wait_queue(sk_sleep(sk), &wait);
1763 				goto out_err;
1764 			} else if (timeout == 0) {
1765 				err = -EAGAIN;
1766 				remove_wait_queue(sk_sleep(sk), &wait);
1767 				goto out_err;
1768 			}
1769 		}
1770 		remove_wait_queue(sk_sleep(sk), &wait);
1771 
1772 		/* These checks occur both as part of and after the loop
1773 		 * conditional since we need to check before and after
1774 		 * sleeping.
1775 		 */
1776 		if (sk->sk_err) {
1777 			err = -sk->sk_err;
1778 			goto out_err;
1779 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1780 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1781 			err = -EPIPE;
1782 			goto out_err;
1783 		}
1784 
1785 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1786 		if (err < 0)
1787 			goto out_err;
1788 
1789 		/* Note that enqueue will only write as many bytes as are free
1790 		 * in the produce queue, so we don't need to ensure len is
1791 		 * smaller than the queue size.  It is the caller's
1792 		 * responsibility to check how many bytes we were able to send.
1793 		 */
1794 
1795 		written = transport->stream_enqueue(
1796 				vsk, msg,
1797 				len - total_written);
1798 		if (written < 0) {
1799 			err = -ENOMEM;
1800 			goto out_err;
1801 		}
1802 
1803 		total_written += written;
1804 
1805 		err = transport->notify_send_post_enqueue(
1806 				vsk, written, &send_data);
1807 		if (err < 0)
1808 			goto out_err;
1809 
1810 	}
1811 
1812 out_err:
1813 	if (total_written > 0)
1814 		err = total_written;
1815 out:
1816 	release_sock(sk);
1817 	return err;
1818 }
1819 
1820 
1821 static int
1822 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1823 		     int flags)
1824 {
1825 	struct sock *sk;
1826 	struct vsock_sock *vsk;
1827 	const struct vsock_transport *transport;
1828 	int err;
1829 	size_t target;
1830 	ssize_t copied;
1831 	long timeout;
1832 	struct vsock_transport_recv_notify_data recv_data;
1833 
1834 	DEFINE_WAIT(wait);
1835 
1836 	sk = sock->sk;
1837 	vsk = vsock_sk(sk);
1838 	transport = vsk->transport;
1839 	err = 0;
1840 
1841 	lock_sock(sk);
1842 
1843 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1844 		/* Recvmsg is supposed to return 0 if a peer performs an
1845 		 * orderly shutdown. Differentiate between that case and when a
1846 		 * peer has not connected or a local shutdown occured with the
1847 		 * SOCK_DONE flag.
1848 		 */
1849 		if (sock_flag(sk, SOCK_DONE))
1850 			err = 0;
1851 		else
1852 			err = -ENOTCONN;
1853 
1854 		goto out;
1855 	}
1856 
1857 	if (flags & MSG_OOB) {
1858 		err = -EOPNOTSUPP;
1859 		goto out;
1860 	}
1861 
1862 	/* We don't check peer_shutdown flag here since peer may actually shut
1863 	 * down, but there can be data in the queue that a local socket can
1864 	 * receive.
1865 	 */
1866 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1867 		err = 0;
1868 		goto out;
1869 	}
1870 
1871 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1872 	 * is not an error.  We may as well bail out now.
1873 	 */
1874 	if (!len) {
1875 		err = 0;
1876 		goto out;
1877 	}
1878 
1879 	/* We must not copy less than target bytes into the user's buffer
1880 	 * before returning successfully, so we wait for the consume queue to
1881 	 * have that much data to consume before dequeueing.  Note that this
1882 	 * makes it impossible to handle cases where target is greater than the
1883 	 * queue size.
1884 	 */
1885 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1886 	if (target >= transport->stream_rcvhiwat(vsk)) {
1887 		err = -ENOMEM;
1888 		goto out;
1889 	}
1890 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1891 	copied = 0;
1892 
1893 	err = transport->notify_recv_init(vsk, target, &recv_data);
1894 	if (err < 0)
1895 		goto out;
1896 
1897 
1898 	while (1) {
1899 		s64 ready;
1900 
1901 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1902 		ready = vsock_stream_has_data(vsk);
1903 
1904 		if (ready == 0) {
1905 			if (sk->sk_err != 0 ||
1906 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1907 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1908 				finish_wait(sk_sleep(sk), &wait);
1909 				break;
1910 			}
1911 			/* Don't wait for non-blocking sockets. */
1912 			if (timeout == 0) {
1913 				err = -EAGAIN;
1914 				finish_wait(sk_sleep(sk), &wait);
1915 				break;
1916 			}
1917 
1918 			err = transport->notify_recv_pre_block(
1919 					vsk, target, &recv_data);
1920 			if (err < 0) {
1921 				finish_wait(sk_sleep(sk), &wait);
1922 				break;
1923 			}
1924 			release_sock(sk);
1925 			timeout = schedule_timeout(timeout);
1926 			lock_sock(sk);
1927 
1928 			if (signal_pending(current)) {
1929 				err = sock_intr_errno(timeout);
1930 				finish_wait(sk_sleep(sk), &wait);
1931 				break;
1932 			} else if (timeout == 0) {
1933 				err = -EAGAIN;
1934 				finish_wait(sk_sleep(sk), &wait);
1935 				break;
1936 			}
1937 		} else {
1938 			ssize_t read;
1939 
1940 			finish_wait(sk_sleep(sk), &wait);
1941 
1942 			if (ready < 0) {
1943 				/* Invalid queue pair content. XXX This should
1944 				* be changed to a connection reset in a later
1945 				* change.
1946 				*/
1947 
1948 				err = -ENOMEM;
1949 				goto out;
1950 			}
1951 
1952 			err = transport->notify_recv_pre_dequeue(
1953 					vsk, target, &recv_data);
1954 			if (err < 0)
1955 				break;
1956 
1957 			read = transport->stream_dequeue(
1958 					vsk, msg,
1959 					len - copied, flags);
1960 			if (read < 0) {
1961 				err = -ENOMEM;
1962 				break;
1963 			}
1964 
1965 			copied += read;
1966 
1967 			err = transport->notify_recv_post_dequeue(
1968 					vsk, target, read,
1969 					!(flags & MSG_PEEK), &recv_data);
1970 			if (err < 0)
1971 				goto out;
1972 
1973 			if (read >= target || flags & MSG_PEEK)
1974 				break;
1975 
1976 			target -= read;
1977 		}
1978 	}
1979 
1980 	if (sk->sk_err)
1981 		err = -sk->sk_err;
1982 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1983 		err = 0;
1984 
1985 	if (copied > 0)
1986 		err = copied;
1987 
1988 out:
1989 	release_sock(sk);
1990 	return err;
1991 }
1992 
1993 static const struct proto_ops vsock_stream_ops = {
1994 	.family = PF_VSOCK,
1995 	.owner = THIS_MODULE,
1996 	.release = vsock_release,
1997 	.bind = vsock_bind,
1998 	.connect = vsock_stream_connect,
1999 	.socketpair = sock_no_socketpair,
2000 	.accept = vsock_accept,
2001 	.getname = vsock_getname,
2002 	.poll = vsock_poll,
2003 	.ioctl = sock_no_ioctl,
2004 	.listen = vsock_listen,
2005 	.shutdown = vsock_shutdown,
2006 	.setsockopt = vsock_stream_setsockopt,
2007 	.getsockopt = vsock_stream_getsockopt,
2008 	.sendmsg = vsock_stream_sendmsg,
2009 	.recvmsg = vsock_stream_recvmsg,
2010 	.mmap = sock_no_mmap,
2011 	.sendpage = sock_no_sendpage,
2012 };
2013 
2014 static int vsock_create(struct net *net, struct socket *sock,
2015 			int protocol, int kern)
2016 {
2017 	struct vsock_sock *vsk;
2018 	struct sock *sk;
2019 	int ret;
2020 
2021 	if (!sock)
2022 		return -EINVAL;
2023 
2024 	if (protocol && protocol != PF_VSOCK)
2025 		return -EPROTONOSUPPORT;
2026 
2027 	switch (sock->type) {
2028 	case SOCK_DGRAM:
2029 		sock->ops = &vsock_dgram_ops;
2030 		break;
2031 	case SOCK_STREAM:
2032 		sock->ops = &vsock_stream_ops;
2033 		break;
2034 	default:
2035 		return -ESOCKTNOSUPPORT;
2036 	}
2037 
2038 	sock->state = SS_UNCONNECTED;
2039 
2040 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2041 	if (!sk)
2042 		return -ENOMEM;
2043 
2044 	vsk = vsock_sk(sk);
2045 
2046 	if (sock->type == SOCK_DGRAM) {
2047 		ret = vsock_assign_transport(vsk, NULL);
2048 		if (ret < 0) {
2049 			sock_put(sk);
2050 			return ret;
2051 		}
2052 	}
2053 
2054 	vsock_insert_unbound(vsk);
2055 
2056 	return 0;
2057 }
2058 
2059 static const struct net_proto_family vsock_family_ops = {
2060 	.family = AF_VSOCK,
2061 	.create = vsock_create,
2062 	.owner = THIS_MODULE,
2063 };
2064 
2065 static long vsock_dev_do_ioctl(struct file *filp,
2066 			       unsigned int cmd, void __user *ptr)
2067 {
2068 	u32 __user *p = ptr;
2069 	u32 cid = VMADDR_CID_ANY;
2070 	int retval = 0;
2071 
2072 	switch (cmd) {
2073 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2074 		/* To be compatible with the VMCI behavior, we prioritize the
2075 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2076 		 */
2077 		if (transport_g2h)
2078 			cid = transport_g2h->get_local_cid();
2079 		else if (transport_h2g)
2080 			cid = transport_h2g->get_local_cid();
2081 
2082 		if (put_user(cid, p) != 0)
2083 			retval = -EFAULT;
2084 		break;
2085 
2086 	default:
2087 		retval = -ENOIOCTLCMD;
2088 	}
2089 
2090 	return retval;
2091 }
2092 
2093 static long vsock_dev_ioctl(struct file *filp,
2094 			    unsigned int cmd, unsigned long arg)
2095 {
2096 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2097 }
2098 
2099 #ifdef CONFIG_COMPAT
2100 static long vsock_dev_compat_ioctl(struct file *filp,
2101 				   unsigned int cmd, unsigned long arg)
2102 {
2103 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2104 }
2105 #endif
2106 
2107 static const struct file_operations vsock_device_ops = {
2108 	.owner		= THIS_MODULE,
2109 	.unlocked_ioctl	= vsock_dev_ioctl,
2110 #ifdef CONFIG_COMPAT
2111 	.compat_ioctl	= vsock_dev_compat_ioctl,
2112 #endif
2113 	.open		= nonseekable_open,
2114 };
2115 
2116 static struct miscdevice vsock_device = {
2117 	.name		= "vsock",
2118 	.fops		= &vsock_device_ops,
2119 };
2120 
2121 static int __init vsock_init(void)
2122 {
2123 	int err = 0;
2124 
2125 	vsock_init_tables();
2126 
2127 	vsock_proto.owner = THIS_MODULE;
2128 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2129 	err = misc_register(&vsock_device);
2130 	if (err) {
2131 		pr_err("Failed to register misc device\n");
2132 		goto err_reset_transport;
2133 	}
2134 
2135 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2136 	if (err) {
2137 		pr_err("Cannot register vsock protocol\n");
2138 		goto err_deregister_misc;
2139 	}
2140 
2141 	err = sock_register(&vsock_family_ops);
2142 	if (err) {
2143 		pr_err("could not register af_vsock (%d) address family: %d\n",
2144 		       AF_VSOCK, err);
2145 		goto err_unregister_proto;
2146 	}
2147 
2148 	return 0;
2149 
2150 err_unregister_proto:
2151 	proto_unregister(&vsock_proto);
2152 err_deregister_misc:
2153 	misc_deregister(&vsock_device);
2154 err_reset_transport:
2155 	return err;
2156 }
2157 
2158 static void __exit vsock_exit(void)
2159 {
2160 	misc_deregister(&vsock_device);
2161 	sock_unregister(AF_VSOCK);
2162 	proto_unregister(&vsock_proto);
2163 }
2164 
2165 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2166 {
2167 	return vsk->transport;
2168 }
2169 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2170 
2171 int vsock_core_register(const struct vsock_transport *t, int features)
2172 {
2173 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2174 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2175 
2176 	if (err)
2177 		return err;
2178 
2179 	t_h2g = transport_h2g;
2180 	t_g2h = transport_g2h;
2181 	t_dgram = transport_dgram;
2182 	t_local = transport_local;
2183 
2184 	if (features & VSOCK_TRANSPORT_F_H2G) {
2185 		if (t_h2g) {
2186 			err = -EBUSY;
2187 			goto err_busy;
2188 		}
2189 		t_h2g = t;
2190 	}
2191 
2192 	if (features & VSOCK_TRANSPORT_F_G2H) {
2193 		if (t_g2h) {
2194 			err = -EBUSY;
2195 			goto err_busy;
2196 		}
2197 		t_g2h = t;
2198 	}
2199 
2200 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2201 		if (t_dgram) {
2202 			err = -EBUSY;
2203 			goto err_busy;
2204 		}
2205 		t_dgram = t;
2206 	}
2207 
2208 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2209 		if (t_local) {
2210 			err = -EBUSY;
2211 			goto err_busy;
2212 		}
2213 		t_local = t;
2214 	}
2215 
2216 	transport_h2g = t_h2g;
2217 	transport_g2h = t_g2h;
2218 	transport_dgram = t_dgram;
2219 	transport_local = t_local;
2220 
2221 err_busy:
2222 	mutex_unlock(&vsock_register_mutex);
2223 	return err;
2224 }
2225 EXPORT_SYMBOL_GPL(vsock_core_register);
2226 
2227 void vsock_core_unregister(const struct vsock_transport *t)
2228 {
2229 	mutex_lock(&vsock_register_mutex);
2230 
2231 	if (transport_h2g == t)
2232 		transport_h2g = NULL;
2233 
2234 	if (transport_g2h == t)
2235 		transport_g2h = NULL;
2236 
2237 	if (transport_dgram == t)
2238 		transport_dgram = NULL;
2239 
2240 	if (transport_local == t)
2241 		transport_local = NULL;
2242 
2243 	mutex_unlock(&vsock_register_mutex);
2244 }
2245 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2246 
2247 module_init(vsock_init);
2248 module_exit(vsock_exit);
2249 
2250 MODULE_AUTHOR("VMware, Inc.");
2251 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2252 MODULE_VERSION("1.0.2.0-k");
2253 MODULE_LICENSE("GPL v2");
2254