xref: /openbmc/linux/net/unix/af_unix.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/splice.h>
116 #include <linux/freezer.h>
117 #include <linux/file.h>
118 #include <linux/btf_ids.h>
119 
120 #include "scm.h"
121 
122 static atomic_long_t unix_nr_socks;
123 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2];
124 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2];
125 
126 /* SMP locking strategy:
127  *    hash table is protected with spinlock.
128  *    each socket state is protected by separate spinlock.
129  */
130 
131 static unsigned int unix_unbound_hash(struct sock *sk)
132 {
133 	unsigned long hash = (unsigned long)sk;
134 
135 	hash ^= hash >> 16;
136 	hash ^= hash >> 8;
137 	hash ^= sk->sk_type;
138 
139 	return hash & UNIX_HASH_MOD;
140 }
141 
142 static unsigned int unix_bsd_hash(struct inode *i)
143 {
144 	return i->i_ino & UNIX_HASH_MOD;
145 }
146 
147 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
148 				       int addr_len, int type)
149 {
150 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
151 	unsigned int hash;
152 
153 	hash = (__force unsigned int)csum_fold(csum);
154 	hash ^= hash >> 8;
155 	hash ^= type;
156 
157 	return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD);
158 }
159 
160 static void unix_table_double_lock(struct net *net,
161 				   unsigned int hash1, unsigned int hash2)
162 {
163 	if (hash1 == hash2) {
164 		spin_lock(&net->unx.table.locks[hash1]);
165 		return;
166 	}
167 
168 	if (hash1 > hash2)
169 		swap(hash1, hash2);
170 
171 	spin_lock(&net->unx.table.locks[hash1]);
172 	spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING);
173 }
174 
175 static void unix_table_double_unlock(struct net *net,
176 				     unsigned int hash1, unsigned int hash2)
177 {
178 	if (hash1 == hash2) {
179 		spin_unlock(&net->unx.table.locks[hash1]);
180 		return;
181 	}
182 
183 	spin_unlock(&net->unx.table.locks[hash1]);
184 	spin_unlock(&net->unx.table.locks[hash2]);
185 }
186 
187 #ifdef CONFIG_SECURITY_NETWORK
188 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
189 {
190 	UNIXCB(skb).secid = scm->secid;
191 }
192 
193 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
194 {
195 	scm->secid = UNIXCB(skb).secid;
196 }
197 
198 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
199 {
200 	return (scm->secid == UNIXCB(skb).secid);
201 }
202 #else
203 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
204 { }
205 
206 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
207 { }
208 
209 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
210 {
211 	return true;
212 }
213 #endif /* CONFIG_SECURITY_NETWORK */
214 
215 #define unix_peer(sk) (unix_sk(sk)->peer)
216 
217 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
218 {
219 	return unix_peer(osk) == sk;
220 }
221 
222 static inline int unix_may_send(struct sock *sk, struct sock *osk)
223 {
224 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
225 }
226 
227 static inline int unix_recvq_full(const struct sock *sk)
228 {
229 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
230 }
231 
232 static inline int unix_recvq_full_lockless(const struct sock *sk)
233 {
234 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
235 		READ_ONCE(sk->sk_max_ack_backlog);
236 }
237 
238 struct sock *unix_peer_get(struct sock *s)
239 {
240 	struct sock *peer;
241 
242 	unix_state_lock(s);
243 	peer = unix_peer(s);
244 	if (peer)
245 		sock_hold(peer);
246 	unix_state_unlock(s);
247 	return peer;
248 }
249 EXPORT_SYMBOL_GPL(unix_peer_get);
250 
251 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
252 					     int addr_len)
253 {
254 	struct unix_address *addr;
255 
256 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
257 	if (!addr)
258 		return NULL;
259 
260 	refcount_set(&addr->refcnt, 1);
261 	addr->len = addr_len;
262 	memcpy(addr->name, sunaddr, addr_len);
263 
264 	return addr;
265 }
266 
267 static inline void unix_release_addr(struct unix_address *addr)
268 {
269 	if (refcount_dec_and_test(&addr->refcnt))
270 		kfree(addr);
271 }
272 
273 /*
274  *	Check unix socket name:
275  *		- should be not zero length.
276  *	        - if started by not zero, should be NULL terminated (FS object)
277  *		- if started by zero, it is abstract name.
278  */
279 
280 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
281 {
282 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
283 	    addr_len > sizeof(*sunaddr))
284 		return -EINVAL;
285 
286 	if (sunaddr->sun_family != AF_UNIX)
287 		return -EINVAL;
288 
289 	return 0;
290 }
291 
292 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
293 {
294 	/* This may look like an off by one error but it is a bit more
295 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
296 	 * sun_path[108] doesn't as such exist.  However in kernel space
297 	 * we are guaranteed that it is a valid memory location in our
298 	 * kernel address buffer because syscall functions always pass
299 	 * a pointer of struct sockaddr_storage which has a bigger buffer
300 	 * than 108.
301 	 */
302 	((char *)sunaddr)[addr_len] = 0;
303 }
304 
305 static void __unix_remove_socket(struct sock *sk)
306 {
307 	sk_del_node_init(sk);
308 }
309 
310 static void __unix_insert_socket(struct net *net, struct sock *sk)
311 {
312 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
313 	sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]);
314 }
315 
316 static void __unix_set_addr_hash(struct net *net, struct sock *sk,
317 				 struct unix_address *addr, unsigned int hash)
318 {
319 	__unix_remove_socket(sk);
320 	smp_store_release(&unix_sk(sk)->addr, addr);
321 
322 	sk->sk_hash = hash;
323 	__unix_insert_socket(net, sk);
324 }
325 
326 static void unix_remove_socket(struct net *net, struct sock *sk)
327 {
328 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
329 	__unix_remove_socket(sk);
330 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
331 }
332 
333 static void unix_insert_unbound_socket(struct net *net, struct sock *sk)
334 {
335 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
336 	__unix_insert_socket(net, sk);
337 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
338 }
339 
340 static void unix_insert_bsd_socket(struct sock *sk)
341 {
342 	spin_lock(&bsd_socket_locks[sk->sk_hash]);
343 	sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]);
344 	spin_unlock(&bsd_socket_locks[sk->sk_hash]);
345 }
346 
347 static void unix_remove_bsd_socket(struct sock *sk)
348 {
349 	if (!hlist_unhashed(&sk->sk_bind_node)) {
350 		spin_lock(&bsd_socket_locks[sk->sk_hash]);
351 		__sk_del_bind_node(sk);
352 		spin_unlock(&bsd_socket_locks[sk->sk_hash]);
353 
354 		sk_node_init(&sk->sk_bind_node);
355 	}
356 }
357 
358 static struct sock *__unix_find_socket_byname(struct net *net,
359 					      struct sockaddr_un *sunname,
360 					      int len, unsigned int hash)
361 {
362 	struct sock *s;
363 
364 	sk_for_each(s, &net->unx.table.buckets[hash]) {
365 		struct unix_sock *u = unix_sk(s);
366 
367 		if (u->addr->len == len &&
368 		    !memcmp(u->addr->name, sunname, len))
369 			return s;
370 	}
371 	return NULL;
372 }
373 
374 static inline struct sock *unix_find_socket_byname(struct net *net,
375 						   struct sockaddr_un *sunname,
376 						   int len, unsigned int hash)
377 {
378 	struct sock *s;
379 
380 	spin_lock(&net->unx.table.locks[hash]);
381 	s = __unix_find_socket_byname(net, sunname, len, hash);
382 	if (s)
383 		sock_hold(s);
384 	spin_unlock(&net->unx.table.locks[hash]);
385 	return s;
386 }
387 
388 static struct sock *unix_find_socket_byinode(struct inode *i)
389 {
390 	unsigned int hash = unix_bsd_hash(i);
391 	struct sock *s;
392 
393 	spin_lock(&bsd_socket_locks[hash]);
394 	sk_for_each_bound(s, &bsd_socket_buckets[hash]) {
395 		struct dentry *dentry = unix_sk(s)->path.dentry;
396 
397 		if (dentry && d_backing_inode(dentry) == i) {
398 			sock_hold(s);
399 			spin_unlock(&bsd_socket_locks[hash]);
400 			return s;
401 		}
402 	}
403 	spin_unlock(&bsd_socket_locks[hash]);
404 	return NULL;
405 }
406 
407 /* Support code for asymmetrically connected dgram sockets
408  *
409  * If a datagram socket is connected to a socket not itself connected
410  * to the first socket (eg, /dev/log), clients may only enqueue more
411  * messages if the present receive queue of the server socket is not
412  * "too large". This means there's a second writeability condition
413  * poll and sendmsg need to test. The dgram recv code will do a wake
414  * up on the peer_wait wait queue of a socket upon reception of a
415  * datagram which needs to be propagated to sleeping would-be writers
416  * since these might not have sent anything so far. This can't be
417  * accomplished via poll_wait because the lifetime of the server
418  * socket might be less than that of its clients if these break their
419  * association with it or if the server socket is closed while clients
420  * are still connected to it and there's no way to inform "a polling
421  * implementation" that it should let go of a certain wait queue
422  *
423  * In order to propagate a wake up, a wait_queue_entry_t of the client
424  * socket is enqueued on the peer_wait queue of the server socket
425  * whose wake function does a wake_up on the ordinary client socket
426  * wait queue. This connection is established whenever a write (or
427  * poll for write) hit the flow control condition and broken when the
428  * association to the server socket is dissolved or after a wake up
429  * was relayed.
430  */
431 
432 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
433 				      void *key)
434 {
435 	struct unix_sock *u;
436 	wait_queue_head_t *u_sleep;
437 
438 	u = container_of(q, struct unix_sock, peer_wake);
439 
440 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
441 			    q);
442 	u->peer_wake.private = NULL;
443 
444 	/* relaying can only happen while the wq still exists */
445 	u_sleep = sk_sleep(&u->sk);
446 	if (u_sleep)
447 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
448 
449 	return 0;
450 }
451 
452 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
453 {
454 	struct unix_sock *u, *u_other;
455 	int rc;
456 
457 	u = unix_sk(sk);
458 	u_other = unix_sk(other);
459 	rc = 0;
460 	spin_lock(&u_other->peer_wait.lock);
461 
462 	if (!u->peer_wake.private) {
463 		u->peer_wake.private = other;
464 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
465 
466 		rc = 1;
467 	}
468 
469 	spin_unlock(&u_other->peer_wait.lock);
470 	return rc;
471 }
472 
473 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
474 					    struct sock *other)
475 {
476 	struct unix_sock *u, *u_other;
477 
478 	u = unix_sk(sk);
479 	u_other = unix_sk(other);
480 	spin_lock(&u_other->peer_wait.lock);
481 
482 	if (u->peer_wake.private == other) {
483 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
484 		u->peer_wake.private = NULL;
485 	}
486 
487 	spin_unlock(&u_other->peer_wait.lock);
488 }
489 
490 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
491 						   struct sock *other)
492 {
493 	unix_dgram_peer_wake_disconnect(sk, other);
494 	wake_up_interruptible_poll(sk_sleep(sk),
495 				   EPOLLOUT |
496 				   EPOLLWRNORM |
497 				   EPOLLWRBAND);
498 }
499 
500 /* preconditions:
501  *	- unix_peer(sk) == other
502  *	- association is stable
503  */
504 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
505 {
506 	int connected;
507 
508 	connected = unix_dgram_peer_wake_connect(sk, other);
509 
510 	/* If other is SOCK_DEAD, we want to make sure we signal
511 	 * POLLOUT, such that a subsequent write() can get a
512 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
513 	 * to other and its full, we will hang waiting for POLLOUT.
514 	 */
515 	if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
516 		return 1;
517 
518 	if (connected)
519 		unix_dgram_peer_wake_disconnect(sk, other);
520 
521 	return 0;
522 }
523 
524 static int unix_writable(const struct sock *sk)
525 {
526 	return sk->sk_state != TCP_LISTEN &&
527 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
528 }
529 
530 static void unix_write_space(struct sock *sk)
531 {
532 	struct socket_wq *wq;
533 
534 	rcu_read_lock();
535 	if (unix_writable(sk)) {
536 		wq = rcu_dereference(sk->sk_wq);
537 		if (skwq_has_sleeper(wq))
538 			wake_up_interruptible_sync_poll(&wq->wait,
539 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
540 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
541 	}
542 	rcu_read_unlock();
543 }
544 
545 /* When dgram socket disconnects (or changes its peer), we clear its receive
546  * queue of packets arrived from previous peer. First, it allows to do
547  * flow control based only on wmem_alloc; second, sk connected to peer
548  * may receive messages only from that peer. */
549 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
550 {
551 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
552 		skb_queue_purge(&sk->sk_receive_queue);
553 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
554 
555 		/* If one link of bidirectional dgram pipe is disconnected,
556 		 * we signal error. Messages are lost. Do not make this,
557 		 * when peer was not connected to us.
558 		 */
559 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
560 			WRITE_ONCE(other->sk_err, ECONNRESET);
561 			sk_error_report(other);
562 		}
563 	}
564 	other->sk_state = TCP_CLOSE;
565 }
566 
567 static void unix_sock_destructor(struct sock *sk)
568 {
569 	struct unix_sock *u = unix_sk(sk);
570 
571 	skb_queue_purge(&sk->sk_receive_queue);
572 
573 	DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
574 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
575 	DEBUG_NET_WARN_ON_ONCE(sk->sk_socket);
576 	if (!sock_flag(sk, SOCK_DEAD)) {
577 		pr_info("Attempt to release alive unix socket: %p\n", sk);
578 		return;
579 	}
580 
581 	if (u->addr)
582 		unix_release_addr(u->addr);
583 
584 	atomic_long_dec(&unix_nr_socks);
585 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
586 #ifdef UNIX_REFCNT_DEBUG
587 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
588 		atomic_long_read(&unix_nr_socks));
589 #endif
590 }
591 
592 static void unix_release_sock(struct sock *sk, int embrion)
593 {
594 	struct unix_sock *u = unix_sk(sk);
595 	struct sock *skpair;
596 	struct sk_buff *skb;
597 	struct path path;
598 	int state;
599 
600 	unix_remove_socket(sock_net(sk), sk);
601 	unix_remove_bsd_socket(sk);
602 
603 	/* Clear state */
604 	unix_state_lock(sk);
605 	sock_orphan(sk);
606 	sk->sk_shutdown = SHUTDOWN_MASK;
607 	path	     = u->path;
608 	u->path.dentry = NULL;
609 	u->path.mnt = NULL;
610 	state = sk->sk_state;
611 	sk->sk_state = TCP_CLOSE;
612 
613 	skpair = unix_peer(sk);
614 	unix_peer(sk) = NULL;
615 
616 	unix_state_unlock(sk);
617 
618 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
619 	if (u->oob_skb) {
620 		kfree_skb(u->oob_skb);
621 		u->oob_skb = NULL;
622 	}
623 #endif
624 
625 	wake_up_interruptible_all(&u->peer_wait);
626 
627 	if (skpair != NULL) {
628 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
629 			unix_state_lock(skpair);
630 			/* No more writes */
631 			skpair->sk_shutdown = SHUTDOWN_MASK;
632 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
633 				WRITE_ONCE(skpair->sk_err, ECONNRESET);
634 			unix_state_unlock(skpair);
635 			skpair->sk_state_change(skpair);
636 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
637 		}
638 
639 		unix_dgram_peer_wake_disconnect(sk, skpair);
640 		sock_put(skpair); /* It may now die */
641 	}
642 
643 	/* Try to flush out this socket. Throw out buffers at least */
644 
645 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
646 		if (state == TCP_LISTEN)
647 			unix_release_sock(skb->sk, 1);
648 		/* passed fds are erased in the kfree_skb hook	      */
649 		UNIXCB(skb).consumed = skb->len;
650 		kfree_skb(skb);
651 	}
652 
653 	if (path.dentry)
654 		path_put(&path);
655 
656 	sock_put(sk);
657 
658 	/* ---- Socket is dead now and most probably destroyed ---- */
659 
660 	/*
661 	 * Fixme: BSD difference: In BSD all sockets connected to us get
662 	 *	  ECONNRESET and we die on the spot. In Linux we behave
663 	 *	  like files and pipes do and wait for the last
664 	 *	  dereference.
665 	 *
666 	 * Can't we simply set sock->err?
667 	 *
668 	 *	  What the above comment does talk about? --ANK(980817)
669 	 */
670 
671 	if (unix_tot_inflight)
672 		unix_gc();		/* Garbage collect fds */
673 }
674 
675 static void init_peercred(struct sock *sk)
676 {
677 	const struct cred *old_cred;
678 	struct pid *old_pid;
679 
680 	spin_lock(&sk->sk_peer_lock);
681 	old_pid = sk->sk_peer_pid;
682 	old_cred = sk->sk_peer_cred;
683 	sk->sk_peer_pid  = get_pid(task_tgid(current));
684 	sk->sk_peer_cred = get_current_cred();
685 	spin_unlock(&sk->sk_peer_lock);
686 
687 	put_pid(old_pid);
688 	put_cred(old_cred);
689 }
690 
691 static void copy_peercred(struct sock *sk, struct sock *peersk)
692 {
693 	const struct cred *old_cred;
694 	struct pid *old_pid;
695 
696 	if (sk < peersk) {
697 		spin_lock(&sk->sk_peer_lock);
698 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
699 	} else {
700 		spin_lock(&peersk->sk_peer_lock);
701 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
702 	}
703 	old_pid = sk->sk_peer_pid;
704 	old_cred = sk->sk_peer_cred;
705 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
706 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
707 
708 	spin_unlock(&sk->sk_peer_lock);
709 	spin_unlock(&peersk->sk_peer_lock);
710 
711 	put_pid(old_pid);
712 	put_cred(old_cred);
713 }
714 
715 static int unix_listen(struct socket *sock, int backlog)
716 {
717 	int err;
718 	struct sock *sk = sock->sk;
719 	struct unix_sock *u = unix_sk(sk);
720 
721 	err = -EOPNOTSUPP;
722 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
723 		goto out;	/* Only stream/seqpacket sockets accept */
724 	err = -EINVAL;
725 	if (!u->addr)
726 		goto out;	/* No listens on an unbound socket */
727 	unix_state_lock(sk);
728 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
729 		goto out_unlock;
730 	if (backlog > sk->sk_max_ack_backlog)
731 		wake_up_interruptible_all(&u->peer_wait);
732 	sk->sk_max_ack_backlog	= backlog;
733 	sk->sk_state		= TCP_LISTEN;
734 	/* set credentials so connect can copy them */
735 	init_peercred(sk);
736 	err = 0;
737 
738 out_unlock:
739 	unix_state_unlock(sk);
740 out:
741 	return err;
742 }
743 
744 static int unix_release(struct socket *);
745 static int unix_bind(struct socket *, struct sockaddr *, int);
746 static int unix_stream_connect(struct socket *, struct sockaddr *,
747 			       int addr_len, int flags);
748 static int unix_socketpair(struct socket *, struct socket *);
749 static int unix_accept(struct socket *, struct socket *, int, bool);
750 static int unix_getname(struct socket *, struct sockaddr *, int);
751 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
752 static __poll_t unix_dgram_poll(struct file *, struct socket *,
753 				    poll_table *);
754 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
755 #ifdef CONFIG_COMPAT
756 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
757 #endif
758 static int unix_shutdown(struct socket *, int);
759 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
760 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
761 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
762 				    size_t size, int flags);
763 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
764 				       struct pipe_inode_info *, size_t size,
765 				       unsigned int flags);
766 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
767 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
768 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
769 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
770 static int unix_dgram_connect(struct socket *, struct sockaddr *,
771 			      int, int);
772 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
773 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
774 				  int);
775 
776 static int unix_set_peek_off(struct sock *sk, int val)
777 {
778 	struct unix_sock *u = unix_sk(sk);
779 
780 	if (mutex_lock_interruptible(&u->iolock))
781 		return -EINTR;
782 
783 	sk->sk_peek_off = val;
784 	mutex_unlock(&u->iolock);
785 
786 	return 0;
787 }
788 
789 #ifdef CONFIG_PROC_FS
790 static int unix_count_nr_fds(struct sock *sk)
791 {
792 	struct sk_buff *skb;
793 	struct unix_sock *u;
794 	int nr_fds = 0;
795 
796 	spin_lock(&sk->sk_receive_queue.lock);
797 	skb = skb_peek(&sk->sk_receive_queue);
798 	while (skb) {
799 		u = unix_sk(skb->sk);
800 		nr_fds += atomic_read(&u->scm_stat.nr_fds);
801 		skb = skb_peek_next(skb, &sk->sk_receive_queue);
802 	}
803 	spin_unlock(&sk->sk_receive_queue.lock);
804 
805 	return nr_fds;
806 }
807 
808 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
809 {
810 	struct sock *sk = sock->sk;
811 	unsigned char s_state;
812 	struct unix_sock *u;
813 	int nr_fds = 0;
814 
815 	if (sk) {
816 		s_state = READ_ONCE(sk->sk_state);
817 		u = unix_sk(sk);
818 
819 		/* SOCK_STREAM and SOCK_SEQPACKET sockets never change their
820 		 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN.
821 		 * SOCK_DGRAM is ordinary. So, no lock is needed.
822 		 */
823 		if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED)
824 			nr_fds = atomic_read(&u->scm_stat.nr_fds);
825 		else if (s_state == TCP_LISTEN)
826 			nr_fds = unix_count_nr_fds(sk);
827 
828 		seq_printf(m, "scm_fds: %u\n", nr_fds);
829 	}
830 }
831 #else
832 #define unix_show_fdinfo NULL
833 #endif
834 
835 static const struct proto_ops unix_stream_ops = {
836 	.family =	PF_UNIX,
837 	.owner =	THIS_MODULE,
838 	.release =	unix_release,
839 	.bind =		unix_bind,
840 	.connect =	unix_stream_connect,
841 	.socketpair =	unix_socketpair,
842 	.accept =	unix_accept,
843 	.getname =	unix_getname,
844 	.poll =		unix_poll,
845 	.ioctl =	unix_ioctl,
846 #ifdef CONFIG_COMPAT
847 	.compat_ioctl =	unix_compat_ioctl,
848 #endif
849 	.listen =	unix_listen,
850 	.shutdown =	unix_shutdown,
851 	.sendmsg =	unix_stream_sendmsg,
852 	.recvmsg =	unix_stream_recvmsg,
853 	.read_skb =	unix_stream_read_skb,
854 	.mmap =		sock_no_mmap,
855 	.sendpage =	unix_stream_sendpage,
856 	.splice_read =	unix_stream_splice_read,
857 	.set_peek_off =	unix_set_peek_off,
858 	.show_fdinfo =	unix_show_fdinfo,
859 };
860 
861 static const struct proto_ops unix_dgram_ops = {
862 	.family =	PF_UNIX,
863 	.owner =	THIS_MODULE,
864 	.release =	unix_release,
865 	.bind =		unix_bind,
866 	.connect =	unix_dgram_connect,
867 	.socketpair =	unix_socketpair,
868 	.accept =	sock_no_accept,
869 	.getname =	unix_getname,
870 	.poll =		unix_dgram_poll,
871 	.ioctl =	unix_ioctl,
872 #ifdef CONFIG_COMPAT
873 	.compat_ioctl =	unix_compat_ioctl,
874 #endif
875 	.listen =	sock_no_listen,
876 	.shutdown =	unix_shutdown,
877 	.sendmsg =	unix_dgram_sendmsg,
878 	.read_skb =	unix_read_skb,
879 	.recvmsg =	unix_dgram_recvmsg,
880 	.mmap =		sock_no_mmap,
881 	.sendpage =	sock_no_sendpage,
882 	.set_peek_off =	unix_set_peek_off,
883 	.show_fdinfo =	unix_show_fdinfo,
884 };
885 
886 static const struct proto_ops unix_seqpacket_ops = {
887 	.family =	PF_UNIX,
888 	.owner =	THIS_MODULE,
889 	.release =	unix_release,
890 	.bind =		unix_bind,
891 	.connect =	unix_stream_connect,
892 	.socketpair =	unix_socketpair,
893 	.accept =	unix_accept,
894 	.getname =	unix_getname,
895 	.poll =		unix_dgram_poll,
896 	.ioctl =	unix_ioctl,
897 #ifdef CONFIG_COMPAT
898 	.compat_ioctl =	unix_compat_ioctl,
899 #endif
900 	.listen =	unix_listen,
901 	.shutdown =	unix_shutdown,
902 	.sendmsg =	unix_seqpacket_sendmsg,
903 	.recvmsg =	unix_seqpacket_recvmsg,
904 	.mmap =		sock_no_mmap,
905 	.sendpage =	sock_no_sendpage,
906 	.set_peek_off =	unix_set_peek_off,
907 	.show_fdinfo =	unix_show_fdinfo,
908 };
909 
910 static void unix_close(struct sock *sk, long timeout)
911 {
912 	/* Nothing to do here, unix socket does not need a ->close().
913 	 * This is merely for sockmap.
914 	 */
915 }
916 
917 static void unix_unhash(struct sock *sk)
918 {
919 	/* Nothing to do here, unix socket does not need a ->unhash().
920 	 * This is merely for sockmap.
921 	 */
922 }
923 
924 struct proto unix_dgram_proto = {
925 	.name			= "UNIX",
926 	.owner			= THIS_MODULE,
927 	.obj_size		= sizeof(struct unix_sock),
928 	.close			= unix_close,
929 #ifdef CONFIG_BPF_SYSCALL
930 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
931 #endif
932 };
933 
934 struct proto unix_stream_proto = {
935 	.name			= "UNIX-STREAM",
936 	.owner			= THIS_MODULE,
937 	.obj_size		= sizeof(struct unix_sock),
938 	.close			= unix_close,
939 	.unhash			= unix_unhash,
940 #ifdef CONFIG_BPF_SYSCALL
941 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
942 #endif
943 };
944 
945 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
946 {
947 	struct unix_sock *u;
948 	struct sock *sk;
949 	int err;
950 
951 	atomic_long_inc(&unix_nr_socks);
952 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
953 		err = -ENFILE;
954 		goto err;
955 	}
956 
957 	if (type == SOCK_STREAM)
958 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
959 	else /*dgram and  seqpacket */
960 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
961 
962 	if (!sk) {
963 		err = -ENOMEM;
964 		goto err;
965 	}
966 
967 	sock_init_data(sock, sk);
968 
969 	sk->sk_hash		= unix_unbound_hash(sk);
970 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
971 	sk->sk_write_space	= unix_write_space;
972 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
973 	sk->sk_destruct		= unix_sock_destructor;
974 	u	  = unix_sk(sk);
975 	u->path.dentry = NULL;
976 	u->path.mnt = NULL;
977 	spin_lock_init(&u->lock);
978 	atomic_long_set(&u->inflight, 0);
979 	INIT_LIST_HEAD(&u->link);
980 	mutex_init(&u->iolock); /* single task reading lock */
981 	mutex_init(&u->bindlock); /* single task binding lock */
982 	init_waitqueue_head(&u->peer_wait);
983 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
984 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
985 	unix_insert_unbound_socket(net, sk);
986 
987 	sock_prot_inuse_add(net, sk->sk_prot, 1);
988 
989 	return sk;
990 
991 err:
992 	atomic_long_dec(&unix_nr_socks);
993 	return ERR_PTR(err);
994 }
995 
996 static int unix_create(struct net *net, struct socket *sock, int protocol,
997 		       int kern)
998 {
999 	struct sock *sk;
1000 
1001 	if (protocol && protocol != PF_UNIX)
1002 		return -EPROTONOSUPPORT;
1003 
1004 	sock->state = SS_UNCONNECTED;
1005 
1006 	switch (sock->type) {
1007 	case SOCK_STREAM:
1008 		sock->ops = &unix_stream_ops;
1009 		break;
1010 		/*
1011 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
1012 		 *	nothing uses it.
1013 		 */
1014 	case SOCK_RAW:
1015 		sock->type = SOCK_DGRAM;
1016 		fallthrough;
1017 	case SOCK_DGRAM:
1018 		sock->ops = &unix_dgram_ops;
1019 		break;
1020 	case SOCK_SEQPACKET:
1021 		sock->ops = &unix_seqpacket_ops;
1022 		break;
1023 	default:
1024 		return -ESOCKTNOSUPPORT;
1025 	}
1026 
1027 	sk = unix_create1(net, sock, kern, sock->type);
1028 	if (IS_ERR(sk))
1029 		return PTR_ERR(sk);
1030 
1031 	return 0;
1032 }
1033 
1034 static int unix_release(struct socket *sock)
1035 {
1036 	struct sock *sk = sock->sk;
1037 
1038 	if (!sk)
1039 		return 0;
1040 
1041 	sk->sk_prot->close(sk, 0);
1042 	unix_release_sock(sk, 0);
1043 	sock->sk = NULL;
1044 
1045 	return 0;
1046 }
1047 
1048 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len,
1049 				  int type)
1050 {
1051 	struct inode *inode;
1052 	struct path path;
1053 	struct sock *sk;
1054 	int err;
1055 
1056 	unix_mkname_bsd(sunaddr, addr_len);
1057 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1058 	if (err)
1059 		goto fail;
1060 
1061 	err = path_permission(&path, MAY_WRITE);
1062 	if (err)
1063 		goto path_put;
1064 
1065 	err = -ECONNREFUSED;
1066 	inode = d_backing_inode(path.dentry);
1067 	if (!S_ISSOCK(inode->i_mode))
1068 		goto path_put;
1069 
1070 	sk = unix_find_socket_byinode(inode);
1071 	if (!sk)
1072 		goto path_put;
1073 
1074 	err = -EPROTOTYPE;
1075 	if (sk->sk_type == type)
1076 		touch_atime(&path);
1077 	else
1078 		goto sock_put;
1079 
1080 	path_put(&path);
1081 
1082 	return sk;
1083 
1084 sock_put:
1085 	sock_put(sk);
1086 path_put:
1087 	path_put(&path);
1088 fail:
1089 	return ERR_PTR(err);
1090 }
1091 
1092 static struct sock *unix_find_abstract(struct net *net,
1093 				       struct sockaddr_un *sunaddr,
1094 				       int addr_len, int type)
1095 {
1096 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1097 	struct dentry *dentry;
1098 	struct sock *sk;
1099 
1100 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1101 	if (!sk)
1102 		return ERR_PTR(-ECONNREFUSED);
1103 
1104 	dentry = unix_sk(sk)->path.dentry;
1105 	if (dentry)
1106 		touch_atime(&unix_sk(sk)->path);
1107 
1108 	return sk;
1109 }
1110 
1111 static struct sock *unix_find_other(struct net *net,
1112 				    struct sockaddr_un *sunaddr,
1113 				    int addr_len, int type)
1114 {
1115 	struct sock *sk;
1116 
1117 	if (sunaddr->sun_path[0])
1118 		sk = unix_find_bsd(sunaddr, addr_len, type);
1119 	else
1120 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1121 
1122 	return sk;
1123 }
1124 
1125 static int unix_autobind(struct sock *sk)
1126 {
1127 	unsigned int new_hash, old_hash = sk->sk_hash;
1128 	struct unix_sock *u = unix_sk(sk);
1129 	struct net *net = sock_net(sk);
1130 	struct unix_address *addr;
1131 	u32 lastnum, ordernum;
1132 	int err;
1133 
1134 	err = mutex_lock_interruptible(&u->bindlock);
1135 	if (err)
1136 		return err;
1137 
1138 	if (u->addr)
1139 		goto out;
1140 
1141 	err = -ENOMEM;
1142 	addr = kzalloc(sizeof(*addr) +
1143 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1144 	if (!addr)
1145 		goto out;
1146 
1147 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1148 	addr->name->sun_family = AF_UNIX;
1149 	refcount_set(&addr->refcnt, 1);
1150 
1151 	ordernum = get_random_u32();
1152 	lastnum = ordernum & 0xFFFFF;
1153 retry:
1154 	ordernum = (ordernum + 1) & 0xFFFFF;
1155 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1156 
1157 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1158 	unix_table_double_lock(net, old_hash, new_hash);
1159 
1160 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) {
1161 		unix_table_double_unlock(net, old_hash, new_hash);
1162 
1163 		/* __unix_find_socket_byname() may take long time if many names
1164 		 * are already in use.
1165 		 */
1166 		cond_resched();
1167 
1168 		if (ordernum == lastnum) {
1169 			/* Give up if all names seems to be in use. */
1170 			err = -ENOSPC;
1171 			unix_release_addr(addr);
1172 			goto out;
1173 		}
1174 
1175 		goto retry;
1176 	}
1177 
1178 	__unix_set_addr_hash(net, sk, addr, new_hash);
1179 	unix_table_double_unlock(net, old_hash, new_hash);
1180 	err = 0;
1181 
1182 out:	mutex_unlock(&u->bindlock);
1183 	return err;
1184 }
1185 
1186 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1187 			 int addr_len)
1188 {
1189 	umode_t mode = S_IFSOCK |
1190 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1191 	unsigned int new_hash, old_hash = sk->sk_hash;
1192 	struct unix_sock *u = unix_sk(sk);
1193 	struct net *net = sock_net(sk);
1194 	struct mnt_idmap *idmap;
1195 	struct unix_address *addr;
1196 	struct dentry *dentry;
1197 	struct path parent;
1198 	int err;
1199 
1200 	unix_mkname_bsd(sunaddr, addr_len);
1201 	addr_len = strlen(sunaddr->sun_path) +
1202 		offsetof(struct sockaddr_un, sun_path) + 1;
1203 
1204 	addr = unix_create_addr(sunaddr, addr_len);
1205 	if (!addr)
1206 		return -ENOMEM;
1207 
1208 	/*
1209 	 * Get the parent directory, calculate the hash for last
1210 	 * component.
1211 	 */
1212 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1213 	if (IS_ERR(dentry)) {
1214 		err = PTR_ERR(dentry);
1215 		goto out;
1216 	}
1217 
1218 	/*
1219 	 * All right, let's create it.
1220 	 */
1221 	idmap = mnt_idmap(parent.mnt);
1222 	err = security_path_mknod(&parent, dentry, mode, 0);
1223 	if (!err)
1224 		err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0);
1225 	if (err)
1226 		goto out_path;
1227 	err = mutex_lock_interruptible(&u->bindlock);
1228 	if (err)
1229 		goto out_unlink;
1230 	if (u->addr)
1231 		goto out_unlock;
1232 
1233 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1234 	unix_table_double_lock(net, old_hash, new_hash);
1235 	u->path.mnt = mntget(parent.mnt);
1236 	u->path.dentry = dget(dentry);
1237 	__unix_set_addr_hash(net, sk, addr, new_hash);
1238 	unix_table_double_unlock(net, old_hash, new_hash);
1239 	unix_insert_bsd_socket(sk);
1240 	mutex_unlock(&u->bindlock);
1241 	done_path_create(&parent, dentry);
1242 	return 0;
1243 
1244 out_unlock:
1245 	mutex_unlock(&u->bindlock);
1246 	err = -EINVAL;
1247 out_unlink:
1248 	/* failed after successful mknod?  unlink what we'd created... */
1249 	vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL);
1250 out_path:
1251 	done_path_create(&parent, dentry);
1252 out:
1253 	unix_release_addr(addr);
1254 	return err == -EEXIST ? -EADDRINUSE : err;
1255 }
1256 
1257 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1258 			      int addr_len)
1259 {
1260 	unsigned int new_hash, old_hash = sk->sk_hash;
1261 	struct unix_sock *u = unix_sk(sk);
1262 	struct net *net = sock_net(sk);
1263 	struct unix_address *addr;
1264 	int err;
1265 
1266 	addr = unix_create_addr(sunaddr, addr_len);
1267 	if (!addr)
1268 		return -ENOMEM;
1269 
1270 	err = mutex_lock_interruptible(&u->bindlock);
1271 	if (err)
1272 		goto out;
1273 
1274 	if (u->addr) {
1275 		err = -EINVAL;
1276 		goto out_mutex;
1277 	}
1278 
1279 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1280 	unix_table_double_lock(net, old_hash, new_hash);
1281 
1282 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash))
1283 		goto out_spin;
1284 
1285 	__unix_set_addr_hash(net, sk, addr, new_hash);
1286 	unix_table_double_unlock(net, old_hash, new_hash);
1287 	mutex_unlock(&u->bindlock);
1288 	return 0;
1289 
1290 out_spin:
1291 	unix_table_double_unlock(net, old_hash, new_hash);
1292 	err = -EADDRINUSE;
1293 out_mutex:
1294 	mutex_unlock(&u->bindlock);
1295 out:
1296 	unix_release_addr(addr);
1297 	return err;
1298 }
1299 
1300 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1301 {
1302 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1303 	struct sock *sk = sock->sk;
1304 	int err;
1305 
1306 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1307 	    sunaddr->sun_family == AF_UNIX)
1308 		return unix_autobind(sk);
1309 
1310 	err = unix_validate_addr(sunaddr, addr_len);
1311 	if (err)
1312 		return err;
1313 
1314 	if (sunaddr->sun_path[0])
1315 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1316 	else
1317 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1318 
1319 	return err;
1320 }
1321 
1322 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1323 {
1324 	if (unlikely(sk1 == sk2) || !sk2) {
1325 		unix_state_lock(sk1);
1326 		return;
1327 	}
1328 	if (sk1 < sk2) {
1329 		unix_state_lock(sk1);
1330 		unix_state_lock_nested(sk2);
1331 	} else {
1332 		unix_state_lock(sk2);
1333 		unix_state_lock_nested(sk1);
1334 	}
1335 }
1336 
1337 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1338 {
1339 	if (unlikely(sk1 == sk2) || !sk2) {
1340 		unix_state_unlock(sk1);
1341 		return;
1342 	}
1343 	unix_state_unlock(sk1);
1344 	unix_state_unlock(sk2);
1345 }
1346 
1347 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1348 			      int alen, int flags)
1349 {
1350 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1351 	struct sock *sk = sock->sk;
1352 	struct sock *other;
1353 	int err;
1354 
1355 	err = -EINVAL;
1356 	if (alen < offsetofend(struct sockaddr, sa_family))
1357 		goto out;
1358 
1359 	if (addr->sa_family != AF_UNSPEC) {
1360 		err = unix_validate_addr(sunaddr, alen);
1361 		if (err)
1362 			goto out;
1363 
1364 		if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1365 		    !unix_sk(sk)->addr) {
1366 			err = unix_autobind(sk);
1367 			if (err)
1368 				goto out;
1369 		}
1370 
1371 restart:
1372 		other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type);
1373 		if (IS_ERR(other)) {
1374 			err = PTR_ERR(other);
1375 			goto out;
1376 		}
1377 
1378 		unix_state_double_lock(sk, other);
1379 
1380 		/* Apparently VFS overslept socket death. Retry. */
1381 		if (sock_flag(other, SOCK_DEAD)) {
1382 			unix_state_double_unlock(sk, other);
1383 			sock_put(other);
1384 			goto restart;
1385 		}
1386 
1387 		err = -EPERM;
1388 		if (!unix_may_send(sk, other))
1389 			goto out_unlock;
1390 
1391 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1392 		if (err)
1393 			goto out_unlock;
1394 
1395 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1396 	} else {
1397 		/*
1398 		 *	1003.1g breaking connected state with AF_UNSPEC
1399 		 */
1400 		other = NULL;
1401 		unix_state_double_lock(sk, other);
1402 	}
1403 
1404 	/*
1405 	 * If it was connected, reconnect.
1406 	 */
1407 	if (unix_peer(sk)) {
1408 		struct sock *old_peer = unix_peer(sk);
1409 
1410 		unix_peer(sk) = other;
1411 		if (!other)
1412 			sk->sk_state = TCP_CLOSE;
1413 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1414 
1415 		unix_state_double_unlock(sk, other);
1416 
1417 		if (other != old_peer)
1418 			unix_dgram_disconnected(sk, old_peer);
1419 		sock_put(old_peer);
1420 	} else {
1421 		unix_peer(sk) = other;
1422 		unix_state_double_unlock(sk, other);
1423 	}
1424 
1425 	return 0;
1426 
1427 out_unlock:
1428 	unix_state_double_unlock(sk, other);
1429 	sock_put(other);
1430 out:
1431 	return err;
1432 }
1433 
1434 static long unix_wait_for_peer(struct sock *other, long timeo)
1435 	__releases(&unix_sk(other)->lock)
1436 {
1437 	struct unix_sock *u = unix_sk(other);
1438 	int sched;
1439 	DEFINE_WAIT(wait);
1440 
1441 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1442 
1443 	sched = !sock_flag(other, SOCK_DEAD) &&
1444 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1445 		unix_recvq_full(other);
1446 
1447 	unix_state_unlock(other);
1448 
1449 	if (sched)
1450 		timeo = schedule_timeout(timeo);
1451 
1452 	finish_wait(&u->peer_wait, &wait);
1453 	return timeo;
1454 }
1455 
1456 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1457 			       int addr_len, int flags)
1458 {
1459 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1460 	struct sock *sk = sock->sk, *newsk = NULL, *other = NULL;
1461 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1462 	struct net *net = sock_net(sk);
1463 	struct sk_buff *skb = NULL;
1464 	long timeo;
1465 	int err;
1466 	int st;
1467 
1468 	err = unix_validate_addr(sunaddr, addr_len);
1469 	if (err)
1470 		goto out;
1471 
1472 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1473 		err = unix_autobind(sk);
1474 		if (err)
1475 			goto out;
1476 	}
1477 
1478 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1479 
1480 	/* First of all allocate resources.
1481 	   If we will make it after state is locked,
1482 	   we will have to recheck all again in any case.
1483 	 */
1484 
1485 	/* create new sock for complete connection */
1486 	newsk = unix_create1(net, NULL, 0, sock->type);
1487 	if (IS_ERR(newsk)) {
1488 		err = PTR_ERR(newsk);
1489 		newsk = NULL;
1490 		goto out;
1491 	}
1492 
1493 	err = -ENOMEM;
1494 
1495 	/* Allocate skb for sending to listening sock */
1496 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1497 	if (skb == NULL)
1498 		goto out;
1499 
1500 restart:
1501 	/*  Find listening sock. */
1502 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1503 	if (IS_ERR(other)) {
1504 		err = PTR_ERR(other);
1505 		other = NULL;
1506 		goto out;
1507 	}
1508 
1509 	/* Latch state of peer */
1510 	unix_state_lock(other);
1511 
1512 	/* Apparently VFS overslept socket death. Retry. */
1513 	if (sock_flag(other, SOCK_DEAD)) {
1514 		unix_state_unlock(other);
1515 		sock_put(other);
1516 		goto restart;
1517 	}
1518 
1519 	err = -ECONNREFUSED;
1520 	if (other->sk_state != TCP_LISTEN)
1521 		goto out_unlock;
1522 	if (other->sk_shutdown & RCV_SHUTDOWN)
1523 		goto out_unlock;
1524 
1525 	if (unix_recvq_full(other)) {
1526 		err = -EAGAIN;
1527 		if (!timeo)
1528 			goto out_unlock;
1529 
1530 		timeo = unix_wait_for_peer(other, timeo);
1531 
1532 		err = sock_intr_errno(timeo);
1533 		if (signal_pending(current))
1534 			goto out;
1535 		sock_put(other);
1536 		goto restart;
1537 	}
1538 
1539 	/* Latch our state.
1540 
1541 	   It is tricky place. We need to grab our state lock and cannot
1542 	   drop lock on peer. It is dangerous because deadlock is
1543 	   possible. Connect to self case and simultaneous
1544 	   attempt to connect are eliminated by checking socket
1545 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1546 	   check this before attempt to grab lock.
1547 
1548 	   Well, and we have to recheck the state after socket locked.
1549 	 */
1550 	st = sk->sk_state;
1551 
1552 	switch (st) {
1553 	case TCP_CLOSE:
1554 		/* This is ok... continue with connect */
1555 		break;
1556 	case TCP_ESTABLISHED:
1557 		/* Socket is already connected */
1558 		err = -EISCONN;
1559 		goto out_unlock;
1560 	default:
1561 		err = -EINVAL;
1562 		goto out_unlock;
1563 	}
1564 
1565 	unix_state_lock_nested(sk);
1566 
1567 	if (sk->sk_state != st) {
1568 		unix_state_unlock(sk);
1569 		unix_state_unlock(other);
1570 		sock_put(other);
1571 		goto restart;
1572 	}
1573 
1574 	err = security_unix_stream_connect(sk, other, newsk);
1575 	if (err) {
1576 		unix_state_unlock(sk);
1577 		goto out_unlock;
1578 	}
1579 
1580 	/* The way is open! Fastly set all the necessary fields... */
1581 
1582 	sock_hold(sk);
1583 	unix_peer(newsk)	= sk;
1584 	newsk->sk_state		= TCP_ESTABLISHED;
1585 	newsk->sk_type		= sk->sk_type;
1586 	init_peercred(newsk);
1587 	newu = unix_sk(newsk);
1588 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1589 	otheru = unix_sk(other);
1590 
1591 	/* copy address information from listening to new sock
1592 	 *
1593 	 * The contents of *(otheru->addr) and otheru->path
1594 	 * are seen fully set up here, since we have found
1595 	 * otheru in hash under its lock.  Insertion into the
1596 	 * hash chain we'd found it in had been done in an
1597 	 * earlier critical area protected by the chain's lock,
1598 	 * the same one where we'd set *(otheru->addr) contents,
1599 	 * as well as otheru->path and otheru->addr itself.
1600 	 *
1601 	 * Using smp_store_release() here to set newu->addr
1602 	 * is enough to make those stores, as well as stores
1603 	 * to newu->path visible to anyone who gets newu->addr
1604 	 * by smp_load_acquire().  IOW, the same warranties
1605 	 * as for unix_sock instances bound in unix_bind() or
1606 	 * in unix_autobind().
1607 	 */
1608 	if (otheru->path.dentry) {
1609 		path_get(&otheru->path);
1610 		newu->path = otheru->path;
1611 	}
1612 	refcount_inc(&otheru->addr->refcnt);
1613 	smp_store_release(&newu->addr, otheru->addr);
1614 
1615 	/* Set credentials */
1616 	copy_peercred(sk, other);
1617 
1618 	sock->state	= SS_CONNECTED;
1619 	sk->sk_state	= TCP_ESTABLISHED;
1620 	sock_hold(newsk);
1621 
1622 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1623 	unix_peer(sk)	= newsk;
1624 
1625 	unix_state_unlock(sk);
1626 
1627 	/* take ten and send info to listening sock */
1628 	spin_lock(&other->sk_receive_queue.lock);
1629 	__skb_queue_tail(&other->sk_receive_queue, skb);
1630 	spin_unlock(&other->sk_receive_queue.lock);
1631 	unix_state_unlock(other);
1632 	other->sk_data_ready(other);
1633 	sock_put(other);
1634 	return 0;
1635 
1636 out_unlock:
1637 	if (other)
1638 		unix_state_unlock(other);
1639 
1640 out:
1641 	kfree_skb(skb);
1642 	if (newsk)
1643 		unix_release_sock(newsk, 0);
1644 	if (other)
1645 		sock_put(other);
1646 	return err;
1647 }
1648 
1649 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1650 {
1651 	struct sock *ska = socka->sk, *skb = sockb->sk;
1652 
1653 	/* Join our sockets back to back */
1654 	sock_hold(ska);
1655 	sock_hold(skb);
1656 	unix_peer(ska) = skb;
1657 	unix_peer(skb) = ska;
1658 	init_peercred(ska);
1659 	init_peercred(skb);
1660 
1661 	ska->sk_state = TCP_ESTABLISHED;
1662 	skb->sk_state = TCP_ESTABLISHED;
1663 	socka->state  = SS_CONNECTED;
1664 	sockb->state  = SS_CONNECTED;
1665 	return 0;
1666 }
1667 
1668 static void unix_sock_inherit_flags(const struct socket *old,
1669 				    struct socket *new)
1670 {
1671 	if (test_bit(SOCK_PASSCRED, &old->flags))
1672 		set_bit(SOCK_PASSCRED, &new->flags);
1673 	if (test_bit(SOCK_PASSSEC, &old->flags))
1674 		set_bit(SOCK_PASSSEC, &new->flags);
1675 }
1676 
1677 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1678 		       bool kern)
1679 {
1680 	struct sock *sk = sock->sk;
1681 	struct sock *tsk;
1682 	struct sk_buff *skb;
1683 	int err;
1684 
1685 	err = -EOPNOTSUPP;
1686 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1687 		goto out;
1688 
1689 	err = -EINVAL;
1690 	if (sk->sk_state != TCP_LISTEN)
1691 		goto out;
1692 
1693 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1694 	 * so that no locks are necessary.
1695 	 */
1696 
1697 	skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0,
1698 				&err);
1699 	if (!skb) {
1700 		/* This means receive shutdown. */
1701 		if (err == 0)
1702 			err = -EINVAL;
1703 		goto out;
1704 	}
1705 
1706 	tsk = skb->sk;
1707 	skb_free_datagram(sk, skb);
1708 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1709 
1710 	/* attach accepted sock to socket */
1711 	unix_state_lock(tsk);
1712 	newsock->state = SS_CONNECTED;
1713 	unix_sock_inherit_flags(sock, newsock);
1714 	sock_graft(tsk, newsock);
1715 	unix_state_unlock(tsk);
1716 	return 0;
1717 
1718 out:
1719 	return err;
1720 }
1721 
1722 
1723 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1724 {
1725 	struct sock *sk = sock->sk;
1726 	struct unix_address *addr;
1727 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1728 	int err = 0;
1729 
1730 	if (peer) {
1731 		sk = unix_peer_get(sk);
1732 
1733 		err = -ENOTCONN;
1734 		if (!sk)
1735 			goto out;
1736 		err = 0;
1737 	} else {
1738 		sock_hold(sk);
1739 	}
1740 
1741 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1742 	if (!addr) {
1743 		sunaddr->sun_family = AF_UNIX;
1744 		sunaddr->sun_path[0] = 0;
1745 		err = offsetof(struct sockaddr_un, sun_path);
1746 	} else {
1747 		err = addr->len;
1748 		memcpy(sunaddr, addr->name, addr->len);
1749 	}
1750 	sock_put(sk);
1751 out:
1752 	return err;
1753 }
1754 
1755 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1756 {
1757 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1758 
1759 	/*
1760 	 * Garbage collection of unix sockets starts by selecting a set of
1761 	 * candidate sockets which have reference only from being in flight
1762 	 * (total_refs == inflight_refs).  This condition is checked once during
1763 	 * the candidate collection phase, and candidates are marked as such, so
1764 	 * that non-candidates can later be ignored.  While inflight_refs is
1765 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1766 	 * is an instantaneous decision.
1767 	 *
1768 	 * Once a candidate, however, the socket must not be reinstalled into a
1769 	 * file descriptor while the garbage collection is in progress.
1770 	 *
1771 	 * If the above conditions are met, then the directed graph of
1772 	 * candidates (*) does not change while unix_gc_lock is held.
1773 	 *
1774 	 * Any operations that changes the file count through file descriptors
1775 	 * (dup, close, sendmsg) does not change the graph since candidates are
1776 	 * not installed in fds.
1777 	 *
1778 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1779 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1780 	 * serialized with garbage collection.
1781 	 *
1782 	 * MSG_PEEK is special in that it does not change the inflight count,
1783 	 * yet does install the socket into an fd.  The following lock/unlock
1784 	 * pair is to ensure serialization with garbage collection.  It must be
1785 	 * done between incrementing the file count and installing the file into
1786 	 * an fd.
1787 	 *
1788 	 * If garbage collection starts after the barrier provided by the
1789 	 * lock/unlock, then it will see the elevated refcount and not mark this
1790 	 * as a candidate.  If a garbage collection is already in progress
1791 	 * before the file count was incremented, then the lock/unlock pair will
1792 	 * ensure that garbage collection is finished before progressing to
1793 	 * installing the fd.
1794 	 *
1795 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1796 	 * which is on the queue of listening socket A.
1797 	 */
1798 	spin_lock(&unix_gc_lock);
1799 	spin_unlock(&unix_gc_lock);
1800 }
1801 
1802 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1803 {
1804 	int err = 0;
1805 
1806 	UNIXCB(skb).pid  = get_pid(scm->pid);
1807 	UNIXCB(skb).uid = scm->creds.uid;
1808 	UNIXCB(skb).gid = scm->creds.gid;
1809 	UNIXCB(skb).fp = NULL;
1810 	unix_get_secdata(scm, skb);
1811 	if (scm->fp && send_fds)
1812 		err = unix_attach_fds(scm, skb);
1813 
1814 	skb->destructor = unix_destruct_scm;
1815 	return err;
1816 }
1817 
1818 static bool unix_passcred_enabled(const struct socket *sock,
1819 				  const struct sock *other)
1820 {
1821 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1822 	       !other->sk_socket ||
1823 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1824 }
1825 
1826 /*
1827  * Some apps rely on write() giving SCM_CREDENTIALS
1828  * We include credentials if source or destination socket
1829  * asserted SOCK_PASSCRED.
1830  */
1831 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1832 			    const struct sock *other)
1833 {
1834 	if (UNIXCB(skb).pid)
1835 		return;
1836 	if (unix_passcred_enabled(sock, other)) {
1837 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1838 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1839 	}
1840 }
1841 
1842 static int maybe_init_creds(struct scm_cookie *scm,
1843 			    struct socket *socket,
1844 			    const struct sock *other)
1845 {
1846 	int err;
1847 	struct msghdr msg = { .msg_controllen = 0 };
1848 
1849 	err = scm_send(socket, &msg, scm, false);
1850 	if (err)
1851 		return err;
1852 
1853 	if (unix_passcred_enabled(socket, other)) {
1854 		scm->pid = get_pid(task_tgid(current));
1855 		current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1856 	}
1857 	return err;
1858 }
1859 
1860 static bool unix_skb_scm_eq(struct sk_buff *skb,
1861 			    struct scm_cookie *scm)
1862 {
1863 	return UNIXCB(skb).pid == scm->pid &&
1864 	       uid_eq(UNIXCB(skb).uid, scm->creds.uid) &&
1865 	       gid_eq(UNIXCB(skb).gid, scm->creds.gid) &&
1866 	       unix_secdata_eq(scm, skb);
1867 }
1868 
1869 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1870 {
1871 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1872 	struct unix_sock *u = unix_sk(sk);
1873 
1874 	if (unlikely(fp && fp->count))
1875 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1876 }
1877 
1878 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1879 {
1880 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1881 	struct unix_sock *u = unix_sk(sk);
1882 
1883 	if (unlikely(fp && fp->count))
1884 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1885 }
1886 
1887 /*
1888  *	Send AF_UNIX data.
1889  */
1890 
1891 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1892 			      size_t len)
1893 {
1894 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1895 	struct sock *sk = sock->sk, *other = NULL;
1896 	struct unix_sock *u = unix_sk(sk);
1897 	struct scm_cookie scm;
1898 	struct sk_buff *skb;
1899 	int data_len = 0;
1900 	int sk_locked;
1901 	long timeo;
1902 	int err;
1903 
1904 	wait_for_unix_gc();
1905 	err = scm_send(sock, msg, &scm, false);
1906 	if (err < 0)
1907 		return err;
1908 
1909 	err = -EOPNOTSUPP;
1910 	if (msg->msg_flags&MSG_OOB)
1911 		goto out;
1912 
1913 	if (msg->msg_namelen) {
1914 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1915 		if (err)
1916 			goto out;
1917 	} else {
1918 		sunaddr = NULL;
1919 		err = -ENOTCONN;
1920 		other = unix_peer_get(sk);
1921 		if (!other)
1922 			goto out;
1923 	}
1924 
1925 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1926 		err = unix_autobind(sk);
1927 		if (err)
1928 			goto out;
1929 	}
1930 
1931 	err = -EMSGSIZE;
1932 	if (len > sk->sk_sndbuf - 32)
1933 		goto out;
1934 
1935 	if (len > SKB_MAX_ALLOC) {
1936 		data_len = min_t(size_t,
1937 				 len - SKB_MAX_ALLOC,
1938 				 MAX_SKB_FRAGS * PAGE_SIZE);
1939 		data_len = PAGE_ALIGN(data_len);
1940 
1941 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1942 	}
1943 
1944 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1945 				   msg->msg_flags & MSG_DONTWAIT, &err,
1946 				   PAGE_ALLOC_COSTLY_ORDER);
1947 	if (skb == NULL)
1948 		goto out;
1949 
1950 	err = unix_scm_to_skb(&scm, skb, true);
1951 	if (err < 0)
1952 		goto out_free;
1953 
1954 	skb_put(skb, len - data_len);
1955 	skb->data_len = data_len;
1956 	skb->len = len;
1957 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1958 	if (err)
1959 		goto out_free;
1960 
1961 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1962 
1963 restart:
1964 	if (!other) {
1965 		err = -ECONNRESET;
1966 		if (sunaddr == NULL)
1967 			goto out_free;
1968 
1969 		other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen,
1970 					sk->sk_type);
1971 		if (IS_ERR(other)) {
1972 			err = PTR_ERR(other);
1973 			other = NULL;
1974 			goto out_free;
1975 		}
1976 	}
1977 
1978 	if (sk_filter(other, skb) < 0) {
1979 		/* Toss the packet but do not return any error to the sender */
1980 		err = len;
1981 		goto out_free;
1982 	}
1983 
1984 	sk_locked = 0;
1985 	unix_state_lock(other);
1986 restart_locked:
1987 	err = -EPERM;
1988 	if (!unix_may_send(sk, other))
1989 		goto out_unlock;
1990 
1991 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
1992 		/*
1993 		 *	Check with 1003.1g - what should
1994 		 *	datagram error
1995 		 */
1996 		unix_state_unlock(other);
1997 		sock_put(other);
1998 
1999 		if (!sk_locked)
2000 			unix_state_lock(sk);
2001 
2002 		err = 0;
2003 		if (sk->sk_type == SOCK_SEQPACKET) {
2004 			/* We are here only when racing with unix_release_sock()
2005 			 * is clearing @other. Never change state to TCP_CLOSE
2006 			 * unlike SOCK_DGRAM wants.
2007 			 */
2008 			unix_state_unlock(sk);
2009 			err = -EPIPE;
2010 		} else if (unix_peer(sk) == other) {
2011 			unix_peer(sk) = NULL;
2012 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
2013 
2014 			sk->sk_state = TCP_CLOSE;
2015 			unix_state_unlock(sk);
2016 
2017 			unix_dgram_disconnected(sk, other);
2018 			sock_put(other);
2019 			err = -ECONNREFUSED;
2020 		} else {
2021 			unix_state_unlock(sk);
2022 		}
2023 
2024 		other = NULL;
2025 		if (err)
2026 			goto out_free;
2027 		goto restart;
2028 	}
2029 
2030 	err = -EPIPE;
2031 	if (other->sk_shutdown & RCV_SHUTDOWN)
2032 		goto out_unlock;
2033 
2034 	if (sk->sk_type != SOCK_SEQPACKET) {
2035 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
2036 		if (err)
2037 			goto out_unlock;
2038 	}
2039 
2040 	/* other == sk && unix_peer(other) != sk if
2041 	 * - unix_peer(sk) == NULL, destination address bound to sk
2042 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
2043 	 */
2044 	if (other != sk &&
2045 	    unlikely(unix_peer(other) != sk &&
2046 	    unix_recvq_full_lockless(other))) {
2047 		if (timeo) {
2048 			timeo = unix_wait_for_peer(other, timeo);
2049 
2050 			err = sock_intr_errno(timeo);
2051 			if (signal_pending(current))
2052 				goto out_free;
2053 
2054 			goto restart;
2055 		}
2056 
2057 		if (!sk_locked) {
2058 			unix_state_unlock(other);
2059 			unix_state_double_lock(sk, other);
2060 		}
2061 
2062 		if (unix_peer(sk) != other ||
2063 		    unix_dgram_peer_wake_me(sk, other)) {
2064 			err = -EAGAIN;
2065 			sk_locked = 1;
2066 			goto out_unlock;
2067 		}
2068 
2069 		if (!sk_locked) {
2070 			sk_locked = 1;
2071 			goto restart_locked;
2072 		}
2073 	}
2074 
2075 	if (unlikely(sk_locked))
2076 		unix_state_unlock(sk);
2077 
2078 	if (sock_flag(other, SOCK_RCVTSTAMP))
2079 		__net_timestamp(skb);
2080 	maybe_add_creds(skb, sock, other);
2081 	scm_stat_add(other, skb);
2082 	skb_queue_tail(&other->sk_receive_queue, skb);
2083 	unix_state_unlock(other);
2084 	other->sk_data_ready(other);
2085 	sock_put(other);
2086 	scm_destroy(&scm);
2087 	return len;
2088 
2089 out_unlock:
2090 	if (sk_locked)
2091 		unix_state_unlock(sk);
2092 	unix_state_unlock(other);
2093 out_free:
2094 	kfree_skb(skb);
2095 out:
2096 	if (other)
2097 		sock_put(other);
2098 	scm_destroy(&scm);
2099 	return err;
2100 }
2101 
2102 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2103  * bytes, and a minimum of a full page.
2104  */
2105 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2106 
2107 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2108 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other,
2109 		     struct scm_cookie *scm, bool fds_sent)
2110 {
2111 	struct unix_sock *ousk = unix_sk(other);
2112 	struct sk_buff *skb;
2113 	int err = 0;
2114 
2115 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2116 
2117 	if (!skb)
2118 		return err;
2119 
2120 	err = unix_scm_to_skb(scm, skb, !fds_sent);
2121 	if (err < 0) {
2122 		kfree_skb(skb);
2123 		return err;
2124 	}
2125 	skb_put(skb, 1);
2126 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2127 
2128 	if (err) {
2129 		kfree_skb(skb);
2130 		return err;
2131 	}
2132 
2133 	unix_state_lock(other);
2134 
2135 	if (sock_flag(other, SOCK_DEAD) ||
2136 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2137 		unix_state_unlock(other);
2138 		kfree_skb(skb);
2139 		return -EPIPE;
2140 	}
2141 
2142 	maybe_add_creds(skb, sock, other);
2143 	skb_get(skb);
2144 
2145 	if (ousk->oob_skb)
2146 		consume_skb(ousk->oob_skb);
2147 
2148 	WRITE_ONCE(ousk->oob_skb, skb);
2149 
2150 	scm_stat_add(other, skb);
2151 	skb_queue_tail(&other->sk_receive_queue, skb);
2152 	sk_send_sigurg(other);
2153 	unix_state_unlock(other);
2154 	other->sk_data_ready(other);
2155 
2156 	return err;
2157 }
2158 #endif
2159 
2160 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2161 			       size_t len)
2162 {
2163 	struct sock *sk = sock->sk;
2164 	struct sock *other = NULL;
2165 	int err, size;
2166 	struct sk_buff *skb;
2167 	int sent = 0;
2168 	struct scm_cookie scm;
2169 	bool fds_sent = false;
2170 	int data_len;
2171 
2172 	wait_for_unix_gc();
2173 	err = scm_send(sock, msg, &scm, false);
2174 	if (err < 0)
2175 		return err;
2176 
2177 	err = -EOPNOTSUPP;
2178 	if (msg->msg_flags & MSG_OOB) {
2179 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2180 		if (len)
2181 			len--;
2182 		else
2183 #endif
2184 			goto out_err;
2185 	}
2186 
2187 	if (msg->msg_namelen) {
2188 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2189 		goto out_err;
2190 	} else {
2191 		err = -ENOTCONN;
2192 		other = unix_peer(sk);
2193 		if (!other)
2194 			goto out_err;
2195 	}
2196 
2197 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2198 		goto pipe_err;
2199 
2200 	while (sent < len) {
2201 		size = len - sent;
2202 
2203 		/* Keep two messages in the pipe so it schedules better */
2204 		size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2205 
2206 		/* allow fallback to order-0 allocations */
2207 		size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2208 
2209 		data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2210 
2211 		data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2212 
2213 		skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2214 					   msg->msg_flags & MSG_DONTWAIT, &err,
2215 					   get_order(UNIX_SKB_FRAGS_SZ));
2216 		if (!skb)
2217 			goto out_err;
2218 
2219 		/* Only send the fds in the first buffer */
2220 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2221 		if (err < 0) {
2222 			kfree_skb(skb);
2223 			goto out_err;
2224 		}
2225 		fds_sent = true;
2226 
2227 		skb_put(skb, size - data_len);
2228 		skb->data_len = data_len;
2229 		skb->len = size;
2230 		err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2231 		if (err) {
2232 			kfree_skb(skb);
2233 			goto out_err;
2234 		}
2235 
2236 		unix_state_lock(other);
2237 
2238 		if (sock_flag(other, SOCK_DEAD) ||
2239 		    (other->sk_shutdown & RCV_SHUTDOWN))
2240 			goto pipe_err_free;
2241 
2242 		maybe_add_creds(skb, sock, other);
2243 		scm_stat_add(other, skb);
2244 		skb_queue_tail(&other->sk_receive_queue, skb);
2245 		unix_state_unlock(other);
2246 		other->sk_data_ready(other);
2247 		sent += size;
2248 	}
2249 
2250 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2251 	if (msg->msg_flags & MSG_OOB) {
2252 		err = queue_oob(sock, msg, other, &scm, fds_sent);
2253 		if (err)
2254 			goto out_err;
2255 		sent++;
2256 	}
2257 #endif
2258 
2259 	scm_destroy(&scm);
2260 
2261 	return sent;
2262 
2263 pipe_err_free:
2264 	unix_state_unlock(other);
2265 	kfree_skb(skb);
2266 pipe_err:
2267 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2268 		send_sig(SIGPIPE, current, 0);
2269 	err = -EPIPE;
2270 out_err:
2271 	scm_destroy(&scm);
2272 	return sent ? : err;
2273 }
2274 
2275 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
2276 				    int offset, size_t size, int flags)
2277 {
2278 	int err;
2279 	bool send_sigpipe = false;
2280 	bool init_scm = true;
2281 	struct scm_cookie scm;
2282 	struct sock *other, *sk = socket->sk;
2283 	struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2284 
2285 	if (flags & MSG_OOB)
2286 		return -EOPNOTSUPP;
2287 
2288 	other = unix_peer(sk);
2289 	if (!other || sk->sk_state != TCP_ESTABLISHED)
2290 		return -ENOTCONN;
2291 
2292 	if (false) {
2293 alloc_skb:
2294 		unix_state_unlock(other);
2295 		mutex_unlock(&unix_sk(other)->iolock);
2296 		newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2297 					      &err, 0);
2298 		if (!newskb)
2299 			goto err;
2300 	}
2301 
2302 	/* we must acquire iolock as we modify already present
2303 	 * skbs in the sk_receive_queue and mess with skb->len
2304 	 */
2305 	err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2306 	if (err) {
2307 		err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2308 		goto err;
2309 	}
2310 
2311 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
2312 		err = -EPIPE;
2313 		send_sigpipe = true;
2314 		goto err_unlock;
2315 	}
2316 
2317 	unix_state_lock(other);
2318 
2319 	if (sock_flag(other, SOCK_DEAD) ||
2320 	    other->sk_shutdown & RCV_SHUTDOWN) {
2321 		err = -EPIPE;
2322 		send_sigpipe = true;
2323 		goto err_state_unlock;
2324 	}
2325 
2326 	if (init_scm) {
2327 		err = maybe_init_creds(&scm, socket, other);
2328 		if (err)
2329 			goto err_state_unlock;
2330 		init_scm = false;
2331 	}
2332 
2333 	skb = skb_peek_tail(&other->sk_receive_queue);
2334 	if (tail && tail == skb) {
2335 		skb = newskb;
2336 	} else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2337 		if (newskb) {
2338 			skb = newskb;
2339 		} else {
2340 			tail = skb;
2341 			goto alloc_skb;
2342 		}
2343 	} else if (newskb) {
2344 		/* this is fast path, we don't necessarily need to
2345 		 * call to kfree_skb even though with newskb == NULL
2346 		 * this - does no harm
2347 		 */
2348 		consume_skb(newskb);
2349 		newskb = NULL;
2350 	}
2351 
2352 	if (skb_append_pagefrags(skb, page, offset, size)) {
2353 		tail = skb;
2354 		goto alloc_skb;
2355 	}
2356 
2357 	skb->len += size;
2358 	skb->data_len += size;
2359 	skb->truesize += size;
2360 	refcount_add(size, &sk->sk_wmem_alloc);
2361 
2362 	if (newskb) {
2363 		err = unix_scm_to_skb(&scm, skb, false);
2364 		if (err)
2365 			goto err_state_unlock;
2366 		spin_lock(&other->sk_receive_queue.lock);
2367 		__skb_queue_tail(&other->sk_receive_queue, newskb);
2368 		spin_unlock(&other->sk_receive_queue.lock);
2369 	}
2370 
2371 	unix_state_unlock(other);
2372 	mutex_unlock(&unix_sk(other)->iolock);
2373 
2374 	other->sk_data_ready(other);
2375 	scm_destroy(&scm);
2376 	return size;
2377 
2378 err_state_unlock:
2379 	unix_state_unlock(other);
2380 err_unlock:
2381 	mutex_unlock(&unix_sk(other)->iolock);
2382 err:
2383 	kfree_skb(newskb);
2384 	if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2385 		send_sig(SIGPIPE, current, 0);
2386 	if (!init_scm)
2387 		scm_destroy(&scm);
2388 	return err;
2389 }
2390 
2391 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2392 				  size_t len)
2393 {
2394 	int err;
2395 	struct sock *sk = sock->sk;
2396 
2397 	err = sock_error(sk);
2398 	if (err)
2399 		return err;
2400 
2401 	if (sk->sk_state != TCP_ESTABLISHED)
2402 		return -ENOTCONN;
2403 
2404 	if (msg->msg_namelen)
2405 		msg->msg_namelen = 0;
2406 
2407 	return unix_dgram_sendmsg(sock, msg, len);
2408 }
2409 
2410 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2411 				  size_t size, int flags)
2412 {
2413 	struct sock *sk = sock->sk;
2414 
2415 	if (sk->sk_state != TCP_ESTABLISHED)
2416 		return -ENOTCONN;
2417 
2418 	return unix_dgram_recvmsg(sock, msg, size, flags);
2419 }
2420 
2421 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2422 {
2423 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2424 
2425 	if (addr) {
2426 		msg->msg_namelen = addr->len;
2427 		memcpy(msg->msg_name, addr->name, addr->len);
2428 	}
2429 }
2430 
2431 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2432 			 int flags)
2433 {
2434 	struct scm_cookie scm;
2435 	struct socket *sock = sk->sk_socket;
2436 	struct unix_sock *u = unix_sk(sk);
2437 	struct sk_buff *skb, *last;
2438 	long timeo;
2439 	int skip;
2440 	int err;
2441 
2442 	err = -EOPNOTSUPP;
2443 	if (flags&MSG_OOB)
2444 		goto out;
2445 
2446 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2447 
2448 	do {
2449 		mutex_lock(&u->iolock);
2450 
2451 		skip = sk_peek_offset(sk, flags);
2452 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2453 					      &skip, &err, &last);
2454 		if (skb) {
2455 			if (!(flags & MSG_PEEK))
2456 				scm_stat_del(sk, skb);
2457 			break;
2458 		}
2459 
2460 		mutex_unlock(&u->iolock);
2461 
2462 		if (err != -EAGAIN)
2463 			break;
2464 	} while (timeo &&
2465 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2466 					      &err, &timeo, last));
2467 
2468 	if (!skb) { /* implies iolock unlocked */
2469 		unix_state_lock(sk);
2470 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2471 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2472 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2473 			err = 0;
2474 		unix_state_unlock(sk);
2475 		goto out;
2476 	}
2477 
2478 	if (wq_has_sleeper(&u->peer_wait))
2479 		wake_up_interruptible_sync_poll(&u->peer_wait,
2480 						EPOLLOUT | EPOLLWRNORM |
2481 						EPOLLWRBAND);
2482 
2483 	if (msg->msg_name)
2484 		unix_copy_addr(msg, skb->sk);
2485 
2486 	if (size > skb->len - skip)
2487 		size = skb->len - skip;
2488 	else if (size < skb->len - skip)
2489 		msg->msg_flags |= MSG_TRUNC;
2490 
2491 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2492 	if (err)
2493 		goto out_free;
2494 
2495 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2496 		__sock_recv_timestamp(msg, sk, skb);
2497 
2498 	memset(&scm, 0, sizeof(scm));
2499 
2500 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2501 	unix_set_secdata(&scm, skb);
2502 
2503 	if (!(flags & MSG_PEEK)) {
2504 		if (UNIXCB(skb).fp)
2505 			unix_detach_fds(&scm, skb);
2506 
2507 		sk_peek_offset_bwd(sk, skb->len);
2508 	} else {
2509 		/* It is questionable: on PEEK we could:
2510 		   - do not return fds - good, but too simple 8)
2511 		   - return fds, and do not return them on read (old strategy,
2512 		     apparently wrong)
2513 		   - clone fds (I chose it for now, it is the most universal
2514 		     solution)
2515 
2516 		   POSIX 1003.1g does not actually define this clearly
2517 		   at all. POSIX 1003.1g doesn't define a lot of things
2518 		   clearly however!
2519 
2520 		*/
2521 
2522 		sk_peek_offset_fwd(sk, size);
2523 
2524 		if (UNIXCB(skb).fp)
2525 			unix_peek_fds(&scm, skb);
2526 	}
2527 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2528 
2529 	scm_recv(sock, msg, &scm, flags);
2530 
2531 out_free:
2532 	skb_free_datagram(sk, skb);
2533 	mutex_unlock(&u->iolock);
2534 out:
2535 	return err;
2536 }
2537 
2538 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2539 			      int flags)
2540 {
2541 	struct sock *sk = sock->sk;
2542 
2543 #ifdef CONFIG_BPF_SYSCALL
2544 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2545 
2546 	if (prot != &unix_dgram_proto)
2547 		return prot->recvmsg(sk, msg, size, flags, NULL);
2548 #endif
2549 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2550 }
2551 
2552 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2553 {
2554 	struct unix_sock *u = unix_sk(sk);
2555 	struct sk_buff *skb;
2556 	int err, copied;
2557 
2558 	mutex_lock(&u->iolock);
2559 	skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err);
2560 	mutex_unlock(&u->iolock);
2561 	if (!skb)
2562 		return err;
2563 
2564 	copied = recv_actor(sk, skb);
2565 	kfree_skb(skb);
2566 
2567 	return copied;
2568 }
2569 
2570 /*
2571  *	Sleep until more data has arrived. But check for races..
2572  */
2573 static long unix_stream_data_wait(struct sock *sk, long timeo,
2574 				  struct sk_buff *last, unsigned int last_len,
2575 				  bool freezable)
2576 {
2577 	unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE;
2578 	struct sk_buff *tail;
2579 	DEFINE_WAIT(wait);
2580 
2581 	unix_state_lock(sk);
2582 
2583 	for (;;) {
2584 		prepare_to_wait(sk_sleep(sk), &wait, state);
2585 
2586 		tail = skb_peek_tail(&sk->sk_receive_queue);
2587 		if (tail != last ||
2588 		    (tail && tail->len != last_len) ||
2589 		    sk->sk_err ||
2590 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2591 		    signal_pending(current) ||
2592 		    !timeo)
2593 			break;
2594 
2595 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2596 		unix_state_unlock(sk);
2597 		timeo = schedule_timeout(timeo);
2598 		unix_state_lock(sk);
2599 
2600 		if (sock_flag(sk, SOCK_DEAD))
2601 			break;
2602 
2603 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2604 	}
2605 
2606 	finish_wait(sk_sleep(sk), &wait);
2607 	unix_state_unlock(sk);
2608 	return timeo;
2609 }
2610 
2611 static unsigned int unix_skb_len(const struct sk_buff *skb)
2612 {
2613 	return skb->len - UNIXCB(skb).consumed;
2614 }
2615 
2616 struct unix_stream_read_state {
2617 	int (*recv_actor)(struct sk_buff *, int, int,
2618 			  struct unix_stream_read_state *);
2619 	struct socket *socket;
2620 	struct msghdr *msg;
2621 	struct pipe_inode_info *pipe;
2622 	size_t size;
2623 	int flags;
2624 	unsigned int splice_flags;
2625 };
2626 
2627 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2628 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2629 {
2630 	struct socket *sock = state->socket;
2631 	struct sock *sk = sock->sk;
2632 	struct unix_sock *u = unix_sk(sk);
2633 	int chunk = 1;
2634 	struct sk_buff *oob_skb;
2635 
2636 	mutex_lock(&u->iolock);
2637 	unix_state_lock(sk);
2638 
2639 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2640 		unix_state_unlock(sk);
2641 		mutex_unlock(&u->iolock);
2642 		return -EINVAL;
2643 	}
2644 
2645 	oob_skb = u->oob_skb;
2646 
2647 	if (!(state->flags & MSG_PEEK))
2648 		WRITE_ONCE(u->oob_skb, NULL);
2649 
2650 	unix_state_unlock(sk);
2651 
2652 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2653 
2654 	if (!(state->flags & MSG_PEEK)) {
2655 		UNIXCB(oob_skb).consumed += 1;
2656 		kfree_skb(oob_skb);
2657 	}
2658 
2659 	mutex_unlock(&u->iolock);
2660 
2661 	if (chunk < 0)
2662 		return -EFAULT;
2663 
2664 	state->msg->msg_flags |= MSG_OOB;
2665 	return 1;
2666 }
2667 
2668 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2669 				  int flags, int copied)
2670 {
2671 	struct unix_sock *u = unix_sk(sk);
2672 
2673 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2674 		skb_unlink(skb, &sk->sk_receive_queue);
2675 		consume_skb(skb);
2676 		skb = NULL;
2677 	} else {
2678 		if (skb == u->oob_skb) {
2679 			if (copied) {
2680 				skb = NULL;
2681 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2682 				if (!(flags & MSG_PEEK)) {
2683 					WRITE_ONCE(u->oob_skb, NULL);
2684 					consume_skb(skb);
2685 				}
2686 			} else if (!(flags & MSG_PEEK)) {
2687 				skb_unlink(skb, &sk->sk_receive_queue);
2688 				consume_skb(skb);
2689 				skb = skb_peek(&sk->sk_receive_queue);
2690 			}
2691 		}
2692 	}
2693 	return skb;
2694 }
2695 #endif
2696 
2697 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2698 {
2699 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2700 		return -ENOTCONN;
2701 
2702 	return unix_read_skb(sk, recv_actor);
2703 }
2704 
2705 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2706 				    bool freezable)
2707 {
2708 	struct scm_cookie scm;
2709 	struct socket *sock = state->socket;
2710 	struct sock *sk = sock->sk;
2711 	struct unix_sock *u = unix_sk(sk);
2712 	int copied = 0;
2713 	int flags = state->flags;
2714 	int noblock = flags & MSG_DONTWAIT;
2715 	bool check_creds = false;
2716 	int target;
2717 	int err = 0;
2718 	long timeo;
2719 	int skip;
2720 	size_t size = state->size;
2721 	unsigned int last_len;
2722 
2723 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2724 		err = -EINVAL;
2725 		goto out;
2726 	}
2727 
2728 	if (unlikely(flags & MSG_OOB)) {
2729 		err = -EOPNOTSUPP;
2730 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2731 		err = unix_stream_recv_urg(state);
2732 #endif
2733 		goto out;
2734 	}
2735 
2736 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2737 	timeo = sock_rcvtimeo(sk, noblock);
2738 
2739 	memset(&scm, 0, sizeof(scm));
2740 
2741 	/* Lock the socket to prevent queue disordering
2742 	 * while sleeps in memcpy_tomsg
2743 	 */
2744 	mutex_lock(&u->iolock);
2745 
2746 	skip = max(sk_peek_offset(sk, flags), 0);
2747 
2748 	do {
2749 		int chunk;
2750 		bool drop_skb;
2751 		struct sk_buff *skb, *last;
2752 
2753 redo:
2754 		unix_state_lock(sk);
2755 		if (sock_flag(sk, SOCK_DEAD)) {
2756 			err = -ECONNRESET;
2757 			goto unlock;
2758 		}
2759 		last = skb = skb_peek(&sk->sk_receive_queue);
2760 		last_len = last ? last->len : 0;
2761 
2762 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2763 		if (skb) {
2764 			skb = manage_oob(skb, sk, flags, copied);
2765 			if (!skb) {
2766 				unix_state_unlock(sk);
2767 				if (copied)
2768 					break;
2769 				goto redo;
2770 			}
2771 		}
2772 #endif
2773 again:
2774 		if (skb == NULL) {
2775 			if (copied >= target)
2776 				goto unlock;
2777 
2778 			/*
2779 			 *	POSIX 1003.1g mandates this order.
2780 			 */
2781 
2782 			err = sock_error(sk);
2783 			if (err)
2784 				goto unlock;
2785 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2786 				goto unlock;
2787 
2788 			unix_state_unlock(sk);
2789 			if (!timeo) {
2790 				err = -EAGAIN;
2791 				break;
2792 			}
2793 
2794 			mutex_unlock(&u->iolock);
2795 
2796 			timeo = unix_stream_data_wait(sk, timeo, last,
2797 						      last_len, freezable);
2798 
2799 			if (signal_pending(current)) {
2800 				err = sock_intr_errno(timeo);
2801 				scm_destroy(&scm);
2802 				goto out;
2803 			}
2804 
2805 			mutex_lock(&u->iolock);
2806 			goto redo;
2807 unlock:
2808 			unix_state_unlock(sk);
2809 			break;
2810 		}
2811 
2812 		while (skip >= unix_skb_len(skb)) {
2813 			skip -= unix_skb_len(skb);
2814 			last = skb;
2815 			last_len = skb->len;
2816 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2817 			if (!skb)
2818 				goto again;
2819 		}
2820 
2821 		unix_state_unlock(sk);
2822 
2823 		if (check_creds) {
2824 			/* Never glue messages from different writers */
2825 			if (!unix_skb_scm_eq(skb, &scm))
2826 				break;
2827 		} else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2828 			/* Copy credentials */
2829 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2830 			unix_set_secdata(&scm, skb);
2831 			check_creds = true;
2832 		}
2833 
2834 		/* Copy address just once */
2835 		if (state->msg && state->msg->msg_name) {
2836 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2837 					 state->msg->msg_name);
2838 			unix_copy_addr(state->msg, skb->sk);
2839 			sunaddr = NULL;
2840 		}
2841 
2842 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2843 		skb_get(skb);
2844 		chunk = state->recv_actor(skb, skip, chunk, state);
2845 		drop_skb = !unix_skb_len(skb);
2846 		/* skb is only safe to use if !drop_skb */
2847 		consume_skb(skb);
2848 		if (chunk < 0) {
2849 			if (copied == 0)
2850 				copied = -EFAULT;
2851 			break;
2852 		}
2853 		copied += chunk;
2854 		size -= chunk;
2855 
2856 		if (drop_skb) {
2857 			/* the skb was touched by a concurrent reader;
2858 			 * we should not expect anything from this skb
2859 			 * anymore and assume it invalid - we can be
2860 			 * sure it was dropped from the socket queue
2861 			 *
2862 			 * let's report a short read
2863 			 */
2864 			err = 0;
2865 			break;
2866 		}
2867 
2868 		/* Mark read part of skb as used */
2869 		if (!(flags & MSG_PEEK)) {
2870 			UNIXCB(skb).consumed += chunk;
2871 
2872 			sk_peek_offset_bwd(sk, chunk);
2873 
2874 			if (UNIXCB(skb).fp) {
2875 				scm_stat_del(sk, skb);
2876 				unix_detach_fds(&scm, skb);
2877 			}
2878 
2879 			if (unix_skb_len(skb))
2880 				break;
2881 
2882 			skb_unlink(skb, &sk->sk_receive_queue);
2883 			consume_skb(skb);
2884 
2885 			if (scm.fp)
2886 				break;
2887 		} else {
2888 			/* It is questionable, see note in unix_dgram_recvmsg.
2889 			 */
2890 			if (UNIXCB(skb).fp)
2891 				unix_peek_fds(&scm, skb);
2892 
2893 			sk_peek_offset_fwd(sk, chunk);
2894 
2895 			if (UNIXCB(skb).fp)
2896 				break;
2897 
2898 			skip = 0;
2899 			last = skb;
2900 			last_len = skb->len;
2901 			unix_state_lock(sk);
2902 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2903 			if (skb)
2904 				goto again;
2905 			unix_state_unlock(sk);
2906 			break;
2907 		}
2908 	} while (size);
2909 
2910 	mutex_unlock(&u->iolock);
2911 	if (state->msg)
2912 		scm_recv(sock, state->msg, &scm, flags);
2913 	else
2914 		scm_destroy(&scm);
2915 out:
2916 	return copied ? : err;
2917 }
2918 
2919 static int unix_stream_read_actor(struct sk_buff *skb,
2920 				  int skip, int chunk,
2921 				  struct unix_stream_read_state *state)
2922 {
2923 	int ret;
2924 
2925 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2926 				    state->msg, chunk);
2927 	return ret ?: chunk;
2928 }
2929 
2930 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2931 			  size_t size, int flags)
2932 {
2933 	struct unix_stream_read_state state = {
2934 		.recv_actor = unix_stream_read_actor,
2935 		.socket = sk->sk_socket,
2936 		.msg = msg,
2937 		.size = size,
2938 		.flags = flags
2939 	};
2940 
2941 	return unix_stream_read_generic(&state, true);
2942 }
2943 
2944 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2945 			       size_t size, int flags)
2946 {
2947 	struct unix_stream_read_state state = {
2948 		.recv_actor = unix_stream_read_actor,
2949 		.socket = sock,
2950 		.msg = msg,
2951 		.size = size,
2952 		.flags = flags
2953 	};
2954 
2955 #ifdef CONFIG_BPF_SYSCALL
2956 	struct sock *sk = sock->sk;
2957 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2958 
2959 	if (prot != &unix_stream_proto)
2960 		return prot->recvmsg(sk, msg, size, flags, NULL);
2961 #endif
2962 	return unix_stream_read_generic(&state, true);
2963 }
2964 
2965 static int unix_stream_splice_actor(struct sk_buff *skb,
2966 				    int skip, int chunk,
2967 				    struct unix_stream_read_state *state)
2968 {
2969 	return skb_splice_bits(skb, state->socket->sk,
2970 			       UNIXCB(skb).consumed + skip,
2971 			       state->pipe, chunk, state->splice_flags);
2972 }
2973 
2974 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2975 				       struct pipe_inode_info *pipe,
2976 				       size_t size, unsigned int flags)
2977 {
2978 	struct unix_stream_read_state state = {
2979 		.recv_actor = unix_stream_splice_actor,
2980 		.socket = sock,
2981 		.pipe = pipe,
2982 		.size = size,
2983 		.splice_flags = flags,
2984 	};
2985 
2986 	if (unlikely(*ppos))
2987 		return -ESPIPE;
2988 
2989 	if (sock->file->f_flags & O_NONBLOCK ||
2990 	    flags & SPLICE_F_NONBLOCK)
2991 		state.flags = MSG_DONTWAIT;
2992 
2993 	return unix_stream_read_generic(&state, false);
2994 }
2995 
2996 static int unix_shutdown(struct socket *sock, int mode)
2997 {
2998 	struct sock *sk = sock->sk;
2999 	struct sock *other;
3000 
3001 	if (mode < SHUT_RD || mode > SHUT_RDWR)
3002 		return -EINVAL;
3003 	/* This maps:
3004 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
3005 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
3006 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
3007 	 */
3008 	++mode;
3009 
3010 	unix_state_lock(sk);
3011 	sk->sk_shutdown |= mode;
3012 	other = unix_peer(sk);
3013 	if (other)
3014 		sock_hold(other);
3015 	unix_state_unlock(sk);
3016 	sk->sk_state_change(sk);
3017 
3018 	if (other &&
3019 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
3020 
3021 		int peer_mode = 0;
3022 		const struct proto *prot = READ_ONCE(other->sk_prot);
3023 
3024 		if (prot->unhash)
3025 			prot->unhash(other);
3026 		if (mode&RCV_SHUTDOWN)
3027 			peer_mode |= SEND_SHUTDOWN;
3028 		if (mode&SEND_SHUTDOWN)
3029 			peer_mode |= RCV_SHUTDOWN;
3030 		unix_state_lock(other);
3031 		other->sk_shutdown |= peer_mode;
3032 		unix_state_unlock(other);
3033 		other->sk_state_change(other);
3034 		if (peer_mode == SHUTDOWN_MASK)
3035 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
3036 		else if (peer_mode & RCV_SHUTDOWN)
3037 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
3038 	}
3039 	if (other)
3040 		sock_put(other);
3041 
3042 	return 0;
3043 }
3044 
3045 long unix_inq_len(struct sock *sk)
3046 {
3047 	struct sk_buff *skb;
3048 	long amount = 0;
3049 
3050 	if (sk->sk_state == TCP_LISTEN)
3051 		return -EINVAL;
3052 
3053 	spin_lock(&sk->sk_receive_queue.lock);
3054 	if (sk->sk_type == SOCK_STREAM ||
3055 	    sk->sk_type == SOCK_SEQPACKET) {
3056 		skb_queue_walk(&sk->sk_receive_queue, skb)
3057 			amount += unix_skb_len(skb);
3058 	} else {
3059 		skb = skb_peek(&sk->sk_receive_queue);
3060 		if (skb)
3061 			amount = skb->len;
3062 	}
3063 	spin_unlock(&sk->sk_receive_queue.lock);
3064 
3065 	return amount;
3066 }
3067 EXPORT_SYMBOL_GPL(unix_inq_len);
3068 
3069 long unix_outq_len(struct sock *sk)
3070 {
3071 	return sk_wmem_alloc_get(sk);
3072 }
3073 EXPORT_SYMBOL_GPL(unix_outq_len);
3074 
3075 static int unix_open_file(struct sock *sk)
3076 {
3077 	struct path path;
3078 	struct file *f;
3079 	int fd;
3080 
3081 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3082 		return -EPERM;
3083 
3084 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3085 		return -ENOENT;
3086 
3087 	path = unix_sk(sk)->path;
3088 	if (!path.dentry)
3089 		return -ENOENT;
3090 
3091 	path_get(&path);
3092 
3093 	fd = get_unused_fd_flags(O_CLOEXEC);
3094 	if (fd < 0)
3095 		goto out;
3096 
3097 	f = dentry_open(&path, O_PATH, current_cred());
3098 	if (IS_ERR(f)) {
3099 		put_unused_fd(fd);
3100 		fd = PTR_ERR(f);
3101 		goto out;
3102 	}
3103 
3104 	fd_install(fd, f);
3105 out:
3106 	path_put(&path);
3107 
3108 	return fd;
3109 }
3110 
3111 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3112 {
3113 	struct sock *sk = sock->sk;
3114 	long amount = 0;
3115 	int err;
3116 
3117 	switch (cmd) {
3118 	case SIOCOUTQ:
3119 		amount = unix_outq_len(sk);
3120 		err = put_user(amount, (int __user *)arg);
3121 		break;
3122 	case SIOCINQ:
3123 		amount = unix_inq_len(sk);
3124 		if (amount < 0)
3125 			err = amount;
3126 		else
3127 			err = put_user(amount, (int __user *)arg);
3128 		break;
3129 	case SIOCUNIXFILE:
3130 		err = unix_open_file(sk);
3131 		break;
3132 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3133 	case SIOCATMARK:
3134 		{
3135 			struct sk_buff *skb;
3136 			int answ = 0;
3137 
3138 			skb = skb_peek(&sk->sk_receive_queue);
3139 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3140 				answ = 1;
3141 			err = put_user(answ, (int __user *)arg);
3142 		}
3143 		break;
3144 #endif
3145 	default:
3146 		err = -ENOIOCTLCMD;
3147 		break;
3148 	}
3149 	return err;
3150 }
3151 
3152 #ifdef CONFIG_COMPAT
3153 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3154 {
3155 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3156 }
3157 #endif
3158 
3159 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3160 {
3161 	struct sock *sk = sock->sk;
3162 	__poll_t mask;
3163 
3164 	sock_poll_wait(file, sock, wait);
3165 	mask = 0;
3166 
3167 	/* exceptional events? */
3168 	if (READ_ONCE(sk->sk_err))
3169 		mask |= EPOLLERR;
3170 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3171 		mask |= EPOLLHUP;
3172 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3173 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3174 
3175 	/* readable? */
3176 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3177 		mask |= EPOLLIN | EPOLLRDNORM;
3178 	if (sk_is_readable(sk))
3179 		mask |= EPOLLIN | EPOLLRDNORM;
3180 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3181 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3182 		mask |= EPOLLPRI;
3183 #endif
3184 
3185 	/* Connection-based need to check for termination and startup */
3186 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3187 	    sk->sk_state == TCP_CLOSE)
3188 		mask |= EPOLLHUP;
3189 
3190 	/*
3191 	 * we set writable also when the other side has shut down the
3192 	 * connection. This prevents stuck sockets.
3193 	 */
3194 	if (unix_writable(sk))
3195 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3196 
3197 	return mask;
3198 }
3199 
3200 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3201 				    poll_table *wait)
3202 {
3203 	struct sock *sk = sock->sk, *other;
3204 	unsigned int writable;
3205 	__poll_t mask;
3206 
3207 	sock_poll_wait(file, sock, wait);
3208 	mask = 0;
3209 
3210 	/* exceptional events? */
3211 	if (READ_ONCE(sk->sk_err) ||
3212 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
3213 		mask |= EPOLLERR |
3214 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3215 
3216 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3217 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3218 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3219 		mask |= EPOLLHUP;
3220 
3221 	/* readable? */
3222 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3223 		mask |= EPOLLIN | EPOLLRDNORM;
3224 	if (sk_is_readable(sk))
3225 		mask |= EPOLLIN | EPOLLRDNORM;
3226 
3227 	/* Connection-based need to check for termination and startup */
3228 	if (sk->sk_type == SOCK_SEQPACKET) {
3229 		if (sk->sk_state == TCP_CLOSE)
3230 			mask |= EPOLLHUP;
3231 		/* connection hasn't started yet? */
3232 		if (sk->sk_state == TCP_SYN_SENT)
3233 			return mask;
3234 	}
3235 
3236 	/* No write status requested, avoid expensive OUT tests. */
3237 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3238 		return mask;
3239 
3240 	writable = unix_writable(sk);
3241 	if (writable) {
3242 		unix_state_lock(sk);
3243 
3244 		other = unix_peer(sk);
3245 		if (other && unix_peer(other) != sk &&
3246 		    unix_recvq_full_lockless(other) &&
3247 		    unix_dgram_peer_wake_me(sk, other))
3248 			writable = 0;
3249 
3250 		unix_state_unlock(sk);
3251 	}
3252 
3253 	if (writable)
3254 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3255 	else
3256 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3257 
3258 	return mask;
3259 }
3260 
3261 #ifdef CONFIG_PROC_FS
3262 
3263 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3264 
3265 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3266 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3267 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3268 
3269 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3270 {
3271 	unsigned long offset = get_offset(*pos);
3272 	unsigned long bucket = get_bucket(*pos);
3273 	unsigned long count = 0;
3274 	struct sock *sk;
3275 
3276 	for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]);
3277 	     sk; sk = sk_next(sk)) {
3278 		if (++count == offset)
3279 			break;
3280 	}
3281 
3282 	return sk;
3283 }
3284 
3285 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3286 {
3287 	unsigned long bucket = get_bucket(*pos);
3288 	struct net *net = seq_file_net(seq);
3289 	struct sock *sk;
3290 
3291 	while (bucket < UNIX_HASH_SIZE) {
3292 		spin_lock(&net->unx.table.locks[bucket]);
3293 
3294 		sk = unix_from_bucket(seq, pos);
3295 		if (sk)
3296 			return sk;
3297 
3298 		spin_unlock(&net->unx.table.locks[bucket]);
3299 
3300 		*pos = set_bucket_offset(++bucket, 1);
3301 	}
3302 
3303 	return NULL;
3304 }
3305 
3306 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3307 				  loff_t *pos)
3308 {
3309 	unsigned long bucket = get_bucket(*pos);
3310 
3311 	sk = sk_next(sk);
3312 	if (sk)
3313 		return sk;
3314 
3315 
3316 	spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]);
3317 
3318 	*pos = set_bucket_offset(++bucket, 1);
3319 
3320 	return unix_get_first(seq, pos);
3321 }
3322 
3323 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3324 {
3325 	if (!*pos)
3326 		return SEQ_START_TOKEN;
3327 
3328 	return unix_get_first(seq, pos);
3329 }
3330 
3331 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3332 {
3333 	++*pos;
3334 
3335 	if (v == SEQ_START_TOKEN)
3336 		return unix_get_first(seq, pos);
3337 
3338 	return unix_get_next(seq, v, pos);
3339 }
3340 
3341 static void unix_seq_stop(struct seq_file *seq, void *v)
3342 {
3343 	struct sock *sk = v;
3344 
3345 	if (sk)
3346 		spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]);
3347 }
3348 
3349 static int unix_seq_show(struct seq_file *seq, void *v)
3350 {
3351 
3352 	if (v == SEQ_START_TOKEN)
3353 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3354 			 "Inode Path\n");
3355 	else {
3356 		struct sock *s = v;
3357 		struct unix_sock *u = unix_sk(s);
3358 		unix_state_lock(s);
3359 
3360 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3361 			s,
3362 			refcount_read(&s->sk_refcnt),
3363 			0,
3364 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3365 			s->sk_type,
3366 			s->sk_socket ?
3367 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3368 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3369 			sock_i_ino(s));
3370 
3371 		if (u->addr) {	// under a hash table lock here
3372 			int i, len;
3373 			seq_putc(seq, ' ');
3374 
3375 			i = 0;
3376 			len = u->addr->len -
3377 				offsetof(struct sockaddr_un, sun_path);
3378 			if (u->addr->name->sun_path[0]) {
3379 				len--;
3380 			} else {
3381 				seq_putc(seq, '@');
3382 				i++;
3383 			}
3384 			for ( ; i < len; i++)
3385 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3386 					 '@');
3387 		}
3388 		unix_state_unlock(s);
3389 		seq_putc(seq, '\n');
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 static const struct seq_operations unix_seq_ops = {
3396 	.start  = unix_seq_start,
3397 	.next   = unix_seq_next,
3398 	.stop   = unix_seq_stop,
3399 	.show   = unix_seq_show,
3400 };
3401 
3402 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL)
3403 struct bpf_unix_iter_state {
3404 	struct seq_net_private p;
3405 	unsigned int cur_sk;
3406 	unsigned int end_sk;
3407 	unsigned int max_sk;
3408 	struct sock **batch;
3409 	bool st_bucket_done;
3410 };
3411 
3412 struct bpf_iter__unix {
3413 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3414 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3415 	uid_t uid __aligned(8);
3416 };
3417 
3418 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3419 			      struct unix_sock *unix_sk, uid_t uid)
3420 {
3421 	struct bpf_iter__unix ctx;
3422 
3423 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3424 	ctx.meta = meta;
3425 	ctx.unix_sk = unix_sk;
3426 	ctx.uid = uid;
3427 	return bpf_iter_run_prog(prog, &ctx);
3428 }
3429 
3430 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3431 
3432 {
3433 	struct bpf_unix_iter_state *iter = seq->private;
3434 	unsigned int expected = 1;
3435 	struct sock *sk;
3436 
3437 	sock_hold(start_sk);
3438 	iter->batch[iter->end_sk++] = start_sk;
3439 
3440 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3441 		if (iter->end_sk < iter->max_sk) {
3442 			sock_hold(sk);
3443 			iter->batch[iter->end_sk++] = sk;
3444 		}
3445 
3446 		expected++;
3447 	}
3448 
3449 	spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]);
3450 
3451 	return expected;
3452 }
3453 
3454 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3455 {
3456 	while (iter->cur_sk < iter->end_sk)
3457 		sock_put(iter->batch[iter->cur_sk++]);
3458 }
3459 
3460 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3461 				       unsigned int new_batch_sz)
3462 {
3463 	struct sock **new_batch;
3464 
3465 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3466 			     GFP_USER | __GFP_NOWARN);
3467 	if (!new_batch)
3468 		return -ENOMEM;
3469 
3470 	bpf_iter_unix_put_batch(iter);
3471 	kvfree(iter->batch);
3472 	iter->batch = new_batch;
3473 	iter->max_sk = new_batch_sz;
3474 
3475 	return 0;
3476 }
3477 
3478 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3479 					loff_t *pos)
3480 {
3481 	struct bpf_unix_iter_state *iter = seq->private;
3482 	unsigned int expected;
3483 	bool resized = false;
3484 	struct sock *sk;
3485 
3486 	if (iter->st_bucket_done)
3487 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3488 
3489 again:
3490 	/* Get a new batch */
3491 	iter->cur_sk = 0;
3492 	iter->end_sk = 0;
3493 
3494 	sk = unix_get_first(seq, pos);
3495 	if (!sk)
3496 		return NULL; /* Done */
3497 
3498 	expected = bpf_iter_unix_hold_batch(seq, sk);
3499 
3500 	if (iter->end_sk == expected) {
3501 		iter->st_bucket_done = true;
3502 		return sk;
3503 	}
3504 
3505 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3506 		resized = true;
3507 		goto again;
3508 	}
3509 
3510 	return sk;
3511 }
3512 
3513 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3514 {
3515 	if (!*pos)
3516 		return SEQ_START_TOKEN;
3517 
3518 	/* bpf iter does not support lseek, so it always
3519 	 * continue from where it was stop()-ped.
3520 	 */
3521 	return bpf_iter_unix_batch(seq, pos);
3522 }
3523 
3524 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3525 {
3526 	struct bpf_unix_iter_state *iter = seq->private;
3527 	struct sock *sk;
3528 
3529 	/* Whenever seq_next() is called, the iter->cur_sk is
3530 	 * done with seq_show(), so advance to the next sk in
3531 	 * the batch.
3532 	 */
3533 	if (iter->cur_sk < iter->end_sk)
3534 		sock_put(iter->batch[iter->cur_sk++]);
3535 
3536 	++*pos;
3537 
3538 	if (iter->cur_sk < iter->end_sk)
3539 		sk = iter->batch[iter->cur_sk];
3540 	else
3541 		sk = bpf_iter_unix_batch(seq, pos);
3542 
3543 	return sk;
3544 }
3545 
3546 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3547 {
3548 	struct bpf_iter_meta meta;
3549 	struct bpf_prog *prog;
3550 	struct sock *sk = v;
3551 	uid_t uid;
3552 	bool slow;
3553 	int ret;
3554 
3555 	if (v == SEQ_START_TOKEN)
3556 		return 0;
3557 
3558 	slow = lock_sock_fast(sk);
3559 
3560 	if (unlikely(sk_unhashed(sk))) {
3561 		ret = SEQ_SKIP;
3562 		goto unlock;
3563 	}
3564 
3565 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3566 	meta.seq = seq;
3567 	prog = bpf_iter_get_info(&meta, false);
3568 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3569 unlock:
3570 	unlock_sock_fast(sk, slow);
3571 	return ret;
3572 }
3573 
3574 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3575 {
3576 	struct bpf_unix_iter_state *iter = seq->private;
3577 	struct bpf_iter_meta meta;
3578 	struct bpf_prog *prog;
3579 
3580 	if (!v) {
3581 		meta.seq = seq;
3582 		prog = bpf_iter_get_info(&meta, true);
3583 		if (prog)
3584 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3585 	}
3586 
3587 	if (iter->cur_sk < iter->end_sk)
3588 		bpf_iter_unix_put_batch(iter);
3589 }
3590 
3591 static const struct seq_operations bpf_iter_unix_seq_ops = {
3592 	.start	= bpf_iter_unix_seq_start,
3593 	.next	= bpf_iter_unix_seq_next,
3594 	.stop	= bpf_iter_unix_seq_stop,
3595 	.show	= bpf_iter_unix_seq_show,
3596 };
3597 #endif
3598 #endif
3599 
3600 static const struct net_proto_family unix_family_ops = {
3601 	.family = PF_UNIX,
3602 	.create = unix_create,
3603 	.owner	= THIS_MODULE,
3604 };
3605 
3606 
3607 static int __net_init unix_net_init(struct net *net)
3608 {
3609 	int i;
3610 
3611 	net->unx.sysctl_max_dgram_qlen = 10;
3612 	if (unix_sysctl_register(net))
3613 		goto out;
3614 
3615 #ifdef CONFIG_PROC_FS
3616 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3617 			     sizeof(struct seq_net_private)))
3618 		goto err_sysctl;
3619 #endif
3620 
3621 	net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE,
3622 					      sizeof(spinlock_t), GFP_KERNEL);
3623 	if (!net->unx.table.locks)
3624 		goto err_proc;
3625 
3626 	net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE,
3627 						sizeof(struct hlist_head),
3628 						GFP_KERNEL);
3629 	if (!net->unx.table.buckets)
3630 		goto free_locks;
3631 
3632 	for (i = 0; i < UNIX_HASH_SIZE; i++) {
3633 		spin_lock_init(&net->unx.table.locks[i]);
3634 		INIT_HLIST_HEAD(&net->unx.table.buckets[i]);
3635 	}
3636 
3637 	return 0;
3638 
3639 free_locks:
3640 	kvfree(net->unx.table.locks);
3641 err_proc:
3642 #ifdef CONFIG_PROC_FS
3643 	remove_proc_entry("unix", net->proc_net);
3644 err_sysctl:
3645 #endif
3646 	unix_sysctl_unregister(net);
3647 out:
3648 	return -ENOMEM;
3649 }
3650 
3651 static void __net_exit unix_net_exit(struct net *net)
3652 {
3653 	kvfree(net->unx.table.buckets);
3654 	kvfree(net->unx.table.locks);
3655 	unix_sysctl_unregister(net);
3656 	remove_proc_entry("unix", net->proc_net);
3657 }
3658 
3659 static struct pernet_operations unix_net_ops = {
3660 	.init = unix_net_init,
3661 	.exit = unix_net_exit,
3662 };
3663 
3664 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3665 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3666 		     struct unix_sock *unix_sk, uid_t uid)
3667 
3668 #define INIT_BATCH_SZ 16
3669 
3670 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3671 {
3672 	struct bpf_unix_iter_state *iter = priv_data;
3673 	int err;
3674 
3675 	err = bpf_iter_init_seq_net(priv_data, aux);
3676 	if (err)
3677 		return err;
3678 
3679 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3680 	if (err) {
3681 		bpf_iter_fini_seq_net(priv_data);
3682 		return err;
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static void bpf_iter_fini_unix(void *priv_data)
3689 {
3690 	struct bpf_unix_iter_state *iter = priv_data;
3691 
3692 	bpf_iter_fini_seq_net(priv_data);
3693 	kvfree(iter->batch);
3694 }
3695 
3696 static const struct bpf_iter_seq_info unix_seq_info = {
3697 	.seq_ops		= &bpf_iter_unix_seq_ops,
3698 	.init_seq_private	= bpf_iter_init_unix,
3699 	.fini_seq_private	= bpf_iter_fini_unix,
3700 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3701 };
3702 
3703 static const struct bpf_func_proto *
3704 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3705 			     const struct bpf_prog *prog)
3706 {
3707 	switch (func_id) {
3708 	case BPF_FUNC_setsockopt:
3709 		return &bpf_sk_setsockopt_proto;
3710 	case BPF_FUNC_getsockopt:
3711 		return &bpf_sk_getsockopt_proto;
3712 	default:
3713 		return NULL;
3714 	}
3715 }
3716 
3717 static struct bpf_iter_reg unix_reg_info = {
3718 	.target			= "unix",
3719 	.ctx_arg_info_size	= 1,
3720 	.ctx_arg_info		= {
3721 		{ offsetof(struct bpf_iter__unix, unix_sk),
3722 		  PTR_TO_BTF_ID_OR_NULL },
3723 	},
3724 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3725 	.seq_info		= &unix_seq_info,
3726 };
3727 
3728 static void __init bpf_iter_register(void)
3729 {
3730 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3731 	if (bpf_iter_reg_target(&unix_reg_info))
3732 		pr_warn("Warning: could not register bpf iterator unix\n");
3733 }
3734 #endif
3735 
3736 static int __init af_unix_init(void)
3737 {
3738 	int i, rc = -1;
3739 
3740 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3741 
3742 	for (i = 0; i < UNIX_HASH_SIZE / 2; i++) {
3743 		spin_lock_init(&bsd_socket_locks[i]);
3744 		INIT_HLIST_HEAD(&bsd_socket_buckets[i]);
3745 	}
3746 
3747 	rc = proto_register(&unix_dgram_proto, 1);
3748 	if (rc != 0) {
3749 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3750 		goto out;
3751 	}
3752 
3753 	rc = proto_register(&unix_stream_proto, 1);
3754 	if (rc != 0) {
3755 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3756 		proto_unregister(&unix_dgram_proto);
3757 		goto out;
3758 	}
3759 
3760 	sock_register(&unix_family_ops);
3761 	register_pernet_subsys(&unix_net_ops);
3762 	unix_bpf_build_proto();
3763 
3764 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3765 	bpf_iter_register();
3766 #endif
3767 
3768 out:
3769 	return rc;
3770 }
3771 
3772 static void __exit af_unix_exit(void)
3773 {
3774 	sock_unregister(PF_UNIX);
3775 	proto_unregister(&unix_dgram_proto);
3776 	proto_unregister(&unix_stream_proto);
3777 	unregister_pernet_subsys(&unix_net_ops);
3778 }
3779 
3780 /* Earlier than device_initcall() so that other drivers invoking
3781    request_module() don't end up in a loop when modprobe tries
3782    to use a UNIX socket. But later than subsys_initcall() because
3783    we depend on stuff initialised there */
3784 fs_initcall(af_unix_init);
3785 module_exit(af_unix_exit);
3786 
3787 MODULE_LICENSE("GPL");
3788 MODULE_ALIAS_NETPROTO(PF_UNIX);
3789