1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/splice.h> 116 #include <linux/freezer.h> 117 #include <linux/file.h> 118 #include <linux/btf_ids.h> 119 120 #include "scm.h" 121 122 static atomic_long_t unix_nr_socks; 123 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 124 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 125 126 /* SMP locking strategy: 127 * hash table is protected with spinlock. 128 * each socket state is protected by separate spinlock. 129 */ 130 131 static unsigned int unix_unbound_hash(struct sock *sk) 132 { 133 unsigned long hash = (unsigned long)sk; 134 135 hash ^= hash >> 16; 136 hash ^= hash >> 8; 137 hash ^= sk->sk_type; 138 139 return hash & UNIX_HASH_MOD; 140 } 141 142 static unsigned int unix_bsd_hash(struct inode *i) 143 { 144 return i->i_ino & UNIX_HASH_MOD; 145 } 146 147 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 148 int addr_len, int type) 149 { 150 __wsum csum = csum_partial(sunaddr, addr_len, 0); 151 unsigned int hash; 152 153 hash = (__force unsigned int)csum_fold(csum); 154 hash ^= hash >> 8; 155 hash ^= type; 156 157 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 158 } 159 160 static void unix_table_double_lock(struct net *net, 161 unsigned int hash1, unsigned int hash2) 162 { 163 if (hash1 == hash2) { 164 spin_lock(&net->unx.table.locks[hash1]); 165 return; 166 } 167 168 if (hash1 > hash2) 169 swap(hash1, hash2); 170 171 spin_lock(&net->unx.table.locks[hash1]); 172 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 173 } 174 175 static void unix_table_double_unlock(struct net *net, 176 unsigned int hash1, unsigned int hash2) 177 { 178 if (hash1 == hash2) { 179 spin_unlock(&net->unx.table.locks[hash1]); 180 return; 181 } 182 183 spin_unlock(&net->unx.table.locks[hash1]); 184 spin_unlock(&net->unx.table.locks[hash2]); 185 } 186 187 #ifdef CONFIG_SECURITY_NETWORK 188 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 189 { 190 UNIXCB(skb).secid = scm->secid; 191 } 192 193 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 194 { 195 scm->secid = UNIXCB(skb).secid; 196 } 197 198 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 199 { 200 return (scm->secid == UNIXCB(skb).secid); 201 } 202 #else 203 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 204 { } 205 206 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 207 { } 208 209 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 210 { 211 return true; 212 } 213 #endif /* CONFIG_SECURITY_NETWORK */ 214 215 #define unix_peer(sk) (unix_sk(sk)->peer) 216 217 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 218 { 219 return unix_peer(osk) == sk; 220 } 221 222 static inline int unix_may_send(struct sock *sk, struct sock *osk) 223 { 224 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 225 } 226 227 static inline int unix_recvq_full(const struct sock *sk) 228 { 229 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 230 } 231 232 static inline int unix_recvq_full_lockless(const struct sock *sk) 233 { 234 return skb_queue_len_lockless(&sk->sk_receive_queue) > 235 READ_ONCE(sk->sk_max_ack_backlog); 236 } 237 238 struct sock *unix_peer_get(struct sock *s) 239 { 240 struct sock *peer; 241 242 unix_state_lock(s); 243 peer = unix_peer(s); 244 if (peer) 245 sock_hold(peer); 246 unix_state_unlock(s); 247 return peer; 248 } 249 EXPORT_SYMBOL_GPL(unix_peer_get); 250 251 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 252 int addr_len) 253 { 254 struct unix_address *addr; 255 256 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 257 if (!addr) 258 return NULL; 259 260 refcount_set(&addr->refcnt, 1); 261 addr->len = addr_len; 262 memcpy(addr->name, sunaddr, addr_len); 263 264 return addr; 265 } 266 267 static inline void unix_release_addr(struct unix_address *addr) 268 { 269 if (refcount_dec_and_test(&addr->refcnt)) 270 kfree(addr); 271 } 272 273 /* 274 * Check unix socket name: 275 * - should be not zero length. 276 * - if started by not zero, should be NULL terminated (FS object) 277 * - if started by zero, it is abstract name. 278 */ 279 280 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 281 { 282 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 283 addr_len > sizeof(*sunaddr)) 284 return -EINVAL; 285 286 if (sunaddr->sun_family != AF_UNIX) 287 return -EINVAL; 288 289 return 0; 290 } 291 292 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 293 { 294 /* This may look like an off by one error but it is a bit more 295 * subtle. 108 is the longest valid AF_UNIX path for a binding. 296 * sun_path[108] doesn't as such exist. However in kernel space 297 * we are guaranteed that it is a valid memory location in our 298 * kernel address buffer because syscall functions always pass 299 * a pointer of struct sockaddr_storage which has a bigger buffer 300 * than 108. 301 */ 302 ((char *)sunaddr)[addr_len] = 0; 303 } 304 305 static void __unix_remove_socket(struct sock *sk) 306 { 307 sk_del_node_init(sk); 308 } 309 310 static void __unix_insert_socket(struct net *net, struct sock *sk) 311 { 312 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 313 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 314 } 315 316 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 317 struct unix_address *addr, unsigned int hash) 318 { 319 __unix_remove_socket(sk); 320 smp_store_release(&unix_sk(sk)->addr, addr); 321 322 sk->sk_hash = hash; 323 __unix_insert_socket(net, sk); 324 } 325 326 static void unix_remove_socket(struct net *net, struct sock *sk) 327 { 328 spin_lock(&net->unx.table.locks[sk->sk_hash]); 329 __unix_remove_socket(sk); 330 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 331 } 332 333 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 334 { 335 spin_lock(&net->unx.table.locks[sk->sk_hash]); 336 __unix_insert_socket(net, sk); 337 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 338 } 339 340 static void unix_insert_bsd_socket(struct sock *sk) 341 { 342 spin_lock(&bsd_socket_locks[sk->sk_hash]); 343 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 344 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 345 } 346 347 static void unix_remove_bsd_socket(struct sock *sk) 348 { 349 if (!hlist_unhashed(&sk->sk_bind_node)) { 350 spin_lock(&bsd_socket_locks[sk->sk_hash]); 351 __sk_del_bind_node(sk); 352 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 353 354 sk_node_init(&sk->sk_bind_node); 355 } 356 } 357 358 static struct sock *__unix_find_socket_byname(struct net *net, 359 struct sockaddr_un *sunname, 360 int len, unsigned int hash) 361 { 362 struct sock *s; 363 364 sk_for_each(s, &net->unx.table.buckets[hash]) { 365 struct unix_sock *u = unix_sk(s); 366 367 if (u->addr->len == len && 368 !memcmp(u->addr->name, sunname, len)) 369 return s; 370 } 371 return NULL; 372 } 373 374 static inline struct sock *unix_find_socket_byname(struct net *net, 375 struct sockaddr_un *sunname, 376 int len, unsigned int hash) 377 { 378 struct sock *s; 379 380 spin_lock(&net->unx.table.locks[hash]); 381 s = __unix_find_socket_byname(net, sunname, len, hash); 382 if (s) 383 sock_hold(s); 384 spin_unlock(&net->unx.table.locks[hash]); 385 return s; 386 } 387 388 static struct sock *unix_find_socket_byinode(struct inode *i) 389 { 390 unsigned int hash = unix_bsd_hash(i); 391 struct sock *s; 392 393 spin_lock(&bsd_socket_locks[hash]); 394 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 395 struct dentry *dentry = unix_sk(s)->path.dentry; 396 397 if (dentry && d_backing_inode(dentry) == i) { 398 sock_hold(s); 399 spin_unlock(&bsd_socket_locks[hash]); 400 return s; 401 } 402 } 403 spin_unlock(&bsd_socket_locks[hash]); 404 return NULL; 405 } 406 407 /* Support code for asymmetrically connected dgram sockets 408 * 409 * If a datagram socket is connected to a socket not itself connected 410 * to the first socket (eg, /dev/log), clients may only enqueue more 411 * messages if the present receive queue of the server socket is not 412 * "too large". This means there's a second writeability condition 413 * poll and sendmsg need to test. The dgram recv code will do a wake 414 * up on the peer_wait wait queue of a socket upon reception of a 415 * datagram which needs to be propagated to sleeping would-be writers 416 * since these might not have sent anything so far. This can't be 417 * accomplished via poll_wait because the lifetime of the server 418 * socket might be less than that of its clients if these break their 419 * association with it or if the server socket is closed while clients 420 * are still connected to it and there's no way to inform "a polling 421 * implementation" that it should let go of a certain wait queue 422 * 423 * In order to propagate a wake up, a wait_queue_entry_t of the client 424 * socket is enqueued on the peer_wait queue of the server socket 425 * whose wake function does a wake_up on the ordinary client socket 426 * wait queue. This connection is established whenever a write (or 427 * poll for write) hit the flow control condition and broken when the 428 * association to the server socket is dissolved or after a wake up 429 * was relayed. 430 */ 431 432 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 433 void *key) 434 { 435 struct unix_sock *u; 436 wait_queue_head_t *u_sleep; 437 438 u = container_of(q, struct unix_sock, peer_wake); 439 440 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 441 q); 442 u->peer_wake.private = NULL; 443 444 /* relaying can only happen while the wq still exists */ 445 u_sleep = sk_sleep(&u->sk); 446 if (u_sleep) 447 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 448 449 return 0; 450 } 451 452 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 453 { 454 struct unix_sock *u, *u_other; 455 int rc; 456 457 u = unix_sk(sk); 458 u_other = unix_sk(other); 459 rc = 0; 460 spin_lock(&u_other->peer_wait.lock); 461 462 if (!u->peer_wake.private) { 463 u->peer_wake.private = other; 464 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 465 466 rc = 1; 467 } 468 469 spin_unlock(&u_other->peer_wait.lock); 470 return rc; 471 } 472 473 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 474 struct sock *other) 475 { 476 struct unix_sock *u, *u_other; 477 478 u = unix_sk(sk); 479 u_other = unix_sk(other); 480 spin_lock(&u_other->peer_wait.lock); 481 482 if (u->peer_wake.private == other) { 483 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 484 u->peer_wake.private = NULL; 485 } 486 487 spin_unlock(&u_other->peer_wait.lock); 488 } 489 490 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 491 struct sock *other) 492 { 493 unix_dgram_peer_wake_disconnect(sk, other); 494 wake_up_interruptible_poll(sk_sleep(sk), 495 EPOLLOUT | 496 EPOLLWRNORM | 497 EPOLLWRBAND); 498 } 499 500 /* preconditions: 501 * - unix_peer(sk) == other 502 * - association is stable 503 */ 504 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 505 { 506 int connected; 507 508 connected = unix_dgram_peer_wake_connect(sk, other); 509 510 /* If other is SOCK_DEAD, we want to make sure we signal 511 * POLLOUT, such that a subsequent write() can get a 512 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 513 * to other and its full, we will hang waiting for POLLOUT. 514 */ 515 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 516 return 1; 517 518 if (connected) 519 unix_dgram_peer_wake_disconnect(sk, other); 520 521 return 0; 522 } 523 524 static int unix_writable(const struct sock *sk) 525 { 526 return sk->sk_state != TCP_LISTEN && 527 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 528 } 529 530 static void unix_write_space(struct sock *sk) 531 { 532 struct socket_wq *wq; 533 534 rcu_read_lock(); 535 if (unix_writable(sk)) { 536 wq = rcu_dereference(sk->sk_wq); 537 if (skwq_has_sleeper(wq)) 538 wake_up_interruptible_sync_poll(&wq->wait, 539 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 540 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 541 } 542 rcu_read_unlock(); 543 } 544 545 /* When dgram socket disconnects (or changes its peer), we clear its receive 546 * queue of packets arrived from previous peer. First, it allows to do 547 * flow control based only on wmem_alloc; second, sk connected to peer 548 * may receive messages only from that peer. */ 549 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 550 { 551 if (!skb_queue_empty(&sk->sk_receive_queue)) { 552 skb_queue_purge(&sk->sk_receive_queue); 553 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 554 555 /* If one link of bidirectional dgram pipe is disconnected, 556 * we signal error. Messages are lost. Do not make this, 557 * when peer was not connected to us. 558 */ 559 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 560 WRITE_ONCE(other->sk_err, ECONNRESET); 561 sk_error_report(other); 562 } 563 } 564 other->sk_state = TCP_CLOSE; 565 } 566 567 static void unix_sock_destructor(struct sock *sk) 568 { 569 struct unix_sock *u = unix_sk(sk); 570 571 skb_queue_purge(&sk->sk_receive_queue); 572 573 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 574 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 575 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 576 if (!sock_flag(sk, SOCK_DEAD)) { 577 pr_info("Attempt to release alive unix socket: %p\n", sk); 578 return; 579 } 580 581 if (u->addr) 582 unix_release_addr(u->addr); 583 584 atomic_long_dec(&unix_nr_socks); 585 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 586 #ifdef UNIX_REFCNT_DEBUG 587 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 588 atomic_long_read(&unix_nr_socks)); 589 #endif 590 } 591 592 static void unix_release_sock(struct sock *sk, int embrion) 593 { 594 struct unix_sock *u = unix_sk(sk); 595 struct sock *skpair; 596 struct sk_buff *skb; 597 struct path path; 598 int state; 599 600 unix_remove_socket(sock_net(sk), sk); 601 unix_remove_bsd_socket(sk); 602 603 /* Clear state */ 604 unix_state_lock(sk); 605 sock_orphan(sk); 606 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 607 path = u->path; 608 u->path.dentry = NULL; 609 u->path.mnt = NULL; 610 state = sk->sk_state; 611 sk->sk_state = TCP_CLOSE; 612 613 skpair = unix_peer(sk); 614 unix_peer(sk) = NULL; 615 616 unix_state_unlock(sk); 617 618 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 619 if (u->oob_skb) { 620 kfree_skb(u->oob_skb); 621 u->oob_skb = NULL; 622 } 623 #endif 624 625 wake_up_interruptible_all(&u->peer_wait); 626 627 if (skpair != NULL) { 628 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 629 unix_state_lock(skpair); 630 /* No more writes */ 631 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK); 632 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 633 WRITE_ONCE(skpair->sk_err, ECONNRESET); 634 unix_state_unlock(skpair); 635 skpair->sk_state_change(skpair); 636 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 637 } 638 639 unix_dgram_peer_wake_disconnect(sk, skpair); 640 sock_put(skpair); /* It may now die */ 641 } 642 643 /* Try to flush out this socket. Throw out buffers at least */ 644 645 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 646 if (state == TCP_LISTEN) 647 unix_release_sock(skb->sk, 1); 648 /* passed fds are erased in the kfree_skb hook */ 649 UNIXCB(skb).consumed = skb->len; 650 kfree_skb(skb); 651 } 652 653 if (path.dentry) 654 path_put(&path); 655 656 sock_put(sk); 657 658 /* ---- Socket is dead now and most probably destroyed ---- */ 659 660 /* 661 * Fixme: BSD difference: In BSD all sockets connected to us get 662 * ECONNRESET and we die on the spot. In Linux we behave 663 * like files and pipes do and wait for the last 664 * dereference. 665 * 666 * Can't we simply set sock->err? 667 * 668 * What the above comment does talk about? --ANK(980817) 669 */ 670 671 if (unix_tot_inflight) 672 unix_gc(); /* Garbage collect fds */ 673 } 674 675 static void init_peercred(struct sock *sk) 676 { 677 const struct cred *old_cred; 678 struct pid *old_pid; 679 680 spin_lock(&sk->sk_peer_lock); 681 old_pid = sk->sk_peer_pid; 682 old_cred = sk->sk_peer_cred; 683 sk->sk_peer_pid = get_pid(task_tgid(current)); 684 sk->sk_peer_cred = get_current_cred(); 685 spin_unlock(&sk->sk_peer_lock); 686 687 put_pid(old_pid); 688 put_cred(old_cred); 689 } 690 691 static void copy_peercred(struct sock *sk, struct sock *peersk) 692 { 693 const struct cred *old_cred; 694 struct pid *old_pid; 695 696 if (sk < peersk) { 697 spin_lock(&sk->sk_peer_lock); 698 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 699 } else { 700 spin_lock(&peersk->sk_peer_lock); 701 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 702 } 703 old_pid = sk->sk_peer_pid; 704 old_cred = sk->sk_peer_cred; 705 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 706 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 707 708 spin_unlock(&sk->sk_peer_lock); 709 spin_unlock(&peersk->sk_peer_lock); 710 711 put_pid(old_pid); 712 put_cred(old_cred); 713 } 714 715 static int unix_listen(struct socket *sock, int backlog) 716 { 717 int err; 718 struct sock *sk = sock->sk; 719 struct unix_sock *u = unix_sk(sk); 720 721 err = -EOPNOTSUPP; 722 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 723 goto out; /* Only stream/seqpacket sockets accept */ 724 err = -EINVAL; 725 if (!u->addr) 726 goto out; /* No listens on an unbound socket */ 727 unix_state_lock(sk); 728 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 729 goto out_unlock; 730 if (backlog > sk->sk_max_ack_backlog) 731 wake_up_interruptible_all(&u->peer_wait); 732 sk->sk_max_ack_backlog = backlog; 733 sk->sk_state = TCP_LISTEN; 734 /* set credentials so connect can copy them */ 735 init_peercred(sk); 736 err = 0; 737 738 out_unlock: 739 unix_state_unlock(sk); 740 out: 741 return err; 742 } 743 744 static int unix_release(struct socket *); 745 static int unix_bind(struct socket *, struct sockaddr *, int); 746 static int unix_stream_connect(struct socket *, struct sockaddr *, 747 int addr_len, int flags); 748 static int unix_socketpair(struct socket *, struct socket *); 749 static int unix_accept(struct socket *, struct socket *, int, bool); 750 static int unix_getname(struct socket *, struct sockaddr *, int); 751 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 752 static __poll_t unix_dgram_poll(struct file *, struct socket *, 753 poll_table *); 754 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 755 #ifdef CONFIG_COMPAT 756 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 757 #endif 758 static int unix_shutdown(struct socket *, int); 759 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 760 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 761 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 762 size_t size, int flags); 763 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 764 struct pipe_inode_info *, size_t size, 765 unsigned int flags); 766 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 767 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 768 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 769 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 770 static int unix_dgram_connect(struct socket *, struct sockaddr *, 771 int, int); 772 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 773 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 774 int); 775 776 static int unix_set_peek_off(struct sock *sk, int val) 777 { 778 struct unix_sock *u = unix_sk(sk); 779 780 if (mutex_lock_interruptible(&u->iolock)) 781 return -EINTR; 782 783 sk->sk_peek_off = val; 784 mutex_unlock(&u->iolock); 785 786 return 0; 787 } 788 789 #ifdef CONFIG_PROC_FS 790 static int unix_count_nr_fds(struct sock *sk) 791 { 792 struct sk_buff *skb; 793 struct unix_sock *u; 794 int nr_fds = 0; 795 796 spin_lock(&sk->sk_receive_queue.lock); 797 skb = skb_peek(&sk->sk_receive_queue); 798 while (skb) { 799 u = unix_sk(skb->sk); 800 nr_fds += atomic_read(&u->scm_stat.nr_fds); 801 skb = skb_peek_next(skb, &sk->sk_receive_queue); 802 } 803 spin_unlock(&sk->sk_receive_queue.lock); 804 805 return nr_fds; 806 } 807 808 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 809 { 810 struct sock *sk = sock->sk; 811 unsigned char s_state; 812 struct unix_sock *u; 813 int nr_fds = 0; 814 815 if (sk) { 816 s_state = READ_ONCE(sk->sk_state); 817 u = unix_sk(sk); 818 819 /* SOCK_STREAM and SOCK_SEQPACKET sockets never change their 820 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN. 821 * SOCK_DGRAM is ordinary. So, no lock is needed. 822 */ 823 if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED) 824 nr_fds = atomic_read(&u->scm_stat.nr_fds); 825 else if (s_state == TCP_LISTEN) 826 nr_fds = unix_count_nr_fds(sk); 827 828 seq_printf(m, "scm_fds: %u\n", nr_fds); 829 } 830 } 831 #else 832 #define unix_show_fdinfo NULL 833 #endif 834 835 static const struct proto_ops unix_stream_ops = { 836 .family = PF_UNIX, 837 .owner = THIS_MODULE, 838 .release = unix_release, 839 .bind = unix_bind, 840 .connect = unix_stream_connect, 841 .socketpair = unix_socketpair, 842 .accept = unix_accept, 843 .getname = unix_getname, 844 .poll = unix_poll, 845 .ioctl = unix_ioctl, 846 #ifdef CONFIG_COMPAT 847 .compat_ioctl = unix_compat_ioctl, 848 #endif 849 .listen = unix_listen, 850 .shutdown = unix_shutdown, 851 .sendmsg = unix_stream_sendmsg, 852 .recvmsg = unix_stream_recvmsg, 853 .read_skb = unix_stream_read_skb, 854 .mmap = sock_no_mmap, 855 .sendpage = unix_stream_sendpage, 856 .splice_read = unix_stream_splice_read, 857 .set_peek_off = unix_set_peek_off, 858 .show_fdinfo = unix_show_fdinfo, 859 }; 860 861 static const struct proto_ops unix_dgram_ops = { 862 .family = PF_UNIX, 863 .owner = THIS_MODULE, 864 .release = unix_release, 865 .bind = unix_bind, 866 .connect = unix_dgram_connect, 867 .socketpair = unix_socketpair, 868 .accept = sock_no_accept, 869 .getname = unix_getname, 870 .poll = unix_dgram_poll, 871 .ioctl = unix_ioctl, 872 #ifdef CONFIG_COMPAT 873 .compat_ioctl = unix_compat_ioctl, 874 #endif 875 .listen = sock_no_listen, 876 .shutdown = unix_shutdown, 877 .sendmsg = unix_dgram_sendmsg, 878 .read_skb = unix_read_skb, 879 .recvmsg = unix_dgram_recvmsg, 880 .mmap = sock_no_mmap, 881 .sendpage = sock_no_sendpage, 882 .set_peek_off = unix_set_peek_off, 883 .show_fdinfo = unix_show_fdinfo, 884 }; 885 886 static const struct proto_ops unix_seqpacket_ops = { 887 .family = PF_UNIX, 888 .owner = THIS_MODULE, 889 .release = unix_release, 890 .bind = unix_bind, 891 .connect = unix_stream_connect, 892 .socketpair = unix_socketpair, 893 .accept = unix_accept, 894 .getname = unix_getname, 895 .poll = unix_dgram_poll, 896 .ioctl = unix_ioctl, 897 #ifdef CONFIG_COMPAT 898 .compat_ioctl = unix_compat_ioctl, 899 #endif 900 .listen = unix_listen, 901 .shutdown = unix_shutdown, 902 .sendmsg = unix_seqpacket_sendmsg, 903 .recvmsg = unix_seqpacket_recvmsg, 904 .mmap = sock_no_mmap, 905 .sendpage = sock_no_sendpage, 906 .set_peek_off = unix_set_peek_off, 907 .show_fdinfo = unix_show_fdinfo, 908 }; 909 910 static void unix_close(struct sock *sk, long timeout) 911 { 912 /* Nothing to do here, unix socket does not need a ->close(). 913 * This is merely for sockmap. 914 */ 915 } 916 917 static void unix_unhash(struct sock *sk) 918 { 919 /* Nothing to do here, unix socket does not need a ->unhash(). 920 * This is merely for sockmap. 921 */ 922 } 923 924 struct proto unix_dgram_proto = { 925 .name = "UNIX", 926 .owner = THIS_MODULE, 927 .obj_size = sizeof(struct unix_sock), 928 .close = unix_close, 929 #ifdef CONFIG_BPF_SYSCALL 930 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 931 #endif 932 }; 933 934 struct proto unix_stream_proto = { 935 .name = "UNIX-STREAM", 936 .owner = THIS_MODULE, 937 .obj_size = sizeof(struct unix_sock), 938 .close = unix_close, 939 .unhash = unix_unhash, 940 #ifdef CONFIG_BPF_SYSCALL 941 .psock_update_sk_prot = unix_stream_bpf_update_proto, 942 #endif 943 }; 944 945 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 946 { 947 struct unix_sock *u; 948 struct sock *sk; 949 int err; 950 951 atomic_long_inc(&unix_nr_socks); 952 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 953 err = -ENFILE; 954 goto err; 955 } 956 957 if (type == SOCK_STREAM) 958 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 959 else /*dgram and seqpacket */ 960 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 961 962 if (!sk) { 963 err = -ENOMEM; 964 goto err; 965 } 966 967 sock_init_data(sock, sk); 968 969 sk->sk_hash = unix_unbound_hash(sk); 970 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 971 sk->sk_write_space = unix_write_space; 972 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 973 sk->sk_destruct = unix_sock_destructor; 974 u = unix_sk(sk); 975 u->path.dentry = NULL; 976 u->path.mnt = NULL; 977 spin_lock_init(&u->lock); 978 atomic_long_set(&u->inflight, 0); 979 INIT_LIST_HEAD(&u->link); 980 mutex_init(&u->iolock); /* single task reading lock */ 981 mutex_init(&u->bindlock); /* single task binding lock */ 982 init_waitqueue_head(&u->peer_wait); 983 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 984 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 985 unix_insert_unbound_socket(net, sk); 986 987 sock_prot_inuse_add(net, sk->sk_prot, 1); 988 989 return sk; 990 991 err: 992 atomic_long_dec(&unix_nr_socks); 993 return ERR_PTR(err); 994 } 995 996 static int unix_create(struct net *net, struct socket *sock, int protocol, 997 int kern) 998 { 999 struct sock *sk; 1000 1001 if (protocol && protocol != PF_UNIX) 1002 return -EPROTONOSUPPORT; 1003 1004 sock->state = SS_UNCONNECTED; 1005 1006 switch (sock->type) { 1007 case SOCK_STREAM: 1008 sock->ops = &unix_stream_ops; 1009 break; 1010 /* 1011 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1012 * nothing uses it. 1013 */ 1014 case SOCK_RAW: 1015 sock->type = SOCK_DGRAM; 1016 fallthrough; 1017 case SOCK_DGRAM: 1018 sock->ops = &unix_dgram_ops; 1019 break; 1020 case SOCK_SEQPACKET: 1021 sock->ops = &unix_seqpacket_ops; 1022 break; 1023 default: 1024 return -ESOCKTNOSUPPORT; 1025 } 1026 1027 sk = unix_create1(net, sock, kern, sock->type); 1028 if (IS_ERR(sk)) 1029 return PTR_ERR(sk); 1030 1031 return 0; 1032 } 1033 1034 static int unix_release(struct socket *sock) 1035 { 1036 struct sock *sk = sock->sk; 1037 1038 if (!sk) 1039 return 0; 1040 1041 sk->sk_prot->close(sk, 0); 1042 unix_release_sock(sk, 0); 1043 sock->sk = NULL; 1044 1045 return 0; 1046 } 1047 1048 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1049 int type) 1050 { 1051 struct inode *inode; 1052 struct path path; 1053 struct sock *sk; 1054 int err; 1055 1056 unix_mkname_bsd(sunaddr, addr_len); 1057 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1058 if (err) 1059 goto fail; 1060 1061 err = path_permission(&path, MAY_WRITE); 1062 if (err) 1063 goto path_put; 1064 1065 err = -ECONNREFUSED; 1066 inode = d_backing_inode(path.dentry); 1067 if (!S_ISSOCK(inode->i_mode)) 1068 goto path_put; 1069 1070 sk = unix_find_socket_byinode(inode); 1071 if (!sk) 1072 goto path_put; 1073 1074 err = -EPROTOTYPE; 1075 if (sk->sk_type == type) 1076 touch_atime(&path); 1077 else 1078 goto sock_put; 1079 1080 path_put(&path); 1081 1082 return sk; 1083 1084 sock_put: 1085 sock_put(sk); 1086 path_put: 1087 path_put(&path); 1088 fail: 1089 return ERR_PTR(err); 1090 } 1091 1092 static struct sock *unix_find_abstract(struct net *net, 1093 struct sockaddr_un *sunaddr, 1094 int addr_len, int type) 1095 { 1096 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1097 struct dentry *dentry; 1098 struct sock *sk; 1099 1100 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1101 if (!sk) 1102 return ERR_PTR(-ECONNREFUSED); 1103 1104 dentry = unix_sk(sk)->path.dentry; 1105 if (dentry) 1106 touch_atime(&unix_sk(sk)->path); 1107 1108 return sk; 1109 } 1110 1111 static struct sock *unix_find_other(struct net *net, 1112 struct sockaddr_un *sunaddr, 1113 int addr_len, int type) 1114 { 1115 struct sock *sk; 1116 1117 if (sunaddr->sun_path[0]) 1118 sk = unix_find_bsd(sunaddr, addr_len, type); 1119 else 1120 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1121 1122 return sk; 1123 } 1124 1125 static int unix_autobind(struct sock *sk) 1126 { 1127 unsigned int new_hash, old_hash = sk->sk_hash; 1128 struct unix_sock *u = unix_sk(sk); 1129 struct net *net = sock_net(sk); 1130 struct unix_address *addr; 1131 u32 lastnum, ordernum; 1132 int err; 1133 1134 err = mutex_lock_interruptible(&u->bindlock); 1135 if (err) 1136 return err; 1137 1138 if (u->addr) 1139 goto out; 1140 1141 err = -ENOMEM; 1142 addr = kzalloc(sizeof(*addr) + 1143 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1144 if (!addr) 1145 goto out; 1146 1147 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1148 addr->name->sun_family = AF_UNIX; 1149 refcount_set(&addr->refcnt, 1); 1150 1151 ordernum = get_random_u32(); 1152 lastnum = ordernum & 0xFFFFF; 1153 retry: 1154 ordernum = (ordernum + 1) & 0xFFFFF; 1155 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1156 1157 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1158 unix_table_double_lock(net, old_hash, new_hash); 1159 1160 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1161 unix_table_double_unlock(net, old_hash, new_hash); 1162 1163 /* __unix_find_socket_byname() may take long time if many names 1164 * are already in use. 1165 */ 1166 cond_resched(); 1167 1168 if (ordernum == lastnum) { 1169 /* Give up if all names seems to be in use. */ 1170 err = -ENOSPC; 1171 unix_release_addr(addr); 1172 goto out; 1173 } 1174 1175 goto retry; 1176 } 1177 1178 __unix_set_addr_hash(net, sk, addr, new_hash); 1179 unix_table_double_unlock(net, old_hash, new_hash); 1180 err = 0; 1181 1182 out: mutex_unlock(&u->bindlock); 1183 return err; 1184 } 1185 1186 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1187 int addr_len) 1188 { 1189 umode_t mode = S_IFSOCK | 1190 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1191 unsigned int new_hash, old_hash = sk->sk_hash; 1192 struct unix_sock *u = unix_sk(sk); 1193 struct net *net = sock_net(sk); 1194 struct mnt_idmap *idmap; 1195 struct unix_address *addr; 1196 struct dentry *dentry; 1197 struct path parent; 1198 int err; 1199 1200 unix_mkname_bsd(sunaddr, addr_len); 1201 addr_len = strlen(sunaddr->sun_path) + 1202 offsetof(struct sockaddr_un, sun_path) + 1; 1203 1204 addr = unix_create_addr(sunaddr, addr_len); 1205 if (!addr) 1206 return -ENOMEM; 1207 1208 /* 1209 * Get the parent directory, calculate the hash for last 1210 * component. 1211 */ 1212 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1213 if (IS_ERR(dentry)) { 1214 err = PTR_ERR(dentry); 1215 goto out; 1216 } 1217 1218 /* 1219 * All right, let's create it. 1220 */ 1221 idmap = mnt_idmap(parent.mnt); 1222 err = security_path_mknod(&parent, dentry, mode, 0); 1223 if (!err) 1224 err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0); 1225 if (err) 1226 goto out_path; 1227 err = mutex_lock_interruptible(&u->bindlock); 1228 if (err) 1229 goto out_unlink; 1230 if (u->addr) 1231 goto out_unlock; 1232 1233 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1234 unix_table_double_lock(net, old_hash, new_hash); 1235 u->path.mnt = mntget(parent.mnt); 1236 u->path.dentry = dget(dentry); 1237 __unix_set_addr_hash(net, sk, addr, new_hash); 1238 unix_table_double_unlock(net, old_hash, new_hash); 1239 unix_insert_bsd_socket(sk); 1240 mutex_unlock(&u->bindlock); 1241 done_path_create(&parent, dentry); 1242 return 0; 1243 1244 out_unlock: 1245 mutex_unlock(&u->bindlock); 1246 err = -EINVAL; 1247 out_unlink: 1248 /* failed after successful mknod? unlink what we'd created... */ 1249 vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL); 1250 out_path: 1251 done_path_create(&parent, dentry); 1252 out: 1253 unix_release_addr(addr); 1254 return err == -EEXIST ? -EADDRINUSE : err; 1255 } 1256 1257 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1258 int addr_len) 1259 { 1260 unsigned int new_hash, old_hash = sk->sk_hash; 1261 struct unix_sock *u = unix_sk(sk); 1262 struct net *net = sock_net(sk); 1263 struct unix_address *addr; 1264 int err; 1265 1266 addr = unix_create_addr(sunaddr, addr_len); 1267 if (!addr) 1268 return -ENOMEM; 1269 1270 err = mutex_lock_interruptible(&u->bindlock); 1271 if (err) 1272 goto out; 1273 1274 if (u->addr) { 1275 err = -EINVAL; 1276 goto out_mutex; 1277 } 1278 1279 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1280 unix_table_double_lock(net, old_hash, new_hash); 1281 1282 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1283 goto out_spin; 1284 1285 __unix_set_addr_hash(net, sk, addr, new_hash); 1286 unix_table_double_unlock(net, old_hash, new_hash); 1287 mutex_unlock(&u->bindlock); 1288 return 0; 1289 1290 out_spin: 1291 unix_table_double_unlock(net, old_hash, new_hash); 1292 err = -EADDRINUSE; 1293 out_mutex: 1294 mutex_unlock(&u->bindlock); 1295 out: 1296 unix_release_addr(addr); 1297 return err; 1298 } 1299 1300 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1301 { 1302 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1303 struct sock *sk = sock->sk; 1304 int err; 1305 1306 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1307 sunaddr->sun_family == AF_UNIX) 1308 return unix_autobind(sk); 1309 1310 err = unix_validate_addr(sunaddr, addr_len); 1311 if (err) 1312 return err; 1313 1314 if (sunaddr->sun_path[0]) 1315 err = unix_bind_bsd(sk, sunaddr, addr_len); 1316 else 1317 err = unix_bind_abstract(sk, sunaddr, addr_len); 1318 1319 return err; 1320 } 1321 1322 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1323 { 1324 if (unlikely(sk1 == sk2) || !sk2) { 1325 unix_state_lock(sk1); 1326 return; 1327 } 1328 if (sk1 < sk2) { 1329 unix_state_lock(sk1); 1330 unix_state_lock_nested(sk2); 1331 } else { 1332 unix_state_lock(sk2); 1333 unix_state_lock_nested(sk1); 1334 } 1335 } 1336 1337 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1338 { 1339 if (unlikely(sk1 == sk2) || !sk2) { 1340 unix_state_unlock(sk1); 1341 return; 1342 } 1343 unix_state_unlock(sk1); 1344 unix_state_unlock(sk2); 1345 } 1346 1347 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1348 int alen, int flags) 1349 { 1350 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1351 struct sock *sk = sock->sk; 1352 struct sock *other; 1353 int err; 1354 1355 err = -EINVAL; 1356 if (alen < offsetofend(struct sockaddr, sa_family)) 1357 goto out; 1358 1359 if (addr->sa_family != AF_UNSPEC) { 1360 err = unix_validate_addr(sunaddr, alen); 1361 if (err) 1362 goto out; 1363 1364 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1365 !unix_sk(sk)->addr) { 1366 err = unix_autobind(sk); 1367 if (err) 1368 goto out; 1369 } 1370 1371 restart: 1372 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1373 if (IS_ERR(other)) { 1374 err = PTR_ERR(other); 1375 goto out; 1376 } 1377 1378 unix_state_double_lock(sk, other); 1379 1380 /* Apparently VFS overslept socket death. Retry. */ 1381 if (sock_flag(other, SOCK_DEAD)) { 1382 unix_state_double_unlock(sk, other); 1383 sock_put(other); 1384 goto restart; 1385 } 1386 1387 err = -EPERM; 1388 if (!unix_may_send(sk, other)) 1389 goto out_unlock; 1390 1391 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1392 if (err) 1393 goto out_unlock; 1394 1395 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1396 } else { 1397 /* 1398 * 1003.1g breaking connected state with AF_UNSPEC 1399 */ 1400 other = NULL; 1401 unix_state_double_lock(sk, other); 1402 } 1403 1404 /* 1405 * If it was connected, reconnect. 1406 */ 1407 if (unix_peer(sk)) { 1408 struct sock *old_peer = unix_peer(sk); 1409 1410 unix_peer(sk) = other; 1411 if (!other) 1412 sk->sk_state = TCP_CLOSE; 1413 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1414 1415 unix_state_double_unlock(sk, other); 1416 1417 if (other != old_peer) 1418 unix_dgram_disconnected(sk, old_peer); 1419 sock_put(old_peer); 1420 } else { 1421 unix_peer(sk) = other; 1422 unix_state_double_unlock(sk, other); 1423 } 1424 1425 return 0; 1426 1427 out_unlock: 1428 unix_state_double_unlock(sk, other); 1429 sock_put(other); 1430 out: 1431 return err; 1432 } 1433 1434 static long unix_wait_for_peer(struct sock *other, long timeo) 1435 __releases(&unix_sk(other)->lock) 1436 { 1437 struct unix_sock *u = unix_sk(other); 1438 int sched; 1439 DEFINE_WAIT(wait); 1440 1441 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1442 1443 sched = !sock_flag(other, SOCK_DEAD) && 1444 !(other->sk_shutdown & RCV_SHUTDOWN) && 1445 unix_recvq_full_lockless(other); 1446 1447 unix_state_unlock(other); 1448 1449 if (sched) 1450 timeo = schedule_timeout(timeo); 1451 1452 finish_wait(&u->peer_wait, &wait); 1453 return timeo; 1454 } 1455 1456 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1457 int addr_len, int flags) 1458 { 1459 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1460 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1461 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1462 struct net *net = sock_net(sk); 1463 struct sk_buff *skb = NULL; 1464 long timeo; 1465 int err; 1466 int st; 1467 1468 err = unix_validate_addr(sunaddr, addr_len); 1469 if (err) 1470 goto out; 1471 1472 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1473 err = unix_autobind(sk); 1474 if (err) 1475 goto out; 1476 } 1477 1478 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1479 1480 /* First of all allocate resources. 1481 If we will make it after state is locked, 1482 we will have to recheck all again in any case. 1483 */ 1484 1485 /* create new sock for complete connection */ 1486 newsk = unix_create1(net, NULL, 0, sock->type); 1487 if (IS_ERR(newsk)) { 1488 err = PTR_ERR(newsk); 1489 newsk = NULL; 1490 goto out; 1491 } 1492 1493 err = -ENOMEM; 1494 1495 /* Allocate skb for sending to listening sock */ 1496 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1497 if (skb == NULL) 1498 goto out; 1499 1500 restart: 1501 /* Find listening sock. */ 1502 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1503 if (IS_ERR(other)) { 1504 err = PTR_ERR(other); 1505 other = NULL; 1506 goto out; 1507 } 1508 1509 /* Latch state of peer */ 1510 unix_state_lock(other); 1511 1512 /* Apparently VFS overslept socket death. Retry. */ 1513 if (sock_flag(other, SOCK_DEAD)) { 1514 unix_state_unlock(other); 1515 sock_put(other); 1516 goto restart; 1517 } 1518 1519 err = -ECONNREFUSED; 1520 if (other->sk_state != TCP_LISTEN) 1521 goto out_unlock; 1522 if (other->sk_shutdown & RCV_SHUTDOWN) 1523 goto out_unlock; 1524 1525 if (unix_recvq_full(other)) { 1526 err = -EAGAIN; 1527 if (!timeo) 1528 goto out_unlock; 1529 1530 timeo = unix_wait_for_peer(other, timeo); 1531 1532 err = sock_intr_errno(timeo); 1533 if (signal_pending(current)) 1534 goto out; 1535 sock_put(other); 1536 goto restart; 1537 } 1538 1539 /* Latch our state. 1540 1541 It is tricky place. We need to grab our state lock and cannot 1542 drop lock on peer. It is dangerous because deadlock is 1543 possible. Connect to self case and simultaneous 1544 attempt to connect are eliminated by checking socket 1545 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1546 check this before attempt to grab lock. 1547 1548 Well, and we have to recheck the state after socket locked. 1549 */ 1550 st = sk->sk_state; 1551 1552 switch (st) { 1553 case TCP_CLOSE: 1554 /* This is ok... continue with connect */ 1555 break; 1556 case TCP_ESTABLISHED: 1557 /* Socket is already connected */ 1558 err = -EISCONN; 1559 goto out_unlock; 1560 default: 1561 err = -EINVAL; 1562 goto out_unlock; 1563 } 1564 1565 unix_state_lock_nested(sk); 1566 1567 if (sk->sk_state != st) { 1568 unix_state_unlock(sk); 1569 unix_state_unlock(other); 1570 sock_put(other); 1571 goto restart; 1572 } 1573 1574 err = security_unix_stream_connect(sk, other, newsk); 1575 if (err) { 1576 unix_state_unlock(sk); 1577 goto out_unlock; 1578 } 1579 1580 /* The way is open! Fastly set all the necessary fields... */ 1581 1582 sock_hold(sk); 1583 unix_peer(newsk) = sk; 1584 newsk->sk_state = TCP_ESTABLISHED; 1585 newsk->sk_type = sk->sk_type; 1586 init_peercred(newsk); 1587 newu = unix_sk(newsk); 1588 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1589 otheru = unix_sk(other); 1590 1591 /* copy address information from listening to new sock 1592 * 1593 * The contents of *(otheru->addr) and otheru->path 1594 * are seen fully set up here, since we have found 1595 * otheru in hash under its lock. Insertion into the 1596 * hash chain we'd found it in had been done in an 1597 * earlier critical area protected by the chain's lock, 1598 * the same one where we'd set *(otheru->addr) contents, 1599 * as well as otheru->path and otheru->addr itself. 1600 * 1601 * Using smp_store_release() here to set newu->addr 1602 * is enough to make those stores, as well as stores 1603 * to newu->path visible to anyone who gets newu->addr 1604 * by smp_load_acquire(). IOW, the same warranties 1605 * as for unix_sock instances bound in unix_bind() or 1606 * in unix_autobind(). 1607 */ 1608 if (otheru->path.dentry) { 1609 path_get(&otheru->path); 1610 newu->path = otheru->path; 1611 } 1612 refcount_inc(&otheru->addr->refcnt); 1613 smp_store_release(&newu->addr, otheru->addr); 1614 1615 /* Set credentials */ 1616 copy_peercred(sk, other); 1617 1618 sock->state = SS_CONNECTED; 1619 sk->sk_state = TCP_ESTABLISHED; 1620 sock_hold(newsk); 1621 1622 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1623 unix_peer(sk) = newsk; 1624 1625 unix_state_unlock(sk); 1626 1627 /* take ten and send info to listening sock */ 1628 spin_lock(&other->sk_receive_queue.lock); 1629 __skb_queue_tail(&other->sk_receive_queue, skb); 1630 spin_unlock(&other->sk_receive_queue.lock); 1631 unix_state_unlock(other); 1632 other->sk_data_ready(other); 1633 sock_put(other); 1634 return 0; 1635 1636 out_unlock: 1637 if (other) 1638 unix_state_unlock(other); 1639 1640 out: 1641 kfree_skb(skb); 1642 if (newsk) 1643 unix_release_sock(newsk, 0); 1644 if (other) 1645 sock_put(other); 1646 return err; 1647 } 1648 1649 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1650 { 1651 struct sock *ska = socka->sk, *skb = sockb->sk; 1652 1653 /* Join our sockets back to back */ 1654 sock_hold(ska); 1655 sock_hold(skb); 1656 unix_peer(ska) = skb; 1657 unix_peer(skb) = ska; 1658 init_peercred(ska); 1659 init_peercred(skb); 1660 1661 ska->sk_state = TCP_ESTABLISHED; 1662 skb->sk_state = TCP_ESTABLISHED; 1663 socka->state = SS_CONNECTED; 1664 sockb->state = SS_CONNECTED; 1665 return 0; 1666 } 1667 1668 static void unix_sock_inherit_flags(const struct socket *old, 1669 struct socket *new) 1670 { 1671 if (test_bit(SOCK_PASSCRED, &old->flags)) 1672 set_bit(SOCK_PASSCRED, &new->flags); 1673 if (test_bit(SOCK_PASSSEC, &old->flags)) 1674 set_bit(SOCK_PASSSEC, &new->flags); 1675 } 1676 1677 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1678 bool kern) 1679 { 1680 struct sock *sk = sock->sk; 1681 struct sock *tsk; 1682 struct sk_buff *skb; 1683 int err; 1684 1685 err = -EOPNOTSUPP; 1686 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1687 goto out; 1688 1689 err = -EINVAL; 1690 if (sk->sk_state != TCP_LISTEN) 1691 goto out; 1692 1693 /* If socket state is TCP_LISTEN it cannot change (for now...), 1694 * so that no locks are necessary. 1695 */ 1696 1697 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1698 &err); 1699 if (!skb) { 1700 /* This means receive shutdown. */ 1701 if (err == 0) 1702 err = -EINVAL; 1703 goto out; 1704 } 1705 1706 tsk = skb->sk; 1707 skb_free_datagram(sk, skb); 1708 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1709 1710 /* attach accepted sock to socket */ 1711 unix_state_lock(tsk); 1712 newsock->state = SS_CONNECTED; 1713 unix_sock_inherit_flags(sock, newsock); 1714 sock_graft(tsk, newsock); 1715 unix_state_unlock(tsk); 1716 return 0; 1717 1718 out: 1719 return err; 1720 } 1721 1722 1723 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1724 { 1725 struct sock *sk = sock->sk; 1726 struct unix_address *addr; 1727 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1728 int err = 0; 1729 1730 if (peer) { 1731 sk = unix_peer_get(sk); 1732 1733 err = -ENOTCONN; 1734 if (!sk) 1735 goto out; 1736 err = 0; 1737 } else { 1738 sock_hold(sk); 1739 } 1740 1741 addr = smp_load_acquire(&unix_sk(sk)->addr); 1742 if (!addr) { 1743 sunaddr->sun_family = AF_UNIX; 1744 sunaddr->sun_path[0] = 0; 1745 err = offsetof(struct sockaddr_un, sun_path); 1746 } else { 1747 err = addr->len; 1748 memcpy(sunaddr, addr->name, addr->len); 1749 } 1750 sock_put(sk); 1751 out: 1752 return err; 1753 } 1754 1755 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1756 { 1757 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1758 1759 /* 1760 * Garbage collection of unix sockets starts by selecting a set of 1761 * candidate sockets which have reference only from being in flight 1762 * (total_refs == inflight_refs). This condition is checked once during 1763 * the candidate collection phase, and candidates are marked as such, so 1764 * that non-candidates can later be ignored. While inflight_refs is 1765 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1766 * is an instantaneous decision. 1767 * 1768 * Once a candidate, however, the socket must not be reinstalled into a 1769 * file descriptor while the garbage collection is in progress. 1770 * 1771 * If the above conditions are met, then the directed graph of 1772 * candidates (*) does not change while unix_gc_lock is held. 1773 * 1774 * Any operations that changes the file count through file descriptors 1775 * (dup, close, sendmsg) does not change the graph since candidates are 1776 * not installed in fds. 1777 * 1778 * Dequeing a candidate via recvmsg would install it into an fd, but 1779 * that takes unix_gc_lock to decrement the inflight count, so it's 1780 * serialized with garbage collection. 1781 * 1782 * MSG_PEEK is special in that it does not change the inflight count, 1783 * yet does install the socket into an fd. The following lock/unlock 1784 * pair is to ensure serialization with garbage collection. It must be 1785 * done between incrementing the file count and installing the file into 1786 * an fd. 1787 * 1788 * If garbage collection starts after the barrier provided by the 1789 * lock/unlock, then it will see the elevated refcount and not mark this 1790 * as a candidate. If a garbage collection is already in progress 1791 * before the file count was incremented, then the lock/unlock pair will 1792 * ensure that garbage collection is finished before progressing to 1793 * installing the fd. 1794 * 1795 * (*) A -> B where B is on the queue of A or B is on the queue of C 1796 * which is on the queue of listening socket A. 1797 */ 1798 spin_lock(&unix_gc_lock); 1799 spin_unlock(&unix_gc_lock); 1800 } 1801 1802 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1803 { 1804 int err = 0; 1805 1806 UNIXCB(skb).pid = get_pid(scm->pid); 1807 UNIXCB(skb).uid = scm->creds.uid; 1808 UNIXCB(skb).gid = scm->creds.gid; 1809 UNIXCB(skb).fp = NULL; 1810 unix_get_secdata(scm, skb); 1811 if (scm->fp && send_fds) 1812 err = unix_attach_fds(scm, skb); 1813 1814 skb->destructor = unix_destruct_scm; 1815 return err; 1816 } 1817 1818 static bool unix_passcred_enabled(const struct socket *sock, 1819 const struct sock *other) 1820 { 1821 return test_bit(SOCK_PASSCRED, &sock->flags) || 1822 !other->sk_socket || 1823 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1824 } 1825 1826 /* 1827 * Some apps rely on write() giving SCM_CREDENTIALS 1828 * We include credentials if source or destination socket 1829 * asserted SOCK_PASSCRED. 1830 */ 1831 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1832 const struct sock *other) 1833 { 1834 if (UNIXCB(skb).pid) 1835 return; 1836 if (unix_passcred_enabled(sock, other)) { 1837 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1838 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1839 } 1840 } 1841 1842 static bool unix_skb_scm_eq(struct sk_buff *skb, 1843 struct scm_cookie *scm) 1844 { 1845 return UNIXCB(skb).pid == scm->pid && 1846 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1847 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1848 unix_secdata_eq(scm, skb); 1849 } 1850 1851 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1852 { 1853 struct scm_fp_list *fp = UNIXCB(skb).fp; 1854 struct unix_sock *u = unix_sk(sk); 1855 1856 if (unlikely(fp && fp->count)) 1857 atomic_add(fp->count, &u->scm_stat.nr_fds); 1858 } 1859 1860 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1861 { 1862 struct scm_fp_list *fp = UNIXCB(skb).fp; 1863 struct unix_sock *u = unix_sk(sk); 1864 1865 if (unlikely(fp && fp->count)) 1866 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1867 } 1868 1869 /* 1870 * Send AF_UNIX data. 1871 */ 1872 1873 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1874 size_t len) 1875 { 1876 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1877 struct sock *sk = sock->sk, *other = NULL; 1878 struct unix_sock *u = unix_sk(sk); 1879 struct scm_cookie scm; 1880 struct sk_buff *skb; 1881 int data_len = 0; 1882 int sk_locked; 1883 long timeo; 1884 int err; 1885 1886 wait_for_unix_gc(); 1887 err = scm_send(sock, msg, &scm, false); 1888 if (err < 0) 1889 return err; 1890 1891 err = -EOPNOTSUPP; 1892 if (msg->msg_flags&MSG_OOB) 1893 goto out; 1894 1895 if (msg->msg_namelen) { 1896 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1897 if (err) 1898 goto out; 1899 } else { 1900 sunaddr = NULL; 1901 err = -ENOTCONN; 1902 other = unix_peer_get(sk); 1903 if (!other) 1904 goto out; 1905 } 1906 1907 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1908 err = unix_autobind(sk); 1909 if (err) 1910 goto out; 1911 } 1912 1913 err = -EMSGSIZE; 1914 if (len > sk->sk_sndbuf - 32) 1915 goto out; 1916 1917 if (len > SKB_MAX_ALLOC) { 1918 data_len = min_t(size_t, 1919 len - SKB_MAX_ALLOC, 1920 MAX_SKB_FRAGS * PAGE_SIZE); 1921 data_len = PAGE_ALIGN(data_len); 1922 1923 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1924 } 1925 1926 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1927 msg->msg_flags & MSG_DONTWAIT, &err, 1928 PAGE_ALLOC_COSTLY_ORDER); 1929 if (skb == NULL) 1930 goto out; 1931 1932 err = unix_scm_to_skb(&scm, skb, true); 1933 if (err < 0) 1934 goto out_free; 1935 1936 skb_put(skb, len - data_len); 1937 skb->data_len = data_len; 1938 skb->len = len; 1939 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1940 if (err) 1941 goto out_free; 1942 1943 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1944 1945 restart: 1946 if (!other) { 1947 err = -ECONNRESET; 1948 if (sunaddr == NULL) 1949 goto out_free; 1950 1951 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 1952 sk->sk_type); 1953 if (IS_ERR(other)) { 1954 err = PTR_ERR(other); 1955 other = NULL; 1956 goto out_free; 1957 } 1958 } 1959 1960 if (sk_filter(other, skb) < 0) { 1961 /* Toss the packet but do not return any error to the sender */ 1962 err = len; 1963 goto out_free; 1964 } 1965 1966 sk_locked = 0; 1967 unix_state_lock(other); 1968 restart_locked: 1969 err = -EPERM; 1970 if (!unix_may_send(sk, other)) 1971 goto out_unlock; 1972 1973 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1974 /* 1975 * Check with 1003.1g - what should 1976 * datagram error 1977 */ 1978 unix_state_unlock(other); 1979 sock_put(other); 1980 1981 if (!sk_locked) 1982 unix_state_lock(sk); 1983 1984 err = 0; 1985 if (sk->sk_type == SOCK_SEQPACKET) { 1986 /* We are here only when racing with unix_release_sock() 1987 * is clearing @other. Never change state to TCP_CLOSE 1988 * unlike SOCK_DGRAM wants. 1989 */ 1990 unix_state_unlock(sk); 1991 err = -EPIPE; 1992 } else if (unix_peer(sk) == other) { 1993 unix_peer(sk) = NULL; 1994 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 1995 1996 sk->sk_state = TCP_CLOSE; 1997 unix_state_unlock(sk); 1998 1999 unix_dgram_disconnected(sk, other); 2000 sock_put(other); 2001 err = -ECONNREFUSED; 2002 } else { 2003 unix_state_unlock(sk); 2004 } 2005 2006 other = NULL; 2007 if (err) 2008 goto out_free; 2009 goto restart; 2010 } 2011 2012 err = -EPIPE; 2013 if (other->sk_shutdown & RCV_SHUTDOWN) 2014 goto out_unlock; 2015 2016 if (sk->sk_type != SOCK_SEQPACKET) { 2017 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2018 if (err) 2019 goto out_unlock; 2020 } 2021 2022 /* other == sk && unix_peer(other) != sk if 2023 * - unix_peer(sk) == NULL, destination address bound to sk 2024 * - unix_peer(sk) == sk by time of get but disconnected before lock 2025 */ 2026 if (other != sk && 2027 unlikely(unix_peer(other) != sk && 2028 unix_recvq_full_lockless(other))) { 2029 if (timeo) { 2030 timeo = unix_wait_for_peer(other, timeo); 2031 2032 err = sock_intr_errno(timeo); 2033 if (signal_pending(current)) 2034 goto out_free; 2035 2036 goto restart; 2037 } 2038 2039 if (!sk_locked) { 2040 unix_state_unlock(other); 2041 unix_state_double_lock(sk, other); 2042 } 2043 2044 if (unix_peer(sk) != other || 2045 unix_dgram_peer_wake_me(sk, other)) { 2046 err = -EAGAIN; 2047 sk_locked = 1; 2048 goto out_unlock; 2049 } 2050 2051 if (!sk_locked) { 2052 sk_locked = 1; 2053 goto restart_locked; 2054 } 2055 } 2056 2057 if (unlikely(sk_locked)) 2058 unix_state_unlock(sk); 2059 2060 if (sock_flag(other, SOCK_RCVTSTAMP)) 2061 __net_timestamp(skb); 2062 maybe_add_creds(skb, sock, other); 2063 scm_stat_add(other, skb); 2064 skb_queue_tail(&other->sk_receive_queue, skb); 2065 unix_state_unlock(other); 2066 other->sk_data_ready(other); 2067 sock_put(other); 2068 scm_destroy(&scm); 2069 return len; 2070 2071 out_unlock: 2072 if (sk_locked) 2073 unix_state_unlock(sk); 2074 unix_state_unlock(other); 2075 out_free: 2076 kfree_skb(skb); 2077 out: 2078 if (other) 2079 sock_put(other); 2080 scm_destroy(&scm); 2081 return err; 2082 } 2083 2084 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2085 * bytes, and a minimum of a full page. 2086 */ 2087 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2088 2089 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2090 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other, 2091 struct scm_cookie *scm, bool fds_sent) 2092 { 2093 struct unix_sock *ousk = unix_sk(other); 2094 struct sk_buff *skb; 2095 int err = 0; 2096 2097 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2098 2099 if (!skb) 2100 return err; 2101 2102 err = unix_scm_to_skb(scm, skb, !fds_sent); 2103 if (err < 0) { 2104 kfree_skb(skb); 2105 return err; 2106 } 2107 skb_put(skb, 1); 2108 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2109 2110 if (err) { 2111 kfree_skb(skb); 2112 return err; 2113 } 2114 2115 unix_state_lock(other); 2116 2117 if (sock_flag(other, SOCK_DEAD) || 2118 (other->sk_shutdown & RCV_SHUTDOWN)) { 2119 unix_state_unlock(other); 2120 kfree_skb(skb); 2121 return -EPIPE; 2122 } 2123 2124 maybe_add_creds(skb, sock, other); 2125 skb_get(skb); 2126 2127 if (ousk->oob_skb) 2128 consume_skb(ousk->oob_skb); 2129 2130 WRITE_ONCE(ousk->oob_skb, skb); 2131 2132 scm_stat_add(other, skb); 2133 skb_queue_tail(&other->sk_receive_queue, skb); 2134 sk_send_sigurg(other); 2135 unix_state_unlock(other); 2136 other->sk_data_ready(other); 2137 2138 return err; 2139 } 2140 #endif 2141 2142 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2143 size_t len) 2144 { 2145 struct sock *sk = sock->sk; 2146 struct sock *other = NULL; 2147 int err, size; 2148 struct sk_buff *skb; 2149 int sent = 0; 2150 struct scm_cookie scm; 2151 bool fds_sent = false; 2152 int data_len; 2153 2154 wait_for_unix_gc(); 2155 err = scm_send(sock, msg, &scm, false); 2156 if (err < 0) 2157 return err; 2158 2159 err = -EOPNOTSUPP; 2160 if (msg->msg_flags & MSG_OOB) { 2161 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2162 if (len) 2163 len--; 2164 else 2165 #endif 2166 goto out_err; 2167 } 2168 2169 if (msg->msg_namelen) { 2170 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2171 goto out_err; 2172 } else { 2173 err = -ENOTCONN; 2174 other = unix_peer(sk); 2175 if (!other) 2176 goto out_err; 2177 } 2178 2179 if (sk->sk_shutdown & SEND_SHUTDOWN) 2180 goto pipe_err; 2181 2182 while (sent < len) { 2183 size = len - sent; 2184 2185 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2186 skb = sock_alloc_send_pskb(sk, 0, 0, 2187 msg->msg_flags & MSG_DONTWAIT, 2188 &err, 0); 2189 } else { 2190 /* Keep two messages in the pipe so it schedules better */ 2191 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2192 2193 /* allow fallback to order-0 allocations */ 2194 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2195 2196 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2197 2198 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2199 2200 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2201 msg->msg_flags & MSG_DONTWAIT, &err, 2202 get_order(UNIX_SKB_FRAGS_SZ)); 2203 } 2204 if (!skb) 2205 goto out_err; 2206 2207 /* Only send the fds in the first buffer */ 2208 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2209 if (err < 0) { 2210 kfree_skb(skb); 2211 goto out_err; 2212 } 2213 fds_sent = true; 2214 2215 if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) { 2216 err = skb_splice_from_iter(skb, &msg->msg_iter, size, 2217 sk->sk_allocation); 2218 if (err < 0) { 2219 kfree_skb(skb); 2220 goto out_err; 2221 } 2222 size = err; 2223 refcount_add(size, &sk->sk_wmem_alloc); 2224 } else { 2225 skb_put(skb, size - data_len); 2226 skb->data_len = data_len; 2227 skb->len = size; 2228 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2229 if (err) { 2230 kfree_skb(skb); 2231 goto out_err; 2232 } 2233 } 2234 2235 unix_state_lock(other); 2236 2237 if (sock_flag(other, SOCK_DEAD) || 2238 (other->sk_shutdown & RCV_SHUTDOWN)) 2239 goto pipe_err_free; 2240 2241 maybe_add_creds(skb, sock, other); 2242 scm_stat_add(other, skb); 2243 skb_queue_tail(&other->sk_receive_queue, skb); 2244 unix_state_unlock(other); 2245 other->sk_data_ready(other); 2246 sent += size; 2247 } 2248 2249 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2250 if (msg->msg_flags & MSG_OOB) { 2251 err = queue_oob(sock, msg, other, &scm, fds_sent); 2252 if (err) 2253 goto out_err; 2254 sent++; 2255 } 2256 #endif 2257 2258 scm_destroy(&scm); 2259 2260 return sent; 2261 2262 pipe_err_free: 2263 unix_state_unlock(other); 2264 kfree_skb(skb); 2265 pipe_err: 2266 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2267 send_sig(SIGPIPE, current, 0); 2268 err = -EPIPE; 2269 out_err: 2270 scm_destroy(&scm); 2271 return sent ? : err; 2272 } 2273 2274 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2275 int offset, size_t size, int flags) 2276 { 2277 struct bio_vec bvec; 2278 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES }; 2279 2280 if (flags & MSG_SENDPAGE_NOTLAST) 2281 msg.msg_flags |= MSG_MORE; 2282 2283 bvec_set_page(&bvec, page, size, offset); 2284 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 2285 return unix_stream_sendmsg(socket, &msg, size); 2286 } 2287 2288 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2289 size_t len) 2290 { 2291 int err; 2292 struct sock *sk = sock->sk; 2293 2294 err = sock_error(sk); 2295 if (err) 2296 return err; 2297 2298 if (sk->sk_state != TCP_ESTABLISHED) 2299 return -ENOTCONN; 2300 2301 if (msg->msg_namelen) 2302 msg->msg_namelen = 0; 2303 2304 return unix_dgram_sendmsg(sock, msg, len); 2305 } 2306 2307 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2308 size_t size, int flags) 2309 { 2310 struct sock *sk = sock->sk; 2311 2312 if (sk->sk_state != TCP_ESTABLISHED) 2313 return -ENOTCONN; 2314 2315 return unix_dgram_recvmsg(sock, msg, size, flags); 2316 } 2317 2318 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2319 { 2320 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2321 2322 if (addr) { 2323 msg->msg_namelen = addr->len; 2324 memcpy(msg->msg_name, addr->name, addr->len); 2325 } 2326 } 2327 2328 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2329 int flags) 2330 { 2331 struct scm_cookie scm; 2332 struct socket *sock = sk->sk_socket; 2333 struct unix_sock *u = unix_sk(sk); 2334 struct sk_buff *skb, *last; 2335 long timeo; 2336 int skip; 2337 int err; 2338 2339 err = -EOPNOTSUPP; 2340 if (flags&MSG_OOB) 2341 goto out; 2342 2343 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2344 2345 do { 2346 mutex_lock(&u->iolock); 2347 2348 skip = sk_peek_offset(sk, flags); 2349 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2350 &skip, &err, &last); 2351 if (skb) { 2352 if (!(flags & MSG_PEEK)) 2353 scm_stat_del(sk, skb); 2354 break; 2355 } 2356 2357 mutex_unlock(&u->iolock); 2358 2359 if (err != -EAGAIN) 2360 break; 2361 } while (timeo && 2362 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2363 &err, &timeo, last)); 2364 2365 if (!skb) { /* implies iolock unlocked */ 2366 unix_state_lock(sk); 2367 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2368 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2369 (sk->sk_shutdown & RCV_SHUTDOWN)) 2370 err = 0; 2371 unix_state_unlock(sk); 2372 goto out; 2373 } 2374 2375 if (wq_has_sleeper(&u->peer_wait)) 2376 wake_up_interruptible_sync_poll(&u->peer_wait, 2377 EPOLLOUT | EPOLLWRNORM | 2378 EPOLLWRBAND); 2379 2380 if (msg->msg_name) 2381 unix_copy_addr(msg, skb->sk); 2382 2383 if (size > skb->len - skip) 2384 size = skb->len - skip; 2385 else if (size < skb->len - skip) 2386 msg->msg_flags |= MSG_TRUNC; 2387 2388 err = skb_copy_datagram_msg(skb, skip, msg, size); 2389 if (err) 2390 goto out_free; 2391 2392 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2393 __sock_recv_timestamp(msg, sk, skb); 2394 2395 memset(&scm, 0, sizeof(scm)); 2396 2397 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2398 unix_set_secdata(&scm, skb); 2399 2400 if (!(flags & MSG_PEEK)) { 2401 if (UNIXCB(skb).fp) 2402 unix_detach_fds(&scm, skb); 2403 2404 sk_peek_offset_bwd(sk, skb->len); 2405 } else { 2406 /* It is questionable: on PEEK we could: 2407 - do not return fds - good, but too simple 8) 2408 - return fds, and do not return them on read (old strategy, 2409 apparently wrong) 2410 - clone fds (I chose it for now, it is the most universal 2411 solution) 2412 2413 POSIX 1003.1g does not actually define this clearly 2414 at all. POSIX 1003.1g doesn't define a lot of things 2415 clearly however! 2416 2417 */ 2418 2419 sk_peek_offset_fwd(sk, size); 2420 2421 if (UNIXCB(skb).fp) 2422 unix_peek_fds(&scm, skb); 2423 } 2424 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2425 2426 scm_recv(sock, msg, &scm, flags); 2427 2428 out_free: 2429 skb_free_datagram(sk, skb); 2430 mutex_unlock(&u->iolock); 2431 out: 2432 return err; 2433 } 2434 2435 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2436 int flags) 2437 { 2438 struct sock *sk = sock->sk; 2439 2440 #ifdef CONFIG_BPF_SYSCALL 2441 const struct proto *prot = READ_ONCE(sk->sk_prot); 2442 2443 if (prot != &unix_dgram_proto) 2444 return prot->recvmsg(sk, msg, size, flags, NULL); 2445 #endif 2446 return __unix_dgram_recvmsg(sk, msg, size, flags); 2447 } 2448 2449 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2450 { 2451 struct unix_sock *u = unix_sk(sk); 2452 struct sk_buff *skb; 2453 int err; 2454 2455 mutex_lock(&u->iolock); 2456 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2457 mutex_unlock(&u->iolock); 2458 if (!skb) 2459 return err; 2460 2461 return recv_actor(sk, skb); 2462 } 2463 2464 /* 2465 * Sleep until more data has arrived. But check for races.. 2466 */ 2467 static long unix_stream_data_wait(struct sock *sk, long timeo, 2468 struct sk_buff *last, unsigned int last_len, 2469 bool freezable) 2470 { 2471 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2472 struct sk_buff *tail; 2473 DEFINE_WAIT(wait); 2474 2475 unix_state_lock(sk); 2476 2477 for (;;) { 2478 prepare_to_wait(sk_sleep(sk), &wait, state); 2479 2480 tail = skb_peek_tail(&sk->sk_receive_queue); 2481 if (tail != last || 2482 (tail && tail->len != last_len) || 2483 sk->sk_err || 2484 (sk->sk_shutdown & RCV_SHUTDOWN) || 2485 signal_pending(current) || 2486 !timeo) 2487 break; 2488 2489 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2490 unix_state_unlock(sk); 2491 timeo = schedule_timeout(timeo); 2492 unix_state_lock(sk); 2493 2494 if (sock_flag(sk, SOCK_DEAD)) 2495 break; 2496 2497 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2498 } 2499 2500 finish_wait(sk_sleep(sk), &wait); 2501 unix_state_unlock(sk); 2502 return timeo; 2503 } 2504 2505 static unsigned int unix_skb_len(const struct sk_buff *skb) 2506 { 2507 return skb->len - UNIXCB(skb).consumed; 2508 } 2509 2510 struct unix_stream_read_state { 2511 int (*recv_actor)(struct sk_buff *, int, int, 2512 struct unix_stream_read_state *); 2513 struct socket *socket; 2514 struct msghdr *msg; 2515 struct pipe_inode_info *pipe; 2516 size_t size; 2517 int flags; 2518 unsigned int splice_flags; 2519 }; 2520 2521 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2522 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2523 { 2524 struct socket *sock = state->socket; 2525 struct sock *sk = sock->sk; 2526 struct unix_sock *u = unix_sk(sk); 2527 int chunk = 1; 2528 struct sk_buff *oob_skb; 2529 2530 mutex_lock(&u->iolock); 2531 unix_state_lock(sk); 2532 2533 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2534 unix_state_unlock(sk); 2535 mutex_unlock(&u->iolock); 2536 return -EINVAL; 2537 } 2538 2539 oob_skb = u->oob_skb; 2540 2541 if (!(state->flags & MSG_PEEK)) 2542 WRITE_ONCE(u->oob_skb, NULL); 2543 2544 unix_state_unlock(sk); 2545 2546 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2547 2548 if (!(state->flags & MSG_PEEK)) { 2549 UNIXCB(oob_skb).consumed += 1; 2550 kfree_skb(oob_skb); 2551 } 2552 2553 mutex_unlock(&u->iolock); 2554 2555 if (chunk < 0) 2556 return -EFAULT; 2557 2558 state->msg->msg_flags |= MSG_OOB; 2559 return 1; 2560 } 2561 2562 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2563 int flags, int copied) 2564 { 2565 struct unix_sock *u = unix_sk(sk); 2566 2567 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2568 skb_unlink(skb, &sk->sk_receive_queue); 2569 consume_skb(skb); 2570 skb = NULL; 2571 } else { 2572 if (skb == u->oob_skb) { 2573 if (copied) { 2574 skb = NULL; 2575 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2576 if (!(flags & MSG_PEEK)) { 2577 WRITE_ONCE(u->oob_skb, NULL); 2578 consume_skb(skb); 2579 } 2580 } else if (!(flags & MSG_PEEK)) { 2581 skb_unlink(skb, &sk->sk_receive_queue); 2582 consume_skb(skb); 2583 skb = skb_peek(&sk->sk_receive_queue); 2584 } 2585 } 2586 } 2587 return skb; 2588 } 2589 #endif 2590 2591 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2592 { 2593 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2594 return -ENOTCONN; 2595 2596 return unix_read_skb(sk, recv_actor); 2597 } 2598 2599 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2600 bool freezable) 2601 { 2602 struct scm_cookie scm; 2603 struct socket *sock = state->socket; 2604 struct sock *sk = sock->sk; 2605 struct unix_sock *u = unix_sk(sk); 2606 int copied = 0; 2607 int flags = state->flags; 2608 int noblock = flags & MSG_DONTWAIT; 2609 bool check_creds = false; 2610 int target; 2611 int err = 0; 2612 long timeo; 2613 int skip; 2614 size_t size = state->size; 2615 unsigned int last_len; 2616 2617 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2618 err = -EINVAL; 2619 goto out; 2620 } 2621 2622 if (unlikely(flags & MSG_OOB)) { 2623 err = -EOPNOTSUPP; 2624 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2625 err = unix_stream_recv_urg(state); 2626 #endif 2627 goto out; 2628 } 2629 2630 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2631 timeo = sock_rcvtimeo(sk, noblock); 2632 2633 memset(&scm, 0, sizeof(scm)); 2634 2635 /* Lock the socket to prevent queue disordering 2636 * while sleeps in memcpy_tomsg 2637 */ 2638 mutex_lock(&u->iolock); 2639 2640 skip = max(sk_peek_offset(sk, flags), 0); 2641 2642 do { 2643 int chunk; 2644 bool drop_skb; 2645 struct sk_buff *skb, *last; 2646 2647 redo: 2648 unix_state_lock(sk); 2649 if (sock_flag(sk, SOCK_DEAD)) { 2650 err = -ECONNRESET; 2651 goto unlock; 2652 } 2653 last = skb = skb_peek(&sk->sk_receive_queue); 2654 last_len = last ? last->len : 0; 2655 2656 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2657 if (skb) { 2658 skb = manage_oob(skb, sk, flags, copied); 2659 if (!skb) { 2660 unix_state_unlock(sk); 2661 if (copied) 2662 break; 2663 goto redo; 2664 } 2665 } 2666 #endif 2667 again: 2668 if (skb == NULL) { 2669 if (copied >= target) 2670 goto unlock; 2671 2672 /* 2673 * POSIX 1003.1g mandates this order. 2674 */ 2675 2676 err = sock_error(sk); 2677 if (err) 2678 goto unlock; 2679 if (sk->sk_shutdown & RCV_SHUTDOWN) 2680 goto unlock; 2681 2682 unix_state_unlock(sk); 2683 if (!timeo) { 2684 err = -EAGAIN; 2685 break; 2686 } 2687 2688 mutex_unlock(&u->iolock); 2689 2690 timeo = unix_stream_data_wait(sk, timeo, last, 2691 last_len, freezable); 2692 2693 if (signal_pending(current)) { 2694 err = sock_intr_errno(timeo); 2695 scm_destroy(&scm); 2696 goto out; 2697 } 2698 2699 mutex_lock(&u->iolock); 2700 goto redo; 2701 unlock: 2702 unix_state_unlock(sk); 2703 break; 2704 } 2705 2706 while (skip >= unix_skb_len(skb)) { 2707 skip -= unix_skb_len(skb); 2708 last = skb; 2709 last_len = skb->len; 2710 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2711 if (!skb) 2712 goto again; 2713 } 2714 2715 unix_state_unlock(sk); 2716 2717 if (check_creds) { 2718 /* Never glue messages from different writers */ 2719 if (!unix_skb_scm_eq(skb, &scm)) 2720 break; 2721 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2722 /* Copy credentials */ 2723 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2724 unix_set_secdata(&scm, skb); 2725 check_creds = true; 2726 } 2727 2728 /* Copy address just once */ 2729 if (state->msg && state->msg->msg_name) { 2730 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2731 state->msg->msg_name); 2732 unix_copy_addr(state->msg, skb->sk); 2733 sunaddr = NULL; 2734 } 2735 2736 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2737 skb_get(skb); 2738 chunk = state->recv_actor(skb, skip, chunk, state); 2739 drop_skb = !unix_skb_len(skb); 2740 /* skb is only safe to use if !drop_skb */ 2741 consume_skb(skb); 2742 if (chunk < 0) { 2743 if (copied == 0) 2744 copied = -EFAULT; 2745 break; 2746 } 2747 copied += chunk; 2748 size -= chunk; 2749 2750 if (drop_skb) { 2751 /* the skb was touched by a concurrent reader; 2752 * we should not expect anything from this skb 2753 * anymore and assume it invalid - we can be 2754 * sure it was dropped from the socket queue 2755 * 2756 * let's report a short read 2757 */ 2758 err = 0; 2759 break; 2760 } 2761 2762 /* Mark read part of skb as used */ 2763 if (!(flags & MSG_PEEK)) { 2764 UNIXCB(skb).consumed += chunk; 2765 2766 sk_peek_offset_bwd(sk, chunk); 2767 2768 if (UNIXCB(skb).fp) { 2769 scm_stat_del(sk, skb); 2770 unix_detach_fds(&scm, skb); 2771 } 2772 2773 if (unix_skb_len(skb)) 2774 break; 2775 2776 skb_unlink(skb, &sk->sk_receive_queue); 2777 consume_skb(skb); 2778 2779 if (scm.fp) 2780 break; 2781 } else { 2782 /* It is questionable, see note in unix_dgram_recvmsg. 2783 */ 2784 if (UNIXCB(skb).fp) 2785 unix_peek_fds(&scm, skb); 2786 2787 sk_peek_offset_fwd(sk, chunk); 2788 2789 if (UNIXCB(skb).fp) 2790 break; 2791 2792 skip = 0; 2793 last = skb; 2794 last_len = skb->len; 2795 unix_state_lock(sk); 2796 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2797 if (skb) 2798 goto again; 2799 unix_state_unlock(sk); 2800 break; 2801 } 2802 } while (size); 2803 2804 mutex_unlock(&u->iolock); 2805 if (state->msg) 2806 scm_recv(sock, state->msg, &scm, flags); 2807 else 2808 scm_destroy(&scm); 2809 out: 2810 return copied ? : err; 2811 } 2812 2813 static int unix_stream_read_actor(struct sk_buff *skb, 2814 int skip, int chunk, 2815 struct unix_stream_read_state *state) 2816 { 2817 int ret; 2818 2819 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2820 state->msg, chunk); 2821 return ret ?: chunk; 2822 } 2823 2824 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2825 size_t size, int flags) 2826 { 2827 struct unix_stream_read_state state = { 2828 .recv_actor = unix_stream_read_actor, 2829 .socket = sk->sk_socket, 2830 .msg = msg, 2831 .size = size, 2832 .flags = flags 2833 }; 2834 2835 return unix_stream_read_generic(&state, true); 2836 } 2837 2838 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2839 size_t size, int flags) 2840 { 2841 struct unix_stream_read_state state = { 2842 .recv_actor = unix_stream_read_actor, 2843 .socket = sock, 2844 .msg = msg, 2845 .size = size, 2846 .flags = flags 2847 }; 2848 2849 #ifdef CONFIG_BPF_SYSCALL 2850 struct sock *sk = sock->sk; 2851 const struct proto *prot = READ_ONCE(sk->sk_prot); 2852 2853 if (prot != &unix_stream_proto) 2854 return prot->recvmsg(sk, msg, size, flags, NULL); 2855 #endif 2856 return unix_stream_read_generic(&state, true); 2857 } 2858 2859 static int unix_stream_splice_actor(struct sk_buff *skb, 2860 int skip, int chunk, 2861 struct unix_stream_read_state *state) 2862 { 2863 return skb_splice_bits(skb, state->socket->sk, 2864 UNIXCB(skb).consumed + skip, 2865 state->pipe, chunk, state->splice_flags); 2866 } 2867 2868 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2869 struct pipe_inode_info *pipe, 2870 size_t size, unsigned int flags) 2871 { 2872 struct unix_stream_read_state state = { 2873 .recv_actor = unix_stream_splice_actor, 2874 .socket = sock, 2875 .pipe = pipe, 2876 .size = size, 2877 .splice_flags = flags, 2878 }; 2879 2880 if (unlikely(*ppos)) 2881 return -ESPIPE; 2882 2883 if (sock->file->f_flags & O_NONBLOCK || 2884 flags & SPLICE_F_NONBLOCK) 2885 state.flags = MSG_DONTWAIT; 2886 2887 return unix_stream_read_generic(&state, false); 2888 } 2889 2890 static int unix_shutdown(struct socket *sock, int mode) 2891 { 2892 struct sock *sk = sock->sk; 2893 struct sock *other; 2894 2895 if (mode < SHUT_RD || mode > SHUT_RDWR) 2896 return -EINVAL; 2897 /* This maps: 2898 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2899 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2900 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2901 */ 2902 ++mode; 2903 2904 unix_state_lock(sk); 2905 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode); 2906 other = unix_peer(sk); 2907 if (other) 2908 sock_hold(other); 2909 unix_state_unlock(sk); 2910 sk->sk_state_change(sk); 2911 2912 if (other && 2913 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2914 2915 int peer_mode = 0; 2916 const struct proto *prot = READ_ONCE(other->sk_prot); 2917 2918 if (prot->unhash) 2919 prot->unhash(other); 2920 if (mode&RCV_SHUTDOWN) 2921 peer_mode |= SEND_SHUTDOWN; 2922 if (mode&SEND_SHUTDOWN) 2923 peer_mode |= RCV_SHUTDOWN; 2924 unix_state_lock(other); 2925 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode); 2926 unix_state_unlock(other); 2927 other->sk_state_change(other); 2928 if (peer_mode == SHUTDOWN_MASK) 2929 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2930 else if (peer_mode & RCV_SHUTDOWN) 2931 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2932 } 2933 if (other) 2934 sock_put(other); 2935 2936 return 0; 2937 } 2938 2939 long unix_inq_len(struct sock *sk) 2940 { 2941 struct sk_buff *skb; 2942 long amount = 0; 2943 2944 if (sk->sk_state == TCP_LISTEN) 2945 return -EINVAL; 2946 2947 spin_lock(&sk->sk_receive_queue.lock); 2948 if (sk->sk_type == SOCK_STREAM || 2949 sk->sk_type == SOCK_SEQPACKET) { 2950 skb_queue_walk(&sk->sk_receive_queue, skb) 2951 amount += unix_skb_len(skb); 2952 } else { 2953 skb = skb_peek(&sk->sk_receive_queue); 2954 if (skb) 2955 amount = skb->len; 2956 } 2957 spin_unlock(&sk->sk_receive_queue.lock); 2958 2959 return amount; 2960 } 2961 EXPORT_SYMBOL_GPL(unix_inq_len); 2962 2963 long unix_outq_len(struct sock *sk) 2964 { 2965 return sk_wmem_alloc_get(sk); 2966 } 2967 EXPORT_SYMBOL_GPL(unix_outq_len); 2968 2969 static int unix_open_file(struct sock *sk) 2970 { 2971 struct path path; 2972 struct file *f; 2973 int fd; 2974 2975 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 2976 return -EPERM; 2977 2978 if (!smp_load_acquire(&unix_sk(sk)->addr)) 2979 return -ENOENT; 2980 2981 path = unix_sk(sk)->path; 2982 if (!path.dentry) 2983 return -ENOENT; 2984 2985 path_get(&path); 2986 2987 fd = get_unused_fd_flags(O_CLOEXEC); 2988 if (fd < 0) 2989 goto out; 2990 2991 f = dentry_open(&path, O_PATH, current_cred()); 2992 if (IS_ERR(f)) { 2993 put_unused_fd(fd); 2994 fd = PTR_ERR(f); 2995 goto out; 2996 } 2997 2998 fd_install(fd, f); 2999 out: 3000 path_put(&path); 3001 3002 return fd; 3003 } 3004 3005 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3006 { 3007 struct sock *sk = sock->sk; 3008 long amount = 0; 3009 int err; 3010 3011 switch (cmd) { 3012 case SIOCOUTQ: 3013 amount = unix_outq_len(sk); 3014 err = put_user(amount, (int __user *)arg); 3015 break; 3016 case SIOCINQ: 3017 amount = unix_inq_len(sk); 3018 if (amount < 0) 3019 err = amount; 3020 else 3021 err = put_user(amount, (int __user *)arg); 3022 break; 3023 case SIOCUNIXFILE: 3024 err = unix_open_file(sk); 3025 break; 3026 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3027 case SIOCATMARK: 3028 { 3029 struct sk_buff *skb; 3030 int answ = 0; 3031 3032 skb = skb_peek(&sk->sk_receive_queue); 3033 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3034 answ = 1; 3035 err = put_user(answ, (int __user *)arg); 3036 } 3037 break; 3038 #endif 3039 default: 3040 err = -ENOIOCTLCMD; 3041 break; 3042 } 3043 return err; 3044 } 3045 3046 #ifdef CONFIG_COMPAT 3047 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3048 { 3049 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3050 } 3051 #endif 3052 3053 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3054 { 3055 struct sock *sk = sock->sk; 3056 __poll_t mask; 3057 u8 shutdown; 3058 3059 sock_poll_wait(file, sock, wait); 3060 mask = 0; 3061 shutdown = READ_ONCE(sk->sk_shutdown); 3062 3063 /* exceptional events? */ 3064 if (READ_ONCE(sk->sk_err)) 3065 mask |= EPOLLERR; 3066 if (shutdown == SHUTDOWN_MASK) 3067 mask |= EPOLLHUP; 3068 if (shutdown & RCV_SHUTDOWN) 3069 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3070 3071 /* readable? */ 3072 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3073 mask |= EPOLLIN | EPOLLRDNORM; 3074 if (sk_is_readable(sk)) 3075 mask |= EPOLLIN | EPOLLRDNORM; 3076 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3077 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3078 mask |= EPOLLPRI; 3079 #endif 3080 3081 /* Connection-based need to check for termination and startup */ 3082 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3083 sk->sk_state == TCP_CLOSE) 3084 mask |= EPOLLHUP; 3085 3086 /* 3087 * we set writable also when the other side has shut down the 3088 * connection. This prevents stuck sockets. 3089 */ 3090 if (unix_writable(sk)) 3091 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3092 3093 return mask; 3094 } 3095 3096 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3097 poll_table *wait) 3098 { 3099 struct sock *sk = sock->sk, *other; 3100 unsigned int writable; 3101 __poll_t mask; 3102 u8 shutdown; 3103 3104 sock_poll_wait(file, sock, wait); 3105 mask = 0; 3106 shutdown = READ_ONCE(sk->sk_shutdown); 3107 3108 /* exceptional events? */ 3109 if (READ_ONCE(sk->sk_err) || 3110 !skb_queue_empty_lockless(&sk->sk_error_queue)) 3111 mask |= EPOLLERR | 3112 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3113 3114 if (shutdown & RCV_SHUTDOWN) 3115 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3116 if (shutdown == SHUTDOWN_MASK) 3117 mask |= EPOLLHUP; 3118 3119 /* readable? */ 3120 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3121 mask |= EPOLLIN | EPOLLRDNORM; 3122 if (sk_is_readable(sk)) 3123 mask |= EPOLLIN | EPOLLRDNORM; 3124 3125 /* Connection-based need to check for termination and startup */ 3126 if (sk->sk_type == SOCK_SEQPACKET) { 3127 if (sk->sk_state == TCP_CLOSE) 3128 mask |= EPOLLHUP; 3129 /* connection hasn't started yet? */ 3130 if (sk->sk_state == TCP_SYN_SENT) 3131 return mask; 3132 } 3133 3134 /* No write status requested, avoid expensive OUT tests. */ 3135 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3136 return mask; 3137 3138 writable = unix_writable(sk); 3139 if (writable) { 3140 unix_state_lock(sk); 3141 3142 other = unix_peer(sk); 3143 if (other && unix_peer(other) != sk && 3144 unix_recvq_full_lockless(other) && 3145 unix_dgram_peer_wake_me(sk, other)) 3146 writable = 0; 3147 3148 unix_state_unlock(sk); 3149 } 3150 3151 if (writable) 3152 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3153 else 3154 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3155 3156 return mask; 3157 } 3158 3159 #ifdef CONFIG_PROC_FS 3160 3161 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3162 3163 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3164 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3165 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3166 3167 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3168 { 3169 unsigned long offset = get_offset(*pos); 3170 unsigned long bucket = get_bucket(*pos); 3171 unsigned long count = 0; 3172 struct sock *sk; 3173 3174 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3175 sk; sk = sk_next(sk)) { 3176 if (++count == offset) 3177 break; 3178 } 3179 3180 return sk; 3181 } 3182 3183 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3184 { 3185 unsigned long bucket = get_bucket(*pos); 3186 struct net *net = seq_file_net(seq); 3187 struct sock *sk; 3188 3189 while (bucket < UNIX_HASH_SIZE) { 3190 spin_lock(&net->unx.table.locks[bucket]); 3191 3192 sk = unix_from_bucket(seq, pos); 3193 if (sk) 3194 return sk; 3195 3196 spin_unlock(&net->unx.table.locks[bucket]); 3197 3198 *pos = set_bucket_offset(++bucket, 1); 3199 } 3200 3201 return NULL; 3202 } 3203 3204 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3205 loff_t *pos) 3206 { 3207 unsigned long bucket = get_bucket(*pos); 3208 3209 sk = sk_next(sk); 3210 if (sk) 3211 return sk; 3212 3213 3214 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3215 3216 *pos = set_bucket_offset(++bucket, 1); 3217 3218 return unix_get_first(seq, pos); 3219 } 3220 3221 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3222 { 3223 if (!*pos) 3224 return SEQ_START_TOKEN; 3225 3226 return unix_get_first(seq, pos); 3227 } 3228 3229 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3230 { 3231 ++*pos; 3232 3233 if (v == SEQ_START_TOKEN) 3234 return unix_get_first(seq, pos); 3235 3236 return unix_get_next(seq, v, pos); 3237 } 3238 3239 static void unix_seq_stop(struct seq_file *seq, void *v) 3240 { 3241 struct sock *sk = v; 3242 3243 if (sk) 3244 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3245 } 3246 3247 static int unix_seq_show(struct seq_file *seq, void *v) 3248 { 3249 3250 if (v == SEQ_START_TOKEN) 3251 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3252 "Inode Path\n"); 3253 else { 3254 struct sock *s = v; 3255 struct unix_sock *u = unix_sk(s); 3256 unix_state_lock(s); 3257 3258 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3259 s, 3260 refcount_read(&s->sk_refcnt), 3261 0, 3262 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3263 s->sk_type, 3264 s->sk_socket ? 3265 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3266 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3267 sock_i_ino(s)); 3268 3269 if (u->addr) { // under a hash table lock here 3270 int i, len; 3271 seq_putc(seq, ' '); 3272 3273 i = 0; 3274 len = u->addr->len - 3275 offsetof(struct sockaddr_un, sun_path); 3276 if (u->addr->name->sun_path[0]) { 3277 len--; 3278 } else { 3279 seq_putc(seq, '@'); 3280 i++; 3281 } 3282 for ( ; i < len; i++) 3283 seq_putc(seq, u->addr->name->sun_path[i] ?: 3284 '@'); 3285 } 3286 unix_state_unlock(s); 3287 seq_putc(seq, '\n'); 3288 } 3289 3290 return 0; 3291 } 3292 3293 static const struct seq_operations unix_seq_ops = { 3294 .start = unix_seq_start, 3295 .next = unix_seq_next, 3296 .stop = unix_seq_stop, 3297 .show = unix_seq_show, 3298 }; 3299 3300 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3301 struct bpf_unix_iter_state { 3302 struct seq_net_private p; 3303 unsigned int cur_sk; 3304 unsigned int end_sk; 3305 unsigned int max_sk; 3306 struct sock **batch; 3307 bool st_bucket_done; 3308 }; 3309 3310 struct bpf_iter__unix { 3311 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3312 __bpf_md_ptr(struct unix_sock *, unix_sk); 3313 uid_t uid __aligned(8); 3314 }; 3315 3316 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3317 struct unix_sock *unix_sk, uid_t uid) 3318 { 3319 struct bpf_iter__unix ctx; 3320 3321 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3322 ctx.meta = meta; 3323 ctx.unix_sk = unix_sk; 3324 ctx.uid = uid; 3325 return bpf_iter_run_prog(prog, &ctx); 3326 } 3327 3328 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3329 3330 { 3331 struct bpf_unix_iter_state *iter = seq->private; 3332 unsigned int expected = 1; 3333 struct sock *sk; 3334 3335 sock_hold(start_sk); 3336 iter->batch[iter->end_sk++] = start_sk; 3337 3338 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3339 if (iter->end_sk < iter->max_sk) { 3340 sock_hold(sk); 3341 iter->batch[iter->end_sk++] = sk; 3342 } 3343 3344 expected++; 3345 } 3346 3347 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3348 3349 return expected; 3350 } 3351 3352 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3353 { 3354 while (iter->cur_sk < iter->end_sk) 3355 sock_put(iter->batch[iter->cur_sk++]); 3356 } 3357 3358 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3359 unsigned int new_batch_sz) 3360 { 3361 struct sock **new_batch; 3362 3363 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3364 GFP_USER | __GFP_NOWARN); 3365 if (!new_batch) 3366 return -ENOMEM; 3367 3368 bpf_iter_unix_put_batch(iter); 3369 kvfree(iter->batch); 3370 iter->batch = new_batch; 3371 iter->max_sk = new_batch_sz; 3372 3373 return 0; 3374 } 3375 3376 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3377 loff_t *pos) 3378 { 3379 struct bpf_unix_iter_state *iter = seq->private; 3380 unsigned int expected; 3381 bool resized = false; 3382 struct sock *sk; 3383 3384 if (iter->st_bucket_done) 3385 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3386 3387 again: 3388 /* Get a new batch */ 3389 iter->cur_sk = 0; 3390 iter->end_sk = 0; 3391 3392 sk = unix_get_first(seq, pos); 3393 if (!sk) 3394 return NULL; /* Done */ 3395 3396 expected = bpf_iter_unix_hold_batch(seq, sk); 3397 3398 if (iter->end_sk == expected) { 3399 iter->st_bucket_done = true; 3400 return sk; 3401 } 3402 3403 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3404 resized = true; 3405 goto again; 3406 } 3407 3408 return sk; 3409 } 3410 3411 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3412 { 3413 if (!*pos) 3414 return SEQ_START_TOKEN; 3415 3416 /* bpf iter does not support lseek, so it always 3417 * continue from where it was stop()-ped. 3418 */ 3419 return bpf_iter_unix_batch(seq, pos); 3420 } 3421 3422 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3423 { 3424 struct bpf_unix_iter_state *iter = seq->private; 3425 struct sock *sk; 3426 3427 /* Whenever seq_next() is called, the iter->cur_sk is 3428 * done with seq_show(), so advance to the next sk in 3429 * the batch. 3430 */ 3431 if (iter->cur_sk < iter->end_sk) 3432 sock_put(iter->batch[iter->cur_sk++]); 3433 3434 ++*pos; 3435 3436 if (iter->cur_sk < iter->end_sk) 3437 sk = iter->batch[iter->cur_sk]; 3438 else 3439 sk = bpf_iter_unix_batch(seq, pos); 3440 3441 return sk; 3442 } 3443 3444 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3445 { 3446 struct bpf_iter_meta meta; 3447 struct bpf_prog *prog; 3448 struct sock *sk = v; 3449 uid_t uid; 3450 bool slow; 3451 int ret; 3452 3453 if (v == SEQ_START_TOKEN) 3454 return 0; 3455 3456 slow = lock_sock_fast(sk); 3457 3458 if (unlikely(sk_unhashed(sk))) { 3459 ret = SEQ_SKIP; 3460 goto unlock; 3461 } 3462 3463 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3464 meta.seq = seq; 3465 prog = bpf_iter_get_info(&meta, false); 3466 ret = unix_prog_seq_show(prog, &meta, v, uid); 3467 unlock: 3468 unlock_sock_fast(sk, slow); 3469 return ret; 3470 } 3471 3472 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3473 { 3474 struct bpf_unix_iter_state *iter = seq->private; 3475 struct bpf_iter_meta meta; 3476 struct bpf_prog *prog; 3477 3478 if (!v) { 3479 meta.seq = seq; 3480 prog = bpf_iter_get_info(&meta, true); 3481 if (prog) 3482 (void)unix_prog_seq_show(prog, &meta, v, 0); 3483 } 3484 3485 if (iter->cur_sk < iter->end_sk) 3486 bpf_iter_unix_put_batch(iter); 3487 } 3488 3489 static const struct seq_operations bpf_iter_unix_seq_ops = { 3490 .start = bpf_iter_unix_seq_start, 3491 .next = bpf_iter_unix_seq_next, 3492 .stop = bpf_iter_unix_seq_stop, 3493 .show = bpf_iter_unix_seq_show, 3494 }; 3495 #endif 3496 #endif 3497 3498 static const struct net_proto_family unix_family_ops = { 3499 .family = PF_UNIX, 3500 .create = unix_create, 3501 .owner = THIS_MODULE, 3502 }; 3503 3504 3505 static int __net_init unix_net_init(struct net *net) 3506 { 3507 int i; 3508 3509 net->unx.sysctl_max_dgram_qlen = 10; 3510 if (unix_sysctl_register(net)) 3511 goto out; 3512 3513 #ifdef CONFIG_PROC_FS 3514 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3515 sizeof(struct seq_net_private))) 3516 goto err_sysctl; 3517 #endif 3518 3519 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3520 sizeof(spinlock_t), GFP_KERNEL); 3521 if (!net->unx.table.locks) 3522 goto err_proc; 3523 3524 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3525 sizeof(struct hlist_head), 3526 GFP_KERNEL); 3527 if (!net->unx.table.buckets) 3528 goto free_locks; 3529 3530 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3531 spin_lock_init(&net->unx.table.locks[i]); 3532 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3533 } 3534 3535 return 0; 3536 3537 free_locks: 3538 kvfree(net->unx.table.locks); 3539 err_proc: 3540 #ifdef CONFIG_PROC_FS 3541 remove_proc_entry("unix", net->proc_net); 3542 err_sysctl: 3543 #endif 3544 unix_sysctl_unregister(net); 3545 out: 3546 return -ENOMEM; 3547 } 3548 3549 static void __net_exit unix_net_exit(struct net *net) 3550 { 3551 kvfree(net->unx.table.buckets); 3552 kvfree(net->unx.table.locks); 3553 unix_sysctl_unregister(net); 3554 remove_proc_entry("unix", net->proc_net); 3555 } 3556 3557 static struct pernet_operations unix_net_ops = { 3558 .init = unix_net_init, 3559 .exit = unix_net_exit, 3560 }; 3561 3562 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3563 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3564 struct unix_sock *unix_sk, uid_t uid) 3565 3566 #define INIT_BATCH_SZ 16 3567 3568 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3569 { 3570 struct bpf_unix_iter_state *iter = priv_data; 3571 int err; 3572 3573 err = bpf_iter_init_seq_net(priv_data, aux); 3574 if (err) 3575 return err; 3576 3577 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3578 if (err) { 3579 bpf_iter_fini_seq_net(priv_data); 3580 return err; 3581 } 3582 3583 return 0; 3584 } 3585 3586 static void bpf_iter_fini_unix(void *priv_data) 3587 { 3588 struct bpf_unix_iter_state *iter = priv_data; 3589 3590 bpf_iter_fini_seq_net(priv_data); 3591 kvfree(iter->batch); 3592 } 3593 3594 static const struct bpf_iter_seq_info unix_seq_info = { 3595 .seq_ops = &bpf_iter_unix_seq_ops, 3596 .init_seq_private = bpf_iter_init_unix, 3597 .fini_seq_private = bpf_iter_fini_unix, 3598 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3599 }; 3600 3601 static const struct bpf_func_proto * 3602 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3603 const struct bpf_prog *prog) 3604 { 3605 switch (func_id) { 3606 case BPF_FUNC_setsockopt: 3607 return &bpf_sk_setsockopt_proto; 3608 case BPF_FUNC_getsockopt: 3609 return &bpf_sk_getsockopt_proto; 3610 default: 3611 return NULL; 3612 } 3613 } 3614 3615 static struct bpf_iter_reg unix_reg_info = { 3616 .target = "unix", 3617 .ctx_arg_info_size = 1, 3618 .ctx_arg_info = { 3619 { offsetof(struct bpf_iter__unix, unix_sk), 3620 PTR_TO_BTF_ID_OR_NULL }, 3621 }, 3622 .get_func_proto = bpf_iter_unix_get_func_proto, 3623 .seq_info = &unix_seq_info, 3624 }; 3625 3626 static void __init bpf_iter_register(void) 3627 { 3628 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3629 if (bpf_iter_reg_target(&unix_reg_info)) 3630 pr_warn("Warning: could not register bpf iterator unix\n"); 3631 } 3632 #endif 3633 3634 static int __init af_unix_init(void) 3635 { 3636 int i, rc = -1; 3637 3638 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3639 3640 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3641 spin_lock_init(&bsd_socket_locks[i]); 3642 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3643 } 3644 3645 rc = proto_register(&unix_dgram_proto, 1); 3646 if (rc != 0) { 3647 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3648 goto out; 3649 } 3650 3651 rc = proto_register(&unix_stream_proto, 1); 3652 if (rc != 0) { 3653 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3654 proto_unregister(&unix_dgram_proto); 3655 goto out; 3656 } 3657 3658 sock_register(&unix_family_ops); 3659 register_pernet_subsys(&unix_net_ops); 3660 unix_bpf_build_proto(); 3661 3662 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3663 bpf_iter_register(); 3664 #endif 3665 3666 out: 3667 return rc; 3668 } 3669 3670 static void __exit af_unix_exit(void) 3671 { 3672 sock_unregister(PF_UNIX); 3673 proto_unregister(&unix_dgram_proto); 3674 proto_unregister(&unix_stream_proto); 3675 unregister_pernet_subsys(&unix_net_ops); 3676 } 3677 3678 /* Earlier than device_initcall() so that other drivers invoking 3679 request_module() don't end up in a loop when modprobe tries 3680 to use a UNIX socket. But later than subsys_initcall() because 3681 we depend on stuff initialised there */ 3682 fs_initcall(af_unix_init); 3683 module_exit(af_unix_exit); 3684 3685 MODULE_LICENSE("GPL"); 3686 MODULE_ALIAS_NETPROTO(PF_UNIX); 3687