xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 19c1b90e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 	int i;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 
342 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 		struct vsock_sock *vsk;
344 		list_for_each_entry(vsk, &vsock_connected_table[i],
345 				    connected_table)
346 			fn(sk_vsock(vsk));
347 	}
348 
349 	spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352 
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 	struct vsock_sock *vlistener;
356 	struct vsock_sock *vpending;
357 
358 	vlistener = vsock_sk(listener);
359 	vpending = vsock_sk(pending);
360 
361 	sock_hold(pending);
362 	sock_hold(listener);
363 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366 
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vpending = vsock_sk(pending);
370 
371 	list_del_init(&vpending->pending_links);
372 	sock_put(listener);
373 	sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376 
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vconnected;
381 
382 	vlistener = vsock_sk(listener);
383 	vconnected = vsock_sk(connected);
384 
385 	sock_hold(connected);
386 	sock_hold(listener);
387 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390 
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 	if (!transport_local)
394 		return false;
395 
396 	if (remote_cid == VMADDR_CID_LOCAL)
397 		return true;
398 
399 	if (transport_g2h) {
400 		return remote_cid == transport_g2h->get_local_cid();
401 	} else {
402 		return remote_cid == VMADDR_CID_HOST;
403 	}
404 }
405 
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 	if (!vsk->transport)
409 		return;
410 
411 	vsk->transport->destruct(vsk);
412 	module_put(vsk->transport->module);
413 	vsk->transport = NULL;
414 }
415 
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
427  */
428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 {
430 	const struct vsock_transport *new_transport;
431 	struct sock *sk = sk_vsock(vsk);
432 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
433 	__u8 remote_flags;
434 	int ret;
435 
436 	/* If the packet is coming with the source and destination CIDs higher
437 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438 	 * forwarded to the host should be established. Then the host will
439 	 * need to forward the packets to the guest.
440 	 *
441 	 * The flag is set on the (listen) receive path (psk is not NULL). On
442 	 * the connect path the flag can be set by the user space application.
443 	 */
444 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
447 
448 	remote_flags = vsk->remote_addr.svm_flags;
449 
450 	switch (sk->sk_type) {
451 	case SOCK_DGRAM:
452 		new_transport = transport_dgram;
453 		break;
454 	case SOCK_STREAM:
455 		if (vsock_use_local_transport(remote_cid))
456 			new_transport = transport_local;
457 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
458 			 (remote_flags & VMADDR_FLAG_TO_HOST))
459 			new_transport = transport_g2h;
460 		else
461 			new_transport = transport_h2g;
462 		break;
463 	default:
464 		return -ESOCKTNOSUPPORT;
465 	}
466 
467 	if (vsk->transport) {
468 		if (vsk->transport == new_transport)
469 			return 0;
470 
471 		/* transport->release() must be called with sock lock acquired.
472 		 * This path can only be taken during vsock_stream_connect(),
473 		 * where we have already held the sock lock.
474 		 * In the other cases, this function is called on a new socket
475 		 * which is not assigned to any transport.
476 		 */
477 		vsk->transport->release(vsk);
478 		vsock_deassign_transport(vsk);
479 	}
480 
481 	/* We increase the module refcnt to prevent the transport unloading
482 	 * while there are open sockets assigned to it.
483 	 */
484 	if (!new_transport || !try_module_get(new_transport->module))
485 		return -ENODEV;
486 
487 	ret = new_transport->init(vsk, psk);
488 	if (ret) {
489 		module_put(new_transport->module);
490 		return ret;
491 	}
492 
493 	vsk->transport = new_transport;
494 
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(vsock_assign_transport);
498 
499 bool vsock_find_cid(unsigned int cid)
500 {
501 	if (transport_g2h && cid == transport_g2h->get_local_cid())
502 		return true;
503 
504 	if (transport_h2g && cid == VMADDR_CID_HOST)
505 		return true;
506 
507 	if (transport_local && cid == VMADDR_CID_LOCAL)
508 		return true;
509 
510 	return false;
511 }
512 EXPORT_SYMBOL_GPL(vsock_find_cid);
513 
514 static struct sock *vsock_dequeue_accept(struct sock *listener)
515 {
516 	struct vsock_sock *vlistener;
517 	struct vsock_sock *vconnected;
518 
519 	vlistener = vsock_sk(listener);
520 
521 	if (list_empty(&vlistener->accept_queue))
522 		return NULL;
523 
524 	vconnected = list_entry(vlistener->accept_queue.next,
525 				struct vsock_sock, accept_queue);
526 
527 	list_del_init(&vconnected->accept_queue);
528 	sock_put(listener);
529 	/* The caller will need a reference on the connected socket so we let
530 	 * it call sock_put().
531 	 */
532 
533 	return sk_vsock(vconnected);
534 }
535 
536 static bool vsock_is_accept_queue_empty(struct sock *sk)
537 {
538 	struct vsock_sock *vsk = vsock_sk(sk);
539 	return list_empty(&vsk->accept_queue);
540 }
541 
542 static bool vsock_is_pending(struct sock *sk)
543 {
544 	struct vsock_sock *vsk = vsock_sk(sk);
545 	return !list_empty(&vsk->pending_links);
546 }
547 
548 static int vsock_send_shutdown(struct sock *sk, int mode)
549 {
550 	struct vsock_sock *vsk = vsock_sk(sk);
551 
552 	if (!vsk->transport)
553 		return -ENODEV;
554 
555 	return vsk->transport->shutdown(vsk, mode);
556 }
557 
558 static void vsock_pending_work(struct work_struct *work)
559 {
560 	struct sock *sk;
561 	struct sock *listener;
562 	struct vsock_sock *vsk;
563 	bool cleanup;
564 
565 	vsk = container_of(work, struct vsock_sock, pending_work.work);
566 	sk = sk_vsock(vsk);
567 	listener = vsk->listener;
568 	cleanup = true;
569 
570 	lock_sock(listener);
571 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
572 
573 	if (vsock_is_pending(sk)) {
574 		vsock_remove_pending(listener, sk);
575 
576 		sk_acceptq_removed(listener);
577 	} else if (!vsk->rejected) {
578 		/* We are not on the pending list and accept() did not reject
579 		 * us, so we must have been accepted by our user process.  We
580 		 * just need to drop our references to the sockets and be on
581 		 * our way.
582 		 */
583 		cleanup = false;
584 		goto out;
585 	}
586 
587 	/* We need to remove ourself from the global connected sockets list so
588 	 * incoming packets can't find this socket, and to reduce the reference
589 	 * count.
590 	 */
591 	vsock_remove_connected(vsk);
592 
593 	sk->sk_state = TCP_CLOSE;
594 
595 out:
596 	release_sock(sk);
597 	release_sock(listener);
598 	if (cleanup)
599 		sock_put(sk);
600 
601 	sock_put(sk);
602 	sock_put(listener);
603 }
604 
605 /**** SOCKET OPERATIONS ****/
606 
607 static int __vsock_bind_connectible(struct vsock_sock *vsk,
608 				    struct sockaddr_vm *addr)
609 {
610 	static u32 port;
611 	struct sockaddr_vm new_addr;
612 
613 	if (!port)
614 		port = LAST_RESERVED_PORT + 1 +
615 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
616 
617 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
618 
619 	if (addr->svm_port == VMADDR_PORT_ANY) {
620 		bool found = false;
621 		unsigned int i;
622 
623 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
624 			if (port <= LAST_RESERVED_PORT)
625 				port = LAST_RESERVED_PORT + 1;
626 
627 			new_addr.svm_port = port++;
628 
629 			if (!__vsock_find_bound_socket(&new_addr)) {
630 				found = true;
631 				break;
632 			}
633 		}
634 
635 		if (!found)
636 			return -EADDRNOTAVAIL;
637 	} else {
638 		/* If port is in reserved range, ensure caller
639 		 * has necessary privileges.
640 		 */
641 		if (addr->svm_port <= LAST_RESERVED_PORT &&
642 		    !capable(CAP_NET_BIND_SERVICE)) {
643 			return -EACCES;
644 		}
645 
646 		if (__vsock_find_bound_socket(&new_addr))
647 			return -EADDRINUSE;
648 	}
649 
650 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
651 
652 	/* Remove stream sockets from the unbound list and add them to the hash
653 	 * table for easy lookup by its address.  The unbound list is simply an
654 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
655 	 */
656 	__vsock_remove_bound(vsk);
657 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
658 
659 	return 0;
660 }
661 
662 static int __vsock_bind_dgram(struct vsock_sock *vsk,
663 			      struct sockaddr_vm *addr)
664 {
665 	return vsk->transport->dgram_bind(vsk, addr);
666 }
667 
668 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
669 {
670 	struct vsock_sock *vsk = vsock_sk(sk);
671 	int retval;
672 
673 	/* First ensure this socket isn't already bound. */
674 	if (vsock_addr_bound(&vsk->local_addr))
675 		return -EINVAL;
676 
677 	/* Now bind to the provided address or select appropriate values if
678 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
679 	 * like AF_INET prevents binding to a non-local IP address (in most
680 	 * cases), we only allow binding to a local CID.
681 	 */
682 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
683 		return -EADDRNOTAVAIL;
684 
685 	switch (sk->sk_socket->type) {
686 	case SOCK_STREAM:
687 		spin_lock_bh(&vsock_table_lock);
688 		retval = __vsock_bind_connectible(vsk, addr);
689 		spin_unlock_bh(&vsock_table_lock);
690 		break;
691 
692 	case SOCK_DGRAM:
693 		retval = __vsock_bind_dgram(vsk, addr);
694 		break;
695 
696 	default:
697 		retval = -EINVAL;
698 		break;
699 	}
700 
701 	return retval;
702 }
703 
704 static void vsock_connect_timeout(struct work_struct *work);
705 
706 static struct sock *__vsock_create(struct net *net,
707 				   struct socket *sock,
708 				   struct sock *parent,
709 				   gfp_t priority,
710 				   unsigned short type,
711 				   int kern)
712 {
713 	struct sock *sk;
714 	struct vsock_sock *psk;
715 	struct vsock_sock *vsk;
716 
717 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
718 	if (!sk)
719 		return NULL;
720 
721 	sock_init_data(sock, sk);
722 
723 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
724 	 * non-NULL. We make sure that our sockets always have a type by
725 	 * setting it here if needed.
726 	 */
727 	if (!sock)
728 		sk->sk_type = type;
729 
730 	vsk = vsock_sk(sk);
731 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
732 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
733 
734 	sk->sk_destruct = vsock_sk_destruct;
735 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
736 	sock_reset_flag(sk, SOCK_DONE);
737 
738 	INIT_LIST_HEAD(&vsk->bound_table);
739 	INIT_LIST_HEAD(&vsk->connected_table);
740 	vsk->listener = NULL;
741 	INIT_LIST_HEAD(&vsk->pending_links);
742 	INIT_LIST_HEAD(&vsk->accept_queue);
743 	vsk->rejected = false;
744 	vsk->sent_request = false;
745 	vsk->ignore_connecting_rst = false;
746 	vsk->peer_shutdown = 0;
747 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
748 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
749 
750 	psk = parent ? vsock_sk(parent) : NULL;
751 	if (parent) {
752 		vsk->trusted = psk->trusted;
753 		vsk->owner = get_cred(psk->owner);
754 		vsk->connect_timeout = psk->connect_timeout;
755 		vsk->buffer_size = psk->buffer_size;
756 		vsk->buffer_min_size = psk->buffer_min_size;
757 		vsk->buffer_max_size = psk->buffer_max_size;
758 		security_sk_clone(parent, sk);
759 	} else {
760 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
761 		vsk->owner = get_current_cred();
762 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
763 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
764 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
765 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
766 	}
767 
768 	return sk;
769 }
770 
771 static bool sock_type_connectible(u16 type)
772 {
773 	return type == SOCK_STREAM;
774 }
775 
776 static void __vsock_release(struct sock *sk, int level)
777 {
778 	if (sk) {
779 		struct sock *pending;
780 		struct vsock_sock *vsk;
781 
782 		vsk = vsock_sk(sk);
783 		pending = NULL;	/* Compiler warning. */
784 
785 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
786 		 * version to avoid the warning "possible recursive locking
787 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
788 		 * is the same as lock_sock(sk).
789 		 */
790 		lock_sock_nested(sk, level);
791 
792 		if (vsk->transport)
793 			vsk->transport->release(vsk);
794 		else if (sock_type_connectible(sk->sk_type))
795 			vsock_remove_sock(vsk);
796 
797 		sock_orphan(sk);
798 		sk->sk_shutdown = SHUTDOWN_MASK;
799 
800 		skb_queue_purge(&sk->sk_receive_queue);
801 
802 		/* Clean up any sockets that never were accepted. */
803 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
804 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
805 			sock_put(pending);
806 		}
807 
808 		release_sock(sk);
809 		sock_put(sk);
810 	}
811 }
812 
813 static void vsock_sk_destruct(struct sock *sk)
814 {
815 	struct vsock_sock *vsk = vsock_sk(sk);
816 
817 	vsock_deassign_transport(vsk);
818 
819 	/* When clearing these addresses, there's no need to set the family and
820 	 * possibly register the address family with the kernel.
821 	 */
822 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
823 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
824 
825 	put_cred(vsk->owner);
826 }
827 
828 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
829 {
830 	int err;
831 
832 	err = sock_queue_rcv_skb(sk, skb);
833 	if (err)
834 		kfree_skb(skb);
835 
836 	return err;
837 }
838 
839 struct sock *vsock_create_connected(struct sock *parent)
840 {
841 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
842 			      parent->sk_type, 0);
843 }
844 EXPORT_SYMBOL_GPL(vsock_create_connected);
845 
846 s64 vsock_stream_has_data(struct vsock_sock *vsk)
847 {
848 	return vsk->transport->stream_has_data(vsk);
849 }
850 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
851 
852 s64 vsock_stream_has_space(struct vsock_sock *vsk)
853 {
854 	return vsk->transport->stream_has_space(vsk);
855 }
856 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
857 
858 static int vsock_release(struct socket *sock)
859 {
860 	__vsock_release(sock->sk, 0);
861 	sock->sk = NULL;
862 	sock->state = SS_FREE;
863 
864 	return 0;
865 }
866 
867 static int
868 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
869 {
870 	int err;
871 	struct sock *sk;
872 	struct sockaddr_vm *vm_addr;
873 
874 	sk = sock->sk;
875 
876 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
877 		return -EINVAL;
878 
879 	lock_sock(sk);
880 	err = __vsock_bind(sk, vm_addr);
881 	release_sock(sk);
882 
883 	return err;
884 }
885 
886 static int vsock_getname(struct socket *sock,
887 			 struct sockaddr *addr, int peer)
888 {
889 	int err;
890 	struct sock *sk;
891 	struct vsock_sock *vsk;
892 	struct sockaddr_vm *vm_addr;
893 
894 	sk = sock->sk;
895 	vsk = vsock_sk(sk);
896 	err = 0;
897 
898 	lock_sock(sk);
899 
900 	if (peer) {
901 		if (sock->state != SS_CONNECTED) {
902 			err = -ENOTCONN;
903 			goto out;
904 		}
905 		vm_addr = &vsk->remote_addr;
906 	} else {
907 		vm_addr = &vsk->local_addr;
908 	}
909 
910 	if (!vm_addr) {
911 		err = -EINVAL;
912 		goto out;
913 	}
914 
915 	/* sys_getsockname() and sys_getpeername() pass us a
916 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
917 	 * that macro is defined in socket.c instead of .h, so we hardcode its
918 	 * value here.
919 	 */
920 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
921 	memcpy(addr, vm_addr, sizeof(*vm_addr));
922 	err = sizeof(*vm_addr);
923 
924 out:
925 	release_sock(sk);
926 	return err;
927 }
928 
929 static int vsock_shutdown(struct socket *sock, int mode)
930 {
931 	int err;
932 	struct sock *sk;
933 
934 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
935 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
936 	 * here like the other address families do.  Note also that the
937 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
938 	 * which is what we want.
939 	 */
940 	mode++;
941 
942 	if ((mode & ~SHUTDOWN_MASK) || !mode)
943 		return -EINVAL;
944 
945 	/* If this is a STREAM socket and it is not connected then bail out
946 	 * immediately.  If it is a DGRAM socket then we must first kick the
947 	 * socket so that it wakes up from any sleeping calls, for example
948 	 * recv(), and then afterwards return the error.
949 	 */
950 
951 	sk = sock->sk;
952 
953 	lock_sock(sk);
954 	if (sock->state == SS_UNCONNECTED) {
955 		err = -ENOTCONN;
956 		if (sock_type_connectible(sk->sk_type))
957 			goto out;
958 	} else {
959 		sock->state = SS_DISCONNECTING;
960 		err = 0;
961 	}
962 
963 	/* Receive and send shutdowns are treated alike. */
964 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
965 	if (mode) {
966 		sk->sk_shutdown |= mode;
967 		sk->sk_state_change(sk);
968 
969 		if (sock_type_connectible(sk->sk_type)) {
970 			sock_reset_flag(sk, SOCK_DONE);
971 			vsock_send_shutdown(sk, mode);
972 		}
973 	}
974 
975 out:
976 	release_sock(sk);
977 	return err;
978 }
979 
980 static __poll_t vsock_poll(struct file *file, struct socket *sock,
981 			       poll_table *wait)
982 {
983 	struct sock *sk;
984 	__poll_t mask;
985 	struct vsock_sock *vsk;
986 
987 	sk = sock->sk;
988 	vsk = vsock_sk(sk);
989 
990 	poll_wait(file, sk_sleep(sk), wait);
991 	mask = 0;
992 
993 	if (sk->sk_err)
994 		/* Signify that there has been an error on this socket. */
995 		mask |= EPOLLERR;
996 
997 	/* INET sockets treat local write shutdown and peer write shutdown as a
998 	 * case of EPOLLHUP set.
999 	 */
1000 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1001 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1002 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1003 		mask |= EPOLLHUP;
1004 	}
1005 
1006 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1007 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1008 		mask |= EPOLLRDHUP;
1009 	}
1010 
1011 	if (sock->type == SOCK_DGRAM) {
1012 		/* For datagram sockets we can read if there is something in
1013 		 * the queue and write as long as the socket isn't shutdown for
1014 		 * sending.
1015 		 */
1016 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1017 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1018 			mask |= EPOLLIN | EPOLLRDNORM;
1019 		}
1020 
1021 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1022 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1023 
1024 	} else if (sock_type_connectible(sk->sk_type)) {
1025 		const struct vsock_transport *transport;
1026 
1027 		lock_sock(sk);
1028 
1029 		transport = vsk->transport;
1030 
1031 		/* Listening sockets that have connections in their accept
1032 		 * queue can be read.
1033 		 */
1034 		if (sk->sk_state == TCP_LISTEN
1035 		    && !vsock_is_accept_queue_empty(sk))
1036 			mask |= EPOLLIN | EPOLLRDNORM;
1037 
1038 		/* If there is something in the queue then we can read. */
1039 		if (transport && transport->stream_is_active(vsk) &&
1040 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1041 			bool data_ready_now = false;
1042 			int ret = transport->notify_poll_in(
1043 					vsk, 1, &data_ready_now);
1044 			if (ret < 0) {
1045 				mask |= EPOLLERR;
1046 			} else {
1047 				if (data_ready_now)
1048 					mask |= EPOLLIN | EPOLLRDNORM;
1049 
1050 			}
1051 		}
1052 
1053 		/* Sockets whose connections have been closed, reset, or
1054 		 * terminated should also be considered read, and we check the
1055 		 * shutdown flag for that.
1056 		 */
1057 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1058 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1059 			mask |= EPOLLIN | EPOLLRDNORM;
1060 		}
1061 
1062 		/* Connected sockets that can produce data can be written. */
1063 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1064 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1065 				bool space_avail_now = false;
1066 				int ret = transport->notify_poll_out(
1067 						vsk, 1, &space_avail_now);
1068 				if (ret < 0) {
1069 					mask |= EPOLLERR;
1070 				} else {
1071 					if (space_avail_now)
1072 						/* Remove EPOLLWRBAND since INET
1073 						 * sockets are not setting it.
1074 						 */
1075 						mask |= EPOLLOUT | EPOLLWRNORM;
1076 
1077 				}
1078 			}
1079 		}
1080 
1081 		/* Simulate INET socket poll behaviors, which sets
1082 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1083 		 * but local send is not shutdown.
1084 		 */
1085 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1086 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1087 				mask |= EPOLLOUT | EPOLLWRNORM;
1088 
1089 		}
1090 
1091 		release_sock(sk);
1092 	}
1093 
1094 	return mask;
1095 }
1096 
1097 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1098 			       size_t len)
1099 {
1100 	int err;
1101 	struct sock *sk;
1102 	struct vsock_sock *vsk;
1103 	struct sockaddr_vm *remote_addr;
1104 	const struct vsock_transport *transport;
1105 
1106 	if (msg->msg_flags & MSG_OOB)
1107 		return -EOPNOTSUPP;
1108 
1109 	/* For now, MSG_DONTWAIT is always assumed... */
1110 	err = 0;
1111 	sk = sock->sk;
1112 	vsk = vsock_sk(sk);
1113 
1114 	lock_sock(sk);
1115 
1116 	transport = vsk->transport;
1117 
1118 	err = vsock_auto_bind(vsk);
1119 	if (err)
1120 		goto out;
1121 
1122 
1123 	/* If the provided message contains an address, use that.  Otherwise
1124 	 * fall back on the socket's remote handle (if it has been connected).
1125 	 */
1126 	if (msg->msg_name &&
1127 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1128 			    &remote_addr) == 0) {
1129 		/* Ensure this address is of the right type and is a valid
1130 		 * destination.
1131 		 */
1132 
1133 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1134 			remote_addr->svm_cid = transport->get_local_cid();
1135 
1136 		if (!vsock_addr_bound(remote_addr)) {
1137 			err = -EINVAL;
1138 			goto out;
1139 		}
1140 	} else if (sock->state == SS_CONNECTED) {
1141 		remote_addr = &vsk->remote_addr;
1142 
1143 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1144 			remote_addr->svm_cid = transport->get_local_cid();
1145 
1146 		/* XXX Should connect() or this function ensure remote_addr is
1147 		 * bound?
1148 		 */
1149 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1150 			err = -EINVAL;
1151 			goto out;
1152 		}
1153 	} else {
1154 		err = -EINVAL;
1155 		goto out;
1156 	}
1157 
1158 	if (!transport->dgram_allow(remote_addr->svm_cid,
1159 				    remote_addr->svm_port)) {
1160 		err = -EINVAL;
1161 		goto out;
1162 	}
1163 
1164 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1165 
1166 out:
1167 	release_sock(sk);
1168 	return err;
1169 }
1170 
1171 static int vsock_dgram_connect(struct socket *sock,
1172 			       struct sockaddr *addr, int addr_len, int flags)
1173 {
1174 	int err;
1175 	struct sock *sk;
1176 	struct vsock_sock *vsk;
1177 	struct sockaddr_vm *remote_addr;
1178 
1179 	sk = sock->sk;
1180 	vsk = vsock_sk(sk);
1181 
1182 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1183 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1184 		lock_sock(sk);
1185 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1186 				VMADDR_PORT_ANY);
1187 		sock->state = SS_UNCONNECTED;
1188 		release_sock(sk);
1189 		return 0;
1190 	} else if (err != 0)
1191 		return -EINVAL;
1192 
1193 	lock_sock(sk);
1194 
1195 	err = vsock_auto_bind(vsk);
1196 	if (err)
1197 		goto out;
1198 
1199 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1200 					 remote_addr->svm_port)) {
1201 		err = -EINVAL;
1202 		goto out;
1203 	}
1204 
1205 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1206 	sock->state = SS_CONNECTED;
1207 
1208 out:
1209 	release_sock(sk);
1210 	return err;
1211 }
1212 
1213 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1214 			       size_t len, int flags)
1215 {
1216 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1217 
1218 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1219 }
1220 
1221 static const struct proto_ops vsock_dgram_ops = {
1222 	.family = PF_VSOCK,
1223 	.owner = THIS_MODULE,
1224 	.release = vsock_release,
1225 	.bind = vsock_bind,
1226 	.connect = vsock_dgram_connect,
1227 	.socketpair = sock_no_socketpair,
1228 	.accept = sock_no_accept,
1229 	.getname = vsock_getname,
1230 	.poll = vsock_poll,
1231 	.ioctl = sock_no_ioctl,
1232 	.listen = sock_no_listen,
1233 	.shutdown = vsock_shutdown,
1234 	.sendmsg = vsock_dgram_sendmsg,
1235 	.recvmsg = vsock_dgram_recvmsg,
1236 	.mmap = sock_no_mmap,
1237 	.sendpage = sock_no_sendpage,
1238 };
1239 
1240 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1241 {
1242 	const struct vsock_transport *transport = vsk->transport;
1243 
1244 	if (!transport || !transport->cancel_pkt)
1245 		return -EOPNOTSUPP;
1246 
1247 	return transport->cancel_pkt(vsk);
1248 }
1249 
1250 static void vsock_connect_timeout(struct work_struct *work)
1251 {
1252 	struct sock *sk;
1253 	struct vsock_sock *vsk;
1254 
1255 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1256 	sk = sk_vsock(vsk);
1257 
1258 	lock_sock(sk);
1259 	if (sk->sk_state == TCP_SYN_SENT &&
1260 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1261 		sk->sk_state = TCP_CLOSE;
1262 		sk->sk_err = ETIMEDOUT;
1263 		sk->sk_error_report(sk);
1264 		vsock_transport_cancel_pkt(vsk);
1265 	}
1266 	release_sock(sk);
1267 
1268 	sock_put(sk);
1269 }
1270 
1271 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1272 			 int addr_len, int flags)
1273 {
1274 	int err;
1275 	struct sock *sk;
1276 	struct vsock_sock *vsk;
1277 	const struct vsock_transport *transport;
1278 	struct sockaddr_vm *remote_addr;
1279 	long timeout;
1280 	DEFINE_WAIT(wait);
1281 
1282 	err = 0;
1283 	sk = sock->sk;
1284 	vsk = vsock_sk(sk);
1285 
1286 	lock_sock(sk);
1287 
1288 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1289 	switch (sock->state) {
1290 	case SS_CONNECTED:
1291 		err = -EISCONN;
1292 		goto out;
1293 	case SS_DISCONNECTING:
1294 		err = -EINVAL;
1295 		goto out;
1296 	case SS_CONNECTING:
1297 		/* This continues on so we can move sock into the SS_CONNECTED
1298 		 * state once the connection has completed (at which point err
1299 		 * will be set to zero also).  Otherwise, we will either wait
1300 		 * for the connection or return -EALREADY should this be a
1301 		 * non-blocking call.
1302 		 */
1303 		err = -EALREADY;
1304 		break;
1305 	default:
1306 		if ((sk->sk_state == TCP_LISTEN) ||
1307 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1308 			err = -EINVAL;
1309 			goto out;
1310 		}
1311 
1312 		/* Set the remote address that we are connecting to. */
1313 		memcpy(&vsk->remote_addr, remote_addr,
1314 		       sizeof(vsk->remote_addr));
1315 
1316 		err = vsock_assign_transport(vsk, NULL);
1317 		if (err)
1318 			goto out;
1319 
1320 		transport = vsk->transport;
1321 
1322 		/* The hypervisor and well-known contexts do not have socket
1323 		 * endpoints.
1324 		 */
1325 		if (!transport ||
1326 		    !transport->stream_allow(remote_addr->svm_cid,
1327 					     remote_addr->svm_port)) {
1328 			err = -ENETUNREACH;
1329 			goto out;
1330 		}
1331 
1332 		err = vsock_auto_bind(vsk);
1333 		if (err)
1334 			goto out;
1335 
1336 		sk->sk_state = TCP_SYN_SENT;
1337 
1338 		err = transport->connect(vsk);
1339 		if (err < 0)
1340 			goto out;
1341 
1342 		/* Mark sock as connecting and set the error code to in
1343 		 * progress in case this is a non-blocking connect.
1344 		 */
1345 		sock->state = SS_CONNECTING;
1346 		err = -EINPROGRESS;
1347 	}
1348 
1349 	/* The receive path will handle all communication until we are able to
1350 	 * enter the connected state.  Here we wait for the connection to be
1351 	 * completed or a notification of an error.
1352 	 */
1353 	timeout = vsk->connect_timeout;
1354 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1355 
1356 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1357 		if (flags & O_NONBLOCK) {
1358 			/* If we're not going to block, we schedule a timeout
1359 			 * function to generate a timeout on the connection
1360 			 * attempt, in case the peer doesn't respond in a
1361 			 * timely manner. We hold on to the socket until the
1362 			 * timeout fires.
1363 			 */
1364 			sock_hold(sk);
1365 			schedule_delayed_work(&vsk->connect_work, timeout);
1366 
1367 			/* Skip ahead to preserve error code set above. */
1368 			goto out_wait;
1369 		}
1370 
1371 		release_sock(sk);
1372 		timeout = schedule_timeout(timeout);
1373 		lock_sock(sk);
1374 
1375 		if (signal_pending(current)) {
1376 			err = sock_intr_errno(timeout);
1377 			sk->sk_state = TCP_CLOSE;
1378 			sock->state = SS_UNCONNECTED;
1379 			vsock_transport_cancel_pkt(vsk);
1380 			goto out_wait;
1381 		} else if (timeout == 0) {
1382 			err = -ETIMEDOUT;
1383 			sk->sk_state = TCP_CLOSE;
1384 			sock->state = SS_UNCONNECTED;
1385 			vsock_transport_cancel_pkt(vsk);
1386 			goto out_wait;
1387 		}
1388 
1389 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1390 	}
1391 
1392 	if (sk->sk_err) {
1393 		err = -sk->sk_err;
1394 		sk->sk_state = TCP_CLOSE;
1395 		sock->state = SS_UNCONNECTED;
1396 	} else {
1397 		err = 0;
1398 	}
1399 
1400 out_wait:
1401 	finish_wait(sk_sleep(sk), &wait);
1402 out:
1403 	release_sock(sk);
1404 	return err;
1405 }
1406 
1407 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1408 			bool kern)
1409 {
1410 	struct sock *listener;
1411 	int err;
1412 	struct sock *connected;
1413 	struct vsock_sock *vconnected;
1414 	long timeout;
1415 	DEFINE_WAIT(wait);
1416 
1417 	err = 0;
1418 	listener = sock->sk;
1419 
1420 	lock_sock(listener);
1421 
1422 	if (!sock_type_connectible(sock->type)) {
1423 		err = -EOPNOTSUPP;
1424 		goto out;
1425 	}
1426 
1427 	if (listener->sk_state != TCP_LISTEN) {
1428 		err = -EINVAL;
1429 		goto out;
1430 	}
1431 
1432 	/* Wait for children sockets to appear; these are the new sockets
1433 	 * created upon connection establishment.
1434 	 */
1435 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1436 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1437 
1438 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1439 	       listener->sk_err == 0) {
1440 		release_sock(listener);
1441 		timeout = schedule_timeout(timeout);
1442 		finish_wait(sk_sleep(listener), &wait);
1443 		lock_sock(listener);
1444 
1445 		if (signal_pending(current)) {
1446 			err = sock_intr_errno(timeout);
1447 			goto out;
1448 		} else if (timeout == 0) {
1449 			err = -EAGAIN;
1450 			goto out;
1451 		}
1452 
1453 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1454 	}
1455 	finish_wait(sk_sleep(listener), &wait);
1456 
1457 	if (listener->sk_err)
1458 		err = -listener->sk_err;
1459 
1460 	if (connected) {
1461 		sk_acceptq_removed(listener);
1462 
1463 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1464 		vconnected = vsock_sk(connected);
1465 
1466 		/* If the listener socket has received an error, then we should
1467 		 * reject this socket and return.  Note that we simply mark the
1468 		 * socket rejected, drop our reference, and let the cleanup
1469 		 * function handle the cleanup; the fact that we found it in
1470 		 * the listener's accept queue guarantees that the cleanup
1471 		 * function hasn't run yet.
1472 		 */
1473 		if (err) {
1474 			vconnected->rejected = true;
1475 		} else {
1476 			newsock->state = SS_CONNECTED;
1477 			sock_graft(connected, newsock);
1478 		}
1479 
1480 		release_sock(connected);
1481 		sock_put(connected);
1482 	}
1483 
1484 out:
1485 	release_sock(listener);
1486 	return err;
1487 }
1488 
1489 static int vsock_listen(struct socket *sock, int backlog)
1490 {
1491 	int err;
1492 	struct sock *sk;
1493 	struct vsock_sock *vsk;
1494 
1495 	sk = sock->sk;
1496 
1497 	lock_sock(sk);
1498 
1499 	if (!sock_type_connectible(sk->sk_type)) {
1500 		err = -EOPNOTSUPP;
1501 		goto out;
1502 	}
1503 
1504 	if (sock->state != SS_UNCONNECTED) {
1505 		err = -EINVAL;
1506 		goto out;
1507 	}
1508 
1509 	vsk = vsock_sk(sk);
1510 
1511 	if (!vsock_addr_bound(&vsk->local_addr)) {
1512 		err = -EINVAL;
1513 		goto out;
1514 	}
1515 
1516 	sk->sk_max_ack_backlog = backlog;
1517 	sk->sk_state = TCP_LISTEN;
1518 
1519 	err = 0;
1520 
1521 out:
1522 	release_sock(sk);
1523 	return err;
1524 }
1525 
1526 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1527 				     const struct vsock_transport *transport,
1528 				     u64 val)
1529 {
1530 	if (val > vsk->buffer_max_size)
1531 		val = vsk->buffer_max_size;
1532 
1533 	if (val < vsk->buffer_min_size)
1534 		val = vsk->buffer_min_size;
1535 
1536 	if (val != vsk->buffer_size &&
1537 	    transport && transport->notify_buffer_size)
1538 		transport->notify_buffer_size(vsk, &val);
1539 
1540 	vsk->buffer_size = val;
1541 }
1542 
1543 static int vsock_connectible_setsockopt(struct socket *sock,
1544 					int level,
1545 					int optname,
1546 					sockptr_t optval,
1547 					unsigned int optlen)
1548 {
1549 	int err;
1550 	struct sock *sk;
1551 	struct vsock_sock *vsk;
1552 	const struct vsock_transport *transport;
1553 	u64 val;
1554 
1555 	if (level != AF_VSOCK)
1556 		return -ENOPROTOOPT;
1557 
1558 #define COPY_IN(_v)                                       \
1559 	do {						  \
1560 		if (optlen < sizeof(_v)) {		  \
1561 			err = -EINVAL;			  \
1562 			goto exit;			  \
1563 		}					  \
1564 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1565 			err = -EFAULT;					\
1566 			goto exit;					\
1567 		}							\
1568 	} while (0)
1569 
1570 	err = 0;
1571 	sk = sock->sk;
1572 	vsk = vsock_sk(sk);
1573 
1574 	lock_sock(sk);
1575 
1576 	transport = vsk->transport;
1577 
1578 	switch (optname) {
1579 	case SO_VM_SOCKETS_BUFFER_SIZE:
1580 		COPY_IN(val);
1581 		vsock_update_buffer_size(vsk, transport, val);
1582 		break;
1583 
1584 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1585 		COPY_IN(val);
1586 		vsk->buffer_max_size = val;
1587 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1588 		break;
1589 
1590 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1591 		COPY_IN(val);
1592 		vsk->buffer_min_size = val;
1593 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1594 		break;
1595 
1596 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1597 		struct __kernel_old_timeval tv;
1598 		COPY_IN(tv);
1599 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1600 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1601 			vsk->connect_timeout = tv.tv_sec * HZ +
1602 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1603 			if (vsk->connect_timeout == 0)
1604 				vsk->connect_timeout =
1605 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1606 
1607 		} else {
1608 			err = -ERANGE;
1609 		}
1610 		break;
1611 	}
1612 
1613 	default:
1614 		err = -ENOPROTOOPT;
1615 		break;
1616 	}
1617 
1618 #undef COPY_IN
1619 
1620 exit:
1621 	release_sock(sk);
1622 	return err;
1623 }
1624 
1625 static int vsock_connectible_getsockopt(struct socket *sock,
1626 					int level, int optname,
1627 					char __user *optval,
1628 					int __user *optlen)
1629 {
1630 	int err;
1631 	int len;
1632 	struct sock *sk;
1633 	struct vsock_sock *vsk;
1634 	u64 val;
1635 
1636 	if (level != AF_VSOCK)
1637 		return -ENOPROTOOPT;
1638 
1639 	err = get_user(len, optlen);
1640 	if (err != 0)
1641 		return err;
1642 
1643 #define COPY_OUT(_v)                            \
1644 	do {					\
1645 		if (len < sizeof(_v))		\
1646 			return -EINVAL;		\
1647 						\
1648 		len = sizeof(_v);		\
1649 		if (copy_to_user(optval, &_v, len) != 0)	\
1650 			return -EFAULT;				\
1651 								\
1652 	} while (0)
1653 
1654 	err = 0;
1655 	sk = sock->sk;
1656 	vsk = vsock_sk(sk);
1657 
1658 	switch (optname) {
1659 	case SO_VM_SOCKETS_BUFFER_SIZE:
1660 		val = vsk->buffer_size;
1661 		COPY_OUT(val);
1662 		break;
1663 
1664 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1665 		val = vsk->buffer_max_size;
1666 		COPY_OUT(val);
1667 		break;
1668 
1669 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1670 		val = vsk->buffer_min_size;
1671 		COPY_OUT(val);
1672 		break;
1673 
1674 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1675 		struct __kernel_old_timeval tv;
1676 		tv.tv_sec = vsk->connect_timeout / HZ;
1677 		tv.tv_usec =
1678 		    (vsk->connect_timeout -
1679 		     tv.tv_sec * HZ) * (1000000 / HZ);
1680 		COPY_OUT(tv);
1681 		break;
1682 	}
1683 	default:
1684 		return -ENOPROTOOPT;
1685 	}
1686 
1687 	err = put_user(len, optlen);
1688 	if (err != 0)
1689 		return -EFAULT;
1690 
1691 #undef COPY_OUT
1692 
1693 	return 0;
1694 }
1695 
1696 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1697 				     size_t len)
1698 {
1699 	struct sock *sk;
1700 	struct vsock_sock *vsk;
1701 	const struct vsock_transport *transport;
1702 	ssize_t total_written;
1703 	long timeout;
1704 	int err;
1705 	struct vsock_transport_send_notify_data send_data;
1706 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1707 
1708 	sk = sock->sk;
1709 	vsk = vsock_sk(sk);
1710 	total_written = 0;
1711 	err = 0;
1712 
1713 	if (msg->msg_flags & MSG_OOB)
1714 		return -EOPNOTSUPP;
1715 
1716 	lock_sock(sk);
1717 
1718 	transport = vsk->transport;
1719 
1720 	/* Callers should not provide a destination with stream sockets. */
1721 	if (msg->msg_namelen) {
1722 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1723 		goto out;
1724 	}
1725 
1726 	/* Send data only if both sides are not shutdown in the direction. */
1727 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1728 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1729 		err = -EPIPE;
1730 		goto out;
1731 	}
1732 
1733 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1734 	    !vsock_addr_bound(&vsk->local_addr)) {
1735 		err = -ENOTCONN;
1736 		goto out;
1737 	}
1738 
1739 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1740 		err = -EDESTADDRREQ;
1741 		goto out;
1742 	}
1743 
1744 	/* Wait for room in the produce queue to enqueue our user's data. */
1745 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1746 
1747 	err = transport->notify_send_init(vsk, &send_data);
1748 	if (err < 0)
1749 		goto out;
1750 
1751 	while (total_written < len) {
1752 		ssize_t written;
1753 
1754 		add_wait_queue(sk_sleep(sk), &wait);
1755 		while (vsock_stream_has_space(vsk) == 0 &&
1756 		       sk->sk_err == 0 &&
1757 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1758 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1759 
1760 			/* Don't wait for non-blocking sockets. */
1761 			if (timeout == 0) {
1762 				err = -EAGAIN;
1763 				remove_wait_queue(sk_sleep(sk), &wait);
1764 				goto out_err;
1765 			}
1766 
1767 			err = transport->notify_send_pre_block(vsk, &send_data);
1768 			if (err < 0) {
1769 				remove_wait_queue(sk_sleep(sk), &wait);
1770 				goto out_err;
1771 			}
1772 
1773 			release_sock(sk);
1774 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1775 			lock_sock(sk);
1776 			if (signal_pending(current)) {
1777 				err = sock_intr_errno(timeout);
1778 				remove_wait_queue(sk_sleep(sk), &wait);
1779 				goto out_err;
1780 			} else if (timeout == 0) {
1781 				err = -EAGAIN;
1782 				remove_wait_queue(sk_sleep(sk), &wait);
1783 				goto out_err;
1784 			}
1785 		}
1786 		remove_wait_queue(sk_sleep(sk), &wait);
1787 
1788 		/* These checks occur both as part of and after the loop
1789 		 * conditional since we need to check before and after
1790 		 * sleeping.
1791 		 */
1792 		if (sk->sk_err) {
1793 			err = -sk->sk_err;
1794 			goto out_err;
1795 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1796 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1797 			err = -EPIPE;
1798 			goto out_err;
1799 		}
1800 
1801 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1802 		if (err < 0)
1803 			goto out_err;
1804 
1805 		/* Note that enqueue will only write as many bytes as are free
1806 		 * in the produce queue, so we don't need to ensure len is
1807 		 * smaller than the queue size.  It is the caller's
1808 		 * responsibility to check how many bytes we were able to send.
1809 		 */
1810 
1811 		written = transport->stream_enqueue(
1812 				vsk, msg,
1813 				len - total_written);
1814 		if (written < 0) {
1815 			err = -ENOMEM;
1816 			goto out_err;
1817 		}
1818 
1819 		total_written += written;
1820 
1821 		err = transport->notify_send_post_enqueue(
1822 				vsk, written, &send_data);
1823 		if (err < 0)
1824 			goto out_err;
1825 
1826 	}
1827 
1828 out_err:
1829 	if (total_written > 0)
1830 		err = total_written;
1831 out:
1832 	release_sock(sk);
1833 	return err;
1834 }
1835 
1836 static int vsock_wait_data(struct sock *sk, struct wait_queue_entry *wait,
1837 			   long timeout,
1838 			   struct vsock_transport_recv_notify_data *recv_data,
1839 			   size_t target)
1840 {
1841 	const struct vsock_transport *transport;
1842 	struct vsock_sock *vsk;
1843 	s64 data;
1844 	int err;
1845 
1846 	vsk = vsock_sk(sk);
1847 	err = 0;
1848 	transport = vsk->transport;
1849 
1850 	while ((data = vsock_stream_has_data(vsk)) == 0) {
1851 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1852 
1853 		if (sk->sk_err != 0 ||
1854 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1855 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1856 			break;
1857 		}
1858 
1859 		/* Don't wait for non-blocking sockets. */
1860 		if (timeout == 0) {
1861 			err = -EAGAIN;
1862 			break;
1863 		}
1864 
1865 		if (recv_data) {
1866 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
1867 			if (err < 0)
1868 				break;
1869 		}
1870 
1871 		release_sock(sk);
1872 		timeout = schedule_timeout(timeout);
1873 		lock_sock(sk);
1874 
1875 		if (signal_pending(current)) {
1876 			err = sock_intr_errno(timeout);
1877 			break;
1878 		} else if (timeout == 0) {
1879 			err = -EAGAIN;
1880 			break;
1881 		}
1882 	}
1883 
1884 	finish_wait(sk_sleep(sk), wait);
1885 
1886 	if (err)
1887 		return err;
1888 
1889 	/* Internal transport error when checking for available
1890 	 * data. XXX This should be changed to a connection
1891 	 * reset in a later change.
1892 	 */
1893 	if (data < 0)
1894 		return -ENOMEM;
1895 
1896 	return data;
1897 }
1898 
1899 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1900 				  size_t len, int flags)
1901 {
1902 	struct vsock_transport_recv_notify_data recv_data;
1903 	const struct vsock_transport *transport;
1904 	struct vsock_sock *vsk;
1905 	ssize_t copied;
1906 	size_t target;
1907 	long timeout;
1908 	int err;
1909 
1910 	DEFINE_WAIT(wait);
1911 
1912 	vsk = vsock_sk(sk);
1913 	transport = vsk->transport;
1914 
1915 	/* We must not copy less than target bytes into the user's buffer
1916 	 * before returning successfully, so we wait for the consume queue to
1917 	 * have that much data to consume before dequeueing.  Note that this
1918 	 * makes it impossible to handle cases where target is greater than the
1919 	 * queue size.
1920 	 */
1921 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1922 	if (target >= transport->stream_rcvhiwat(vsk)) {
1923 		err = -ENOMEM;
1924 		goto out;
1925 	}
1926 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1927 	copied = 0;
1928 
1929 	err = transport->notify_recv_init(vsk, target, &recv_data);
1930 	if (err < 0)
1931 		goto out;
1932 
1933 
1934 	while (1) {
1935 		ssize_t read;
1936 
1937 		err = vsock_wait_data(sk, &wait, timeout, &recv_data, target);
1938 		if (err <= 0)
1939 			break;
1940 
1941 		err = transport->notify_recv_pre_dequeue(vsk, target,
1942 							 &recv_data);
1943 		if (err < 0)
1944 			break;
1945 
1946 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1947 		if (read < 0) {
1948 			err = -ENOMEM;
1949 			break;
1950 		}
1951 
1952 		copied += read;
1953 
1954 		err = transport->notify_recv_post_dequeue(vsk, target, read,
1955 						!(flags & MSG_PEEK), &recv_data);
1956 		if (err < 0)
1957 			goto out;
1958 
1959 		if (read >= target || flags & MSG_PEEK)
1960 			break;
1961 
1962 		target -= read;
1963 	}
1964 
1965 	if (sk->sk_err)
1966 		err = -sk->sk_err;
1967 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1968 		err = 0;
1969 
1970 	if (copied > 0)
1971 		err = copied;
1972 
1973 out:
1974 	return err;
1975 }
1976 
1977 static int
1978 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1979 			  int flags)
1980 {
1981 	struct sock *sk;
1982 	struct vsock_sock *vsk;
1983 	const struct vsock_transport *transport;
1984 	int err;
1985 
1986 	DEFINE_WAIT(wait);
1987 
1988 	sk = sock->sk;
1989 	vsk = vsock_sk(sk);
1990 	err = 0;
1991 
1992 	lock_sock(sk);
1993 
1994 	transport = vsk->transport;
1995 
1996 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1997 		/* Recvmsg is supposed to return 0 if a peer performs an
1998 		 * orderly shutdown. Differentiate between that case and when a
1999 		 * peer has not connected or a local shutdown occurred with the
2000 		 * SOCK_DONE flag.
2001 		 */
2002 		if (sock_flag(sk, SOCK_DONE))
2003 			err = 0;
2004 		else
2005 			err = -ENOTCONN;
2006 
2007 		goto out;
2008 	}
2009 
2010 	if (flags & MSG_OOB) {
2011 		err = -EOPNOTSUPP;
2012 		goto out;
2013 	}
2014 
2015 	/* We don't check peer_shutdown flag here since peer may actually shut
2016 	 * down, but there can be data in the queue that a local socket can
2017 	 * receive.
2018 	 */
2019 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2020 		err = 0;
2021 		goto out;
2022 	}
2023 
2024 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2025 	 * is not an error.  We may as well bail out now.
2026 	 */
2027 	if (!len) {
2028 		err = 0;
2029 		goto out;
2030 	}
2031 
2032 	err = __vsock_stream_recvmsg(sk, msg, len, flags);
2033 
2034 out:
2035 	release_sock(sk);
2036 	return err;
2037 }
2038 
2039 static const struct proto_ops vsock_stream_ops = {
2040 	.family = PF_VSOCK,
2041 	.owner = THIS_MODULE,
2042 	.release = vsock_release,
2043 	.bind = vsock_bind,
2044 	.connect = vsock_connect,
2045 	.socketpair = sock_no_socketpair,
2046 	.accept = vsock_accept,
2047 	.getname = vsock_getname,
2048 	.poll = vsock_poll,
2049 	.ioctl = sock_no_ioctl,
2050 	.listen = vsock_listen,
2051 	.shutdown = vsock_shutdown,
2052 	.setsockopt = vsock_connectible_setsockopt,
2053 	.getsockopt = vsock_connectible_getsockopt,
2054 	.sendmsg = vsock_connectible_sendmsg,
2055 	.recvmsg = vsock_connectible_recvmsg,
2056 	.mmap = sock_no_mmap,
2057 	.sendpage = sock_no_sendpage,
2058 };
2059 
2060 static int vsock_create(struct net *net, struct socket *sock,
2061 			int protocol, int kern)
2062 {
2063 	struct vsock_sock *vsk;
2064 	struct sock *sk;
2065 	int ret;
2066 
2067 	if (!sock)
2068 		return -EINVAL;
2069 
2070 	if (protocol && protocol != PF_VSOCK)
2071 		return -EPROTONOSUPPORT;
2072 
2073 	switch (sock->type) {
2074 	case SOCK_DGRAM:
2075 		sock->ops = &vsock_dgram_ops;
2076 		break;
2077 	case SOCK_STREAM:
2078 		sock->ops = &vsock_stream_ops;
2079 		break;
2080 	default:
2081 		return -ESOCKTNOSUPPORT;
2082 	}
2083 
2084 	sock->state = SS_UNCONNECTED;
2085 
2086 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2087 	if (!sk)
2088 		return -ENOMEM;
2089 
2090 	vsk = vsock_sk(sk);
2091 
2092 	if (sock->type == SOCK_DGRAM) {
2093 		ret = vsock_assign_transport(vsk, NULL);
2094 		if (ret < 0) {
2095 			sock_put(sk);
2096 			return ret;
2097 		}
2098 	}
2099 
2100 	vsock_insert_unbound(vsk);
2101 
2102 	return 0;
2103 }
2104 
2105 static const struct net_proto_family vsock_family_ops = {
2106 	.family = AF_VSOCK,
2107 	.create = vsock_create,
2108 	.owner = THIS_MODULE,
2109 };
2110 
2111 static long vsock_dev_do_ioctl(struct file *filp,
2112 			       unsigned int cmd, void __user *ptr)
2113 {
2114 	u32 __user *p = ptr;
2115 	u32 cid = VMADDR_CID_ANY;
2116 	int retval = 0;
2117 
2118 	switch (cmd) {
2119 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2120 		/* To be compatible with the VMCI behavior, we prioritize the
2121 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2122 		 */
2123 		if (transport_g2h)
2124 			cid = transport_g2h->get_local_cid();
2125 		else if (transport_h2g)
2126 			cid = transport_h2g->get_local_cid();
2127 
2128 		if (put_user(cid, p) != 0)
2129 			retval = -EFAULT;
2130 		break;
2131 
2132 	default:
2133 		retval = -ENOIOCTLCMD;
2134 	}
2135 
2136 	return retval;
2137 }
2138 
2139 static long vsock_dev_ioctl(struct file *filp,
2140 			    unsigned int cmd, unsigned long arg)
2141 {
2142 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2143 }
2144 
2145 #ifdef CONFIG_COMPAT
2146 static long vsock_dev_compat_ioctl(struct file *filp,
2147 				   unsigned int cmd, unsigned long arg)
2148 {
2149 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2150 }
2151 #endif
2152 
2153 static const struct file_operations vsock_device_ops = {
2154 	.owner		= THIS_MODULE,
2155 	.unlocked_ioctl	= vsock_dev_ioctl,
2156 #ifdef CONFIG_COMPAT
2157 	.compat_ioctl	= vsock_dev_compat_ioctl,
2158 #endif
2159 	.open		= nonseekable_open,
2160 };
2161 
2162 static struct miscdevice vsock_device = {
2163 	.name		= "vsock",
2164 	.fops		= &vsock_device_ops,
2165 };
2166 
2167 static int __init vsock_init(void)
2168 {
2169 	int err = 0;
2170 
2171 	vsock_init_tables();
2172 
2173 	vsock_proto.owner = THIS_MODULE;
2174 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2175 	err = misc_register(&vsock_device);
2176 	if (err) {
2177 		pr_err("Failed to register misc device\n");
2178 		goto err_reset_transport;
2179 	}
2180 
2181 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2182 	if (err) {
2183 		pr_err("Cannot register vsock protocol\n");
2184 		goto err_deregister_misc;
2185 	}
2186 
2187 	err = sock_register(&vsock_family_ops);
2188 	if (err) {
2189 		pr_err("could not register af_vsock (%d) address family: %d\n",
2190 		       AF_VSOCK, err);
2191 		goto err_unregister_proto;
2192 	}
2193 
2194 	return 0;
2195 
2196 err_unregister_proto:
2197 	proto_unregister(&vsock_proto);
2198 err_deregister_misc:
2199 	misc_deregister(&vsock_device);
2200 err_reset_transport:
2201 	return err;
2202 }
2203 
2204 static void __exit vsock_exit(void)
2205 {
2206 	misc_deregister(&vsock_device);
2207 	sock_unregister(AF_VSOCK);
2208 	proto_unregister(&vsock_proto);
2209 }
2210 
2211 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2212 {
2213 	return vsk->transport;
2214 }
2215 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2216 
2217 int vsock_core_register(const struct vsock_transport *t, int features)
2218 {
2219 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2220 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2221 
2222 	if (err)
2223 		return err;
2224 
2225 	t_h2g = transport_h2g;
2226 	t_g2h = transport_g2h;
2227 	t_dgram = transport_dgram;
2228 	t_local = transport_local;
2229 
2230 	if (features & VSOCK_TRANSPORT_F_H2G) {
2231 		if (t_h2g) {
2232 			err = -EBUSY;
2233 			goto err_busy;
2234 		}
2235 		t_h2g = t;
2236 	}
2237 
2238 	if (features & VSOCK_TRANSPORT_F_G2H) {
2239 		if (t_g2h) {
2240 			err = -EBUSY;
2241 			goto err_busy;
2242 		}
2243 		t_g2h = t;
2244 	}
2245 
2246 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2247 		if (t_dgram) {
2248 			err = -EBUSY;
2249 			goto err_busy;
2250 		}
2251 		t_dgram = t;
2252 	}
2253 
2254 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2255 		if (t_local) {
2256 			err = -EBUSY;
2257 			goto err_busy;
2258 		}
2259 		t_local = t;
2260 	}
2261 
2262 	transport_h2g = t_h2g;
2263 	transport_g2h = t_g2h;
2264 	transport_dgram = t_dgram;
2265 	transport_local = t_local;
2266 
2267 err_busy:
2268 	mutex_unlock(&vsock_register_mutex);
2269 	return err;
2270 }
2271 EXPORT_SYMBOL_GPL(vsock_core_register);
2272 
2273 void vsock_core_unregister(const struct vsock_transport *t)
2274 {
2275 	mutex_lock(&vsock_register_mutex);
2276 
2277 	if (transport_h2g == t)
2278 		transport_h2g = NULL;
2279 
2280 	if (transport_g2h == t)
2281 		transport_g2h = NULL;
2282 
2283 	if (transport_dgram == t)
2284 		transport_dgram = NULL;
2285 
2286 	if (transport_local == t)
2287 		transport_local = NULL;
2288 
2289 	mutex_unlock(&vsock_register_mutex);
2290 }
2291 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2292 
2293 module_init(vsock_init);
2294 module_exit(vsock_exit);
2295 
2296 MODULE_AUTHOR("VMware, Inc.");
2297 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2298 MODULE_VERSION("1.0.2.0-k");
2299 MODULE_LICENSE("GPL v2");
2300