xref: /openbmc/linux/net/vmw_vsock/af_vsock.c (revision 0069928727c2e95ca26c738fbe6e4b241aeaaf08)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119 static void vsock_close(struct sock *sk, long timeout);
120 
121 /* Protocol family. */
122 struct proto vsock_proto = {
123 	.name = "AF_VSOCK",
124 	.owner = THIS_MODULE,
125 	.obj_size = sizeof(struct vsock_sock),
126 	.close = vsock_close,
127 #ifdef CONFIG_BPF_SYSCALL
128 	.psock_update_sk_prot = vsock_bpf_update_proto,
129 #endif
130 };
131 
132 /* The default peer timeout indicates how long we will wait for a peer response
133  * to a control message.
134  */
135 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
136 
137 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
138 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
140 
141 /* Transport used for host->guest communication */
142 static const struct vsock_transport *transport_h2g;
143 /* Transport used for guest->host communication */
144 static const struct vsock_transport *transport_g2h;
145 /* Transport used for DGRAM communication */
146 static const struct vsock_transport *transport_dgram;
147 /* Transport used for local communication */
148 static const struct vsock_transport *transport_local;
149 static DEFINE_MUTEX(vsock_register_mutex);
150 
151 /**** UTILS ****/
152 
153 /* Each bound VSocket is stored in the bind hash table and each connected
154  * VSocket is stored in the connected hash table.
155  *
156  * Unbound sockets are all put on the same list attached to the end of the hash
157  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
158  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
159  * represents the list that addr hashes to).
160  *
161  * Specifically, we initialize the vsock_bind_table array to a size of
162  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
163  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
164  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
165  * mods with VSOCK_HASH_SIZE to ensure this.
166  */
167 #define MAX_PORT_RETRIES        24
168 
169 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
170 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
171 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
172 
173 /* XXX This can probably be implemented in a better way. */
174 #define VSOCK_CONN_HASH(src, dst)				\
175 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
176 #define vsock_connected_sockets(src, dst)		\
177 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
178 #define vsock_connected_sockets_vsk(vsk)				\
179 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
180 
181 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
182 EXPORT_SYMBOL_GPL(vsock_bind_table);
183 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
184 EXPORT_SYMBOL_GPL(vsock_connected_table);
185 DEFINE_SPINLOCK(vsock_table_lock);
186 EXPORT_SYMBOL_GPL(vsock_table_lock);
187 
188 /* Autobind this socket to the local address if necessary. */
189 static int vsock_auto_bind(struct vsock_sock *vsk)
190 {
191 	struct sock *sk = sk_vsock(vsk);
192 	struct sockaddr_vm local_addr;
193 
194 	if (vsock_addr_bound(&vsk->local_addr))
195 		return 0;
196 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
197 	return __vsock_bind(sk, &local_addr);
198 }
199 
200 static void vsock_init_tables(void)
201 {
202 	int i;
203 
204 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
205 		INIT_LIST_HEAD(&vsock_bind_table[i]);
206 
207 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
208 		INIT_LIST_HEAD(&vsock_connected_table[i]);
209 }
210 
211 static void __vsock_insert_bound(struct list_head *list,
212 				 struct vsock_sock *vsk)
213 {
214 	sock_hold(&vsk->sk);
215 	list_add(&vsk->bound_table, list);
216 }
217 
218 static void __vsock_insert_connected(struct list_head *list,
219 				     struct vsock_sock *vsk)
220 {
221 	sock_hold(&vsk->sk);
222 	list_add(&vsk->connected_table, list);
223 }
224 
225 static void __vsock_remove_bound(struct vsock_sock *vsk)
226 {
227 	list_del_init(&vsk->bound_table);
228 	sock_put(&vsk->sk);
229 }
230 
231 static void __vsock_remove_connected(struct vsock_sock *vsk)
232 {
233 	list_del_init(&vsk->connected_table);
234 	sock_put(&vsk->sk);
235 }
236 
237 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
238 {
239 	struct vsock_sock *vsk;
240 
241 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
242 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
243 			return sk_vsock(vsk);
244 
245 		if (addr->svm_port == vsk->local_addr.svm_port &&
246 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
247 		     addr->svm_cid == VMADDR_CID_ANY))
248 			return sk_vsock(vsk);
249 	}
250 
251 	return NULL;
252 }
253 
254 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
255 						  struct sockaddr_vm *dst)
256 {
257 	struct vsock_sock *vsk;
258 
259 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
260 			    connected_table) {
261 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
262 		    dst->svm_port == vsk->local_addr.svm_port) {
263 			return sk_vsock(vsk);
264 		}
265 	}
266 
267 	return NULL;
268 }
269 
270 static void vsock_insert_unbound(struct vsock_sock *vsk)
271 {
272 	spin_lock_bh(&vsock_table_lock);
273 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
274 	spin_unlock_bh(&vsock_table_lock);
275 }
276 
277 void vsock_insert_connected(struct vsock_sock *vsk)
278 {
279 	struct list_head *list = vsock_connected_sockets(
280 		&vsk->remote_addr, &vsk->local_addr);
281 
282 	spin_lock_bh(&vsock_table_lock);
283 	__vsock_insert_connected(list, vsk);
284 	spin_unlock_bh(&vsock_table_lock);
285 }
286 EXPORT_SYMBOL_GPL(vsock_insert_connected);
287 
288 void vsock_remove_bound(struct vsock_sock *vsk)
289 {
290 	spin_lock_bh(&vsock_table_lock);
291 	if (__vsock_in_bound_table(vsk))
292 		__vsock_remove_bound(vsk);
293 	spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_bound);
296 
297 void vsock_remove_connected(struct vsock_sock *vsk)
298 {
299 	spin_lock_bh(&vsock_table_lock);
300 	if (__vsock_in_connected_table(vsk))
301 		__vsock_remove_connected(vsk);
302 	spin_unlock_bh(&vsock_table_lock);
303 }
304 EXPORT_SYMBOL_GPL(vsock_remove_connected);
305 
306 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
307 {
308 	struct sock *sk;
309 
310 	spin_lock_bh(&vsock_table_lock);
311 	sk = __vsock_find_bound_socket(addr);
312 	if (sk)
313 		sock_hold(sk);
314 
315 	spin_unlock_bh(&vsock_table_lock);
316 
317 	return sk;
318 }
319 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
320 
321 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
322 					 struct sockaddr_vm *dst)
323 {
324 	struct sock *sk;
325 
326 	spin_lock_bh(&vsock_table_lock);
327 	sk = __vsock_find_connected_socket(src, dst);
328 	if (sk)
329 		sock_hold(sk);
330 
331 	spin_unlock_bh(&vsock_table_lock);
332 
333 	return sk;
334 }
335 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
336 
337 void vsock_remove_sock(struct vsock_sock *vsk)
338 {
339 	vsock_remove_bound(vsk);
340 	vsock_remove_connected(vsk);
341 }
342 EXPORT_SYMBOL_GPL(vsock_remove_sock);
343 
344 void vsock_for_each_connected_socket(struct vsock_transport *transport,
345 				     void (*fn)(struct sock *sk))
346 {
347 	int i;
348 
349 	spin_lock_bh(&vsock_table_lock);
350 
351 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
352 		struct vsock_sock *vsk;
353 		list_for_each_entry(vsk, &vsock_connected_table[i],
354 				    connected_table) {
355 			if (vsk->transport != transport)
356 				continue;
357 
358 			fn(sk_vsock(vsk));
359 		}
360 	}
361 
362 	spin_unlock_bh(&vsock_table_lock);
363 }
364 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
365 
366 void vsock_add_pending(struct sock *listener, struct sock *pending)
367 {
368 	struct vsock_sock *vlistener;
369 	struct vsock_sock *vpending;
370 
371 	vlistener = vsock_sk(listener);
372 	vpending = vsock_sk(pending);
373 
374 	sock_hold(pending);
375 	sock_hold(listener);
376 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
377 }
378 EXPORT_SYMBOL_GPL(vsock_add_pending);
379 
380 void vsock_remove_pending(struct sock *listener, struct sock *pending)
381 {
382 	struct vsock_sock *vpending = vsock_sk(pending);
383 
384 	list_del_init(&vpending->pending_links);
385 	sock_put(listener);
386 	sock_put(pending);
387 }
388 EXPORT_SYMBOL_GPL(vsock_remove_pending);
389 
390 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
391 {
392 	struct vsock_sock *vlistener;
393 	struct vsock_sock *vconnected;
394 
395 	vlistener = vsock_sk(listener);
396 	vconnected = vsock_sk(connected);
397 
398 	sock_hold(connected);
399 	sock_hold(listener);
400 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
401 }
402 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
403 
404 static bool vsock_use_local_transport(unsigned int remote_cid)
405 {
406 	if (!transport_local)
407 		return false;
408 
409 	if (remote_cid == VMADDR_CID_LOCAL)
410 		return true;
411 
412 	if (transport_g2h) {
413 		return remote_cid == transport_g2h->get_local_cid();
414 	} else {
415 		return remote_cid == VMADDR_CID_HOST;
416 	}
417 }
418 
419 static void vsock_deassign_transport(struct vsock_sock *vsk)
420 {
421 	if (!vsk->transport)
422 		return;
423 
424 	vsk->transport->destruct(vsk);
425 	module_put(vsk->transport->module);
426 	vsk->transport = NULL;
427 }
428 
429 /* Assign a transport to a socket and call the .init transport callback.
430  *
431  * Note: for connection oriented socket this must be called when vsk->remote_addr
432  * is set (e.g. during the connect() or when a connection request on a listener
433  * socket is received).
434  * The vsk->remote_addr is used to decide which transport to use:
435  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
436  *    g2h is not loaded, will use local transport;
437  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
438  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
439  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
440  */
441 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
442 {
443 	const struct vsock_transport *new_transport;
444 	struct sock *sk = sk_vsock(vsk);
445 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
446 	__u8 remote_flags;
447 	int ret;
448 
449 	/* If the packet is coming with the source and destination CIDs higher
450 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
451 	 * forwarded to the host should be established. Then the host will
452 	 * need to forward the packets to the guest.
453 	 *
454 	 * The flag is set on the (listen) receive path (psk is not NULL). On
455 	 * the connect path the flag can be set by the user space application.
456 	 */
457 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
458 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
459 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
460 
461 	remote_flags = vsk->remote_addr.svm_flags;
462 
463 	switch (sk->sk_type) {
464 	case SOCK_DGRAM:
465 		new_transport = transport_dgram;
466 		break;
467 	case SOCK_STREAM:
468 	case SOCK_SEQPACKET:
469 		if (vsock_use_local_transport(remote_cid))
470 			new_transport = transport_local;
471 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
472 			 (remote_flags & VMADDR_FLAG_TO_HOST))
473 			new_transport = transport_g2h;
474 		else
475 			new_transport = transport_h2g;
476 		break;
477 	default:
478 		return -ESOCKTNOSUPPORT;
479 	}
480 
481 	if (vsk->transport) {
482 		if (vsk->transport == new_transport)
483 			return 0;
484 
485 		/* transport->release() must be called with sock lock acquired.
486 		 * This path can only be taken during vsock_connect(), where we
487 		 * have already held the sock lock. In the other cases, this
488 		 * function is called on a new socket which is not assigned to
489 		 * any transport.
490 		 */
491 		vsk->transport->release(vsk);
492 		vsock_deassign_transport(vsk);
493 	}
494 
495 	/* We increase the module refcnt to prevent the transport unloading
496 	 * while there are open sockets assigned to it.
497 	 */
498 	if (!new_transport || !try_module_get(new_transport->module))
499 		return -ENODEV;
500 
501 	if (sk->sk_type == SOCK_SEQPACKET) {
502 		if (!new_transport->seqpacket_allow ||
503 		    !new_transport->seqpacket_allow(remote_cid)) {
504 			module_put(new_transport->module);
505 			return -ESOCKTNOSUPPORT;
506 		}
507 	}
508 
509 	ret = new_transport->init(vsk, psk);
510 	if (ret) {
511 		module_put(new_transport->module);
512 		return ret;
513 	}
514 
515 	vsk->transport = new_transport;
516 
517 	return 0;
518 }
519 EXPORT_SYMBOL_GPL(vsock_assign_transport);
520 
521 bool vsock_find_cid(unsigned int cid)
522 {
523 	if (transport_g2h && cid == transport_g2h->get_local_cid())
524 		return true;
525 
526 	if (transport_h2g && cid == VMADDR_CID_HOST)
527 		return true;
528 
529 	if (transport_local && cid == VMADDR_CID_LOCAL)
530 		return true;
531 
532 	return false;
533 }
534 EXPORT_SYMBOL_GPL(vsock_find_cid);
535 
536 static struct sock *vsock_dequeue_accept(struct sock *listener)
537 {
538 	struct vsock_sock *vlistener;
539 	struct vsock_sock *vconnected;
540 
541 	vlistener = vsock_sk(listener);
542 
543 	if (list_empty(&vlistener->accept_queue))
544 		return NULL;
545 
546 	vconnected = list_entry(vlistener->accept_queue.next,
547 				struct vsock_sock, accept_queue);
548 
549 	list_del_init(&vconnected->accept_queue);
550 	sock_put(listener);
551 	/* The caller will need a reference on the connected socket so we let
552 	 * it call sock_put().
553 	 */
554 
555 	return sk_vsock(vconnected);
556 }
557 
558 static bool vsock_is_accept_queue_empty(struct sock *sk)
559 {
560 	struct vsock_sock *vsk = vsock_sk(sk);
561 	return list_empty(&vsk->accept_queue);
562 }
563 
564 static bool vsock_is_pending(struct sock *sk)
565 {
566 	struct vsock_sock *vsk = vsock_sk(sk);
567 	return !list_empty(&vsk->pending_links);
568 }
569 
570 static int vsock_send_shutdown(struct sock *sk, int mode)
571 {
572 	struct vsock_sock *vsk = vsock_sk(sk);
573 
574 	if (!vsk->transport)
575 		return -ENODEV;
576 
577 	return vsk->transport->shutdown(vsk, mode);
578 }
579 
580 static void vsock_pending_work(struct work_struct *work)
581 {
582 	struct sock *sk;
583 	struct sock *listener;
584 	struct vsock_sock *vsk;
585 	bool cleanup;
586 
587 	vsk = container_of(work, struct vsock_sock, pending_work.work);
588 	sk = sk_vsock(vsk);
589 	listener = vsk->listener;
590 	cleanup = true;
591 
592 	lock_sock(listener);
593 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
594 
595 	if (vsock_is_pending(sk)) {
596 		vsock_remove_pending(listener, sk);
597 
598 		sk_acceptq_removed(listener);
599 	} else if (!vsk->rejected) {
600 		/* We are not on the pending list and accept() did not reject
601 		 * us, so we must have been accepted by our user process.  We
602 		 * just need to drop our references to the sockets and be on
603 		 * our way.
604 		 */
605 		cleanup = false;
606 		goto out;
607 	}
608 
609 	/* We need to remove ourself from the global connected sockets list so
610 	 * incoming packets can't find this socket, and to reduce the reference
611 	 * count.
612 	 */
613 	vsock_remove_connected(vsk);
614 
615 	sk->sk_state = TCP_CLOSE;
616 
617 out:
618 	release_sock(sk);
619 	release_sock(listener);
620 	if (cleanup)
621 		sock_put(sk);
622 
623 	sock_put(sk);
624 	sock_put(listener);
625 }
626 
627 /**** SOCKET OPERATIONS ****/
628 
629 static int __vsock_bind_connectible(struct vsock_sock *vsk,
630 				    struct sockaddr_vm *addr)
631 {
632 	static u32 port;
633 	struct sockaddr_vm new_addr;
634 
635 	if (!port)
636 		port = get_random_u32_above(LAST_RESERVED_PORT);
637 
638 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
639 
640 	if (addr->svm_port == VMADDR_PORT_ANY) {
641 		bool found = false;
642 		unsigned int i;
643 
644 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
645 			if (port <= LAST_RESERVED_PORT)
646 				port = LAST_RESERVED_PORT + 1;
647 
648 			new_addr.svm_port = port++;
649 
650 			if (!__vsock_find_bound_socket(&new_addr)) {
651 				found = true;
652 				break;
653 			}
654 		}
655 
656 		if (!found)
657 			return -EADDRNOTAVAIL;
658 	} else {
659 		/* If port is in reserved range, ensure caller
660 		 * has necessary privileges.
661 		 */
662 		if (addr->svm_port <= LAST_RESERVED_PORT &&
663 		    !capable(CAP_NET_BIND_SERVICE)) {
664 			return -EACCES;
665 		}
666 
667 		if (__vsock_find_bound_socket(&new_addr))
668 			return -EADDRINUSE;
669 	}
670 
671 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
672 
673 	/* Remove connection oriented sockets from the unbound list and add them
674 	 * to the hash table for easy lookup by its address.  The unbound list
675 	 * is simply an extra entry at the end of the hash table, a trick used
676 	 * by AF_UNIX.
677 	 */
678 	__vsock_remove_bound(vsk);
679 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
680 
681 	return 0;
682 }
683 
684 static int __vsock_bind_dgram(struct vsock_sock *vsk,
685 			      struct sockaddr_vm *addr)
686 {
687 	return vsk->transport->dgram_bind(vsk, addr);
688 }
689 
690 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
691 {
692 	struct vsock_sock *vsk = vsock_sk(sk);
693 	int retval;
694 
695 	/* First ensure this socket isn't already bound. */
696 	if (vsock_addr_bound(&vsk->local_addr))
697 		return -EINVAL;
698 
699 	/* Now bind to the provided address or select appropriate values if
700 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
701 	 * like AF_INET prevents binding to a non-local IP address (in most
702 	 * cases), we only allow binding to a local CID.
703 	 */
704 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
705 		return -EADDRNOTAVAIL;
706 
707 	switch (sk->sk_socket->type) {
708 	case SOCK_STREAM:
709 	case SOCK_SEQPACKET:
710 		spin_lock_bh(&vsock_table_lock);
711 		retval = __vsock_bind_connectible(vsk, addr);
712 		spin_unlock_bh(&vsock_table_lock);
713 		break;
714 
715 	case SOCK_DGRAM:
716 		retval = __vsock_bind_dgram(vsk, addr);
717 		break;
718 
719 	default:
720 		retval = -EINVAL;
721 		break;
722 	}
723 
724 	return retval;
725 }
726 
727 static void vsock_connect_timeout(struct work_struct *work);
728 
729 static struct sock *__vsock_create(struct net *net,
730 				   struct socket *sock,
731 				   struct sock *parent,
732 				   gfp_t priority,
733 				   unsigned short type,
734 				   int kern)
735 {
736 	struct sock *sk;
737 	struct vsock_sock *psk;
738 	struct vsock_sock *vsk;
739 
740 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
741 	if (!sk)
742 		return NULL;
743 
744 	sock_init_data(sock, sk);
745 
746 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
747 	 * non-NULL. We make sure that our sockets always have a type by
748 	 * setting it here if needed.
749 	 */
750 	if (!sock)
751 		sk->sk_type = type;
752 
753 	vsk = vsock_sk(sk);
754 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
755 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
756 
757 	sk->sk_destruct = vsock_sk_destruct;
758 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
759 	sock_reset_flag(sk, SOCK_DONE);
760 
761 	INIT_LIST_HEAD(&vsk->bound_table);
762 	INIT_LIST_HEAD(&vsk->connected_table);
763 	vsk->listener = NULL;
764 	INIT_LIST_HEAD(&vsk->pending_links);
765 	INIT_LIST_HEAD(&vsk->accept_queue);
766 	vsk->rejected = false;
767 	vsk->sent_request = false;
768 	vsk->ignore_connecting_rst = false;
769 	vsk->peer_shutdown = 0;
770 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
771 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
772 
773 	psk = parent ? vsock_sk(parent) : NULL;
774 	if (parent) {
775 		vsk->trusted = psk->trusted;
776 		vsk->owner = get_cred(psk->owner);
777 		vsk->connect_timeout = psk->connect_timeout;
778 		vsk->buffer_size = psk->buffer_size;
779 		vsk->buffer_min_size = psk->buffer_min_size;
780 		vsk->buffer_max_size = psk->buffer_max_size;
781 		security_sk_clone(parent, sk);
782 	} else {
783 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
784 		vsk->owner = get_current_cred();
785 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
786 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
787 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
788 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
789 	}
790 
791 	return sk;
792 }
793 
794 static bool sock_type_connectible(u16 type)
795 {
796 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
797 }
798 
799 static void __vsock_release(struct sock *sk, int level)
800 {
801 	struct vsock_sock *vsk;
802 	struct sock *pending;
803 
804 	vsk = vsock_sk(sk);
805 	pending = NULL;	/* Compiler warning. */
806 
807 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
808 	 * version to avoid the warning "possible recursive locking
809 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
810 	 * is the same as lock_sock(sk).
811 	 */
812 	lock_sock_nested(sk, level);
813 
814 	if (vsk->transport)
815 		vsk->transport->release(vsk);
816 	else if (sock_type_connectible(sk->sk_type))
817 		vsock_remove_sock(vsk);
818 
819 	sock_orphan(sk);
820 	sk->sk_shutdown = SHUTDOWN_MASK;
821 
822 	skb_queue_purge(&sk->sk_receive_queue);
823 
824 	/* Clean up any sockets that never were accepted. */
825 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
826 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
827 		sock_put(pending);
828 	}
829 
830 	release_sock(sk);
831 	sock_put(sk);
832 }
833 
834 static void vsock_sk_destruct(struct sock *sk)
835 {
836 	struct vsock_sock *vsk = vsock_sk(sk);
837 
838 	vsock_deassign_transport(vsk);
839 
840 	/* When clearing these addresses, there's no need to set the family and
841 	 * possibly register the address family with the kernel.
842 	 */
843 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
844 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845 
846 	put_cred(vsk->owner);
847 }
848 
849 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
850 {
851 	int err;
852 
853 	err = sock_queue_rcv_skb(sk, skb);
854 	if (err)
855 		kfree_skb(skb);
856 
857 	return err;
858 }
859 
860 struct sock *vsock_create_connected(struct sock *parent)
861 {
862 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
863 			      parent->sk_type, 0);
864 }
865 EXPORT_SYMBOL_GPL(vsock_create_connected);
866 
867 s64 vsock_stream_has_data(struct vsock_sock *vsk)
868 {
869 	return vsk->transport->stream_has_data(vsk);
870 }
871 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
872 
873 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
874 {
875 	struct sock *sk = sk_vsock(vsk);
876 
877 	if (sk->sk_type == SOCK_SEQPACKET)
878 		return vsk->transport->seqpacket_has_data(vsk);
879 	else
880 		return vsock_stream_has_data(vsk);
881 }
882 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
883 
884 s64 vsock_stream_has_space(struct vsock_sock *vsk)
885 {
886 	return vsk->transport->stream_has_space(vsk);
887 }
888 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
889 
890 void vsock_data_ready(struct sock *sk)
891 {
892 	struct vsock_sock *vsk = vsock_sk(sk);
893 
894 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
895 	    sock_flag(sk, SOCK_DONE))
896 		sk->sk_data_ready(sk);
897 }
898 EXPORT_SYMBOL_GPL(vsock_data_ready);
899 
900 /* Dummy callback required by sockmap.
901  * See unconditional call of saved_close() in sock_map_close().
902  */
903 static void vsock_close(struct sock *sk, long timeout)
904 {
905 }
906 
907 static int vsock_release(struct socket *sock)
908 {
909 	struct sock *sk = sock->sk;
910 
911 	if (!sk)
912 		return 0;
913 
914 	sk->sk_prot->close(sk, 0);
915 	__vsock_release(sk, 0);
916 	sock->sk = NULL;
917 	sock->state = SS_FREE;
918 
919 	return 0;
920 }
921 
922 static int
923 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
924 {
925 	int err;
926 	struct sock *sk;
927 	struct sockaddr_vm *vm_addr;
928 
929 	sk = sock->sk;
930 
931 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
932 		return -EINVAL;
933 
934 	lock_sock(sk);
935 	err = __vsock_bind(sk, vm_addr);
936 	release_sock(sk);
937 
938 	return err;
939 }
940 
941 static int vsock_getname(struct socket *sock,
942 			 struct sockaddr *addr, int peer)
943 {
944 	int err;
945 	struct sock *sk;
946 	struct vsock_sock *vsk;
947 	struct sockaddr_vm *vm_addr;
948 
949 	sk = sock->sk;
950 	vsk = vsock_sk(sk);
951 	err = 0;
952 
953 	lock_sock(sk);
954 
955 	if (peer) {
956 		if (sock->state != SS_CONNECTED) {
957 			err = -ENOTCONN;
958 			goto out;
959 		}
960 		vm_addr = &vsk->remote_addr;
961 	} else {
962 		vm_addr = &vsk->local_addr;
963 	}
964 
965 	if (!vm_addr) {
966 		err = -EINVAL;
967 		goto out;
968 	}
969 
970 	/* sys_getsockname() and sys_getpeername() pass us a
971 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
972 	 * that macro is defined in socket.c instead of .h, so we hardcode its
973 	 * value here.
974 	 */
975 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
976 	memcpy(addr, vm_addr, sizeof(*vm_addr));
977 	err = sizeof(*vm_addr);
978 
979 out:
980 	release_sock(sk);
981 	return err;
982 }
983 
984 static int vsock_shutdown(struct socket *sock, int mode)
985 {
986 	int err;
987 	struct sock *sk;
988 
989 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
990 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
991 	 * here like the other address families do.  Note also that the
992 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
993 	 * which is what we want.
994 	 */
995 	mode++;
996 
997 	if ((mode & ~SHUTDOWN_MASK) || !mode)
998 		return -EINVAL;
999 
1000 	/* If this is a connection oriented socket and it is not connected then
1001 	 * bail out immediately.  If it is a DGRAM socket then we must first
1002 	 * kick the socket so that it wakes up from any sleeping calls, for
1003 	 * example recv(), and then afterwards return the error.
1004 	 */
1005 
1006 	sk = sock->sk;
1007 
1008 	lock_sock(sk);
1009 	if (sock->state == SS_UNCONNECTED) {
1010 		err = -ENOTCONN;
1011 		if (sock_type_connectible(sk->sk_type))
1012 			goto out;
1013 	} else {
1014 		sock->state = SS_DISCONNECTING;
1015 		err = 0;
1016 	}
1017 
1018 	/* Receive and send shutdowns are treated alike. */
1019 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1020 	if (mode) {
1021 		sk->sk_shutdown |= mode;
1022 		sk->sk_state_change(sk);
1023 
1024 		if (sock_type_connectible(sk->sk_type)) {
1025 			sock_reset_flag(sk, SOCK_DONE);
1026 			vsock_send_shutdown(sk, mode);
1027 		}
1028 	}
1029 
1030 out:
1031 	release_sock(sk);
1032 	return err;
1033 }
1034 
1035 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1036 			       poll_table *wait)
1037 {
1038 	struct sock *sk;
1039 	__poll_t mask;
1040 	struct vsock_sock *vsk;
1041 
1042 	sk = sock->sk;
1043 	vsk = vsock_sk(sk);
1044 
1045 	poll_wait(file, sk_sleep(sk), wait);
1046 	mask = 0;
1047 
1048 	if (sk->sk_err)
1049 		/* Signify that there has been an error on this socket. */
1050 		mask |= EPOLLERR;
1051 
1052 	/* INET sockets treat local write shutdown and peer write shutdown as a
1053 	 * case of EPOLLHUP set.
1054 	 */
1055 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1056 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1057 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1058 		mask |= EPOLLHUP;
1059 	}
1060 
1061 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1062 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1063 		mask |= EPOLLRDHUP;
1064 	}
1065 
1066 	if (sk_is_readable(sk))
1067 		mask |= EPOLLIN | EPOLLRDNORM;
1068 
1069 	if (sock->type == SOCK_DGRAM) {
1070 		/* For datagram sockets we can read if there is something in
1071 		 * the queue and write as long as the socket isn't shutdown for
1072 		 * sending.
1073 		 */
1074 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1075 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1076 			mask |= EPOLLIN | EPOLLRDNORM;
1077 		}
1078 
1079 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1080 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1081 
1082 	} else if (sock_type_connectible(sk->sk_type)) {
1083 		const struct vsock_transport *transport;
1084 
1085 		lock_sock(sk);
1086 
1087 		transport = vsk->transport;
1088 
1089 		/* Listening sockets that have connections in their accept
1090 		 * queue can be read.
1091 		 */
1092 		if (sk->sk_state == TCP_LISTEN
1093 		    && !vsock_is_accept_queue_empty(sk))
1094 			mask |= EPOLLIN | EPOLLRDNORM;
1095 
1096 		/* If there is something in the queue then we can read. */
1097 		if (transport && transport->stream_is_active(vsk) &&
1098 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1099 			bool data_ready_now = false;
1100 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1101 			int ret = transport->notify_poll_in(
1102 					vsk, target, &data_ready_now);
1103 			if (ret < 0) {
1104 				mask |= EPOLLERR;
1105 			} else {
1106 				if (data_ready_now)
1107 					mask |= EPOLLIN | EPOLLRDNORM;
1108 
1109 			}
1110 		}
1111 
1112 		/* Sockets whose connections have been closed, reset, or
1113 		 * terminated should also be considered read, and we check the
1114 		 * shutdown flag for that.
1115 		 */
1116 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1117 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1118 			mask |= EPOLLIN | EPOLLRDNORM;
1119 		}
1120 
1121 		/* Connected sockets that can produce data can be written. */
1122 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1123 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1124 				bool space_avail_now = false;
1125 				int ret = transport->notify_poll_out(
1126 						vsk, 1, &space_avail_now);
1127 				if (ret < 0) {
1128 					mask |= EPOLLERR;
1129 				} else {
1130 					if (space_avail_now)
1131 						/* Remove EPOLLWRBAND since INET
1132 						 * sockets are not setting it.
1133 						 */
1134 						mask |= EPOLLOUT | EPOLLWRNORM;
1135 
1136 				}
1137 			}
1138 		}
1139 
1140 		/* Simulate INET socket poll behaviors, which sets
1141 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1142 		 * but local send is not shutdown.
1143 		 */
1144 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1145 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1146 				mask |= EPOLLOUT | EPOLLWRNORM;
1147 
1148 		}
1149 
1150 		release_sock(sk);
1151 	}
1152 
1153 	return mask;
1154 }
1155 
1156 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1157 {
1158 	struct vsock_sock *vsk = vsock_sk(sk);
1159 
1160 	return vsk->transport->read_skb(vsk, read_actor);
1161 }
1162 
1163 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1164 			       size_t len)
1165 {
1166 	int err;
1167 	struct sock *sk;
1168 	struct vsock_sock *vsk;
1169 	struct sockaddr_vm *remote_addr;
1170 	const struct vsock_transport *transport;
1171 
1172 	if (msg->msg_flags & MSG_OOB)
1173 		return -EOPNOTSUPP;
1174 
1175 	/* For now, MSG_DONTWAIT is always assumed... */
1176 	err = 0;
1177 	sk = sock->sk;
1178 	vsk = vsock_sk(sk);
1179 
1180 	lock_sock(sk);
1181 
1182 	transport = vsk->transport;
1183 
1184 	err = vsock_auto_bind(vsk);
1185 	if (err)
1186 		goto out;
1187 
1188 
1189 	/* If the provided message contains an address, use that.  Otherwise
1190 	 * fall back on the socket's remote handle (if it has been connected).
1191 	 */
1192 	if (msg->msg_name &&
1193 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1194 			    &remote_addr) == 0) {
1195 		/* Ensure this address is of the right type and is a valid
1196 		 * destination.
1197 		 */
1198 
1199 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1200 			remote_addr->svm_cid = transport->get_local_cid();
1201 
1202 		if (!vsock_addr_bound(remote_addr)) {
1203 			err = -EINVAL;
1204 			goto out;
1205 		}
1206 	} else if (sock->state == SS_CONNECTED) {
1207 		remote_addr = &vsk->remote_addr;
1208 
1209 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1210 			remote_addr->svm_cid = transport->get_local_cid();
1211 
1212 		/* XXX Should connect() or this function ensure remote_addr is
1213 		 * bound?
1214 		 */
1215 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1216 			err = -EINVAL;
1217 			goto out;
1218 		}
1219 	} else {
1220 		err = -EINVAL;
1221 		goto out;
1222 	}
1223 
1224 	if (!transport->dgram_allow(remote_addr->svm_cid,
1225 				    remote_addr->svm_port)) {
1226 		err = -EINVAL;
1227 		goto out;
1228 	}
1229 
1230 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1231 
1232 out:
1233 	release_sock(sk);
1234 	return err;
1235 }
1236 
1237 static int vsock_dgram_connect(struct socket *sock,
1238 			       struct sockaddr *addr, int addr_len, int flags)
1239 {
1240 	int err;
1241 	struct sock *sk;
1242 	struct vsock_sock *vsk;
1243 	struct sockaddr_vm *remote_addr;
1244 
1245 	sk = sock->sk;
1246 	vsk = vsock_sk(sk);
1247 
1248 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1249 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1250 		lock_sock(sk);
1251 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1252 				VMADDR_PORT_ANY);
1253 		sock->state = SS_UNCONNECTED;
1254 		release_sock(sk);
1255 		return 0;
1256 	} else if (err != 0)
1257 		return -EINVAL;
1258 
1259 	lock_sock(sk);
1260 
1261 	err = vsock_auto_bind(vsk);
1262 	if (err)
1263 		goto out;
1264 
1265 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1266 					 remote_addr->svm_port)) {
1267 		err = -EINVAL;
1268 		goto out;
1269 	}
1270 
1271 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1272 	sock->state = SS_CONNECTED;
1273 
1274 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1275 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1276 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1277 	 *
1278 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1279 	 * same approach can be see in other datagram socket types as well
1280 	 * (such as unix sockets).
1281 	 */
1282 	sk->sk_state = TCP_ESTABLISHED;
1283 
1284 out:
1285 	release_sock(sk);
1286 	return err;
1287 }
1288 
1289 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1290 			  size_t len, int flags)
1291 {
1292 	struct sock *sk = sock->sk;
1293 	struct vsock_sock *vsk = vsock_sk(sk);
1294 
1295 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1296 }
1297 
1298 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1299 			size_t len, int flags)
1300 {
1301 #ifdef CONFIG_BPF_SYSCALL
1302 	struct sock *sk = sock->sk;
1303 	const struct proto *prot;
1304 
1305 	prot = READ_ONCE(sk->sk_prot);
1306 	if (prot != &vsock_proto)
1307 		return prot->recvmsg(sk, msg, len, flags, NULL);
1308 #endif
1309 
1310 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1311 }
1312 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1313 
1314 static const struct proto_ops vsock_dgram_ops = {
1315 	.family = PF_VSOCK,
1316 	.owner = THIS_MODULE,
1317 	.release = vsock_release,
1318 	.bind = vsock_bind,
1319 	.connect = vsock_dgram_connect,
1320 	.socketpair = sock_no_socketpair,
1321 	.accept = sock_no_accept,
1322 	.getname = vsock_getname,
1323 	.poll = vsock_poll,
1324 	.ioctl = sock_no_ioctl,
1325 	.listen = sock_no_listen,
1326 	.shutdown = vsock_shutdown,
1327 	.sendmsg = vsock_dgram_sendmsg,
1328 	.recvmsg = vsock_dgram_recvmsg,
1329 	.mmap = sock_no_mmap,
1330 	.read_skb = vsock_read_skb,
1331 };
1332 
1333 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1334 {
1335 	const struct vsock_transport *transport = vsk->transport;
1336 
1337 	if (!transport || !transport->cancel_pkt)
1338 		return -EOPNOTSUPP;
1339 
1340 	return transport->cancel_pkt(vsk);
1341 }
1342 
1343 static void vsock_connect_timeout(struct work_struct *work)
1344 {
1345 	struct sock *sk;
1346 	struct vsock_sock *vsk;
1347 
1348 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1349 	sk = sk_vsock(vsk);
1350 
1351 	lock_sock(sk);
1352 	if (sk->sk_state == TCP_SYN_SENT &&
1353 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1354 		sk->sk_state = TCP_CLOSE;
1355 		sk->sk_socket->state = SS_UNCONNECTED;
1356 		sk->sk_err = ETIMEDOUT;
1357 		sk_error_report(sk);
1358 		vsock_transport_cancel_pkt(vsk);
1359 	}
1360 	release_sock(sk);
1361 
1362 	sock_put(sk);
1363 }
1364 
1365 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1366 			 int addr_len, int flags)
1367 {
1368 	int err;
1369 	struct sock *sk;
1370 	struct vsock_sock *vsk;
1371 	const struct vsock_transport *transport;
1372 	struct sockaddr_vm *remote_addr;
1373 	long timeout;
1374 	DEFINE_WAIT(wait);
1375 
1376 	err = 0;
1377 	sk = sock->sk;
1378 	vsk = vsock_sk(sk);
1379 
1380 	lock_sock(sk);
1381 
1382 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1383 	switch (sock->state) {
1384 	case SS_CONNECTED:
1385 		err = -EISCONN;
1386 		goto out;
1387 	case SS_DISCONNECTING:
1388 		err = -EINVAL;
1389 		goto out;
1390 	case SS_CONNECTING:
1391 		/* This continues on so we can move sock into the SS_CONNECTED
1392 		 * state once the connection has completed (at which point err
1393 		 * will be set to zero also).  Otherwise, we will either wait
1394 		 * for the connection or return -EALREADY should this be a
1395 		 * non-blocking call.
1396 		 */
1397 		err = -EALREADY;
1398 		if (flags & O_NONBLOCK)
1399 			goto out;
1400 		break;
1401 	default:
1402 		if ((sk->sk_state == TCP_LISTEN) ||
1403 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1404 			err = -EINVAL;
1405 			goto out;
1406 		}
1407 
1408 		/* Set the remote address that we are connecting to. */
1409 		memcpy(&vsk->remote_addr, remote_addr,
1410 		       sizeof(vsk->remote_addr));
1411 
1412 		err = vsock_assign_transport(vsk, NULL);
1413 		if (err)
1414 			goto out;
1415 
1416 		transport = vsk->transport;
1417 
1418 		/* The hypervisor and well-known contexts do not have socket
1419 		 * endpoints.
1420 		 */
1421 		if (!transport ||
1422 		    !transport->stream_allow(remote_addr->svm_cid,
1423 					     remote_addr->svm_port)) {
1424 			err = -ENETUNREACH;
1425 			goto out;
1426 		}
1427 
1428 		err = vsock_auto_bind(vsk);
1429 		if (err)
1430 			goto out;
1431 
1432 		sk->sk_state = TCP_SYN_SENT;
1433 
1434 		err = transport->connect(vsk);
1435 		if (err < 0)
1436 			goto out;
1437 
1438 		/* Mark sock as connecting and set the error code to in
1439 		 * progress in case this is a non-blocking connect.
1440 		 */
1441 		sock->state = SS_CONNECTING;
1442 		err = -EINPROGRESS;
1443 	}
1444 
1445 	/* The receive path will handle all communication until we are able to
1446 	 * enter the connected state.  Here we wait for the connection to be
1447 	 * completed or a notification of an error.
1448 	 */
1449 	timeout = vsk->connect_timeout;
1450 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1451 
1452 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1453 		if (flags & O_NONBLOCK) {
1454 			/* If we're not going to block, we schedule a timeout
1455 			 * function to generate a timeout on the connection
1456 			 * attempt, in case the peer doesn't respond in a
1457 			 * timely manner. We hold on to the socket until the
1458 			 * timeout fires.
1459 			 */
1460 			sock_hold(sk);
1461 
1462 			/* If the timeout function is already scheduled,
1463 			 * reschedule it, then ungrab the socket refcount to
1464 			 * keep it balanced.
1465 			 */
1466 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1467 					     timeout))
1468 				sock_put(sk);
1469 
1470 			/* Skip ahead to preserve error code set above. */
1471 			goto out_wait;
1472 		}
1473 
1474 		release_sock(sk);
1475 		timeout = schedule_timeout(timeout);
1476 		lock_sock(sk);
1477 
1478 		if (signal_pending(current)) {
1479 			err = sock_intr_errno(timeout);
1480 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1481 			sock->state = SS_UNCONNECTED;
1482 			vsock_transport_cancel_pkt(vsk);
1483 			vsock_remove_connected(vsk);
1484 			goto out_wait;
1485 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1486 			err = -ETIMEDOUT;
1487 			sk->sk_state = TCP_CLOSE;
1488 			sock->state = SS_UNCONNECTED;
1489 			vsock_transport_cancel_pkt(vsk);
1490 			goto out_wait;
1491 		}
1492 
1493 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1494 	}
1495 
1496 	if (sk->sk_err) {
1497 		err = -sk->sk_err;
1498 		sk->sk_state = TCP_CLOSE;
1499 		sock->state = SS_UNCONNECTED;
1500 	} else {
1501 		err = 0;
1502 	}
1503 
1504 out_wait:
1505 	finish_wait(sk_sleep(sk), &wait);
1506 out:
1507 	release_sock(sk);
1508 	return err;
1509 }
1510 
1511 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1512 			bool kern)
1513 {
1514 	struct sock *listener;
1515 	int err;
1516 	struct sock *connected;
1517 	struct vsock_sock *vconnected;
1518 	long timeout;
1519 	DEFINE_WAIT(wait);
1520 
1521 	err = 0;
1522 	listener = sock->sk;
1523 
1524 	lock_sock(listener);
1525 
1526 	if (!sock_type_connectible(sock->type)) {
1527 		err = -EOPNOTSUPP;
1528 		goto out;
1529 	}
1530 
1531 	if (listener->sk_state != TCP_LISTEN) {
1532 		err = -EINVAL;
1533 		goto out;
1534 	}
1535 
1536 	/* Wait for children sockets to appear; these are the new sockets
1537 	 * created upon connection establishment.
1538 	 */
1539 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1540 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1541 
1542 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1543 	       listener->sk_err == 0) {
1544 		release_sock(listener);
1545 		timeout = schedule_timeout(timeout);
1546 		finish_wait(sk_sleep(listener), &wait);
1547 		lock_sock(listener);
1548 
1549 		if (signal_pending(current)) {
1550 			err = sock_intr_errno(timeout);
1551 			goto out;
1552 		} else if (timeout == 0) {
1553 			err = -EAGAIN;
1554 			goto out;
1555 		}
1556 
1557 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1558 	}
1559 	finish_wait(sk_sleep(listener), &wait);
1560 
1561 	if (listener->sk_err)
1562 		err = -listener->sk_err;
1563 
1564 	if (connected) {
1565 		sk_acceptq_removed(listener);
1566 
1567 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1568 		vconnected = vsock_sk(connected);
1569 
1570 		/* If the listener socket has received an error, then we should
1571 		 * reject this socket and return.  Note that we simply mark the
1572 		 * socket rejected, drop our reference, and let the cleanup
1573 		 * function handle the cleanup; the fact that we found it in
1574 		 * the listener's accept queue guarantees that the cleanup
1575 		 * function hasn't run yet.
1576 		 */
1577 		if (err) {
1578 			vconnected->rejected = true;
1579 		} else {
1580 			newsock->state = SS_CONNECTED;
1581 			sock_graft(connected, newsock);
1582 		}
1583 
1584 		release_sock(connected);
1585 		sock_put(connected);
1586 	}
1587 
1588 out:
1589 	release_sock(listener);
1590 	return err;
1591 }
1592 
1593 static int vsock_listen(struct socket *sock, int backlog)
1594 {
1595 	int err;
1596 	struct sock *sk;
1597 	struct vsock_sock *vsk;
1598 
1599 	sk = sock->sk;
1600 
1601 	lock_sock(sk);
1602 
1603 	if (!sock_type_connectible(sk->sk_type)) {
1604 		err = -EOPNOTSUPP;
1605 		goto out;
1606 	}
1607 
1608 	if (sock->state != SS_UNCONNECTED) {
1609 		err = -EINVAL;
1610 		goto out;
1611 	}
1612 
1613 	vsk = vsock_sk(sk);
1614 
1615 	if (!vsock_addr_bound(&vsk->local_addr)) {
1616 		err = -EINVAL;
1617 		goto out;
1618 	}
1619 
1620 	sk->sk_max_ack_backlog = backlog;
1621 	sk->sk_state = TCP_LISTEN;
1622 
1623 	err = 0;
1624 
1625 out:
1626 	release_sock(sk);
1627 	return err;
1628 }
1629 
1630 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1631 				     const struct vsock_transport *transport,
1632 				     u64 val)
1633 {
1634 	if (val > vsk->buffer_max_size)
1635 		val = vsk->buffer_max_size;
1636 
1637 	if (val < vsk->buffer_min_size)
1638 		val = vsk->buffer_min_size;
1639 
1640 	if (val != vsk->buffer_size &&
1641 	    transport && transport->notify_buffer_size)
1642 		transport->notify_buffer_size(vsk, &val);
1643 
1644 	vsk->buffer_size = val;
1645 }
1646 
1647 static int vsock_connectible_setsockopt(struct socket *sock,
1648 					int level,
1649 					int optname,
1650 					sockptr_t optval,
1651 					unsigned int optlen)
1652 {
1653 	int err;
1654 	struct sock *sk;
1655 	struct vsock_sock *vsk;
1656 	const struct vsock_transport *transport;
1657 	u64 val;
1658 
1659 	if (level != AF_VSOCK)
1660 		return -ENOPROTOOPT;
1661 
1662 #define COPY_IN(_v)                                       \
1663 	do {						  \
1664 		if (optlen < sizeof(_v)) {		  \
1665 			err = -EINVAL;			  \
1666 			goto exit;			  \
1667 		}					  \
1668 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1669 			err = -EFAULT;					\
1670 			goto exit;					\
1671 		}							\
1672 	} while (0)
1673 
1674 	err = 0;
1675 	sk = sock->sk;
1676 	vsk = vsock_sk(sk);
1677 
1678 	lock_sock(sk);
1679 
1680 	transport = vsk->transport;
1681 
1682 	switch (optname) {
1683 	case SO_VM_SOCKETS_BUFFER_SIZE:
1684 		COPY_IN(val);
1685 		vsock_update_buffer_size(vsk, transport, val);
1686 		break;
1687 
1688 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1689 		COPY_IN(val);
1690 		vsk->buffer_max_size = val;
1691 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1692 		break;
1693 
1694 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1695 		COPY_IN(val);
1696 		vsk->buffer_min_size = val;
1697 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1698 		break;
1699 
1700 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1701 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1702 		struct __kernel_sock_timeval tv;
1703 
1704 		err = sock_copy_user_timeval(&tv, optval, optlen,
1705 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1706 		if (err)
1707 			break;
1708 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1709 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1710 			vsk->connect_timeout = tv.tv_sec * HZ +
1711 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1712 			if (vsk->connect_timeout == 0)
1713 				vsk->connect_timeout =
1714 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1715 
1716 		} else {
1717 			err = -ERANGE;
1718 		}
1719 		break;
1720 	}
1721 
1722 	default:
1723 		err = -ENOPROTOOPT;
1724 		break;
1725 	}
1726 
1727 #undef COPY_IN
1728 
1729 exit:
1730 	release_sock(sk);
1731 	return err;
1732 }
1733 
1734 static int vsock_connectible_getsockopt(struct socket *sock,
1735 					int level, int optname,
1736 					char __user *optval,
1737 					int __user *optlen)
1738 {
1739 	struct sock *sk = sock->sk;
1740 	struct vsock_sock *vsk = vsock_sk(sk);
1741 
1742 	union {
1743 		u64 val64;
1744 		struct old_timeval32 tm32;
1745 		struct __kernel_old_timeval tm;
1746 		struct  __kernel_sock_timeval stm;
1747 	} v;
1748 
1749 	int lv = sizeof(v.val64);
1750 	int len;
1751 
1752 	if (level != AF_VSOCK)
1753 		return -ENOPROTOOPT;
1754 
1755 	if (get_user(len, optlen))
1756 		return -EFAULT;
1757 
1758 	memset(&v, 0, sizeof(v));
1759 
1760 	switch (optname) {
1761 	case SO_VM_SOCKETS_BUFFER_SIZE:
1762 		v.val64 = vsk->buffer_size;
1763 		break;
1764 
1765 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1766 		v.val64 = vsk->buffer_max_size;
1767 		break;
1768 
1769 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1770 		v.val64 = vsk->buffer_min_size;
1771 		break;
1772 
1773 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1774 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1775 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1776 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1777 		break;
1778 
1779 	default:
1780 		return -ENOPROTOOPT;
1781 	}
1782 
1783 	if (len < lv)
1784 		return -EINVAL;
1785 	if (len > lv)
1786 		len = lv;
1787 	if (copy_to_user(optval, &v, len))
1788 		return -EFAULT;
1789 
1790 	if (put_user(len, optlen))
1791 		return -EFAULT;
1792 
1793 	return 0;
1794 }
1795 
1796 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1797 				     size_t len)
1798 {
1799 	struct sock *sk;
1800 	struct vsock_sock *vsk;
1801 	const struct vsock_transport *transport;
1802 	ssize_t total_written;
1803 	long timeout;
1804 	int err;
1805 	struct vsock_transport_send_notify_data send_data;
1806 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1807 
1808 	sk = sock->sk;
1809 	vsk = vsock_sk(sk);
1810 	total_written = 0;
1811 	err = 0;
1812 
1813 	if (msg->msg_flags & MSG_OOB)
1814 		return -EOPNOTSUPP;
1815 
1816 	lock_sock(sk);
1817 
1818 	transport = vsk->transport;
1819 
1820 	/* Callers should not provide a destination with connection oriented
1821 	 * sockets.
1822 	 */
1823 	if (msg->msg_namelen) {
1824 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1825 		goto out;
1826 	}
1827 
1828 	/* Send data only if both sides are not shutdown in the direction. */
1829 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1830 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1831 		err = -EPIPE;
1832 		goto out;
1833 	}
1834 
1835 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1836 	    !vsock_addr_bound(&vsk->local_addr)) {
1837 		err = -ENOTCONN;
1838 		goto out;
1839 	}
1840 
1841 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1842 		err = -EDESTADDRREQ;
1843 		goto out;
1844 	}
1845 
1846 	/* Wait for room in the produce queue to enqueue our user's data. */
1847 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1848 
1849 	err = transport->notify_send_init(vsk, &send_data);
1850 	if (err < 0)
1851 		goto out;
1852 
1853 	while (total_written < len) {
1854 		ssize_t written;
1855 
1856 		add_wait_queue(sk_sleep(sk), &wait);
1857 		while (vsock_stream_has_space(vsk) == 0 &&
1858 		       sk->sk_err == 0 &&
1859 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1860 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1861 
1862 			/* Don't wait for non-blocking sockets. */
1863 			if (timeout == 0) {
1864 				err = -EAGAIN;
1865 				remove_wait_queue(sk_sleep(sk), &wait);
1866 				goto out_err;
1867 			}
1868 
1869 			err = transport->notify_send_pre_block(vsk, &send_data);
1870 			if (err < 0) {
1871 				remove_wait_queue(sk_sleep(sk), &wait);
1872 				goto out_err;
1873 			}
1874 
1875 			release_sock(sk);
1876 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1877 			lock_sock(sk);
1878 			if (signal_pending(current)) {
1879 				err = sock_intr_errno(timeout);
1880 				remove_wait_queue(sk_sleep(sk), &wait);
1881 				goto out_err;
1882 			} else if (timeout == 0) {
1883 				err = -EAGAIN;
1884 				remove_wait_queue(sk_sleep(sk), &wait);
1885 				goto out_err;
1886 			}
1887 		}
1888 		remove_wait_queue(sk_sleep(sk), &wait);
1889 
1890 		/* These checks occur both as part of and after the loop
1891 		 * conditional since we need to check before and after
1892 		 * sleeping.
1893 		 */
1894 		if (sk->sk_err) {
1895 			err = -sk->sk_err;
1896 			goto out_err;
1897 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1898 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1899 			err = -EPIPE;
1900 			goto out_err;
1901 		}
1902 
1903 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1904 		if (err < 0)
1905 			goto out_err;
1906 
1907 		/* Note that enqueue will only write as many bytes as are free
1908 		 * in the produce queue, so we don't need to ensure len is
1909 		 * smaller than the queue size.  It is the caller's
1910 		 * responsibility to check how many bytes we were able to send.
1911 		 */
1912 
1913 		if (sk->sk_type == SOCK_SEQPACKET) {
1914 			written = transport->seqpacket_enqueue(vsk,
1915 						msg, len - total_written);
1916 		} else {
1917 			written = transport->stream_enqueue(vsk,
1918 					msg, len - total_written);
1919 		}
1920 
1921 		if (written < 0) {
1922 			err = written;
1923 			goto out_err;
1924 		}
1925 
1926 		total_written += written;
1927 
1928 		err = transport->notify_send_post_enqueue(
1929 				vsk, written, &send_data);
1930 		if (err < 0)
1931 			goto out_err;
1932 
1933 	}
1934 
1935 out_err:
1936 	if (total_written > 0) {
1937 		/* Return number of written bytes only if:
1938 		 * 1) SOCK_STREAM socket.
1939 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1940 		 */
1941 		if (sk->sk_type == SOCK_STREAM || total_written == len)
1942 			err = total_written;
1943 	}
1944 out:
1945 	release_sock(sk);
1946 	return err;
1947 }
1948 
1949 static int vsock_connectible_wait_data(struct sock *sk,
1950 				       struct wait_queue_entry *wait,
1951 				       long timeout,
1952 				       struct vsock_transport_recv_notify_data *recv_data,
1953 				       size_t target)
1954 {
1955 	const struct vsock_transport *transport;
1956 	struct vsock_sock *vsk;
1957 	s64 data;
1958 	int err;
1959 
1960 	vsk = vsock_sk(sk);
1961 	err = 0;
1962 	transport = vsk->transport;
1963 
1964 	while (1) {
1965 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1966 		data = vsock_connectible_has_data(vsk);
1967 		if (data != 0)
1968 			break;
1969 
1970 		if (sk->sk_err != 0 ||
1971 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1972 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1973 			break;
1974 		}
1975 
1976 		/* Don't wait for non-blocking sockets. */
1977 		if (timeout == 0) {
1978 			err = -EAGAIN;
1979 			break;
1980 		}
1981 
1982 		if (recv_data) {
1983 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
1984 			if (err < 0)
1985 				break;
1986 		}
1987 
1988 		release_sock(sk);
1989 		timeout = schedule_timeout(timeout);
1990 		lock_sock(sk);
1991 
1992 		if (signal_pending(current)) {
1993 			err = sock_intr_errno(timeout);
1994 			break;
1995 		} else if (timeout == 0) {
1996 			err = -EAGAIN;
1997 			break;
1998 		}
1999 	}
2000 
2001 	finish_wait(sk_sleep(sk), wait);
2002 
2003 	if (err)
2004 		return err;
2005 
2006 	/* Internal transport error when checking for available
2007 	 * data. XXX This should be changed to a connection
2008 	 * reset in a later change.
2009 	 */
2010 	if (data < 0)
2011 		return -ENOMEM;
2012 
2013 	return data;
2014 }
2015 
2016 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2017 				  size_t len, int flags)
2018 {
2019 	struct vsock_transport_recv_notify_data recv_data;
2020 	const struct vsock_transport *transport;
2021 	struct vsock_sock *vsk;
2022 	ssize_t copied;
2023 	size_t target;
2024 	long timeout;
2025 	int err;
2026 
2027 	DEFINE_WAIT(wait);
2028 
2029 	vsk = vsock_sk(sk);
2030 	transport = vsk->transport;
2031 
2032 	/* We must not copy less than target bytes into the user's buffer
2033 	 * before returning successfully, so we wait for the consume queue to
2034 	 * have that much data to consume before dequeueing.  Note that this
2035 	 * makes it impossible to handle cases where target is greater than the
2036 	 * queue size.
2037 	 */
2038 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2039 	if (target >= transport->stream_rcvhiwat(vsk)) {
2040 		err = -ENOMEM;
2041 		goto out;
2042 	}
2043 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2044 	copied = 0;
2045 
2046 	err = transport->notify_recv_init(vsk, target, &recv_data);
2047 	if (err < 0)
2048 		goto out;
2049 
2050 
2051 	while (1) {
2052 		ssize_t read;
2053 
2054 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2055 						  &recv_data, target);
2056 		if (err <= 0)
2057 			break;
2058 
2059 		err = transport->notify_recv_pre_dequeue(vsk, target,
2060 							 &recv_data);
2061 		if (err < 0)
2062 			break;
2063 
2064 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2065 		if (read < 0) {
2066 			err = read;
2067 			break;
2068 		}
2069 
2070 		copied += read;
2071 
2072 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2073 						!(flags & MSG_PEEK), &recv_data);
2074 		if (err < 0)
2075 			goto out;
2076 
2077 		if (read >= target || flags & MSG_PEEK)
2078 			break;
2079 
2080 		target -= read;
2081 	}
2082 
2083 	if (sk->sk_err)
2084 		err = -sk->sk_err;
2085 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2086 		err = 0;
2087 
2088 	if (copied > 0)
2089 		err = copied;
2090 
2091 out:
2092 	return err;
2093 }
2094 
2095 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2096 				     size_t len, int flags)
2097 {
2098 	const struct vsock_transport *transport;
2099 	struct vsock_sock *vsk;
2100 	ssize_t msg_len;
2101 	long timeout;
2102 	int err = 0;
2103 	DEFINE_WAIT(wait);
2104 
2105 	vsk = vsock_sk(sk);
2106 	transport = vsk->transport;
2107 
2108 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2109 
2110 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2111 	if (err <= 0)
2112 		goto out;
2113 
2114 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2115 
2116 	if (msg_len < 0) {
2117 		err = msg_len;
2118 		goto out;
2119 	}
2120 
2121 	if (sk->sk_err) {
2122 		err = -sk->sk_err;
2123 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2124 		err = 0;
2125 	} else {
2126 		/* User sets MSG_TRUNC, so return real length of
2127 		 * packet.
2128 		 */
2129 		if (flags & MSG_TRUNC)
2130 			err = msg_len;
2131 		else
2132 			err = len - msg_data_left(msg);
2133 
2134 		/* Always set MSG_TRUNC if real length of packet is
2135 		 * bigger than user's buffer.
2136 		 */
2137 		if (msg_len > len)
2138 			msg->msg_flags |= MSG_TRUNC;
2139 	}
2140 
2141 out:
2142 	return err;
2143 }
2144 
2145 int
2146 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2147 			    int flags)
2148 {
2149 	struct sock *sk;
2150 	struct vsock_sock *vsk;
2151 	const struct vsock_transport *transport;
2152 	int err;
2153 
2154 	sk = sock->sk;
2155 
2156 	if (unlikely(flags & MSG_ERRQUEUE))
2157 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2158 
2159 	vsk = vsock_sk(sk);
2160 	err = 0;
2161 
2162 	lock_sock(sk);
2163 
2164 	transport = vsk->transport;
2165 
2166 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2167 		/* Recvmsg is supposed to return 0 if a peer performs an
2168 		 * orderly shutdown. Differentiate between that case and when a
2169 		 * peer has not connected or a local shutdown occurred with the
2170 		 * SOCK_DONE flag.
2171 		 */
2172 		if (sock_flag(sk, SOCK_DONE))
2173 			err = 0;
2174 		else
2175 			err = -ENOTCONN;
2176 
2177 		goto out;
2178 	}
2179 
2180 	if (flags & MSG_OOB) {
2181 		err = -EOPNOTSUPP;
2182 		goto out;
2183 	}
2184 
2185 	/* We don't check peer_shutdown flag here since peer may actually shut
2186 	 * down, but there can be data in the queue that a local socket can
2187 	 * receive.
2188 	 */
2189 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2190 		err = 0;
2191 		goto out;
2192 	}
2193 
2194 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2195 	 * is not an error.  We may as well bail out now.
2196 	 */
2197 	if (!len) {
2198 		err = 0;
2199 		goto out;
2200 	}
2201 
2202 	if (sk->sk_type == SOCK_STREAM)
2203 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2204 	else
2205 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2206 
2207 out:
2208 	release_sock(sk);
2209 	return err;
2210 }
2211 
2212 int
2213 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2214 			  int flags)
2215 {
2216 #ifdef CONFIG_BPF_SYSCALL
2217 	struct sock *sk = sock->sk;
2218 	const struct proto *prot;
2219 
2220 	prot = READ_ONCE(sk->sk_prot);
2221 	if (prot != &vsock_proto)
2222 		return prot->recvmsg(sk, msg, len, flags, NULL);
2223 #endif
2224 
2225 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2226 }
2227 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2228 
2229 static int vsock_set_rcvlowat(struct sock *sk, int val)
2230 {
2231 	const struct vsock_transport *transport;
2232 	struct vsock_sock *vsk;
2233 
2234 	vsk = vsock_sk(sk);
2235 
2236 	if (val > vsk->buffer_size)
2237 		return -EINVAL;
2238 
2239 	transport = vsk->transport;
2240 
2241 	if (transport && transport->notify_set_rcvlowat) {
2242 		int err;
2243 
2244 		err = transport->notify_set_rcvlowat(vsk, val);
2245 		if (err)
2246 			return err;
2247 	}
2248 
2249 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2250 	return 0;
2251 }
2252 
2253 static const struct proto_ops vsock_stream_ops = {
2254 	.family = PF_VSOCK,
2255 	.owner = THIS_MODULE,
2256 	.release = vsock_release,
2257 	.bind = vsock_bind,
2258 	.connect = vsock_connect,
2259 	.socketpair = sock_no_socketpair,
2260 	.accept = vsock_accept,
2261 	.getname = vsock_getname,
2262 	.poll = vsock_poll,
2263 	.ioctl = sock_no_ioctl,
2264 	.listen = vsock_listen,
2265 	.shutdown = vsock_shutdown,
2266 	.setsockopt = vsock_connectible_setsockopt,
2267 	.getsockopt = vsock_connectible_getsockopt,
2268 	.sendmsg = vsock_connectible_sendmsg,
2269 	.recvmsg = vsock_connectible_recvmsg,
2270 	.mmap = sock_no_mmap,
2271 	.set_rcvlowat = vsock_set_rcvlowat,
2272 	.read_skb = vsock_read_skb,
2273 };
2274 
2275 static const struct proto_ops vsock_seqpacket_ops = {
2276 	.family = PF_VSOCK,
2277 	.owner = THIS_MODULE,
2278 	.release = vsock_release,
2279 	.bind = vsock_bind,
2280 	.connect = vsock_connect,
2281 	.socketpair = sock_no_socketpair,
2282 	.accept = vsock_accept,
2283 	.getname = vsock_getname,
2284 	.poll = vsock_poll,
2285 	.ioctl = sock_no_ioctl,
2286 	.listen = vsock_listen,
2287 	.shutdown = vsock_shutdown,
2288 	.setsockopt = vsock_connectible_setsockopt,
2289 	.getsockopt = vsock_connectible_getsockopt,
2290 	.sendmsg = vsock_connectible_sendmsg,
2291 	.recvmsg = vsock_connectible_recvmsg,
2292 	.mmap = sock_no_mmap,
2293 	.read_skb = vsock_read_skb,
2294 };
2295 
2296 static int vsock_create(struct net *net, struct socket *sock,
2297 			int protocol, int kern)
2298 {
2299 	struct vsock_sock *vsk;
2300 	struct sock *sk;
2301 	int ret;
2302 
2303 	if (!sock)
2304 		return -EINVAL;
2305 
2306 	if (protocol && protocol != PF_VSOCK)
2307 		return -EPROTONOSUPPORT;
2308 
2309 	switch (sock->type) {
2310 	case SOCK_DGRAM:
2311 		sock->ops = &vsock_dgram_ops;
2312 		break;
2313 	case SOCK_STREAM:
2314 		sock->ops = &vsock_stream_ops;
2315 		break;
2316 	case SOCK_SEQPACKET:
2317 		sock->ops = &vsock_seqpacket_ops;
2318 		break;
2319 	default:
2320 		return -ESOCKTNOSUPPORT;
2321 	}
2322 
2323 	sock->state = SS_UNCONNECTED;
2324 
2325 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2326 	if (!sk)
2327 		return -ENOMEM;
2328 
2329 	vsk = vsock_sk(sk);
2330 
2331 	if (sock->type == SOCK_DGRAM) {
2332 		ret = vsock_assign_transport(vsk, NULL);
2333 		if (ret < 0) {
2334 			sock_put(sk);
2335 			return ret;
2336 		}
2337 	}
2338 
2339 	vsock_insert_unbound(vsk);
2340 
2341 	return 0;
2342 }
2343 
2344 static const struct net_proto_family vsock_family_ops = {
2345 	.family = AF_VSOCK,
2346 	.create = vsock_create,
2347 	.owner = THIS_MODULE,
2348 };
2349 
2350 static long vsock_dev_do_ioctl(struct file *filp,
2351 			       unsigned int cmd, void __user *ptr)
2352 {
2353 	u32 __user *p = ptr;
2354 	u32 cid = VMADDR_CID_ANY;
2355 	int retval = 0;
2356 
2357 	switch (cmd) {
2358 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2359 		/* To be compatible with the VMCI behavior, we prioritize the
2360 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2361 		 */
2362 		if (transport_g2h)
2363 			cid = transport_g2h->get_local_cid();
2364 		else if (transport_h2g)
2365 			cid = transport_h2g->get_local_cid();
2366 
2367 		if (put_user(cid, p) != 0)
2368 			retval = -EFAULT;
2369 		break;
2370 
2371 	default:
2372 		retval = -ENOIOCTLCMD;
2373 	}
2374 
2375 	return retval;
2376 }
2377 
2378 static long vsock_dev_ioctl(struct file *filp,
2379 			    unsigned int cmd, unsigned long arg)
2380 {
2381 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2382 }
2383 
2384 #ifdef CONFIG_COMPAT
2385 static long vsock_dev_compat_ioctl(struct file *filp,
2386 				   unsigned int cmd, unsigned long arg)
2387 {
2388 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2389 }
2390 #endif
2391 
2392 static const struct file_operations vsock_device_ops = {
2393 	.owner		= THIS_MODULE,
2394 	.unlocked_ioctl	= vsock_dev_ioctl,
2395 #ifdef CONFIG_COMPAT
2396 	.compat_ioctl	= vsock_dev_compat_ioctl,
2397 #endif
2398 	.open		= nonseekable_open,
2399 };
2400 
2401 static struct miscdevice vsock_device = {
2402 	.name		= "vsock",
2403 	.fops		= &vsock_device_ops,
2404 };
2405 
2406 static int __init vsock_init(void)
2407 {
2408 	int err = 0;
2409 
2410 	vsock_init_tables();
2411 
2412 	vsock_proto.owner = THIS_MODULE;
2413 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2414 	err = misc_register(&vsock_device);
2415 	if (err) {
2416 		pr_err("Failed to register misc device\n");
2417 		goto err_reset_transport;
2418 	}
2419 
2420 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2421 	if (err) {
2422 		pr_err("Cannot register vsock protocol\n");
2423 		goto err_deregister_misc;
2424 	}
2425 
2426 	err = sock_register(&vsock_family_ops);
2427 	if (err) {
2428 		pr_err("could not register af_vsock (%d) address family: %d\n",
2429 		       AF_VSOCK, err);
2430 		goto err_unregister_proto;
2431 	}
2432 
2433 	vsock_bpf_build_proto();
2434 
2435 	return 0;
2436 
2437 err_unregister_proto:
2438 	proto_unregister(&vsock_proto);
2439 err_deregister_misc:
2440 	misc_deregister(&vsock_device);
2441 err_reset_transport:
2442 	return err;
2443 }
2444 
2445 static void __exit vsock_exit(void)
2446 {
2447 	misc_deregister(&vsock_device);
2448 	sock_unregister(AF_VSOCK);
2449 	proto_unregister(&vsock_proto);
2450 }
2451 
2452 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2453 {
2454 	return vsk->transport;
2455 }
2456 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2457 
2458 int vsock_core_register(const struct vsock_transport *t, int features)
2459 {
2460 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2461 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2462 
2463 	if (err)
2464 		return err;
2465 
2466 	t_h2g = transport_h2g;
2467 	t_g2h = transport_g2h;
2468 	t_dgram = transport_dgram;
2469 	t_local = transport_local;
2470 
2471 	if (features & VSOCK_TRANSPORT_F_H2G) {
2472 		if (t_h2g) {
2473 			err = -EBUSY;
2474 			goto err_busy;
2475 		}
2476 		t_h2g = t;
2477 	}
2478 
2479 	if (features & VSOCK_TRANSPORT_F_G2H) {
2480 		if (t_g2h) {
2481 			err = -EBUSY;
2482 			goto err_busy;
2483 		}
2484 		t_g2h = t;
2485 	}
2486 
2487 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2488 		if (t_dgram) {
2489 			err = -EBUSY;
2490 			goto err_busy;
2491 		}
2492 		t_dgram = t;
2493 	}
2494 
2495 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2496 		if (t_local) {
2497 			err = -EBUSY;
2498 			goto err_busy;
2499 		}
2500 		t_local = t;
2501 	}
2502 
2503 	transport_h2g = t_h2g;
2504 	transport_g2h = t_g2h;
2505 	transport_dgram = t_dgram;
2506 	transport_local = t_local;
2507 
2508 err_busy:
2509 	mutex_unlock(&vsock_register_mutex);
2510 	return err;
2511 }
2512 EXPORT_SYMBOL_GPL(vsock_core_register);
2513 
2514 void vsock_core_unregister(const struct vsock_transport *t)
2515 {
2516 	mutex_lock(&vsock_register_mutex);
2517 
2518 	if (transport_h2g == t)
2519 		transport_h2g = NULL;
2520 
2521 	if (transport_g2h == t)
2522 		transport_g2h = NULL;
2523 
2524 	if (transport_dgram == t)
2525 		transport_dgram = NULL;
2526 
2527 	if (transport_local == t)
2528 		transport_local = NULL;
2529 
2530 	mutex_unlock(&vsock_register_mutex);
2531 }
2532 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2533 
2534 module_init(vsock_init);
2535 module_exit(vsock_exit);
2536 
2537 MODULE_AUTHOR("VMware, Inc.");
2538 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2539 MODULE_VERSION("1.0.2.0-k");
2540 MODULE_LICENSE("GPL v2");
2541