1 /* 2 * VMware vSockets Driver 3 * 4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation version 2 and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 */ 15 16 /* Implementation notes: 17 * 18 * - There are two kinds of sockets: those created by user action (such as 19 * calling socket(2)) and those created by incoming connection request packets. 20 * 21 * - There are two "global" tables, one for bound sockets (sockets that have 22 * specified an address that they are responsible for) and one for connected 23 * sockets (sockets that have established a connection with another socket). 24 * These tables are "global" in that all sockets on the system are placed 25 * within them. - Note, though, that the bound table contains an extra entry 26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in 27 * that list. The bound table is used solely for lookup of sockets when packets 28 * are received and that's not necessary for SOCK_DGRAM sockets since we create 29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM 30 * sockets out of the bound hash buckets will reduce the chance of collisions 31 * when looking for SOCK_STREAM sockets and prevents us from having to check the 32 * socket type in the hash table lookups. 33 * 34 * - Sockets created by user action will either be "client" sockets that 35 * initiate a connection or "server" sockets that listen for connections; we do 36 * not support simultaneous connects (two "client" sockets connecting). 37 * 38 * - "Server" sockets are referred to as listener sockets throughout this 39 * implementation because they are in the VSOCK_SS_LISTEN state. When a 40 * connection request is received (the second kind of socket mentioned above), 41 * we create a new socket and refer to it as a pending socket. These pending 42 * sockets are placed on the pending connection list of the listener socket. 43 * When future packets are received for the address the listener socket is 44 * bound to, we check if the source of the packet is from one that has an 45 * existing pending connection. If it does, we process the packet for the 46 * pending socket. When that socket reaches the connected state, it is removed 47 * from the listener socket's pending list and enqueued in the listener 48 * socket's accept queue. Callers of accept(2) will accept connected sockets 49 * from the listener socket's accept queue. If the socket cannot be accepted 50 * for some reason then it is marked rejected. Once the connection is 51 * accepted, it is owned by the user process and the responsibility for cleanup 52 * falls with that user process. 53 * 54 * - It is possible that these pending sockets will never reach the connected 55 * state; in fact, we may never receive another packet after the connection 56 * request. Because of this, we must schedule a cleanup function to run in the 57 * future, after some amount of time passes where a connection should have been 58 * established. This function ensures that the socket is off all lists so it 59 * cannot be retrieved, then drops all references to the socket so it is cleaned 60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this 61 * function will also cleanup rejected sockets, those that reach the connected 62 * state but leave it before they have been accepted. 63 * 64 * - Lock ordering for pending or accept queue sockets is: 65 * 66 * lock_sock(listener); 67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING); 68 * 69 * Using explicit nested locking keeps lockdep happy since normally only one 70 * lock of a given class may be taken at a time. 71 * 72 * - Sockets created by user action will be cleaned up when the user process 73 * calls close(2), causing our release implementation to be called. Our release 74 * implementation will perform some cleanup then drop the last reference so our 75 * sk_destruct implementation is invoked. Our sk_destruct implementation will 76 * perform additional cleanup that's common for both types of sockets. 77 * 78 * - A socket's reference count is what ensures that the structure won't be 79 * freed. Each entry in a list (such as the "global" bound and connected tables 80 * and the listener socket's pending list and connected queue) ensures a 81 * reference. When we defer work until process context and pass a socket as our 82 * argument, we must ensure the reference count is increased to ensure the 83 * socket isn't freed before the function is run; the deferred function will 84 * then drop the reference. 85 */ 86 87 #include <linux/types.h> 88 #include <linux/bitops.h> 89 #include <linux/cred.h> 90 #include <linux/init.h> 91 #include <linux/io.h> 92 #include <linux/kernel.h> 93 #include <linux/sched/signal.h> 94 #include <linux/kmod.h> 95 #include <linux/list.h> 96 #include <linux/miscdevice.h> 97 #include <linux/module.h> 98 #include <linux/mutex.h> 99 #include <linux/net.h> 100 #include <linux/poll.h> 101 #include <linux/skbuff.h> 102 #include <linux/smp.h> 103 #include <linux/socket.h> 104 #include <linux/stddef.h> 105 #include <linux/unistd.h> 106 #include <linux/wait.h> 107 #include <linux/workqueue.h> 108 #include <net/sock.h> 109 #include <net/af_vsock.h> 110 111 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); 112 static void vsock_sk_destruct(struct sock *sk); 113 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 114 115 /* Protocol family. */ 116 static struct proto vsock_proto = { 117 .name = "AF_VSOCK", 118 .owner = THIS_MODULE, 119 .obj_size = sizeof(struct vsock_sock), 120 }; 121 122 /* The default peer timeout indicates how long we will wait for a peer response 123 * to a control message. 124 */ 125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) 126 127 static const struct vsock_transport *transport; 128 static DEFINE_MUTEX(vsock_register_mutex); 129 130 /**** EXPORTS ****/ 131 132 /* Get the ID of the local context. This is transport dependent. */ 133 134 int vm_sockets_get_local_cid(void) 135 { 136 return transport->get_local_cid(); 137 } 138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); 139 140 /**** UTILS ****/ 141 142 /* Each bound VSocket is stored in the bind hash table and each connected 143 * VSocket is stored in the connected hash table. 144 * 145 * Unbound sockets are all put on the same list attached to the end of the hash 146 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in 147 * the bucket that their local address hashes to (vsock_bound_sockets(addr) 148 * represents the list that addr hashes to). 149 * 150 * Specifically, we initialize the vsock_bind_table array to a size of 151 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through 152 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and 153 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function 154 * mods with VSOCK_HASH_SIZE to ensure this. 155 */ 156 #define VSOCK_HASH_SIZE 251 157 #define MAX_PORT_RETRIES 24 158 159 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE) 160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) 161 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE]) 162 163 /* XXX This can probably be implemented in a better way. */ 164 #define VSOCK_CONN_HASH(src, dst) \ 165 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) 166 #define vsock_connected_sockets(src, dst) \ 167 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) 168 #define vsock_connected_sockets_vsk(vsk) \ 169 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) 170 171 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; 172 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; 173 static DEFINE_SPINLOCK(vsock_table_lock); 174 175 /* Autobind this socket to the local address if necessary. */ 176 static int vsock_auto_bind(struct vsock_sock *vsk) 177 { 178 struct sock *sk = sk_vsock(vsk); 179 struct sockaddr_vm local_addr; 180 181 if (vsock_addr_bound(&vsk->local_addr)) 182 return 0; 183 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 184 return __vsock_bind(sk, &local_addr); 185 } 186 187 static void vsock_init_tables(void) 188 { 189 int i; 190 191 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) 192 INIT_LIST_HEAD(&vsock_bind_table[i]); 193 194 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) 195 INIT_LIST_HEAD(&vsock_connected_table[i]); 196 } 197 198 static void __vsock_insert_bound(struct list_head *list, 199 struct vsock_sock *vsk) 200 { 201 sock_hold(&vsk->sk); 202 list_add(&vsk->bound_table, list); 203 } 204 205 static void __vsock_insert_connected(struct list_head *list, 206 struct vsock_sock *vsk) 207 { 208 sock_hold(&vsk->sk); 209 list_add(&vsk->connected_table, list); 210 } 211 212 static void __vsock_remove_bound(struct vsock_sock *vsk) 213 { 214 list_del_init(&vsk->bound_table); 215 sock_put(&vsk->sk); 216 } 217 218 static void __vsock_remove_connected(struct vsock_sock *vsk) 219 { 220 list_del_init(&vsk->connected_table); 221 sock_put(&vsk->sk); 222 } 223 224 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) 225 { 226 struct vsock_sock *vsk; 227 228 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) 229 if (addr->svm_port == vsk->local_addr.svm_port) 230 return sk_vsock(vsk); 231 232 return NULL; 233 } 234 235 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, 236 struct sockaddr_vm *dst) 237 { 238 struct vsock_sock *vsk; 239 240 list_for_each_entry(vsk, vsock_connected_sockets(src, dst), 241 connected_table) { 242 if (vsock_addr_equals_addr(src, &vsk->remote_addr) && 243 dst->svm_port == vsk->local_addr.svm_port) { 244 return sk_vsock(vsk); 245 } 246 } 247 248 return NULL; 249 } 250 251 static bool __vsock_in_bound_table(struct vsock_sock *vsk) 252 { 253 return !list_empty(&vsk->bound_table); 254 } 255 256 static bool __vsock_in_connected_table(struct vsock_sock *vsk) 257 { 258 return !list_empty(&vsk->connected_table); 259 } 260 261 static void vsock_insert_unbound(struct vsock_sock *vsk) 262 { 263 spin_lock_bh(&vsock_table_lock); 264 __vsock_insert_bound(vsock_unbound_sockets, vsk); 265 spin_unlock_bh(&vsock_table_lock); 266 } 267 268 void vsock_insert_connected(struct vsock_sock *vsk) 269 { 270 struct list_head *list = vsock_connected_sockets( 271 &vsk->remote_addr, &vsk->local_addr); 272 273 spin_lock_bh(&vsock_table_lock); 274 __vsock_insert_connected(list, vsk); 275 spin_unlock_bh(&vsock_table_lock); 276 } 277 EXPORT_SYMBOL_GPL(vsock_insert_connected); 278 279 void vsock_remove_bound(struct vsock_sock *vsk) 280 { 281 spin_lock_bh(&vsock_table_lock); 282 __vsock_remove_bound(vsk); 283 spin_unlock_bh(&vsock_table_lock); 284 } 285 EXPORT_SYMBOL_GPL(vsock_remove_bound); 286 287 void vsock_remove_connected(struct vsock_sock *vsk) 288 { 289 spin_lock_bh(&vsock_table_lock); 290 __vsock_remove_connected(vsk); 291 spin_unlock_bh(&vsock_table_lock); 292 } 293 EXPORT_SYMBOL_GPL(vsock_remove_connected); 294 295 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) 296 { 297 struct sock *sk; 298 299 spin_lock_bh(&vsock_table_lock); 300 sk = __vsock_find_bound_socket(addr); 301 if (sk) 302 sock_hold(sk); 303 304 spin_unlock_bh(&vsock_table_lock); 305 306 return sk; 307 } 308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket); 309 310 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, 311 struct sockaddr_vm *dst) 312 { 313 struct sock *sk; 314 315 spin_lock_bh(&vsock_table_lock); 316 sk = __vsock_find_connected_socket(src, dst); 317 if (sk) 318 sock_hold(sk); 319 320 spin_unlock_bh(&vsock_table_lock); 321 322 return sk; 323 } 324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket); 325 326 static bool vsock_in_bound_table(struct vsock_sock *vsk) 327 { 328 bool ret; 329 330 spin_lock_bh(&vsock_table_lock); 331 ret = __vsock_in_bound_table(vsk); 332 spin_unlock_bh(&vsock_table_lock); 333 334 return ret; 335 } 336 337 static bool vsock_in_connected_table(struct vsock_sock *vsk) 338 { 339 bool ret; 340 341 spin_lock_bh(&vsock_table_lock); 342 ret = __vsock_in_connected_table(vsk); 343 spin_unlock_bh(&vsock_table_lock); 344 345 return ret; 346 } 347 348 void vsock_remove_sock(struct vsock_sock *vsk) 349 { 350 if (vsock_in_bound_table(vsk)) 351 vsock_remove_bound(vsk); 352 353 if (vsock_in_connected_table(vsk)) 354 vsock_remove_connected(vsk); 355 } 356 EXPORT_SYMBOL_GPL(vsock_remove_sock); 357 358 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) 359 { 360 int i; 361 362 spin_lock_bh(&vsock_table_lock); 363 364 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { 365 struct vsock_sock *vsk; 366 list_for_each_entry(vsk, &vsock_connected_table[i], 367 connected_table) 368 fn(sk_vsock(vsk)); 369 } 370 371 spin_unlock_bh(&vsock_table_lock); 372 } 373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); 374 375 void vsock_add_pending(struct sock *listener, struct sock *pending) 376 { 377 struct vsock_sock *vlistener; 378 struct vsock_sock *vpending; 379 380 vlistener = vsock_sk(listener); 381 vpending = vsock_sk(pending); 382 383 sock_hold(pending); 384 sock_hold(listener); 385 list_add_tail(&vpending->pending_links, &vlistener->pending_links); 386 } 387 EXPORT_SYMBOL_GPL(vsock_add_pending); 388 389 void vsock_remove_pending(struct sock *listener, struct sock *pending) 390 { 391 struct vsock_sock *vpending = vsock_sk(pending); 392 393 list_del_init(&vpending->pending_links); 394 sock_put(listener); 395 sock_put(pending); 396 } 397 EXPORT_SYMBOL_GPL(vsock_remove_pending); 398 399 void vsock_enqueue_accept(struct sock *listener, struct sock *connected) 400 { 401 struct vsock_sock *vlistener; 402 struct vsock_sock *vconnected; 403 404 vlistener = vsock_sk(listener); 405 vconnected = vsock_sk(connected); 406 407 sock_hold(connected); 408 sock_hold(listener); 409 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); 410 } 411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept); 412 413 static struct sock *vsock_dequeue_accept(struct sock *listener) 414 { 415 struct vsock_sock *vlistener; 416 struct vsock_sock *vconnected; 417 418 vlistener = vsock_sk(listener); 419 420 if (list_empty(&vlistener->accept_queue)) 421 return NULL; 422 423 vconnected = list_entry(vlistener->accept_queue.next, 424 struct vsock_sock, accept_queue); 425 426 list_del_init(&vconnected->accept_queue); 427 sock_put(listener); 428 /* The caller will need a reference on the connected socket so we let 429 * it call sock_put(). 430 */ 431 432 return sk_vsock(vconnected); 433 } 434 435 static bool vsock_is_accept_queue_empty(struct sock *sk) 436 { 437 struct vsock_sock *vsk = vsock_sk(sk); 438 return list_empty(&vsk->accept_queue); 439 } 440 441 static bool vsock_is_pending(struct sock *sk) 442 { 443 struct vsock_sock *vsk = vsock_sk(sk); 444 return !list_empty(&vsk->pending_links); 445 } 446 447 static int vsock_send_shutdown(struct sock *sk, int mode) 448 { 449 return transport->shutdown(vsock_sk(sk), mode); 450 } 451 452 void vsock_pending_work(struct work_struct *work) 453 { 454 struct sock *sk; 455 struct sock *listener; 456 struct vsock_sock *vsk; 457 bool cleanup; 458 459 vsk = container_of(work, struct vsock_sock, dwork.work); 460 sk = sk_vsock(vsk); 461 listener = vsk->listener; 462 cleanup = true; 463 464 lock_sock(listener); 465 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 466 467 if (vsock_is_pending(sk)) { 468 vsock_remove_pending(listener, sk); 469 470 listener->sk_ack_backlog--; 471 } else if (!vsk->rejected) { 472 /* We are not on the pending list and accept() did not reject 473 * us, so we must have been accepted by our user process. We 474 * just need to drop our references to the sockets and be on 475 * our way. 476 */ 477 cleanup = false; 478 goto out; 479 } 480 481 /* We need to remove ourself from the global connected sockets list so 482 * incoming packets can't find this socket, and to reduce the reference 483 * count. 484 */ 485 if (vsock_in_connected_table(vsk)) 486 vsock_remove_connected(vsk); 487 488 sk->sk_state = SS_FREE; 489 490 out: 491 release_sock(sk); 492 release_sock(listener); 493 if (cleanup) 494 sock_put(sk); 495 496 sock_put(sk); 497 sock_put(listener); 498 } 499 EXPORT_SYMBOL_GPL(vsock_pending_work); 500 501 /**** SOCKET OPERATIONS ****/ 502 503 static int __vsock_bind_stream(struct vsock_sock *vsk, 504 struct sockaddr_vm *addr) 505 { 506 static u32 port = LAST_RESERVED_PORT + 1; 507 struct sockaddr_vm new_addr; 508 509 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); 510 511 if (addr->svm_port == VMADDR_PORT_ANY) { 512 bool found = false; 513 unsigned int i; 514 515 for (i = 0; i < MAX_PORT_RETRIES; i++) { 516 if (port <= LAST_RESERVED_PORT) 517 port = LAST_RESERVED_PORT + 1; 518 519 new_addr.svm_port = port++; 520 521 if (!__vsock_find_bound_socket(&new_addr)) { 522 found = true; 523 break; 524 } 525 } 526 527 if (!found) 528 return -EADDRNOTAVAIL; 529 } else { 530 /* If port is in reserved range, ensure caller 531 * has necessary privileges. 532 */ 533 if (addr->svm_port <= LAST_RESERVED_PORT && 534 !capable(CAP_NET_BIND_SERVICE)) { 535 return -EACCES; 536 } 537 538 if (__vsock_find_bound_socket(&new_addr)) 539 return -EADDRINUSE; 540 } 541 542 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); 543 544 /* Remove stream sockets from the unbound list and add them to the hash 545 * table for easy lookup by its address. The unbound list is simply an 546 * extra entry at the end of the hash table, a trick used by AF_UNIX. 547 */ 548 __vsock_remove_bound(vsk); 549 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); 550 551 return 0; 552 } 553 554 static int __vsock_bind_dgram(struct vsock_sock *vsk, 555 struct sockaddr_vm *addr) 556 { 557 return transport->dgram_bind(vsk, addr); 558 } 559 560 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) 561 { 562 struct vsock_sock *vsk = vsock_sk(sk); 563 u32 cid; 564 int retval; 565 566 /* First ensure this socket isn't already bound. */ 567 if (vsock_addr_bound(&vsk->local_addr)) 568 return -EINVAL; 569 570 /* Now bind to the provided address or select appropriate values if 571 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that 572 * like AF_INET prevents binding to a non-local IP address (in most 573 * cases), we only allow binding to the local CID. 574 */ 575 cid = transport->get_local_cid(); 576 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) 577 return -EADDRNOTAVAIL; 578 579 switch (sk->sk_socket->type) { 580 case SOCK_STREAM: 581 spin_lock_bh(&vsock_table_lock); 582 retval = __vsock_bind_stream(vsk, addr); 583 spin_unlock_bh(&vsock_table_lock); 584 break; 585 586 case SOCK_DGRAM: 587 retval = __vsock_bind_dgram(vsk, addr); 588 break; 589 590 default: 591 retval = -EINVAL; 592 break; 593 } 594 595 return retval; 596 } 597 598 struct sock *__vsock_create(struct net *net, 599 struct socket *sock, 600 struct sock *parent, 601 gfp_t priority, 602 unsigned short type, 603 int kern) 604 { 605 struct sock *sk; 606 struct vsock_sock *psk; 607 struct vsock_sock *vsk; 608 609 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); 610 if (!sk) 611 return NULL; 612 613 sock_init_data(sock, sk); 614 615 /* sk->sk_type is normally set in sock_init_data, but only if sock is 616 * non-NULL. We make sure that our sockets always have a type by 617 * setting it here if needed. 618 */ 619 if (!sock) 620 sk->sk_type = type; 621 622 vsk = vsock_sk(sk); 623 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 624 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 625 626 sk->sk_destruct = vsock_sk_destruct; 627 sk->sk_backlog_rcv = vsock_queue_rcv_skb; 628 sk->sk_state = 0; 629 sock_reset_flag(sk, SOCK_DONE); 630 631 INIT_LIST_HEAD(&vsk->bound_table); 632 INIT_LIST_HEAD(&vsk->connected_table); 633 vsk->listener = NULL; 634 INIT_LIST_HEAD(&vsk->pending_links); 635 INIT_LIST_HEAD(&vsk->accept_queue); 636 vsk->rejected = false; 637 vsk->sent_request = false; 638 vsk->ignore_connecting_rst = false; 639 vsk->peer_shutdown = 0; 640 641 psk = parent ? vsock_sk(parent) : NULL; 642 if (parent) { 643 vsk->trusted = psk->trusted; 644 vsk->owner = get_cred(psk->owner); 645 vsk->connect_timeout = psk->connect_timeout; 646 } else { 647 vsk->trusted = capable(CAP_NET_ADMIN); 648 vsk->owner = get_current_cred(); 649 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; 650 } 651 652 if (transport->init(vsk, psk) < 0) { 653 sk_free(sk); 654 return NULL; 655 } 656 657 if (sock) 658 vsock_insert_unbound(vsk); 659 660 return sk; 661 } 662 EXPORT_SYMBOL_GPL(__vsock_create); 663 664 static void __vsock_release(struct sock *sk) 665 { 666 if (sk) { 667 struct sk_buff *skb; 668 struct sock *pending; 669 struct vsock_sock *vsk; 670 671 vsk = vsock_sk(sk); 672 pending = NULL; /* Compiler warning. */ 673 674 transport->release(vsk); 675 676 lock_sock(sk); 677 sock_orphan(sk); 678 sk->sk_shutdown = SHUTDOWN_MASK; 679 680 while ((skb = skb_dequeue(&sk->sk_receive_queue))) 681 kfree_skb(skb); 682 683 /* Clean up any sockets that never were accepted. */ 684 while ((pending = vsock_dequeue_accept(sk)) != NULL) { 685 __vsock_release(pending); 686 sock_put(pending); 687 } 688 689 release_sock(sk); 690 sock_put(sk); 691 } 692 } 693 694 static void vsock_sk_destruct(struct sock *sk) 695 { 696 struct vsock_sock *vsk = vsock_sk(sk); 697 698 transport->destruct(vsk); 699 700 /* When clearing these addresses, there's no need to set the family and 701 * possibly register the address family with the kernel. 702 */ 703 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 704 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); 705 706 put_cred(vsk->owner); 707 } 708 709 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 710 { 711 int err; 712 713 err = sock_queue_rcv_skb(sk, skb); 714 if (err) 715 kfree_skb(skb); 716 717 return err; 718 } 719 720 s64 vsock_stream_has_data(struct vsock_sock *vsk) 721 { 722 return transport->stream_has_data(vsk); 723 } 724 EXPORT_SYMBOL_GPL(vsock_stream_has_data); 725 726 s64 vsock_stream_has_space(struct vsock_sock *vsk) 727 { 728 return transport->stream_has_space(vsk); 729 } 730 EXPORT_SYMBOL_GPL(vsock_stream_has_space); 731 732 static int vsock_release(struct socket *sock) 733 { 734 __vsock_release(sock->sk); 735 sock->sk = NULL; 736 sock->state = SS_FREE; 737 738 return 0; 739 } 740 741 static int 742 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 743 { 744 int err; 745 struct sock *sk; 746 struct sockaddr_vm *vm_addr; 747 748 sk = sock->sk; 749 750 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) 751 return -EINVAL; 752 753 lock_sock(sk); 754 err = __vsock_bind(sk, vm_addr); 755 release_sock(sk); 756 757 return err; 758 } 759 760 static int vsock_getname(struct socket *sock, 761 struct sockaddr *addr, int *addr_len, int peer) 762 { 763 int err; 764 struct sock *sk; 765 struct vsock_sock *vsk; 766 struct sockaddr_vm *vm_addr; 767 768 sk = sock->sk; 769 vsk = vsock_sk(sk); 770 err = 0; 771 772 lock_sock(sk); 773 774 if (peer) { 775 if (sock->state != SS_CONNECTED) { 776 err = -ENOTCONN; 777 goto out; 778 } 779 vm_addr = &vsk->remote_addr; 780 } else { 781 vm_addr = &vsk->local_addr; 782 } 783 784 if (!vm_addr) { 785 err = -EINVAL; 786 goto out; 787 } 788 789 /* sys_getsockname() and sys_getpeername() pass us a 790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately 791 * that macro is defined in socket.c instead of .h, so we hardcode its 792 * value here. 793 */ 794 BUILD_BUG_ON(sizeof(*vm_addr) > 128); 795 memcpy(addr, vm_addr, sizeof(*vm_addr)); 796 *addr_len = sizeof(*vm_addr); 797 798 out: 799 release_sock(sk); 800 return err; 801 } 802 803 static int vsock_shutdown(struct socket *sock, int mode) 804 { 805 int err; 806 struct sock *sk; 807 808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses 809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode 810 * here like the other address families do. Note also that the 811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), 812 * which is what we want. 813 */ 814 mode++; 815 816 if ((mode & ~SHUTDOWN_MASK) || !mode) 817 return -EINVAL; 818 819 /* If this is a STREAM socket and it is not connected then bail out 820 * immediately. If it is a DGRAM socket then we must first kick the 821 * socket so that it wakes up from any sleeping calls, for example 822 * recv(), and then afterwards return the error. 823 */ 824 825 sk = sock->sk; 826 if (sock->state == SS_UNCONNECTED) { 827 err = -ENOTCONN; 828 if (sk->sk_type == SOCK_STREAM) 829 return err; 830 } else { 831 sock->state = SS_DISCONNECTING; 832 err = 0; 833 } 834 835 /* Receive and send shutdowns are treated alike. */ 836 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); 837 if (mode) { 838 lock_sock(sk); 839 sk->sk_shutdown |= mode; 840 sk->sk_state_change(sk); 841 release_sock(sk); 842 843 if (sk->sk_type == SOCK_STREAM) { 844 sock_reset_flag(sk, SOCK_DONE); 845 vsock_send_shutdown(sk, mode); 846 } 847 } 848 849 return err; 850 } 851 852 static unsigned int vsock_poll(struct file *file, struct socket *sock, 853 poll_table *wait) 854 { 855 struct sock *sk; 856 unsigned int mask; 857 struct vsock_sock *vsk; 858 859 sk = sock->sk; 860 vsk = vsock_sk(sk); 861 862 poll_wait(file, sk_sleep(sk), wait); 863 mask = 0; 864 865 if (sk->sk_err) 866 /* Signify that there has been an error on this socket. */ 867 mask |= POLLERR; 868 869 /* INET sockets treat local write shutdown and peer write shutdown as a 870 * case of POLLHUP set. 871 */ 872 if ((sk->sk_shutdown == SHUTDOWN_MASK) || 873 ((sk->sk_shutdown & SEND_SHUTDOWN) && 874 (vsk->peer_shutdown & SEND_SHUTDOWN))) { 875 mask |= POLLHUP; 876 } 877 878 if (sk->sk_shutdown & RCV_SHUTDOWN || 879 vsk->peer_shutdown & SEND_SHUTDOWN) { 880 mask |= POLLRDHUP; 881 } 882 883 if (sock->type == SOCK_DGRAM) { 884 /* For datagram sockets we can read if there is something in 885 * the queue and write as long as the socket isn't shutdown for 886 * sending. 887 */ 888 if (!skb_queue_empty(&sk->sk_receive_queue) || 889 (sk->sk_shutdown & RCV_SHUTDOWN)) { 890 mask |= POLLIN | POLLRDNORM; 891 } 892 893 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 894 mask |= POLLOUT | POLLWRNORM | POLLWRBAND; 895 896 } else if (sock->type == SOCK_STREAM) { 897 lock_sock(sk); 898 899 /* Listening sockets that have connections in their accept 900 * queue can be read. 901 */ 902 if (sk->sk_state == VSOCK_SS_LISTEN 903 && !vsock_is_accept_queue_empty(sk)) 904 mask |= POLLIN | POLLRDNORM; 905 906 /* If there is something in the queue then we can read. */ 907 if (transport->stream_is_active(vsk) && 908 !(sk->sk_shutdown & RCV_SHUTDOWN)) { 909 bool data_ready_now = false; 910 int ret = transport->notify_poll_in( 911 vsk, 1, &data_ready_now); 912 if (ret < 0) { 913 mask |= POLLERR; 914 } else { 915 if (data_ready_now) 916 mask |= POLLIN | POLLRDNORM; 917 918 } 919 } 920 921 /* Sockets whose connections have been closed, reset, or 922 * terminated should also be considered read, and we check the 923 * shutdown flag for that. 924 */ 925 if (sk->sk_shutdown & RCV_SHUTDOWN || 926 vsk->peer_shutdown & SEND_SHUTDOWN) { 927 mask |= POLLIN | POLLRDNORM; 928 } 929 930 /* Connected sockets that can produce data can be written. */ 931 if (sk->sk_state == SS_CONNECTED) { 932 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 933 bool space_avail_now = false; 934 int ret = transport->notify_poll_out( 935 vsk, 1, &space_avail_now); 936 if (ret < 0) { 937 mask |= POLLERR; 938 } else { 939 if (space_avail_now) 940 /* Remove POLLWRBAND since INET 941 * sockets are not setting it. 942 */ 943 mask |= POLLOUT | POLLWRNORM; 944 945 } 946 } 947 } 948 949 /* Simulate INET socket poll behaviors, which sets 950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read, 951 * but local send is not shutdown. 952 */ 953 if (sk->sk_state == SS_UNCONNECTED) { 954 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 955 mask |= POLLOUT | POLLWRNORM; 956 957 } 958 959 release_sock(sk); 960 } 961 962 return mask; 963 } 964 965 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 966 size_t len) 967 { 968 int err; 969 struct sock *sk; 970 struct vsock_sock *vsk; 971 struct sockaddr_vm *remote_addr; 972 973 if (msg->msg_flags & MSG_OOB) 974 return -EOPNOTSUPP; 975 976 /* For now, MSG_DONTWAIT is always assumed... */ 977 err = 0; 978 sk = sock->sk; 979 vsk = vsock_sk(sk); 980 981 lock_sock(sk); 982 983 err = vsock_auto_bind(vsk); 984 if (err) 985 goto out; 986 987 988 /* If the provided message contains an address, use that. Otherwise 989 * fall back on the socket's remote handle (if it has been connected). 990 */ 991 if (msg->msg_name && 992 vsock_addr_cast(msg->msg_name, msg->msg_namelen, 993 &remote_addr) == 0) { 994 /* Ensure this address is of the right type and is a valid 995 * destination. 996 */ 997 998 if (remote_addr->svm_cid == VMADDR_CID_ANY) 999 remote_addr->svm_cid = transport->get_local_cid(); 1000 1001 if (!vsock_addr_bound(remote_addr)) { 1002 err = -EINVAL; 1003 goto out; 1004 } 1005 } else if (sock->state == SS_CONNECTED) { 1006 remote_addr = &vsk->remote_addr; 1007 1008 if (remote_addr->svm_cid == VMADDR_CID_ANY) 1009 remote_addr->svm_cid = transport->get_local_cid(); 1010 1011 /* XXX Should connect() or this function ensure remote_addr is 1012 * bound? 1013 */ 1014 if (!vsock_addr_bound(&vsk->remote_addr)) { 1015 err = -EINVAL; 1016 goto out; 1017 } 1018 } else { 1019 err = -EINVAL; 1020 goto out; 1021 } 1022 1023 if (!transport->dgram_allow(remote_addr->svm_cid, 1024 remote_addr->svm_port)) { 1025 err = -EINVAL; 1026 goto out; 1027 } 1028 1029 err = transport->dgram_enqueue(vsk, remote_addr, msg, len); 1030 1031 out: 1032 release_sock(sk); 1033 return err; 1034 } 1035 1036 static int vsock_dgram_connect(struct socket *sock, 1037 struct sockaddr *addr, int addr_len, int flags) 1038 { 1039 int err; 1040 struct sock *sk; 1041 struct vsock_sock *vsk; 1042 struct sockaddr_vm *remote_addr; 1043 1044 sk = sock->sk; 1045 vsk = vsock_sk(sk); 1046 1047 err = vsock_addr_cast(addr, addr_len, &remote_addr); 1048 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { 1049 lock_sock(sk); 1050 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, 1051 VMADDR_PORT_ANY); 1052 sock->state = SS_UNCONNECTED; 1053 release_sock(sk); 1054 return 0; 1055 } else if (err != 0) 1056 return -EINVAL; 1057 1058 lock_sock(sk); 1059 1060 err = vsock_auto_bind(vsk); 1061 if (err) 1062 goto out; 1063 1064 if (!transport->dgram_allow(remote_addr->svm_cid, 1065 remote_addr->svm_port)) { 1066 err = -EINVAL; 1067 goto out; 1068 } 1069 1070 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); 1071 sock->state = SS_CONNECTED; 1072 1073 out: 1074 release_sock(sk); 1075 return err; 1076 } 1077 1078 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, 1079 size_t len, int flags) 1080 { 1081 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); 1082 } 1083 1084 static const struct proto_ops vsock_dgram_ops = { 1085 .family = PF_VSOCK, 1086 .owner = THIS_MODULE, 1087 .release = vsock_release, 1088 .bind = vsock_bind, 1089 .connect = vsock_dgram_connect, 1090 .socketpair = sock_no_socketpair, 1091 .accept = sock_no_accept, 1092 .getname = vsock_getname, 1093 .poll = vsock_poll, 1094 .ioctl = sock_no_ioctl, 1095 .listen = sock_no_listen, 1096 .shutdown = vsock_shutdown, 1097 .setsockopt = sock_no_setsockopt, 1098 .getsockopt = sock_no_getsockopt, 1099 .sendmsg = vsock_dgram_sendmsg, 1100 .recvmsg = vsock_dgram_recvmsg, 1101 .mmap = sock_no_mmap, 1102 .sendpage = sock_no_sendpage, 1103 }; 1104 1105 static void vsock_connect_timeout(struct work_struct *work) 1106 { 1107 struct sock *sk; 1108 struct vsock_sock *vsk; 1109 1110 vsk = container_of(work, struct vsock_sock, dwork.work); 1111 sk = sk_vsock(vsk); 1112 1113 lock_sock(sk); 1114 if (sk->sk_state == SS_CONNECTING && 1115 (sk->sk_shutdown != SHUTDOWN_MASK)) { 1116 sk->sk_state = SS_UNCONNECTED; 1117 sk->sk_err = ETIMEDOUT; 1118 sk->sk_error_report(sk); 1119 } 1120 release_sock(sk); 1121 1122 sock_put(sk); 1123 } 1124 1125 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, 1126 int addr_len, int flags) 1127 { 1128 int err; 1129 struct sock *sk; 1130 struct vsock_sock *vsk; 1131 struct sockaddr_vm *remote_addr; 1132 long timeout; 1133 DEFINE_WAIT(wait); 1134 1135 err = 0; 1136 sk = sock->sk; 1137 vsk = vsock_sk(sk); 1138 1139 lock_sock(sk); 1140 1141 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */ 1142 switch (sock->state) { 1143 case SS_CONNECTED: 1144 err = -EISCONN; 1145 goto out; 1146 case SS_DISCONNECTING: 1147 err = -EINVAL; 1148 goto out; 1149 case SS_CONNECTING: 1150 /* This continues on so we can move sock into the SS_CONNECTED 1151 * state once the connection has completed (at which point err 1152 * will be set to zero also). Otherwise, we will either wait 1153 * for the connection or return -EALREADY should this be a 1154 * non-blocking call. 1155 */ 1156 err = -EALREADY; 1157 break; 1158 default: 1159 if ((sk->sk_state == VSOCK_SS_LISTEN) || 1160 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { 1161 err = -EINVAL; 1162 goto out; 1163 } 1164 1165 /* The hypervisor and well-known contexts do not have socket 1166 * endpoints. 1167 */ 1168 if (!transport->stream_allow(remote_addr->svm_cid, 1169 remote_addr->svm_port)) { 1170 err = -ENETUNREACH; 1171 goto out; 1172 } 1173 1174 /* Set the remote address that we are connecting to. */ 1175 memcpy(&vsk->remote_addr, remote_addr, 1176 sizeof(vsk->remote_addr)); 1177 1178 err = vsock_auto_bind(vsk); 1179 if (err) 1180 goto out; 1181 1182 sk->sk_state = SS_CONNECTING; 1183 1184 err = transport->connect(vsk); 1185 if (err < 0) 1186 goto out; 1187 1188 /* Mark sock as connecting and set the error code to in 1189 * progress in case this is a non-blocking connect. 1190 */ 1191 sock->state = SS_CONNECTING; 1192 err = -EINPROGRESS; 1193 } 1194 1195 /* The receive path will handle all communication until we are able to 1196 * enter the connected state. Here we wait for the connection to be 1197 * completed or a notification of an error. 1198 */ 1199 timeout = vsk->connect_timeout; 1200 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1201 1202 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) { 1203 if (flags & O_NONBLOCK) { 1204 /* If we're not going to block, we schedule a timeout 1205 * function to generate a timeout on the connection 1206 * attempt, in case the peer doesn't respond in a 1207 * timely manner. We hold on to the socket until the 1208 * timeout fires. 1209 */ 1210 sock_hold(sk); 1211 INIT_DELAYED_WORK(&vsk->dwork, 1212 vsock_connect_timeout); 1213 schedule_delayed_work(&vsk->dwork, timeout); 1214 1215 /* Skip ahead to preserve error code set above. */ 1216 goto out_wait; 1217 } 1218 1219 release_sock(sk); 1220 timeout = schedule_timeout(timeout); 1221 lock_sock(sk); 1222 1223 if (signal_pending(current)) { 1224 err = sock_intr_errno(timeout); 1225 sk->sk_state = SS_UNCONNECTED; 1226 sock->state = SS_UNCONNECTED; 1227 goto out_wait; 1228 } else if (timeout == 0) { 1229 err = -ETIMEDOUT; 1230 sk->sk_state = SS_UNCONNECTED; 1231 sock->state = SS_UNCONNECTED; 1232 goto out_wait; 1233 } 1234 1235 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1236 } 1237 1238 if (sk->sk_err) { 1239 err = -sk->sk_err; 1240 sk->sk_state = SS_UNCONNECTED; 1241 sock->state = SS_UNCONNECTED; 1242 } else { 1243 err = 0; 1244 } 1245 1246 out_wait: 1247 finish_wait(sk_sleep(sk), &wait); 1248 out: 1249 release_sock(sk); 1250 return err; 1251 } 1252 1253 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags) 1254 { 1255 struct sock *listener; 1256 int err; 1257 struct sock *connected; 1258 struct vsock_sock *vconnected; 1259 long timeout; 1260 DEFINE_WAIT(wait); 1261 1262 err = 0; 1263 listener = sock->sk; 1264 1265 lock_sock(listener); 1266 1267 if (sock->type != SOCK_STREAM) { 1268 err = -EOPNOTSUPP; 1269 goto out; 1270 } 1271 1272 if (listener->sk_state != VSOCK_SS_LISTEN) { 1273 err = -EINVAL; 1274 goto out; 1275 } 1276 1277 /* Wait for children sockets to appear; these are the new sockets 1278 * created upon connection establishment. 1279 */ 1280 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); 1281 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1282 1283 while ((connected = vsock_dequeue_accept(listener)) == NULL && 1284 listener->sk_err == 0) { 1285 release_sock(listener); 1286 timeout = schedule_timeout(timeout); 1287 finish_wait(sk_sleep(listener), &wait); 1288 lock_sock(listener); 1289 1290 if (signal_pending(current)) { 1291 err = sock_intr_errno(timeout); 1292 goto out; 1293 } else if (timeout == 0) { 1294 err = -EAGAIN; 1295 goto out; 1296 } 1297 1298 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); 1299 } 1300 finish_wait(sk_sleep(listener), &wait); 1301 1302 if (listener->sk_err) 1303 err = -listener->sk_err; 1304 1305 if (connected) { 1306 listener->sk_ack_backlog--; 1307 1308 lock_sock_nested(connected, SINGLE_DEPTH_NESTING); 1309 vconnected = vsock_sk(connected); 1310 1311 /* If the listener socket has received an error, then we should 1312 * reject this socket and return. Note that we simply mark the 1313 * socket rejected, drop our reference, and let the cleanup 1314 * function handle the cleanup; the fact that we found it in 1315 * the listener's accept queue guarantees that the cleanup 1316 * function hasn't run yet. 1317 */ 1318 if (err) { 1319 vconnected->rejected = true; 1320 } else { 1321 newsock->state = SS_CONNECTED; 1322 sock_graft(connected, newsock); 1323 } 1324 1325 release_sock(connected); 1326 sock_put(connected); 1327 } 1328 1329 out: 1330 release_sock(listener); 1331 return err; 1332 } 1333 1334 static int vsock_listen(struct socket *sock, int backlog) 1335 { 1336 int err; 1337 struct sock *sk; 1338 struct vsock_sock *vsk; 1339 1340 sk = sock->sk; 1341 1342 lock_sock(sk); 1343 1344 if (sock->type != SOCK_STREAM) { 1345 err = -EOPNOTSUPP; 1346 goto out; 1347 } 1348 1349 if (sock->state != SS_UNCONNECTED) { 1350 err = -EINVAL; 1351 goto out; 1352 } 1353 1354 vsk = vsock_sk(sk); 1355 1356 if (!vsock_addr_bound(&vsk->local_addr)) { 1357 err = -EINVAL; 1358 goto out; 1359 } 1360 1361 sk->sk_max_ack_backlog = backlog; 1362 sk->sk_state = VSOCK_SS_LISTEN; 1363 1364 err = 0; 1365 1366 out: 1367 release_sock(sk); 1368 return err; 1369 } 1370 1371 static int vsock_stream_setsockopt(struct socket *sock, 1372 int level, 1373 int optname, 1374 char __user *optval, 1375 unsigned int optlen) 1376 { 1377 int err; 1378 struct sock *sk; 1379 struct vsock_sock *vsk; 1380 u64 val; 1381 1382 if (level != AF_VSOCK) 1383 return -ENOPROTOOPT; 1384 1385 #define COPY_IN(_v) \ 1386 do { \ 1387 if (optlen < sizeof(_v)) { \ 1388 err = -EINVAL; \ 1389 goto exit; \ 1390 } \ 1391 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \ 1392 err = -EFAULT; \ 1393 goto exit; \ 1394 } \ 1395 } while (0) 1396 1397 err = 0; 1398 sk = sock->sk; 1399 vsk = vsock_sk(sk); 1400 1401 lock_sock(sk); 1402 1403 switch (optname) { 1404 case SO_VM_SOCKETS_BUFFER_SIZE: 1405 COPY_IN(val); 1406 transport->set_buffer_size(vsk, val); 1407 break; 1408 1409 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1410 COPY_IN(val); 1411 transport->set_max_buffer_size(vsk, val); 1412 break; 1413 1414 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1415 COPY_IN(val); 1416 transport->set_min_buffer_size(vsk, val); 1417 break; 1418 1419 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1420 struct timeval tv; 1421 COPY_IN(tv); 1422 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && 1423 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { 1424 vsk->connect_timeout = tv.tv_sec * HZ + 1425 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); 1426 if (vsk->connect_timeout == 0) 1427 vsk->connect_timeout = 1428 VSOCK_DEFAULT_CONNECT_TIMEOUT; 1429 1430 } else { 1431 err = -ERANGE; 1432 } 1433 break; 1434 } 1435 1436 default: 1437 err = -ENOPROTOOPT; 1438 break; 1439 } 1440 1441 #undef COPY_IN 1442 1443 exit: 1444 release_sock(sk); 1445 return err; 1446 } 1447 1448 static int vsock_stream_getsockopt(struct socket *sock, 1449 int level, int optname, 1450 char __user *optval, 1451 int __user *optlen) 1452 { 1453 int err; 1454 int len; 1455 struct sock *sk; 1456 struct vsock_sock *vsk; 1457 u64 val; 1458 1459 if (level != AF_VSOCK) 1460 return -ENOPROTOOPT; 1461 1462 err = get_user(len, optlen); 1463 if (err != 0) 1464 return err; 1465 1466 #define COPY_OUT(_v) \ 1467 do { \ 1468 if (len < sizeof(_v)) \ 1469 return -EINVAL; \ 1470 \ 1471 len = sizeof(_v); \ 1472 if (copy_to_user(optval, &_v, len) != 0) \ 1473 return -EFAULT; \ 1474 \ 1475 } while (0) 1476 1477 err = 0; 1478 sk = sock->sk; 1479 vsk = vsock_sk(sk); 1480 1481 switch (optname) { 1482 case SO_VM_SOCKETS_BUFFER_SIZE: 1483 val = transport->get_buffer_size(vsk); 1484 COPY_OUT(val); 1485 break; 1486 1487 case SO_VM_SOCKETS_BUFFER_MAX_SIZE: 1488 val = transport->get_max_buffer_size(vsk); 1489 COPY_OUT(val); 1490 break; 1491 1492 case SO_VM_SOCKETS_BUFFER_MIN_SIZE: 1493 val = transport->get_min_buffer_size(vsk); 1494 COPY_OUT(val); 1495 break; 1496 1497 case SO_VM_SOCKETS_CONNECT_TIMEOUT: { 1498 struct timeval tv; 1499 tv.tv_sec = vsk->connect_timeout / HZ; 1500 tv.tv_usec = 1501 (vsk->connect_timeout - 1502 tv.tv_sec * HZ) * (1000000 / HZ); 1503 COPY_OUT(tv); 1504 break; 1505 } 1506 default: 1507 return -ENOPROTOOPT; 1508 } 1509 1510 err = put_user(len, optlen); 1511 if (err != 0) 1512 return -EFAULT; 1513 1514 #undef COPY_OUT 1515 1516 return 0; 1517 } 1518 1519 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, 1520 size_t len) 1521 { 1522 struct sock *sk; 1523 struct vsock_sock *vsk; 1524 ssize_t total_written; 1525 long timeout; 1526 int err; 1527 struct vsock_transport_send_notify_data send_data; 1528 1529 DEFINE_WAIT(wait); 1530 1531 sk = sock->sk; 1532 vsk = vsock_sk(sk); 1533 total_written = 0; 1534 err = 0; 1535 1536 if (msg->msg_flags & MSG_OOB) 1537 return -EOPNOTSUPP; 1538 1539 lock_sock(sk); 1540 1541 /* Callers should not provide a destination with stream sockets. */ 1542 if (msg->msg_namelen) { 1543 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP; 1544 goto out; 1545 } 1546 1547 /* Send data only if both sides are not shutdown in the direction. */ 1548 if (sk->sk_shutdown & SEND_SHUTDOWN || 1549 vsk->peer_shutdown & RCV_SHUTDOWN) { 1550 err = -EPIPE; 1551 goto out; 1552 } 1553 1554 if (sk->sk_state != SS_CONNECTED || 1555 !vsock_addr_bound(&vsk->local_addr)) { 1556 err = -ENOTCONN; 1557 goto out; 1558 } 1559 1560 if (!vsock_addr_bound(&vsk->remote_addr)) { 1561 err = -EDESTADDRREQ; 1562 goto out; 1563 } 1564 1565 /* Wait for room in the produce queue to enqueue our user's data. */ 1566 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1567 1568 err = transport->notify_send_init(vsk, &send_data); 1569 if (err < 0) 1570 goto out; 1571 1572 1573 while (total_written < len) { 1574 ssize_t written; 1575 1576 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1577 while (vsock_stream_has_space(vsk) == 0 && 1578 sk->sk_err == 0 && 1579 !(sk->sk_shutdown & SEND_SHUTDOWN) && 1580 !(vsk->peer_shutdown & RCV_SHUTDOWN)) { 1581 1582 /* Don't wait for non-blocking sockets. */ 1583 if (timeout == 0) { 1584 err = -EAGAIN; 1585 finish_wait(sk_sleep(sk), &wait); 1586 goto out_err; 1587 } 1588 1589 err = transport->notify_send_pre_block(vsk, &send_data); 1590 if (err < 0) { 1591 finish_wait(sk_sleep(sk), &wait); 1592 goto out_err; 1593 } 1594 1595 release_sock(sk); 1596 timeout = schedule_timeout(timeout); 1597 lock_sock(sk); 1598 if (signal_pending(current)) { 1599 err = sock_intr_errno(timeout); 1600 finish_wait(sk_sleep(sk), &wait); 1601 goto out_err; 1602 } else if (timeout == 0) { 1603 err = -EAGAIN; 1604 finish_wait(sk_sleep(sk), &wait); 1605 goto out_err; 1606 } 1607 1608 prepare_to_wait(sk_sleep(sk), &wait, 1609 TASK_INTERRUPTIBLE); 1610 } 1611 finish_wait(sk_sleep(sk), &wait); 1612 1613 /* These checks occur both as part of and after the loop 1614 * conditional since we need to check before and after 1615 * sleeping. 1616 */ 1617 if (sk->sk_err) { 1618 err = -sk->sk_err; 1619 goto out_err; 1620 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) || 1621 (vsk->peer_shutdown & RCV_SHUTDOWN)) { 1622 err = -EPIPE; 1623 goto out_err; 1624 } 1625 1626 err = transport->notify_send_pre_enqueue(vsk, &send_data); 1627 if (err < 0) 1628 goto out_err; 1629 1630 /* Note that enqueue will only write as many bytes as are free 1631 * in the produce queue, so we don't need to ensure len is 1632 * smaller than the queue size. It is the caller's 1633 * responsibility to check how many bytes we were able to send. 1634 */ 1635 1636 written = transport->stream_enqueue( 1637 vsk, msg, 1638 len - total_written); 1639 if (written < 0) { 1640 err = -ENOMEM; 1641 goto out_err; 1642 } 1643 1644 total_written += written; 1645 1646 err = transport->notify_send_post_enqueue( 1647 vsk, written, &send_data); 1648 if (err < 0) 1649 goto out_err; 1650 1651 } 1652 1653 out_err: 1654 if (total_written > 0) 1655 err = total_written; 1656 out: 1657 release_sock(sk); 1658 return err; 1659 } 1660 1661 1662 static int 1663 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1664 int flags) 1665 { 1666 struct sock *sk; 1667 struct vsock_sock *vsk; 1668 int err; 1669 size_t target; 1670 ssize_t copied; 1671 long timeout; 1672 struct vsock_transport_recv_notify_data recv_data; 1673 1674 DEFINE_WAIT(wait); 1675 1676 sk = sock->sk; 1677 vsk = vsock_sk(sk); 1678 err = 0; 1679 1680 lock_sock(sk); 1681 1682 if (sk->sk_state != SS_CONNECTED) { 1683 /* Recvmsg is supposed to return 0 if a peer performs an 1684 * orderly shutdown. Differentiate between that case and when a 1685 * peer has not connected or a local shutdown occured with the 1686 * SOCK_DONE flag. 1687 */ 1688 if (sock_flag(sk, SOCK_DONE)) 1689 err = 0; 1690 else 1691 err = -ENOTCONN; 1692 1693 goto out; 1694 } 1695 1696 if (flags & MSG_OOB) { 1697 err = -EOPNOTSUPP; 1698 goto out; 1699 } 1700 1701 /* We don't check peer_shutdown flag here since peer may actually shut 1702 * down, but there can be data in the queue that a local socket can 1703 * receive. 1704 */ 1705 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1706 err = 0; 1707 goto out; 1708 } 1709 1710 /* It is valid on Linux to pass in a zero-length receive buffer. This 1711 * is not an error. We may as well bail out now. 1712 */ 1713 if (!len) { 1714 err = 0; 1715 goto out; 1716 } 1717 1718 /* We must not copy less than target bytes into the user's buffer 1719 * before returning successfully, so we wait for the consume queue to 1720 * have that much data to consume before dequeueing. Note that this 1721 * makes it impossible to handle cases where target is greater than the 1722 * queue size. 1723 */ 1724 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1725 if (target >= transport->stream_rcvhiwat(vsk)) { 1726 err = -ENOMEM; 1727 goto out; 1728 } 1729 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1730 copied = 0; 1731 1732 err = transport->notify_recv_init(vsk, target, &recv_data); 1733 if (err < 0) 1734 goto out; 1735 1736 1737 while (1) { 1738 s64 ready; 1739 1740 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 1741 ready = vsock_stream_has_data(vsk); 1742 1743 if (ready == 0) { 1744 if (sk->sk_err != 0 || 1745 (sk->sk_shutdown & RCV_SHUTDOWN) || 1746 (vsk->peer_shutdown & SEND_SHUTDOWN)) { 1747 finish_wait(sk_sleep(sk), &wait); 1748 break; 1749 } 1750 /* Don't wait for non-blocking sockets. */ 1751 if (timeout == 0) { 1752 err = -EAGAIN; 1753 finish_wait(sk_sleep(sk), &wait); 1754 break; 1755 } 1756 1757 err = transport->notify_recv_pre_block( 1758 vsk, target, &recv_data); 1759 if (err < 0) { 1760 finish_wait(sk_sleep(sk), &wait); 1761 break; 1762 } 1763 release_sock(sk); 1764 timeout = schedule_timeout(timeout); 1765 lock_sock(sk); 1766 1767 if (signal_pending(current)) { 1768 err = sock_intr_errno(timeout); 1769 finish_wait(sk_sleep(sk), &wait); 1770 break; 1771 } else if (timeout == 0) { 1772 err = -EAGAIN; 1773 finish_wait(sk_sleep(sk), &wait); 1774 break; 1775 } 1776 } else { 1777 ssize_t read; 1778 1779 finish_wait(sk_sleep(sk), &wait); 1780 1781 if (ready < 0) { 1782 /* Invalid queue pair content. XXX This should 1783 * be changed to a connection reset in a later 1784 * change. 1785 */ 1786 1787 err = -ENOMEM; 1788 goto out; 1789 } 1790 1791 err = transport->notify_recv_pre_dequeue( 1792 vsk, target, &recv_data); 1793 if (err < 0) 1794 break; 1795 1796 read = transport->stream_dequeue( 1797 vsk, msg, 1798 len - copied, flags); 1799 if (read < 0) { 1800 err = -ENOMEM; 1801 break; 1802 } 1803 1804 copied += read; 1805 1806 err = transport->notify_recv_post_dequeue( 1807 vsk, target, read, 1808 !(flags & MSG_PEEK), &recv_data); 1809 if (err < 0) 1810 goto out; 1811 1812 if (read >= target || flags & MSG_PEEK) 1813 break; 1814 1815 target -= read; 1816 } 1817 } 1818 1819 if (sk->sk_err) 1820 err = -sk->sk_err; 1821 else if (sk->sk_shutdown & RCV_SHUTDOWN) 1822 err = 0; 1823 1824 if (copied > 0) 1825 err = copied; 1826 1827 out: 1828 release_sock(sk); 1829 return err; 1830 } 1831 1832 static const struct proto_ops vsock_stream_ops = { 1833 .family = PF_VSOCK, 1834 .owner = THIS_MODULE, 1835 .release = vsock_release, 1836 .bind = vsock_bind, 1837 .connect = vsock_stream_connect, 1838 .socketpair = sock_no_socketpair, 1839 .accept = vsock_accept, 1840 .getname = vsock_getname, 1841 .poll = vsock_poll, 1842 .ioctl = sock_no_ioctl, 1843 .listen = vsock_listen, 1844 .shutdown = vsock_shutdown, 1845 .setsockopt = vsock_stream_setsockopt, 1846 .getsockopt = vsock_stream_getsockopt, 1847 .sendmsg = vsock_stream_sendmsg, 1848 .recvmsg = vsock_stream_recvmsg, 1849 .mmap = sock_no_mmap, 1850 .sendpage = sock_no_sendpage, 1851 }; 1852 1853 static int vsock_create(struct net *net, struct socket *sock, 1854 int protocol, int kern) 1855 { 1856 if (!sock) 1857 return -EINVAL; 1858 1859 if (protocol && protocol != PF_VSOCK) 1860 return -EPROTONOSUPPORT; 1861 1862 switch (sock->type) { 1863 case SOCK_DGRAM: 1864 sock->ops = &vsock_dgram_ops; 1865 break; 1866 case SOCK_STREAM: 1867 sock->ops = &vsock_stream_ops; 1868 break; 1869 default: 1870 return -ESOCKTNOSUPPORT; 1871 } 1872 1873 sock->state = SS_UNCONNECTED; 1874 1875 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; 1876 } 1877 1878 static const struct net_proto_family vsock_family_ops = { 1879 .family = AF_VSOCK, 1880 .create = vsock_create, 1881 .owner = THIS_MODULE, 1882 }; 1883 1884 static long vsock_dev_do_ioctl(struct file *filp, 1885 unsigned int cmd, void __user *ptr) 1886 { 1887 u32 __user *p = ptr; 1888 int retval = 0; 1889 1890 switch (cmd) { 1891 case IOCTL_VM_SOCKETS_GET_LOCAL_CID: 1892 if (put_user(transport->get_local_cid(), p) != 0) 1893 retval = -EFAULT; 1894 break; 1895 1896 default: 1897 pr_err("Unknown ioctl %d\n", cmd); 1898 retval = -EINVAL; 1899 } 1900 1901 return retval; 1902 } 1903 1904 static long vsock_dev_ioctl(struct file *filp, 1905 unsigned int cmd, unsigned long arg) 1906 { 1907 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); 1908 } 1909 1910 #ifdef CONFIG_COMPAT 1911 static long vsock_dev_compat_ioctl(struct file *filp, 1912 unsigned int cmd, unsigned long arg) 1913 { 1914 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); 1915 } 1916 #endif 1917 1918 static const struct file_operations vsock_device_ops = { 1919 .owner = THIS_MODULE, 1920 .unlocked_ioctl = vsock_dev_ioctl, 1921 #ifdef CONFIG_COMPAT 1922 .compat_ioctl = vsock_dev_compat_ioctl, 1923 #endif 1924 .open = nonseekable_open, 1925 }; 1926 1927 static struct miscdevice vsock_device = { 1928 .name = "vsock", 1929 .fops = &vsock_device_ops, 1930 }; 1931 1932 int __vsock_core_init(const struct vsock_transport *t, struct module *owner) 1933 { 1934 int err = mutex_lock_interruptible(&vsock_register_mutex); 1935 1936 if (err) 1937 return err; 1938 1939 if (transport) { 1940 err = -EBUSY; 1941 goto err_busy; 1942 } 1943 1944 /* Transport must be the owner of the protocol so that it can't 1945 * unload while there are open sockets. 1946 */ 1947 vsock_proto.owner = owner; 1948 transport = t; 1949 1950 vsock_init_tables(); 1951 1952 vsock_device.minor = MISC_DYNAMIC_MINOR; 1953 err = misc_register(&vsock_device); 1954 if (err) { 1955 pr_err("Failed to register misc device\n"); 1956 goto err_reset_transport; 1957 } 1958 1959 err = proto_register(&vsock_proto, 1); /* we want our slab */ 1960 if (err) { 1961 pr_err("Cannot register vsock protocol\n"); 1962 goto err_deregister_misc; 1963 } 1964 1965 err = sock_register(&vsock_family_ops); 1966 if (err) { 1967 pr_err("could not register af_vsock (%d) address family: %d\n", 1968 AF_VSOCK, err); 1969 goto err_unregister_proto; 1970 } 1971 1972 mutex_unlock(&vsock_register_mutex); 1973 return 0; 1974 1975 err_unregister_proto: 1976 proto_unregister(&vsock_proto); 1977 err_deregister_misc: 1978 misc_deregister(&vsock_device); 1979 err_reset_transport: 1980 transport = NULL; 1981 err_busy: 1982 mutex_unlock(&vsock_register_mutex); 1983 return err; 1984 } 1985 EXPORT_SYMBOL_GPL(__vsock_core_init); 1986 1987 void vsock_core_exit(void) 1988 { 1989 mutex_lock(&vsock_register_mutex); 1990 1991 misc_deregister(&vsock_device); 1992 sock_unregister(AF_VSOCK); 1993 proto_unregister(&vsock_proto); 1994 1995 /* We do not want the assignment below re-ordered. */ 1996 mb(); 1997 transport = NULL; 1998 1999 mutex_unlock(&vsock_register_mutex); 2000 } 2001 EXPORT_SYMBOL_GPL(vsock_core_exit); 2002 2003 const struct vsock_transport *vsock_core_get_transport(void) 2004 { 2005 /* vsock_register_mutex not taken since only the transport uses this 2006 * function and only while registered. 2007 */ 2008 return transport; 2009 } 2010 EXPORT_SYMBOL_GPL(vsock_core_get_transport); 2011 2012 MODULE_AUTHOR("VMware, Inc."); 2013 MODULE_DESCRIPTION("VMware Virtual Socket Family"); 2014 MODULE_VERSION("1.0.2.0-k"); 2015 MODULE_LICENSE("GPL v2"); 2016