1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/freezer.h> 116 #include <linux/file.h> 117 #include <linux/btf_ids.h> 118 119 #include "scm.h" 120 121 spinlock_t unix_table_locks[2 * UNIX_HASH_SIZE]; 122 EXPORT_SYMBOL_GPL(unix_table_locks); 123 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE]; 124 EXPORT_SYMBOL_GPL(unix_socket_table); 125 static atomic_long_t unix_nr_socks; 126 127 /* SMP locking strategy: 128 * hash table is protected with spinlock unix_table_locks 129 * each socket state is protected by separate spin lock. 130 */ 131 132 static unsigned int unix_unbound_hash(struct sock *sk) 133 { 134 unsigned long hash = (unsigned long)sk; 135 136 hash ^= hash >> 16; 137 hash ^= hash >> 8; 138 hash ^= sk->sk_type; 139 140 return UNIX_HASH_SIZE + (hash & (UNIX_HASH_SIZE - 1)); 141 } 142 143 static unsigned int unix_bsd_hash(struct inode *i) 144 { 145 return i->i_ino & (UNIX_HASH_SIZE - 1); 146 } 147 148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 149 int addr_len, int type) 150 { 151 __wsum csum = csum_partial(sunaddr, addr_len, 0); 152 unsigned int hash; 153 154 hash = (__force unsigned int)csum_fold(csum); 155 hash ^= hash >> 8; 156 hash ^= type; 157 158 return hash & (UNIX_HASH_SIZE - 1); 159 } 160 161 static void unix_table_double_lock(unsigned int hash1, unsigned int hash2) 162 { 163 /* hash1 and hash2 is never the same because 164 * one is between 0 and UNIX_HASH_SIZE - 1, and 165 * another is between UNIX_HASH_SIZE and UNIX_HASH_SIZE * 2. 166 */ 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&unix_table_locks[hash1]); 171 spin_lock_nested(&unix_table_locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(unsigned int hash1, unsigned int hash2) 175 { 176 spin_unlock(&unix_table_locks[hash1]); 177 spin_unlock(&unix_table_locks[hash2]); 178 } 179 180 #ifdef CONFIG_SECURITY_NETWORK 181 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 182 { 183 UNIXCB(skb).secid = scm->secid; 184 } 185 186 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 187 { 188 scm->secid = UNIXCB(skb).secid; 189 } 190 191 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 192 { 193 return (scm->secid == UNIXCB(skb).secid); 194 } 195 #else 196 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 197 { } 198 199 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 200 { } 201 202 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 203 { 204 return true; 205 } 206 #endif /* CONFIG_SECURITY_NETWORK */ 207 208 #define unix_peer(sk) (unix_sk(sk)->peer) 209 210 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 211 { 212 return unix_peer(osk) == sk; 213 } 214 215 static inline int unix_may_send(struct sock *sk, struct sock *osk) 216 { 217 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 218 } 219 220 static inline int unix_recvq_full(const struct sock *sk) 221 { 222 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 223 } 224 225 static inline int unix_recvq_full_lockless(const struct sock *sk) 226 { 227 return skb_queue_len_lockless(&sk->sk_receive_queue) > 228 READ_ONCE(sk->sk_max_ack_backlog); 229 } 230 231 struct sock *unix_peer_get(struct sock *s) 232 { 233 struct sock *peer; 234 235 unix_state_lock(s); 236 peer = unix_peer(s); 237 if (peer) 238 sock_hold(peer); 239 unix_state_unlock(s); 240 return peer; 241 } 242 EXPORT_SYMBOL_GPL(unix_peer_get); 243 244 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 245 int addr_len) 246 { 247 struct unix_address *addr; 248 249 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 250 if (!addr) 251 return NULL; 252 253 refcount_set(&addr->refcnt, 1); 254 addr->len = addr_len; 255 memcpy(addr->name, sunaddr, addr_len); 256 257 return addr; 258 } 259 260 static inline void unix_release_addr(struct unix_address *addr) 261 { 262 if (refcount_dec_and_test(&addr->refcnt)) 263 kfree(addr); 264 } 265 266 /* 267 * Check unix socket name: 268 * - should be not zero length. 269 * - if started by not zero, should be NULL terminated (FS object) 270 * - if started by zero, it is abstract name. 271 */ 272 273 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 274 { 275 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 276 addr_len > sizeof(*sunaddr)) 277 return -EINVAL; 278 279 if (sunaddr->sun_family != AF_UNIX) 280 return -EINVAL; 281 282 return 0; 283 } 284 285 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 286 { 287 /* This may look like an off by one error but it is a bit more 288 * subtle. 108 is the longest valid AF_UNIX path for a binding. 289 * sun_path[108] doesn't as such exist. However in kernel space 290 * we are guaranteed that it is a valid memory location in our 291 * kernel address buffer because syscall functions always pass 292 * a pointer of struct sockaddr_storage which has a bigger buffer 293 * than 108. 294 */ 295 ((char *)sunaddr)[addr_len] = 0; 296 } 297 298 static void __unix_remove_socket(struct sock *sk) 299 { 300 sk_del_node_init(sk); 301 } 302 303 static void __unix_insert_socket(struct sock *sk) 304 { 305 WARN_ON(!sk_unhashed(sk)); 306 sk_add_node(sk, &unix_socket_table[sk->sk_hash]); 307 } 308 309 static void __unix_set_addr_hash(struct sock *sk, struct unix_address *addr, 310 unsigned int hash) 311 { 312 __unix_remove_socket(sk); 313 smp_store_release(&unix_sk(sk)->addr, addr); 314 315 sk->sk_hash = hash; 316 __unix_insert_socket(sk); 317 } 318 319 static void unix_remove_socket(struct sock *sk) 320 { 321 spin_lock(&unix_table_locks[sk->sk_hash]); 322 __unix_remove_socket(sk); 323 spin_unlock(&unix_table_locks[sk->sk_hash]); 324 } 325 326 static void unix_insert_unbound_socket(struct sock *sk) 327 { 328 spin_lock(&unix_table_locks[sk->sk_hash]); 329 __unix_insert_socket(sk); 330 spin_unlock(&unix_table_locks[sk->sk_hash]); 331 } 332 333 static struct sock *__unix_find_socket_byname(struct net *net, 334 struct sockaddr_un *sunname, 335 int len, unsigned int hash) 336 { 337 struct sock *s; 338 339 sk_for_each(s, &unix_socket_table[hash]) { 340 struct unix_sock *u = unix_sk(s); 341 342 if (!net_eq(sock_net(s), net)) 343 continue; 344 345 if (u->addr->len == len && 346 !memcmp(u->addr->name, sunname, len)) 347 return s; 348 } 349 return NULL; 350 } 351 352 static inline struct sock *unix_find_socket_byname(struct net *net, 353 struct sockaddr_un *sunname, 354 int len, unsigned int hash) 355 { 356 struct sock *s; 357 358 spin_lock(&unix_table_locks[hash]); 359 s = __unix_find_socket_byname(net, sunname, len, hash); 360 if (s) 361 sock_hold(s); 362 spin_unlock(&unix_table_locks[hash]); 363 return s; 364 } 365 366 static struct sock *unix_find_socket_byinode(struct inode *i) 367 { 368 unsigned int hash = unix_bsd_hash(i); 369 struct sock *s; 370 371 spin_lock(&unix_table_locks[hash]); 372 sk_for_each(s, &unix_socket_table[hash]) { 373 struct dentry *dentry = unix_sk(s)->path.dentry; 374 375 if (dentry && d_backing_inode(dentry) == i) { 376 sock_hold(s); 377 spin_unlock(&unix_table_locks[hash]); 378 return s; 379 } 380 } 381 spin_unlock(&unix_table_locks[hash]); 382 return NULL; 383 } 384 385 /* Support code for asymmetrically connected dgram sockets 386 * 387 * If a datagram socket is connected to a socket not itself connected 388 * to the first socket (eg, /dev/log), clients may only enqueue more 389 * messages if the present receive queue of the server socket is not 390 * "too large". This means there's a second writeability condition 391 * poll and sendmsg need to test. The dgram recv code will do a wake 392 * up on the peer_wait wait queue of a socket upon reception of a 393 * datagram which needs to be propagated to sleeping would-be writers 394 * since these might not have sent anything so far. This can't be 395 * accomplished via poll_wait because the lifetime of the server 396 * socket might be less than that of its clients if these break their 397 * association with it or if the server socket is closed while clients 398 * are still connected to it and there's no way to inform "a polling 399 * implementation" that it should let go of a certain wait queue 400 * 401 * In order to propagate a wake up, a wait_queue_entry_t of the client 402 * socket is enqueued on the peer_wait queue of the server socket 403 * whose wake function does a wake_up on the ordinary client socket 404 * wait queue. This connection is established whenever a write (or 405 * poll for write) hit the flow control condition and broken when the 406 * association to the server socket is dissolved or after a wake up 407 * was relayed. 408 */ 409 410 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 411 void *key) 412 { 413 struct unix_sock *u; 414 wait_queue_head_t *u_sleep; 415 416 u = container_of(q, struct unix_sock, peer_wake); 417 418 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 419 q); 420 u->peer_wake.private = NULL; 421 422 /* relaying can only happen while the wq still exists */ 423 u_sleep = sk_sleep(&u->sk); 424 if (u_sleep) 425 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 426 427 return 0; 428 } 429 430 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 431 { 432 struct unix_sock *u, *u_other; 433 int rc; 434 435 u = unix_sk(sk); 436 u_other = unix_sk(other); 437 rc = 0; 438 spin_lock(&u_other->peer_wait.lock); 439 440 if (!u->peer_wake.private) { 441 u->peer_wake.private = other; 442 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 443 444 rc = 1; 445 } 446 447 spin_unlock(&u_other->peer_wait.lock); 448 return rc; 449 } 450 451 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 452 struct sock *other) 453 { 454 struct unix_sock *u, *u_other; 455 456 u = unix_sk(sk); 457 u_other = unix_sk(other); 458 spin_lock(&u_other->peer_wait.lock); 459 460 if (u->peer_wake.private == other) { 461 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 462 u->peer_wake.private = NULL; 463 } 464 465 spin_unlock(&u_other->peer_wait.lock); 466 } 467 468 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 469 struct sock *other) 470 { 471 unix_dgram_peer_wake_disconnect(sk, other); 472 wake_up_interruptible_poll(sk_sleep(sk), 473 EPOLLOUT | 474 EPOLLWRNORM | 475 EPOLLWRBAND); 476 } 477 478 /* preconditions: 479 * - unix_peer(sk) == other 480 * - association is stable 481 */ 482 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 483 { 484 int connected; 485 486 connected = unix_dgram_peer_wake_connect(sk, other); 487 488 /* If other is SOCK_DEAD, we want to make sure we signal 489 * POLLOUT, such that a subsequent write() can get a 490 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 491 * to other and its full, we will hang waiting for POLLOUT. 492 */ 493 if (unix_recvq_full(other) && !sock_flag(other, SOCK_DEAD)) 494 return 1; 495 496 if (connected) 497 unix_dgram_peer_wake_disconnect(sk, other); 498 499 return 0; 500 } 501 502 static int unix_writable(const struct sock *sk) 503 { 504 return sk->sk_state != TCP_LISTEN && 505 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 506 } 507 508 static void unix_write_space(struct sock *sk) 509 { 510 struct socket_wq *wq; 511 512 rcu_read_lock(); 513 if (unix_writable(sk)) { 514 wq = rcu_dereference(sk->sk_wq); 515 if (skwq_has_sleeper(wq)) 516 wake_up_interruptible_sync_poll(&wq->wait, 517 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 518 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 519 } 520 rcu_read_unlock(); 521 } 522 523 /* When dgram socket disconnects (or changes its peer), we clear its receive 524 * queue of packets arrived from previous peer. First, it allows to do 525 * flow control based only on wmem_alloc; second, sk connected to peer 526 * may receive messages only from that peer. */ 527 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 528 { 529 if (!skb_queue_empty(&sk->sk_receive_queue)) { 530 skb_queue_purge(&sk->sk_receive_queue); 531 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 532 533 /* If one link of bidirectional dgram pipe is disconnected, 534 * we signal error. Messages are lost. Do not make this, 535 * when peer was not connected to us. 536 */ 537 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 538 other->sk_err = ECONNRESET; 539 sk_error_report(other); 540 } 541 } 542 other->sk_state = TCP_CLOSE; 543 } 544 545 static void unix_sock_destructor(struct sock *sk) 546 { 547 struct unix_sock *u = unix_sk(sk); 548 549 skb_queue_purge(&sk->sk_receive_queue); 550 551 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 552 if (u->oob_skb) { 553 kfree_skb(u->oob_skb); 554 u->oob_skb = NULL; 555 } 556 #endif 557 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 558 WARN_ON(!sk_unhashed(sk)); 559 WARN_ON(sk->sk_socket); 560 if (!sock_flag(sk, SOCK_DEAD)) { 561 pr_info("Attempt to release alive unix socket: %p\n", sk); 562 return; 563 } 564 565 if (u->addr) 566 unix_release_addr(u->addr); 567 568 atomic_long_dec(&unix_nr_socks); 569 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 570 #ifdef UNIX_REFCNT_DEBUG 571 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 572 atomic_long_read(&unix_nr_socks)); 573 #endif 574 } 575 576 static void unix_release_sock(struct sock *sk, int embrion) 577 { 578 struct unix_sock *u = unix_sk(sk); 579 struct path path; 580 struct sock *skpair; 581 struct sk_buff *skb; 582 int state; 583 584 unix_remove_socket(sk); 585 586 /* Clear state */ 587 unix_state_lock(sk); 588 sock_orphan(sk); 589 sk->sk_shutdown = SHUTDOWN_MASK; 590 path = u->path; 591 u->path.dentry = NULL; 592 u->path.mnt = NULL; 593 state = sk->sk_state; 594 sk->sk_state = TCP_CLOSE; 595 596 skpair = unix_peer(sk); 597 unix_peer(sk) = NULL; 598 599 unix_state_unlock(sk); 600 601 wake_up_interruptible_all(&u->peer_wait); 602 603 if (skpair != NULL) { 604 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 605 unix_state_lock(skpair); 606 /* No more writes */ 607 skpair->sk_shutdown = SHUTDOWN_MASK; 608 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 609 skpair->sk_err = ECONNRESET; 610 unix_state_unlock(skpair); 611 skpair->sk_state_change(skpair); 612 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 613 } 614 615 unix_dgram_peer_wake_disconnect(sk, skpair); 616 sock_put(skpair); /* It may now die */ 617 } 618 619 /* Try to flush out this socket. Throw out buffers at least */ 620 621 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 622 if (state == TCP_LISTEN) 623 unix_release_sock(skb->sk, 1); 624 /* passed fds are erased in the kfree_skb hook */ 625 UNIXCB(skb).consumed = skb->len; 626 kfree_skb(skb); 627 } 628 629 if (path.dentry) 630 path_put(&path); 631 632 sock_put(sk); 633 634 /* ---- Socket is dead now and most probably destroyed ---- */ 635 636 /* 637 * Fixme: BSD difference: In BSD all sockets connected to us get 638 * ECONNRESET and we die on the spot. In Linux we behave 639 * like files and pipes do and wait for the last 640 * dereference. 641 * 642 * Can't we simply set sock->err? 643 * 644 * What the above comment does talk about? --ANK(980817) 645 */ 646 647 if (unix_tot_inflight) 648 unix_gc(); /* Garbage collect fds */ 649 } 650 651 static void init_peercred(struct sock *sk) 652 { 653 const struct cred *old_cred; 654 struct pid *old_pid; 655 656 spin_lock(&sk->sk_peer_lock); 657 old_pid = sk->sk_peer_pid; 658 old_cred = sk->sk_peer_cred; 659 sk->sk_peer_pid = get_pid(task_tgid(current)); 660 sk->sk_peer_cred = get_current_cred(); 661 spin_unlock(&sk->sk_peer_lock); 662 663 put_pid(old_pid); 664 put_cred(old_cred); 665 } 666 667 static void copy_peercred(struct sock *sk, struct sock *peersk) 668 { 669 const struct cred *old_cred; 670 struct pid *old_pid; 671 672 if (sk < peersk) { 673 spin_lock(&sk->sk_peer_lock); 674 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 675 } else { 676 spin_lock(&peersk->sk_peer_lock); 677 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 678 } 679 old_pid = sk->sk_peer_pid; 680 old_cred = sk->sk_peer_cred; 681 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 682 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 683 684 spin_unlock(&sk->sk_peer_lock); 685 spin_unlock(&peersk->sk_peer_lock); 686 687 put_pid(old_pid); 688 put_cred(old_cred); 689 } 690 691 static int unix_listen(struct socket *sock, int backlog) 692 { 693 int err; 694 struct sock *sk = sock->sk; 695 struct unix_sock *u = unix_sk(sk); 696 697 err = -EOPNOTSUPP; 698 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 699 goto out; /* Only stream/seqpacket sockets accept */ 700 err = -EINVAL; 701 if (!u->addr) 702 goto out; /* No listens on an unbound socket */ 703 unix_state_lock(sk); 704 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 705 goto out_unlock; 706 if (backlog > sk->sk_max_ack_backlog) 707 wake_up_interruptible_all(&u->peer_wait); 708 sk->sk_max_ack_backlog = backlog; 709 sk->sk_state = TCP_LISTEN; 710 /* set credentials so connect can copy them */ 711 init_peercred(sk); 712 err = 0; 713 714 out_unlock: 715 unix_state_unlock(sk); 716 out: 717 return err; 718 } 719 720 static int unix_release(struct socket *); 721 static int unix_bind(struct socket *, struct sockaddr *, int); 722 static int unix_stream_connect(struct socket *, struct sockaddr *, 723 int addr_len, int flags); 724 static int unix_socketpair(struct socket *, struct socket *); 725 static int unix_accept(struct socket *, struct socket *, int, bool); 726 static int unix_getname(struct socket *, struct sockaddr *, int); 727 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 728 static __poll_t unix_dgram_poll(struct file *, struct socket *, 729 poll_table *); 730 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 731 #ifdef CONFIG_COMPAT 732 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 733 #endif 734 static int unix_shutdown(struct socket *, int); 735 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 736 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 737 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 738 size_t size, int flags); 739 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 740 struct pipe_inode_info *, size_t size, 741 unsigned int flags); 742 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 743 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 744 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 745 sk_read_actor_t recv_actor); 746 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 747 sk_read_actor_t recv_actor); 748 static int unix_dgram_connect(struct socket *, struct sockaddr *, 749 int, int); 750 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 751 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 752 int); 753 754 static int unix_set_peek_off(struct sock *sk, int val) 755 { 756 struct unix_sock *u = unix_sk(sk); 757 758 if (mutex_lock_interruptible(&u->iolock)) 759 return -EINTR; 760 761 sk->sk_peek_off = val; 762 mutex_unlock(&u->iolock); 763 764 return 0; 765 } 766 767 #ifdef CONFIG_PROC_FS 768 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 769 { 770 struct sock *sk = sock->sk; 771 struct unix_sock *u; 772 773 if (sk) { 774 u = unix_sk(sock->sk); 775 seq_printf(m, "scm_fds: %u\n", 776 atomic_read(&u->scm_stat.nr_fds)); 777 } 778 } 779 #else 780 #define unix_show_fdinfo NULL 781 #endif 782 783 static const struct proto_ops unix_stream_ops = { 784 .family = PF_UNIX, 785 .owner = THIS_MODULE, 786 .release = unix_release, 787 .bind = unix_bind, 788 .connect = unix_stream_connect, 789 .socketpair = unix_socketpair, 790 .accept = unix_accept, 791 .getname = unix_getname, 792 .poll = unix_poll, 793 .ioctl = unix_ioctl, 794 #ifdef CONFIG_COMPAT 795 .compat_ioctl = unix_compat_ioctl, 796 #endif 797 .listen = unix_listen, 798 .shutdown = unix_shutdown, 799 .sendmsg = unix_stream_sendmsg, 800 .recvmsg = unix_stream_recvmsg, 801 .read_sock = unix_stream_read_sock, 802 .mmap = sock_no_mmap, 803 .sendpage = unix_stream_sendpage, 804 .splice_read = unix_stream_splice_read, 805 .set_peek_off = unix_set_peek_off, 806 .show_fdinfo = unix_show_fdinfo, 807 }; 808 809 static const struct proto_ops unix_dgram_ops = { 810 .family = PF_UNIX, 811 .owner = THIS_MODULE, 812 .release = unix_release, 813 .bind = unix_bind, 814 .connect = unix_dgram_connect, 815 .socketpair = unix_socketpair, 816 .accept = sock_no_accept, 817 .getname = unix_getname, 818 .poll = unix_dgram_poll, 819 .ioctl = unix_ioctl, 820 #ifdef CONFIG_COMPAT 821 .compat_ioctl = unix_compat_ioctl, 822 #endif 823 .listen = sock_no_listen, 824 .shutdown = unix_shutdown, 825 .sendmsg = unix_dgram_sendmsg, 826 .read_sock = unix_read_sock, 827 .recvmsg = unix_dgram_recvmsg, 828 .mmap = sock_no_mmap, 829 .sendpage = sock_no_sendpage, 830 .set_peek_off = unix_set_peek_off, 831 .show_fdinfo = unix_show_fdinfo, 832 }; 833 834 static const struct proto_ops unix_seqpacket_ops = { 835 .family = PF_UNIX, 836 .owner = THIS_MODULE, 837 .release = unix_release, 838 .bind = unix_bind, 839 .connect = unix_stream_connect, 840 .socketpair = unix_socketpair, 841 .accept = unix_accept, 842 .getname = unix_getname, 843 .poll = unix_dgram_poll, 844 .ioctl = unix_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = unix_compat_ioctl, 847 #endif 848 .listen = unix_listen, 849 .shutdown = unix_shutdown, 850 .sendmsg = unix_seqpacket_sendmsg, 851 .recvmsg = unix_seqpacket_recvmsg, 852 .mmap = sock_no_mmap, 853 .sendpage = sock_no_sendpage, 854 .set_peek_off = unix_set_peek_off, 855 .show_fdinfo = unix_show_fdinfo, 856 }; 857 858 static void unix_close(struct sock *sk, long timeout) 859 { 860 /* Nothing to do here, unix socket does not need a ->close(). 861 * This is merely for sockmap. 862 */ 863 } 864 865 static void unix_unhash(struct sock *sk) 866 { 867 /* Nothing to do here, unix socket does not need a ->unhash(). 868 * This is merely for sockmap. 869 */ 870 } 871 872 struct proto unix_dgram_proto = { 873 .name = "UNIX", 874 .owner = THIS_MODULE, 875 .obj_size = sizeof(struct unix_sock), 876 .close = unix_close, 877 #ifdef CONFIG_BPF_SYSCALL 878 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 879 #endif 880 }; 881 882 struct proto unix_stream_proto = { 883 .name = "UNIX-STREAM", 884 .owner = THIS_MODULE, 885 .obj_size = sizeof(struct unix_sock), 886 .close = unix_close, 887 .unhash = unix_unhash, 888 #ifdef CONFIG_BPF_SYSCALL 889 .psock_update_sk_prot = unix_stream_bpf_update_proto, 890 #endif 891 }; 892 893 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 894 { 895 struct unix_sock *u; 896 struct sock *sk; 897 int err; 898 899 atomic_long_inc(&unix_nr_socks); 900 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 901 err = -ENFILE; 902 goto err; 903 } 904 905 if (type == SOCK_STREAM) 906 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 907 else /*dgram and seqpacket */ 908 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 909 910 if (!sk) { 911 err = -ENOMEM; 912 goto err; 913 } 914 915 sock_init_data(sock, sk); 916 917 sk->sk_hash = unix_unbound_hash(sk); 918 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 919 sk->sk_write_space = unix_write_space; 920 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 921 sk->sk_destruct = unix_sock_destructor; 922 u = unix_sk(sk); 923 u->path.dentry = NULL; 924 u->path.mnt = NULL; 925 spin_lock_init(&u->lock); 926 atomic_long_set(&u->inflight, 0); 927 INIT_LIST_HEAD(&u->link); 928 mutex_init(&u->iolock); /* single task reading lock */ 929 mutex_init(&u->bindlock); /* single task binding lock */ 930 init_waitqueue_head(&u->peer_wait); 931 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 932 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 933 unix_insert_unbound_socket(sk); 934 935 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 936 937 return sk; 938 939 err: 940 atomic_long_dec(&unix_nr_socks); 941 return ERR_PTR(err); 942 } 943 944 static int unix_create(struct net *net, struct socket *sock, int protocol, 945 int kern) 946 { 947 struct sock *sk; 948 949 if (protocol && protocol != PF_UNIX) 950 return -EPROTONOSUPPORT; 951 952 sock->state = SS_UNCONNECTED; 953 954 switch (sock->type) { 955 case SOCK_STREAM: 956 sock->ops = &unix_stream_ops; 957 break; 958 /* 959 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 960 * nothing uses it. 961 */ 962 case SOCK_RAW: 963 sock->type = SOCK_DGRAM; 964 fallthrough; 965 case SOCK_DGRAM: 966 sock->ops = &unix_dgram_ops; 967 break; 968 case SOCK_SEQPACKET: 969 sock->ops = &unix_seqpacket_ops; 970 break; 971 default: 972 return -ESOCKTNOSUPPORT; 973 } 974 975 sk = unix_create1(net, sock, kern, sock->type); 976 if (IS_ERR(sk)) 977 return PTR_ERR(sk); 978 979 return 0; 980 } 981 982 static int unix_release(struct socket *sock) 983 { 984 struct sock *sk = sock->sk; 985 986 if (!sk) 987 return 0; 988 989 sk->sk_prot->close(sk, 0); 990 unix_release_sock(sk, 0); 991 sock->sk = NULL; 992 993 return 0; 994 } 995 996 static struct sock *unix_find_bsd(struct net *net, struct sockaddr_un *sunaddr, 997 int addr_len, int type) 998 { 999 struct inode *inode; 1000 struct path path; 1001 struct sock *sk; 1002 int err; 1003 1004 unix_mkname_bsd(sunaddr, addr_len); 1005 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1006 if (err) 1007 goto fail; 1008 1009 err = path_permission(&path, MAY_WRITE); 1010 if (err) 1011 goto path_put; 1012 1013 err = -ECONNREFUSED; 1014 inode = d_backing_inode(path.dentry); 1015 if (!S_ISSOCK(inode->i_mode)) 1016 goto path_put; 1017 1018 sk = unix_find_socket_byinode(inode); 1019 if (!sk) 1020 goto path_put; 1021 1022 err = -EPROTOTYPE; 1023 if (sk->sk_type == type) 1024 touch_atime(&path); 1025 else 1026 goto sock_put; 1027 1028 path_put(&path); 1029 1030 return sk; 1031 1032 sock_put: 1033 sock_put(sk); 1034 path_put: 1035 path_put(&path); 1036 fail: 1037 return ERR_PTR(err); 1038 } 1039 1040 static struct sock *unix_find_abstract(struct net *net, 1041 struct sockaddr_un *sunaddr, 1042 int addr_len, int type) 1043 { 1044 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1045 struct dentry *dentry; 1046 struct sock *sk; 1047 1048 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1049 if (!sk) 1050 return ERR_PTR(-ECONNREFUSED); 1051 1052 dentry = unix_sk(sk)->path.dentry; 1053 if (dentry) 1054 touch_atime(&unix_sk(sk)->path); 1055 1056 return sk; 1057 } 1058 1059 static struct sock *unix_find_other(struct net *net, 1060 struct sockaddr_un *sunaddr, 1061 int addr_len, int type) 1062 { 1063 struct sock *sk; 1064 1065 if (sunaddr->sun_path[0]) 1066 sk = unix_find_bsd(net, sunaddr, addr_len, type); 1067 else 1068 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1069 1070 return sk; 1071 } 1072 1073 static int unix_autobind(struct sock *sk) 1074 { 1075 unsigned int new_hash, old_hash = sk->sk_hash; 1076 struct unix_sock *u = unix_sk(sk); 1077 struct unix_address *addr; 1078 u32 lastnum, ordernum; 1079 int err; 1080 1081 err = mutex_lock_interruptible(&u->bindlock); 1082 if (err) 1083 return err; 1084 1085 if (u->addr) 1086 goto out; 1087 1088 err = -ENOMEM; 1089 addr = kzalloc(sizeof(*addr) + 1090 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1091 if (!addr) 1092 goto out; 1093 1094 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1095 addr->name->sun_family = AF_UNIX; 1096 refcount_set(&addr->refcnt, 1); 1097 1098 ordernum = prandom_u32(); 1099 lastnum = ordernum & 0xFFFFF; 1100 retry: 1101 ordernum = (ordernum + 1) & 0xFFFFF; 1102 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1103 1104 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1105 unix_table_double_lock(old_hash, new_hash); 1106 1107 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1108 new_hash)) { 1109 unix_table_double_unlock(old_hash, new_hash); 1110 1111 /* __unix_find_socket_byname() may take long time if many names 1112 * are already in use. 1113 */ 1114 cond_resched(); 1115 1116 if (ordernum == lastnum) { 1117 /* Give up if all names seems to be in use. */ 1118 err = -ENOSPC; 1119 unix_release_addr(addr); 1120 goto out; 1121 } 1122 1123 goto retry; 1124 } 1125 1126 __unix_set_addr_hash(sk, addr, new_hash); 1127 unix_table_double_unlock(old_hash, new_hash); 1128 err = 0; 1129 1130 out: mutex_unlock(&u->bindlock); 1131 return err; 1132 } 1133 1134 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1135 int addr_len) 1136 { 1137 umode_t mode = S_IFSOCK | 1138 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1139 unsigned int new_hash, old_hash = sk->sk_hash; 1140 struct unix_sock *u = unix_sk(sk); 1141 struct user_namespace *ns; // barf... 1142 struct unix_address *addr; 1143 struct dentry *dentry; 1144 struct path parent; 1145 int err; 1146 1147 unix_mkname_bsd(sunaddr, addr_len); 1148 addr_len = strlen(sunaddr->sun_path) + 1149 offsetof(struct sockaddr_un, sun_path) + 1; 1150 1151 addr = unix_create_addr(sunaddr, addr_len); 1152 if (!addr) 1153 return -ENOMEM; 1154 1155 /* 1156 * Get the parent directory, calculate the hash for last 1157 * component. 1158 */ 1159 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1160 if (IS_ERR(dentry)) { 1161 err = PTR_ERR(dentry); 1162 goto out; 1163 } 1164 1165 /* 1166 * All right, let's create it. 1167 */ 1168 ns = mnt_user_ns(parent.mnt); 1169 err = security_path_mknod(&parent, dentry, mode, 0); 1170 if (!err) 1171 err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0); 1172 if (err) 1173 goto out_path; 1174 err = mutex_lock_interruptible(&u->bindlock); 1175 if (err) 1176 goto out_unlink; 1177 if (u->addr) 1178 goto out_unlock; 1179 1180 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1181 unix_table_double_lock(old_hash, new_hash); 1182 u->path.mnt = mntget(parent.mnt); 1183 u->path.dentry = dget(dentry); 1184 __unix_set_addr_hash(sk, addr, new_hash); 1185 unix_table_double_unlock(old_hash, new_hash); 1186 mutex_unlock(&u->bindlock); 1187 done_path_create(&parent, dentry); 1188 return 0; 1189 1190 out_unlock: 1191 mutex_unlock(&u->bindlock); 1192 err = -EINVAL; 1193 out_unlink: 1194 /* failed after successful mknod? unlink what we'd created... */ 1195 vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL); 1196 out_path: 1197 done_path_create(&parent, dentry); 1198 out: 1199 unix_release_addr(addr); 1200 return err == -EEXIST ? -EADDRINUSE : err; 1201 } 1202 1203 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1204 int addr_len) 1205 { 1206 unsigned int new_hash, old_hash = sk->sk_hash; 1207 struct unix_sock *u = unix_sk(sk); 1208 struct unix_address *addr; 1209 int err; 1210 1211 addr = unix_create_addr(sunaddr, addr_len); 1212 if (!addr) 1213 return -ENOMEM; 1214 1215 err = mutex_lock_interruptible(&u->bindlock); 1216 if (err) 1217 goto out; 1218 1219 if (u->addr) { 1220 err = -EINVAL; 1221 goto out_mutex; 1222 } 1223 1224 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1225 unix_table_double_lock(old_hash, new_hash); 1226 1227 if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len, 1228 new_hash)) 1229 goto out_spin; 1230 1231 __unix_set_addr_hash(sk, addr, new_hash); 1232 unix_table_double_unlock(old_hash, new_hash); 1233 mutex_unlock(&u->bindlock); 1234 return 0; 1235 1236 out_spin: 1237 unix_table_double_unlock(old_hash, new_hash); 1238 err = -EADDRINUSE; 1239 out_mutex: 1240 mutex_unlock(&u->bindlock); 1241 out: 1242 unix_release_addr(addr); 1243 return err; 1244 } 1245 1246 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1247 { 1248 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1249 struct sock *sk = sock->sk; 1250 int err; 1251 1252 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1253 sunaddr->sun_family == AF_UNIX) 1254 return unix_autobind(sk); 1255 1256 err = unix_validate_addr(sunaddr, addr_len); 1257 if (err) 1258 return err; 1259 1260 if (sunaddr->sun_path[0]) 1261 err = unix_bind_bsd(sk, sunaddr, addr_len); 1262 else 1263 err = unix_bind_abstract(sk, sunaddr, addr_len); 1264 1265 return err; 1266 } 1267 1268 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1269 { 1270 if (unlikely(sk1 == sk2) || !sk2) { 1271 unix_state_lock(sk1); 1272 return; 1273 } 1274 if (sk1 < sk2) { 1275 unix_state_lock(sk1); 1276 unix_state_lock_nested(sk2); 1277 } else { 1278 unix_state_lock(sk2); 1279 unix_state_lock_nested(sk1); 1280 } 1281 } 1282 1283 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1284 { 1285 if (unlikely(sk1 == sk2) || !sk2) { 1286 unix_state_unlock(sk1); 1287 return; 1288 } 1289 unix_state_unlock(sk1); 1290 unix_state_unlock(sk2); 1291 } 1292 1293 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1294 int alen, int flags) 1295 { 1296 struct sock *sk = sock->sk; 1297 struct net *net = sock_net(sk); 1298 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1299 struct sock *other; 1300 int err; 1301 1302 err = -EINVAL; 1303 if (alen < offsetofend(struct sockaddr, sa_family)) 1304 goto out; 1305 1306 if (addr->sa_family != AF_UNSPEC) { 1307 err = unix_validate_addr(sunaddr, alen); 1308 if (err) 1309 goto out; 1310 1311 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1312 !unix_sk(sk)->addr) { 1313 err = unix_autobind(sk); 1314 if (err) 1315 goto out; 1316 } 1317 1318 restart: 1319 other = unix_find_other(net, sunaddr, alen, sock->type); 1320 if (IS_ERR(other)) { 1321 err = PTR_ERR(other); 1322 goto out; 1323 } 1324 1325 unix_state_double_lock(sk, other); 1326 1327 /* Apparently VFS overslept socket death. Retry. */ 1328 if (sock_flag(other, SOCK_DEAD)) { 1329 unix_state_double_unlock(sk, other); 1330 sock_put(other); 1331 goto restart; 1332 } 1333 1334 err = -EPERM; 1335 if (!unix_may_send(sk, other)) 1336 goto out_unlock; 1337 1338 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1339 if (err) 1340 goto out_unlock; 1341 1342 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1343 } else { 1344 /* 1345 * 1003.1g breaking connected state with AF_UNSPEC 1346 */ 1347 other = NULL; 1348 unix_state_double_lock(sk, other); 1349 } 1350 1351 /* 1352 * If it was connected, reconnect. 1353 */ 1354 if (unix_peer(sk)) { 1355 struct sock *old_peer = unix_peer(sk); 1356 1357 unix_peer(sk) = other; 1358 if (!other) 1359 sk->sk_state = TCP_CLOSE; 1360 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1361 1362 unix_state_double_unlock(sk, other); 1363 1364 if (other != old_peer) 1365 unix_dgram_disconnected(sk, old_peer); 1366 sock_put(old_peer); 1367 } else { 1368 unix_peer(sk) = other; 1369 unix_state_double_unlock(sk, other); 1370 } 1371 1372 return 0; 1373 1374 out_unlock: 1375 unix_state_double_unlock(sk, other); 1376 sock_put(other); 1377 out: 1378 return err; 1379 } 1380 1381 static long unix_wait_for_peer(struct sock *other, long timeo) 1382 __releases(&unix_sk(other)->lock) 1383 { 1384 struct unix_sock *u = unix_sk(other); 1385 int sched; 1386 DEFINE_WAIT(wait); 1387 1388 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1389 1390 sched = !sock_flag(other, SOCK_DEAD) && 1391 !(other->sk_shutdown & RCV_SHUTDOWN) && 1392 unix_recvq_full(other); 1393 1394 unix_state_unlock(other); 1395 1396 if (sched) 1397 timeo = schedule_timeout(timeo); 1398 1399 finish_wait(&u->peer_wait, &wait); 1400 return timeo; 1401 } 1402 1403 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1404 int addr_len, int flags) 1405 { 1406 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1407 struct sock *sk = sock->sk; 1408 struct net *net = sock_net(sk); 1409 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1410 struct sock *newsk = NULL; 1411 struct sock *other = NULL; 1412 struct sk_buff *skb = NULL; 1413 int st; 1414 int err; 1415 long timeo; 1416 1417 err = unix_validate_addr(sunaddr, addr_len); 1418 if (err) 1419 goto out; 1420 1421 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1422 err = unix_autobind(sk); 1423 if (err) 1424 goto out; 1425 } 1426 1427 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1428 1429 /* First of all allocate resources. 1430 If we will make it after state is locked, 1431 we will have to recheck all again in any case. 1432 */ 1433 1434 /* create new sock for complete connection */ 1435 newsk = unix_create1(sock_net(sk), NULL, 0, sock->type); 1436 if (IS_ERR(newsk)) { 1437 err = PTR_ERR(newsk); 1438 newsk = NULL; 1439 goto out; 1440 } 1441 1442 err = -ENOMEM; 1443 1444 /* Allocate skb for sending to listening sock */ 1445 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1446 if (skb == NULL) 1447 goto out; 1448 1449 restart: 1450 /* Find listening sock. */ 1451 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1452 if (IS_ERR(other)) { 1453 err = PTR_ERR(other); 1454 other = NULL; 1455 goto out; 1456 } 1457 1458 /* Latch state of peer */ 1459 unix_state_lock(other); 1460 1461 /* Apparently VFS overslept socket death. Retry. */ 1462 if (sock_flag(other, SOCK_DEAD)) { 1463 unix_state_unlock(other); 1464 sock_put(other); 1465 goto restart; 1466 } 1467 1468 err = -ECONNREFUSED; 1469 if (other->sk_state != TCP_LISTEN) 1470 goto out_unlock; 1471 if (other->sk_shutdown & RCV_SHUTDOWN) 1472 goto out_unlock; 1473 1474 if (unix_recvq_full(other)) { 1475 err = -EAGAIN; 1476 if (!timeo) 1477 goto out_unlock; 1478 1479 timeo = unix_wait_for_peer(other, timeo); 1480 1481 err = sock_intr_errno(timeo); 1482 if (signal_pending(current)) 1483 goto out; 1484 sock_put(other); 1485 goto restart; 1486 } 1487 1488 /* Latch our state. 1489 1490 It is tricky place. We need to grab our state lock and cannot 1491 drop lock on peer. It is dangerous because deadlock is 1492 possible. Connect to self case and simultaneous 1493 attempt to connect are eliminated by checking socket 1494 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1495 check this before attempt to grab lock. 1496 1497 Well, and we have to recheck the state after socket locked. 1498 */ 1499 st = sk->sk_state; 1500 1501 switch (st) { 1502 case TCP_CLOSE: 1503 /* This is ok... continue with connect */ 1504 break; 1505 case TCP_ESTABLISHED: 1506 /* Socket is already connected */ 1507 err = -EISCONN; 1508 goto out_unlock; 1509 default: 1510 err = -EINVAL; 1511 goto out_unlock; 1512 } 1513 1514 unix_state_lock_nested(sk); 1515 1516 if (sk->sk_state != st) { 1517 unix_state_unlock(sk); 1518 unix_state_unlock(other); 1519 sock_put(other); 1520 goto restart; 1521 } 1522 1523 err = security_unix_stream_connect(sk, other, newsk); 1524 if (err) { 1525 unix_state_unlock(sk); 1526 goto out_unlock; 1527 } 1528 1529 /* The way is open! Fastly set all the necessary fields... */ 1530 1531 sock_hold(sk); 1532 unix_peer(newsk) = sk; 1533 newsk->sk_state = TCP_ESTABLISHED; 1534 newsk->sk_type = sk->sk_type; 1535 init_peercred(newsk); 1536 newu = unix_sk(newsk); 1537 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1538 otheru = unix_sk(other); 1539 1540 /* copy address information from listening to new sock 1541 * 1542 * The contents of *(otheru->addr) and otheru->path 1543 * are seen fully set up here, since we have found 1544 * otheru in hash under unix_table_locks. Insertion 1545 * into the hash chain we'd found it in had been done 1546 * in an earlier critical area protected by unix_table_locks, 1547 * the same one where we'd set *(otheru->addr) contents, 1548 * as well as otheru->path and otheru->addr itself. 1549 * 1550 * Using smp_store_release() here to set newu->addr 1551 * is enough to make those stores, as well as stores 1552 * to newu->path visible to anyone who gets newu->addr 1553 * by smp_load_acquire(). IOW, the same warranties 1554 * as for unix_sock instances bound in unix_bind() or 1555 * in unix_autobind(). 1556 */ 1557 if (otheru->path.dentry) { 1558 path_get(&otheru->path); 1559 newu->path = otheru->path; 1560 } 1561 refcount_inc(&otheru->addr->refcnt); 1562 smp_store_release(&newu->addr, otheru->addr); 1563 1564 /* Set credentials */ 1565 copy_peercred(sk, other); 1566 1567 sock->state = SS_CONNECTED; 1568 sk->sk_state = TCP_ESTABLISHED; 1569 sock_hold(newsk); 1570 1571 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1572 unix_peer(sk) = newsk; 1573 1574 unix_state_unlock(sk); 1575 1576 /* take ten and send info to listening sock */ 1577 spin_lock(&other->sk_receive_queue.lock); 1578 __skb_queue_tail(&other->sk_receive_queue, skb); 1579 spin_unlock(&other->sk_receive_queue.lock); 1580 unix_state_unlock(other); 1581 other->sk_data_ready(other); 1582 sock_put(other); 1583 return 0; 1584 1585 out_unlock: 1586 if (other) 1587 unix_state_unlock(other); 1588 1589 out: 1590 kfree_skb(skb); 1591 if (newsk) 1592 unix_release_sock(newsk, 0); 1593 if (other) 1594 sock_put(other); 1595 return err; 1596 } 1597 1598 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1599 { 1600 struct sock *ska = socka->sk, *skb = sockb->sk; 1601 1602 /* Join our sockets back to back */ 1603 sock_hold(ska); 1604 sock_hold(skb); 1605 unix_peer(ska) = skb; 1606 unix_peer(skb) = ska; 1607 init_peercred(ska); 1608 init_peercred(skb); 1609 1610 ska->sk_state = TCP_ESTABLISHED; 1611 skb->sk_state = TCP_ESTABLISHED; 1612 socka->state = SS_CONNECTED; 1613 sockb->state = SS_CONNECTED; 1614 return 0; 1615 } 1616 1617 static void unix_sock_inherit_flags(const struct socket *old, 1618 struct socket *new) 1619 { 1620 if (test_bit(SOCK_PASSCRED, &old->flags)) 1621 set_bit(SOCK_PASSCRED, &new->flags); 1622 if (test_bit(SOCK_PASSSEC, &old->flags)) 1623 set_bit(SOCK_PASSSEC, &new->flags); 1624 } 1625 1626 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1627 bool kern) 1628 { 1629 struct sock *sk = sock->sk; 1630 struct sock *tsk; 1631 struct sk_buff *skb; 1632 int err; 1633 1634 err = -EOPNOTSUPP; 1635 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1636 goto out; 1637 1638 err = -EINVAL; 1639 if (sk->sk_state != TCP_LISTEN) 1640 goto out; 1641 1642 /* If socket state is TCP_LISTEN it cannot change (for now...), 1643 * so that no locks are necessary. 1644 */ 1645 1646 skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err); 1647 if (!skb) { 1648 /* This means receive shutdown. */ 1649 if (err == 0) 1650 err = -EINVAL; 1651 goto out; 1652 } 1653 1654 tsk = skb->sk; 1655 skb_free_datagram(sk, skb); 1656 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1657 1658 /* attach accepted sock to socket */ 1659 unix_state_lock(tsk); 1660 newsock->state = SS_CONNECTED; 1661 unix_sock_inherit_flags(sock, newsock); 1662 sock_graft(tsk, newsock); 1663 unix_state_unlock(tsk); 1664 return 0; 1665 1666 out: 1667 return err; 1668 } 1669 1670 1671 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1672 { 1673 struct sock *sk = sock->sk; 1674 struct unix_address *addr; 1675 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1676 int err = 0; 1677 1678 if (peer) { 1679 sk = unix_peer_get(sk); 1680 1681 err = -ENOTCONN; 1682 if (!sk) 1683 goto out; 1684 err = 0; 1685 } else { 1686 sock_hold(sk); 1687 } 1688 1689 addr = smp_load_acquire(&unix_sk(sk)->addr); 1690 if (!addr) { 1691 sunaddr->sun_family = AF_UNIX; 1692 sunaddr->sun_path[0] = 0; 1693 err = offsetof(struct sockaddr_un, sun_path); 1694 } else { 1695 err = addr->len; 1696 memcpy(sunaddr, addr->name, addr->len); 1697 } 1698 sock_put(sk); 1699 out: 1700 return err; 1701 } 1702 1703 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1704 { 1705 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1706 1707 /* 1708 * Garbage collection of unix sockets starts by selecting a set of 1709 * candidate sockets which have reference only from being in flight 1710 * (total_refs == inflight_refs). This condition is checked once during 1711 * the candidate collection phase, and candidates are marked as such, so 1712 * that non-candidates can later be ignored. While inflight_refs is 1713 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1714 * is an instantaneous decision. 1715 * 1716 * Once a candidate, however, the socket must not be reinstalled into a 1717 * file descriptor while the garbage collection is in progress. 1718 * 1719 * If the above conditions are met, then the directed graph of 1720 * candidates (*) does not change while unix_gc_lock is held. 1721 * 1722 * Any operations that changes the file count through file descriptors 1723 * (dup, close, sendmsg) does not change the graph since candidates are 1724 * not installed in fds. 1725 * 1726 * Dequeing a candidate via recvmsg would install it into an fd, but 1727 * that takes unix_gc_lock to decrement the inflight count, so it's 1728 * serialized with garbage collection. 1729 * 1730 * MSG_PEEK is special in that it does not change the inflight count, 1731 * yet does install the socket into an fd. The following lock/unlock 1732 * pair is to ensure serialization with garbage collection. It must be 1733 * done between incrementing the file count and installing the file into 1734 * an fd. 1735 * 1736 * If garbage collection starts after the barrier provided by the 1737 * lock/unlock, then it will see the elevated refcount and not mark this 1738 * as a candidate. If a garbage collection is already in progress 1739 * before the file count was incremented, then the lock/unlock pair will 1740 * ensure that garbage collection is finished before progressing to 1741 * installing the fd. 1742 * 1743 * (*) A -> B where B is on the queue of A or B is on the queue of C 1744 * which is on the queue of listening socket A. 1745 */ 1746 spin_lock(&unix_gc_lock); 1747 spin_unlock(&unix_gc_lock); 1748 } 1749 1750 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1751 { 1752 int err = 0; 1753 1754 UNIXCB(skb).pid = get_pid(scm->pid); 1755 UNIXCB(skb).uid = scm->creds.uid; 1756 UNIXCB(skb).gid = scm->creds.gid; 1757 UNIXCB(skb).fp = NULL; 1758 unix_get_secdata(scm, skb); 1759 if (scm->fp && send_fds) 1760 err = unix_attach_fds(scm, skb); 1761 1762 skb->destructor = unix_destruct_scm; 1763 return err; 1764 } 1765 1766 static bool unix_passcred_enabled(const struct socket *sock, 1767 const struct sock *other) 1768 { 1769 return test_bit(SOCK_PASSCRED, &sock->flags) || 1770 !other->sk_socket || 1771 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1772 } 1773 1774 /* 1775 * Some apps rely on write() giving SCM_CREDENTIALS 1776 * We include credentials if source or destination socket 1777 * asserted SOCK_PASSCRED. 1778 */ 1779 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1780 const struct sock *other) 1781 { 1782 if (UNIXCB(skb).pid) 1783 return; 1784 if (unix_passcred_enabled(sock, other)) { 1785 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1786 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1787 } 1788 } 1789 1790 static int maybe_init_creds(struct scm_cookie *scm, 1791 struct socket *socket, 1792 const struct sock *other) 1793 { 1794 int err; 1795 struct msghdr msg = { .msg_controllen = 0 }; 1796 1797 err = scm_send(socket, &msg, scm, false); 1798 if (err) 1799 return err; 1800 1801 if (unix_passcred_enabled(socket, other)) { 1802 scm->pid = get_pid(task_tgid(current)); 1803 current_uid_gid(&scm->creds.uid, &scm->creds.gid); 1804 } 1805 return err; 1806 } 1807 1808 static bool unix_skb_scm_eq(struct sk_buff *skb, 1809 struct scm_cookie *scm) 1810 { 1811 const struct unix_skb_parms *u = &UNIXCB(skb); 1812 1813 return u->pid == scm->pid && 1814 uid_eq(u->uid, scm->creds.uid) && 1815 gid_eq(u->gid, scm->creds.gid) && 1816 unix_secdata_eq(scm, skb); 1817 } 1818 1819 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1820 { 1821 struct scm_fp_list *fp = UNIXCB(skb).fp; 1822 struct unix_sock *u = unix_sk(sk); 1823 1824 if (unlikely(fp && fp->count)) 1825 atomic_add(fp->count, &u->scm_stat.nr_fds); 1826 } 1827 1828 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1829 { 1830 struct scm_fp_list *fp = UNIXCB(skb).fp; 1831 struct unix_sock *u = unix_sk(sk); 1832 1833 if (unlikely(fp && fp->count)) 1834 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1835 } 1836 1837 /* 1838 * Send AF_UNIX data. 1839 */ 1840 1841 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1842 size_t len) 1843 { 1844 struct sock *sk = sock->sk; 1845 struct net *net = sock_net(sk); 1846 struct unix_sock *u = unix_sk(sk); 1847 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1848 struct sock *other = NULL; 1849 int err; 1850 struct sk_buff *skb; 1851 long timeo; 1852 struct scm_cookie scm; 1853 int data_len = 0; 1854 int sk_locked; 1855 1856 wait_for_unix_gc(); 1857 err = scm_send(sock, msg, &scm, false); 1858 if (err < 0) 1859 return err; 1860 1861 err = -EOPNOTSUPP; 1862 if (msg->msg_flags&MSG_OOB) 1863 goto out; 1864 1865 if (msg->msg_namelen) { 1866 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1867 if (err) 1868 goto out; 1869 } else { 1870 sunaddr = NULL; 1871 err = -ENOTCONN; 1872 other = unix_peer_get(sk); 1873 if (!other) 1874 goto out; 1875 } 1876 1877 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1878 err = unix_autobind(sk); 1879 if (err) 1880 goto out; 1881 } 1882 1883 err = -EMSGSIZE; 1884 if (len > sk->sk_sndbuf - 32) 1885 goto out; 1886 1887 if (len > SKB_MAX_ALLOC) { 1888 data_len = min_t(size_t, 1889 len - SKB_MAX_ALLOC, 1890 MAX_SKB_FRAGS * PAGE_SIZE); 1891 data_len = PAGE_ALIGN(data_len); 1892 1893 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1894 } 1895 1896 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1897 msg->msg_flags & MSG_DONTWAIT, &err, 1898 PAGE_ALLOC_COSTLY_ORDER); 1899 if (skb == NULL) 1900 goto out; 1901 1902 err = unix_scm_to_skb(&scm, skb, true); 1903 if (err < 0) 1904 goto out_free; 1905 1906 skb_put(skb, len - data_len); 1907 skb->data_len = data_len; 1908 skb->len = len; 1909 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1910 if (err) 1911 goto out_free; 1912 1913 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1914 1915 restart: 1916 if (!other) { 1917 err = -ECONNRESET; 1918 if (sunaddr == NULL) 1919 goto out_free; 1920 1921 other = unix_find_other(net, sunaddr, msg->msg_namelen, 1922 sk->sk_type); 1923 if (IS_ERR(other)) { 1924 err = PTR_ERR(other); 1925 other = NULL; 1926 goto out_free; 1927 } 1928 } 1929 1930 if (sk_filter(other, skb) < 0) { 1931 /* Toss the packet but do not return any error to the sender */ 1932 err = len; 1933 goto out_free; 1934 } 1935 1936 sk_locked = 0; 1937 unix_state_lock(other); 1938 restart_locked: 1939 err = -EPERM; 1940 if (!unix_may_send(sk, other)) 1941 goto out_unlock; 1942 1943 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1944 /* 1945 * Check with 1003.1g - what should 1946 * datagram error 1947 */ 1948 unix_state_unlock(other); 1949 sock_put(other); 1950 1951 if (!sk_locked) 1952 unix_state_lock(sk); 1953 1954 err = 0; 1955 if (unix_peer(sk) == other) { 1956 unix_peer(sk) = NULL; 1957 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 1958 1959 unix_state_unlock(sk); 1960 1961 sk->sk_state = TCP_CLOSE; 1962 unix_dgram_disconnected(sk, other); 1963 sock_put(other); 1964 err = -ECONNREFUSED; 1965 } else { 1966 unix_state_unlock(sk); 1967 } 1968 1969 other = NULL; 1970 if (err) 1971 goto out_free; 1972 goto restart; 1973 } 1974 1975 err = -EPIPE; 1976 if (other->sk_shutdown & RCV_SHUTDOWN) 1977 goto out_unlock; 1978 1979 if (sk->sk_type != SOCK_SEQPACKET) { 1980 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1981 if (err) 1982 goto out_unlock; 1983 } 1984 1985 /* other == sk && unix_peer(other) != sk if 1986 * - unix_peer(sk) == NULL, destination address bound to sk 1987 * - unix_peer(sk) == sk by time of get but disconnected before lock 1988 */ 1989 if (other != sk && 1990 unlikely(unix_peer(other) != sk && 1991 unix_recvq_full_lockless(other))) { 1992 if (timeo) { 1993 timeo = unix_wait_for_peer(other, timeo); 1994 1995 err = sock_intr_errno(timeo); 1996 if (signal_pending(current)) 1997 goto out_free; 1998 1999 goto restart; 2000 } 2001 2002 if (!sk_locked) { 2003 unix_state_unlock(other); 2004 unix_state_double_lock(sk, other); 2005 } 2006 2007 if (unix_peer(sk) != other || 2008 unix_dgram_peer_wake_me(sk, other)) { 2009 err = -EAGAIN; 2010 sk_locked = 1; 2011 goto out_unlock; 2012 } 2013 2014 if (!sk_locked) { 2015 sk_locked = 1; 2016 goto restart_locked; 2017 } 2018 } 2019 2020 if (unlikely(sk_locked)) 2021 unix_state_unlock(sk); 2022 2023 if (sock_flag(other, SOCK_RCVTSTAMP)) 2024 __net_timestamp(skb); 2025 maybe_add_creds(skb, sock, other); 2026 scm_stat_add(other, skb); 2027 skb_queue_tail(&other->sk_receive_queue, skb); 2028 unix_state_unlock(other); 2029 other->sk_data_ready(other); 2030 sock_put(other); 2031 scm_destroy(&scm); 2032 return len; 2033 2034 out_unlock: 2035 if (sk_locked) 2036 unix_state_unlock(sk); 2037 unix_state_unlock(other); 2038 out_free: 2039 kfree_skb(skb); 2040 out: 2041 if (other) 2042 sock_put(other); 2043 scm_destroy(&scm); 2044 return err; 2045 } 2046 2047 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2048 * bytes, and a minimum of a full page. 2049 */ 2050 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2051 2052 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB)) 2053 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other) 2054 { 2055 struct unix_sock *ousk = unix_sk(other); 2056 struct sk_buff *skb; 2057 int err = 0; 2058 2059 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2060 2061 if (!skb) 2062 return err; 2063 2064 skb_put(skb, 1); 2065 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2066 2067 if (err) { 2068 kfree_skb(skb); 2069 return err; 2070 } 2071 2072 unix_state_lock(other); 2073 2074 if (sock_flag(other, SOCK_DEAD) || 2075 (other->sk_shutdown & RCV_SHUTDOWN)) { 2076 unix_state_unlock(other); 2077 kfree_skb(skb); 2078 return -EPIPE; 2079 } 2080 2081 maybe_add_creds(skb, sock, other); 2082 skb_get(skb); 2083 2084 if (ousk->oob_skb) 2085 consume_skb(ousk->oob_skb); 2086 2087 ousk->oob_skb = skb; 2088 2089 scm_stat_add(other, skb); 2090 skb_queue_tail(&other->sk_receive_queue, skb); 2091 sk_send_sigurg(other); 2092 unix_state_unlock(other); 2093 other->sk_data_ready(other); 2094 2095 return err; 2096 } 2097 #endif 2098 2099 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2100 size_t len) 2101 { 2102 struct sock *sk = sock->sk; 2103 struct sock *other = NULL; 2104 int err, size; 2105 struct sk_buff *skb; 2106 int sent = 0; 2107 struct scm_cookie scm; 2108 bool fds_sent = false; 2109 int data_len; 2110 2111 wait_for_unix_gc(); 2112 err = scm_send(sock, msg, &scm, false); 2113 if (err < 0) 2114 return err; 2115 2116 err = -EOPNOTSUPP; 2117 if (msg->msg_flags & MSG_OOB) { 2118 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB)) 2119 if (len) 2120 len--; 2121 else 2122 #endif 2123 goto out_err; 2124 } 2125 2126 if (msg->msg_namelen) { 2127 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2128 goto out_err; 2129 } else { 2130 err = -ENOTCONN; 2131 other = unix_peer(sk); 2132 if (!other) 2133 goto out_err; 2134 } 2135 2136 if (sk->sk_shutdown & SEND_SHUTDOWN) 2137 goto pipe_err; 2138 2139 while (sent < len) { 2140 size = len - sent; 2141 2142 /* Keep two messages in the pipe so it schedules better */ 2143 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2144 2145 /* allow fallback to order-0 allocations */ 2146 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2147 2148 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2149 2150 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2151 2152 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2153 msg->msg_flags & MSG_DONTWAIT, &err, 2154 get_order(UNIX_SKB_FRAGS_SZ)); 2155 if (!skb) 2156 goto out_err; 2157 2158 /* Only send the fds in the first buffer */ 2159 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2160 if (err < 0) { 2161 kfree_skb(skb); 2162 goto out_err; 2163 } 2164 fds_sent = true; 2165 2166 skb_put(skb, size - data_len); 2167 skb->data_len = data_len; 2168 skb->len = size; 2169 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2170 if (err) { 2171 kfree_skb(skb); 2172 goto out_err; 2173 } 2174 2175 unix_state_lock(other); 2176 2177 if (sock_flag(other, SOCK_DEAD) || 2178 (other->sk_shutdown & RCV_SHUTDOWN)) 2179 goto pipe_err_free; 2180 2181 maybe_add_creds(skb, sock, other); 2182 scm_stat_add(other, skb); 2183 skb_queue_tail(&other->sk_receive_queue, skb); 2184 unix_state_unlock(other); 2185 other->sk_data_ready(other); 2186 sent += size; 2187 } 2188 2189 #if (IS_ENABLED(CONFIG_AF_UNIX_OOB)) 2190 if (msg->msg_flags & MSG_OOB) { 2191 err = queue_oob(sock, msg, other); 2192 if (err) 2193 goto out_err; 2194 sent++; 2195 } 2196 #endif 2197 2198 scm_destroy(&scm); 2199 2200 return sent; 2201 2202 pipe_err_free: 2203 unix_state_unlock(other); 2204 kfree_skb(skb); 2205 pipe_err: 2206 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2207 send_sig(SIGPIPE, current, 0); 2208 err = -EPIPE; 2209 out_err: 2210 scm_destroy(&scm); 2211 return sent ? : err; 2212 } 2213 2214 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2215 int offset, size_t size, int flags) 2216 { 2217 int err; 2218 bool send_sigpipe = false; 2219 bool init_scm = true; 2220 struct scm_cookie scm; 2221 struct sock *other, *sk = socket->sk; 2222 struct sk_buff *skb, *newskb = NULL, *tail = NULL; 2223 2224 if (flags & MSG_OOB) 2225 return -EOPNOTSUPP; 2226 2227 other = unix_peer(sk); 2228 if (!other || sk->sk_state != TCP_ESTABLISHED) 2229 return -ENOTCONN; 2230 2231 if (false) { 2232 alloc_skb: 2233 unix_state_unlock(other); 2234 mutex_unlock(&unix_sk(other)->iolock); 2235 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT, 2236 &err, 0); 2237 if (!newskb) 2238 goto err; 2239 } 2240 2241 /* we must acquire iolock as we modify already present 2242 * skbs in the sk_receive_queue and mess with skb->len 2243 */ 2244 err = mutex_lock_interruptible(&unix_sk(other)->iolock); 2245 if (err) { 2246 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS; 2247 goto err; 2248 } 2249 2250 if (sk->sk_shutdown & SEND_SHUTDOWN) { 2251 err = -EPIPE; 2252 send_sigpipe = true; 2253 goto err_unlock; 2254 } 2255 2256 unix_state_lock(other); 2257 2258 if (sock_flag(other, SOCK_DEAD) || 2259 other->sk_shutdown & RCV_SHUTDOWN) { 2260 err = -EPIPE; 2261 send_sigpipe = true; 2262 goto err_state_unlock; 2263 } 2264 2265 if (init_scm) { 2266 err = maybe_init_creds(&scm, socket, other); 2267 if (err) 2268 goto err_state_unlock; 2269 init_scm = false; 2270 } 2271 2272 skb = skb_peek_tail(&other->sk_receive_queue); 2273 if (tail && tail == skb) { 2274 skb = newskb; 2275 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) { 2276 if (newskb) { 2277 skb = newskb; 2278 } else { 2279 tail = skb; 2280 goto alloc_skb; 2281 } 2282 } else if (newskb) { 2283 /* this is fast path, we don't necessarily need to 2284 * call to kfree_skb even though with newskb == NULL 2285 * this - does no harm 2286 */ 2287 consume_skb(newskb); 2288 newskb = NULL; 2289 } 2290 2291 if (skb_append_pagefrags(skb, page, offset, size)) { 2292 tail = skb; 2293 goto alloc_skb; 2294 } 2295 2296 skb->len += size; 2297 skb->data_len += size; 2298 skb->truesize += size; 2299 refcount_add(size, &sk->sk_wmem_alloc); 2300 2301 if (newskb) { 2302 err = unix_scm_to_skb(&scm, skb, false); 2303 if (err) 2304 goto err_state_unlock; 2305 spin_lock(&other->sk_receive_queue.lock); 2306 __skb_queue_tail(&other->sk_receive_queue, newskb); 2307 spin_unlock(&other->sk_receive_queue.lock); 2308 } 2309 2310 unix_state_unlock(other); 2311 mutex_unlock(&unix_sk(other)->iolock); 2312 2313 other->sk_data_ready(other); 2314 scm_destroy(&scm); 2315 return size; 2316 2317 err_state_unlock: 2318 unix_state_unlock(other); 2319 err_unlock: 2320 mutex_unlock(&unix_sk(other)->iolock); 2321 err: 2322 kfree_skb(newskb); 2323 if (send_sigpipe && !(flags & MSG_NOSIGNAL)) 2324 send_sig(SIGPIPE, current, 0); 2325 if (!init_scm) 2326 scm_destroy(&scm); 2327 return err; 2328 } 2329 2330 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2331 size_t len) 2332 { 2333 int err; 2334 struct sock *sk = sock->sk; 2335 2336 err = sock_error(sk); 2337 if (err) 2338 return err; 2339 2340 if (sk->sk_state != TCP_ESTABLISHED) 2341 return -ENOTCONN; 2342 2343 if (msg->msg_namelen) 2344 msg->msg_namelen = 0; 2345 2346 return unix_dgram_sendmsg(sock, msg, len); 2347 } 2348 2349 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2350 size_t size, int flags) 2351 { 2352 struct sock *sk = sock->sk; 2353 2354 if (sk->sk_state != TCP_ESTABLISHED) 2355 return -ENOTCONN; 2356 2357 return unix_dgram_recvmsg(sock, msg, size, flags); 2358 } 2359 2360 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2361 { 2362 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2363 2364 if (addr) { 2365 msg->msg_namelen = addr->len; 2366 memcpy(msg->msg_name, addr->name, addr->len); 2367 } 2368 } 2369 2370 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2371 int flags) 2372 { 2373 struct scm_cookie scm; 2374 struct socket *sock = sk->sk_socket; 2375 struct unix_sock *u = unix_sk(sk); 2376 struct sk_buff *skb, *last; 2377 long timeo; 2378 int skip; 2379 int err; 2380 2381 err = -EOPNOTSUPP; 2382 if (flags&MSG_OOB) 2383 goto out; 2384 2385 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2386 2387 do { 2388 mutex_lock(&u->iolock); 2389 2390 skip = sk_peek_offset(sk, flags); 2391 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2392 &skip, &err, &last); 2393 if (skb) { 2394 if (!(flags & MSG_PEEK)) 2395 scm_stat_del(sk, skb); 2396 break; 2397 } 2398 2399 mutex_unlock(&u->iolock); 2400 2401 if (err != -EAGAIN) 2402 break; 2403 } while (timeo && 2404 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2405 &err, &timeo, last)); 2406 2407 if (!skb) { /* implies iolock unlocked */ 2408 unix_state_lock(sk); 2409 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2410 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2411 (sk->sk_shutdown & RCV_SHUTDOWN)) 2412 err = 0; 2413 unix_state_unlock(sk); 2414 goto out; 2415 } 2416 2417 if (wq_has_sleeper(&u->peer_wait)) 2418 wake_up_interruptible_sync_poll(&u->peer_wait, 2419 EPOLLOUT | EPOLLWRNORM | 2420 EPOLLWRBAND); 2421 2422 if (msg->msg_name) 2423 unix_copy_addr(msg, skb->sk); 2424 2425 if (size > skb->len - skip) 2426 size = skb->len - skip; 2427 else if (size < skb->len - skip) 2428 msg->msg_flags |= MSG_TRUNC; 2429 2430 err = skb_copy_datagram_msg(skb, skip, msg, size); 2431 if (err) 2432 goto out_free; 2433 2434 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2435 __sock_recv_timestamp(msg, sk, skb); 2436 2437 memset(&scm, 0, sizeof(scm)); 2438 2439 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2440 unix_set_secdata(&scm, skb); 2441 2442 if (!(flags & MSG_PEEK)) { 2443 if (UNIXCB(skb).fp) 2444 unix_detach_fds(&scm, skb); 2445 2446 sk_peek_offset_bwd(sk, skb->len); 2447 } else { 2448 /* It is questionable: on PEEK we could: 2449 - do not return fds - good, but too simple 8) 2450 - return fds, and do not return them on read (old strategy, 2451 apparently wrong) 2452 - clone fds (I chose it for now, it is the most universal 2453 solution) 2454 2455 POSIX 1003.1g does not actually define this clearly 2456 at all. POSIX 1003.1g doesn't define a lot of things 2457 clearly however! 2458 2459 */ 2460 2461 sk_peek_offset_fwd(sk, size); 2462 2463 if (UNIXCB(skb).fp) 2464 unix_peek_fds(&scm, skb); 2465 } 2466 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2467 2468 scm_recv(sock, msg, &scm, flags); 2469 2470 out_free: 2471 skb_free_datagram(sk, skb); 2472 mutex_unlock(&u->iolock); 2473 out: 2474 return err; 2475 } 2476 2477 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2478 int flags) 2479 { 2480 struct sock *sk = sock->sk; 2481 2482 #ifdef CONFIG_BPF_SYSCALL 2483 const struct proto *prot = READ_ONCE(sk->sk_prot); 2484 2485 if (prot != &unix_dgram_proto) 2486 return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2487 flags & ~MSG_DONTWAIT, NULL); 2488 #endif 2489 return __unix_dgram_recvmsg(sk, msg, size, flags); 2490 } 2491 2492 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc, 2493 sk_read_actor_t recv_actor) 2494 { 2495 int copied = 0; 2496 2497 while (1) { 2498 struct unix_sock *u = unix_sk(sk); 2499 struct sk_buff *skb; 2500 int used, err; 2501 2502 mutex_lock(&u->iolock); 2503 skb = skb_recv_datagram(sk, 0, 1, &err); 2504 mutex_unlock(&u->iolock); 2505 if (!skb) 2506 return err; 2507 2508 used = recv_actor(desc, skb, 0, skb->len); 2509 if (used <= 0) { 2510 if (!copied) 2511 copied = used; 2512 kfree_skb(skb); 2513 break; 2514 } else if (used <= skb->len) { 2515 copied += used; 2516 } 2517 2518 kfree_skb(skb); 2519 if (!desc->count) 2520 break; 2521 } 2522 2523 return copied; 2524 } 2525 2526 /* 2527 * Sleep until more data has arrived. But check for races.. 2528 */ 2529 static long unix_stream_data_wait(struct sock *sk, long timeo, 2530 struct sk_buff *last, unsigned int last_len, 2531 bool freezable) 2532 { 2533 struct sk_buff *tail; 2534 DEFINE_WAIT(wait); 2535 2536 unix_state_lock(sk); 2537 2538 for (;;) { 2539 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 2540 2541 tail = skb_peek_tail(&sk->sk_receive_queue); 2542 if (tail != last || 2543 (tail && tail->len != last_len) || 2544 sk->sk_err || 2545 (sk->sk_shutdown & RCV_SHUTDOWN) || 2546 signal_pending(current) || 2547 !timeo) 2548 break; 2549 2550 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2551 unix_state_unlock(sk); 2552 if (freezable) 2553 timeo = freezable_schedule_timeout(timeo); 2554 else 2555 timeo = schedule_timeout(timeo); 2556 unix_state_lock(sk); 2557 2558 if (sock_flag(sk, SOCK_DEAD)) 2559 break; 2560 2561 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2562 } 2563 2564 finish_wait(sk_sleep(sk), &wait); 2565 unix_state_unlock(sk); 2566 return timeo; 2567 } 2568 2569 static unsigned int unix_skb_len(const struct sk_buff *skb) 2570 { 2571 return skb->len - UNIXCB(skb).consumed; 2572 } 2573 2574 struct unix_stream_read_state { 2575 int (*recv_actor)(struct sk_buff *, int, int, 2576 struct unix_stream_read_state *); 2577 struct socket *socket; 2578 struct msghdr *msg; 2579 struct pipe_inode_info *pipe; 2580 size_t size; 2581 int flags; 2582 unsigned int splice_flags; 2583 }; 2584 2585 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2586 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2587 { 2588 struct socket *sock = state->socket; 2589 struct sock *sk = sock->sk; 2590 struct unix_sock *u = unix_sk(sk); 2591 int chunk = 1; 2592 struct sk_buff *oob_skb; 2593 2594 mutex_lock(&u->iolock); 2595 unix_state_lock(sk); 2596 2597 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2598 unix_state_unlock(sk); 2599 mutex_unlock(&u->iolock); 2600 return -EINVAL; 2601 } 2602 2603 oob_skb = u->oob_skb; 2604 2605 if (!(state->flags & MSG_PEEK)) { 2606 u->oob_skb = NULL; 2607 } 2608 2609 unix_state_unlock(sk); 2610 2611 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2612 2613 if (!(state->flags & MSG_PEEK)) { 2614 UNIXCB(oob_skb).consumed += 1; 2615 kfree_skb(oob_skb); 2616 } 2617 2618 mutex_unlock(&u->iolock); 2619 2620 if (chunk < 0) 2621 return -EFAULT; 2622 2623 state->msg->msg_flags |= MSG_OOB; 2624 return 1; 2625 } 2626 2627 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2628 int flags, int copied) 2629 { 2630 struct unix_sock *u = unix_sk(sk); 2631 2632 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2633 skb_unlink(skb, &sk->sk_receive_queue); 2634 consume_skb(skb); 2635 skb = NULL; 2636 } else { 2637 if (skb == u->oob_skb) { 2638 if (copied) { 2639 skb = NULL; 2640 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2641 if (!(flags & MSG_PEEK)) { 2642 u->oob_skb = NULL; 2643 consume_skb(skb); 2644 } 2645 } else if (!(flags & MSG_PEEK)) { 2646 skb_unlink(skb, &sk->sk_receive_queue); 2647 consume_skb(skb); 2648 skb = skb_peek(&sk->sk_receive_queue); 2649 } 2650 } 2651 } 2652 return skb; 2653 } 2654 #endif 2655 2656 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc, 2657 sk_read_actor_t recv_actor) 2658 { 2659 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2660 return -ENOTCONN; 2661 2662 return unix_read_sock(sk, desc, recv_actor); 2663 } 2664 2665 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2666 bool freezable) 2667 { 2668 struct scm_cookie scm; 2669 struct socket *sock = state->socket; 2670 struct sock *sk = sock->sk; 2671 struct unix_sock *u = unix_sk(sk); 2672 int copied = 0; 2673 int flags = state->flags; 2674 int noblock = flags & MSG_DONTWAIT; 2675 bool check_creds = false; 2676 int target; 2677 int err = 0; 2678 long timeo; 2679 int skip; 2680 size_t size = state->size; 2681 unsigned int last_len; 2682 2683 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2684 err = -EINVAL; 2685 goto out; 2686 } 2687 2688 if (unlikely(flags & MSG_OOB)) { 2689 err = -EOPNOTSUPP; 2690 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2691 err = unix_stream_recv_urg(state); 2692 #endif 2693 goto out; 2694 } 2695 2696 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2697 timeo = sock_rcvtimeo(sk, noblock); 2698 2699 memset(&scm, 0, sizeof(scm)); 2700 2701 /* Lock the socket to prevent queue disordering 2702 * while sleeps in memcpy_tomsg 2703 */ 2704 mutex_lock(&u->iolock); 2705 2706 skip = max(sk_peek_offset(sk, flags), 0); 2707 2708 do { 2709 int chunk; 2710 bool drop_skb; 2711 struct sk_buff *skb, *last; 2712 2713 redo: 2714 unix_state_lock(sk); 2715 if (sock_flag(sk, SOCK_DEAD)) { 2716 err = -ECONNRESET; 2717 goto unlock; 2718 } 2719 last = skb = skb_peek(&sk->sk_receive_queue); 2720 last_len = last ? last->len : 0; 2721 2722 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2723 if (skb) { 2724 skb = manage_oob(skb, sk, flags, copied); 2725 if (!skb) { 2726 unix_state_unlock(sk); 2727 if (copied) 2728 break; 2729 goto redo; 2730 } 2731 } 2732 #endif 2733 again: 2734 if (skb == NULL) { 2735 if (copied >= target) 2736 goto unlock; 2737 2738 /* 2739 * POSIX 1003.1g mandates this order. 2740 */ 2741 2742 err = sock_error(sk); 2743 if (err) 2744 goto unlock; 2745 if (sk->sk_shutdown & RCV_SHUTDOWN) 2746 goto unlock; 2747 2748 unix_state_unlock(sk); 2749 if (!timeo) { 2750 err = -EAGAIN; 2751 break; 2752 } 2753 2754 mutex_unlock(&u->iolock); 2755 2756 timeo = unix_stream_data_wait(sk, timeo, last, 2757 last_len, freezable); 2758 2759 if (signal_pending(current)) { 2760 err = sock_intr_errno(timeo); 2761 scm_destroy(&scm); 2762 goto out; 2763 } 2764 2765 mutex_lock(&u->iolock); 2766 goto redo; 2767 unlock: 2768 unix_state_unlock(sk); 2769 break; 2770 } 2771 2772 while (skip >= unix_skb_len(skb)) { 2773 skip -= unix_skb_len(skb); 2774 last = skb; 2775 last_len = skb->len; 2776 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2777 if (!skb) 2778 goto again; 2779 } 2780 2781 unix_state_unlock(sk); 2782 2783 if (check_creds) { 2784 /* Never glue messages from different writers */ 2785 if (!unix_skb_scm_eq(skb, &scm)) 2786 break; 2787 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2788 /* Copy credentials */ 2789 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2790 unix_set_secdata(&scm, skb); 2791 check_creds = true; 2792 } 2793 2794 /* Copy address just once */ 2795 if (state->msg && state->msg->msg_name) { 2796 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2797 state->msg->msg_name); 2798 unix_copy_addr(state->msg, skb->sk); 2799 sunaddr = NULL; 2800 } 2801 2802 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2803 skb_get(skb); 2804 chunk = state->recv_actor(skb, skip, chunk, state); 2805 drop_skb = !unix_skb_len(skb); 2806 /* skb is only safe to use if !drop_skb */ 2807 consume_skb(skb); 2808 if (chunk < 0) { 2809 if (copied == 0) 2810 copied = -EFAULT; 2811 break; 2812 } 2813 copied += chunk; 2814 size -= chunk; 2815 2816 if (drop_skb) { 2817 /* the skb was touched by a concurrent reader; 2818 * we should not expect anything from this skb 2819 * anymore and assume it invalid - we can be 2820 * sure it was dropped from the socket queue 2821 * 2822 * let's report a short read 2823 */ 2824 err = 0; 2825 break; 2826 } 2827 2828 /* Mark read part of skb as used */ 2829 if (!(flags & MSG_PEEK)) { 2830 UNIXCB(skb).consumed += chunk; 2831 2832 sk_peek_offset_bwd(sk, chunk); 2833 2834 if (UNIXCB(skb).fp) { 2835 scm_stat_del(sk, skb); 2836 unix_detach_fds(&scm, skb); 2837 } 2838 2839 if (unix_skb_len(skb)) 2840 break; 2841 2842 skb_unlink(skb, &sk->sk_receive_queue); 2843 consume_skb(skb); 2844 2845 if (scm.fp) 2846 break; 2847 } else { 2848 /* It is questionable, see note in unix_dgram_recvmsg. 2849 */ 2850 if (UNIXCB(skb).fp) 2851 unix_peek_fds(&scm, skb); 2852 2853 sk_peek_offset_fwd(sk, chunk); 2854 2855 if (UNIXCB(skb).fp) 2856 break; 2857 2858 skip = 0; 2859 last = skb; 2860 last_len = skb->len; 2861 unix_state_lock(sk); 2862 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2863 if (skb) 2864 goto again; 2865 unix_state_unlock(sk); 2866 break; 2867 } 2868 } while (size); 2869 2870 mutex_unlock(&u->iolock); 2871 if (state->msg) 2872 scm_recv(sock, state->msg, &scm, flags); 2873 else 2874 scm_destroy(&scm); 2875 out: 2876 return copied ? : err; 2877 } 2878 2879 static int unix_stream_read_actor(struct sk_buff *skb, 2880 int skip, int chunk, 2881 struct unix_stream_read_state *state) 2882 { 2883 int ret; 2884 2885 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2886 state->msg, chunk); 2887 return ret ?: chunk; 2888 } 2889 2890 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2891 size_t size, int flags) 2892 { 2893 struct unix_stream_read_state state = { 2894 .recv_actor = unix_stream_read_actor, 2895 .socket = sk->sk_socket, 2896 .msg = msg, 2897 .size = size, 2898 .flags = flags 2899 }; 2900 2901 return unix_stream_read_generic(&state, true); 2902 } 2903 2904 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2905 size_t size, int flags) 2906 { 2907 struct unix_stream_read_state state = { 2908 .recv_actor = unix_stream_read_actor, 2909 .socket = sock, 2910 .msg = msg, 2911 .size = size, 2912 .flags = flags 2913 }; 2914 2915 #ifdef CONFIG_BPF_SYSCALL 2916 struct sock *sk = sock->sk; 2917 const struct proto *prot = READ_ONCE(sk->sk_prot); 2918 2919 if (prot != &unix_stream_proto) 2920 return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, 2921 flags & ~MSG_DONTWAIT, NULL); 2922 #endif 2923 return unix_stream_read_generic(&state, true); 2924 } 2925 2926 static int unix_stream_splice_actor(struct sk_buff *skb, 2927 int skip, int chunk, 2928 struct unix_stream_read_state *state) 2929 { 2930 return skb_splice_bits(skb, state->socket->sk, 2931 UNIXCB(skb).consumed + skip, 2932 state->pipe, chunk, state->splice_flags); 2933 } 2934 2935 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2936 struct pipe_inode_info *pipe, 2937 size_t size, unsigned int flags) 2938 { 2939 struct unix_stream_read_state state = { 2940 .recv_actor = unix_stream_splice_actor, 2941 .socket = sock, 2942 .pipe = pipe, 2943 .size = size, 2944 .splice_flags = flags, 2945 }; 2946 2947 if (unlikely(*ppos)) 2948 return -ESPIPE; 2949 2950 if (sock->file->f_flags & O_NONBLOCK || 2951 flags & SPLICE_F_NONBLOCK) 2952 state.flags = MSG_DONTWAIT; 2953 2954 return unix_stream_read_generic(&state, false); 2955 } 2956 2957 static int unix_shutdown(struct socket *sock, int mode) 2958 { 2959 struct sock *sk = sock->sk; 2960 struct sock *other; 2961 2962 if (mode < SHUT_RD || mode > SHUT_RDWR) 2963 return -EINVAL; 2964 /* This maps: 2965 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2966 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2967 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2968 */ 2969 ++mode; 2970 2971 unix_state_lock(sk); 2972 sk->sk_shutdown |= mode; 2973 other = unix_peer(sk); 2974 if (other) 2975 sock_hold(other); 2976 unix_state_unlock(sk); 2977 sk->sk_state_change(sk); 2978 2979 if (other && 2980 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 2981 2982 int peer_mode = 0; 2983 const struct proto *prot = READ_ONCE(other->sk_prot); 2984 2985 if (prot->unhash) 2986 prot->unhash(other); 2987 if (mode&RCV_SHUTDOWN) 2988 peer_mode |= SEND_SHUTDOWN; 2989 if (mode&SEND_SHUTDOWN) 2990 peer_mode |= RCV_SHUTDOWN; 2991 unix_state_lock(other); 2992 other->sk_shutdown |= peer_mode; 2993 unix_state_unlock(other); 2994 other->sk_state_change(other); 2995 if (peer_mode == SHUTDOWN_MASK) 2996 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 2997 else if (peer_mode & RCV_SHUTDOWN) 2998 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 2999 } 3000 if (other) 3001 sock_put(other); 3002 3003 return 0; 3004 } 3005 3006 long unix_inq_len(struct sock *sk) 3007 { 3008 struct sk_buff *skb; 3009 long amount = 0; 3010 3011 if (sk->sk_state == TCP_LISTEN) 3012 return -EINVAL; 3013 3014 spin_lock(&sk->sk_receive_queue.lock); 3015 if (sk->sk_type == SOCK_STREAM || 3016 sk->sk_type == SOCK_SEQPACKET) { 3017 skb_queue_walk(&sk->sk_receive_queue, skb) 3018 amount += unix_skb_len(skb); 3019 } else { 3020 skb = skb_peek(&sk->sk_receive_queue); 3021 if (skb) 3022 amount = skb->len; 3023 } 3024 spin_unlock(&sk->sk_receive_queue.lock); 3025 3026 return amount; 3027 } 3028 EXPORT_SYMBOL_GPL(unix_inq_len); 3029 3030 long unix_outq_len(struct sock *sk) 3031 { 3032 return sk_wmem_alloc_get(sk); 3033 } 3034 EXPORT_SYMBOL_GPL(unix_outq_len); 3035 3036 static int unix_open_file(struct sock *sk) 3037 { 3038 struct path path; 3039 struct file *f; 3040 int fd; 3041 3042 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3043 return -EPERM; 3044 3045 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3046 return -ENOENT; 3047 3048 path = unix_sk(sk)->path; 3049 if (!path.dentry) 3050 return -ENOENT; 3051 3052 path_get(&path); 3053 3054 fd = get_unused_fd_flags(O_CLOEXEC); 3055 if (fd < 0) 3056 goto out; 3057 3058 f = dentry_open(&path, O_PATH, current_cred()); 3059 if (IS_ERR(f)) { 3060 put_unused_fd(fd); 3061 fd = PTR_ERR(f); 3062 goto out; 3063 } 3064 3065 fd_install(fd, f); 3066 out: 3067 path_put(&path); 3068 3069 return fd; 3070 } 3071 3072 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3073 { 3074 struct sock *sk = sock->sk; 3075 long amount = 0; 3076 int err; 3077 3078 switch (cmd) { 3079 case SIOCOUTQ: 3080 amount = unix_outq_len(sk); 3081 err = put_user(amount, (int __user *)arg); 3082 break; 3083 case SIOCINQ: 3084 amount = unix_inq_len(sk); 3085 if (amount < 0) 3086 err = amount; 3087 else 3088 err = put_user(amount, (int __user *)arg); 3089 break; 3090 case SIOCUNIXFILE: 3091 err = unix_open_file(sk); 3092 break; 3093 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3094 case SIOCATMARK: 3095 { 3096 struct sk_buff *skb; 3097 struct unix_sock *u = unix_sk(sk); 3098 int answ = 0; 3099 3100 skb = skb_peek(&sk->sk_receive_queue); 3101 if (skb && skb == u->oob_skb) 3102 answ = 1; 3103 err = put_user(answ, (int __user *)arg); 3104 } 3105 break; 3106 #endif 3107 default: 3108 err = -ENOIOCTLCMD; 3109 break; 3110 } 3111 return err; 3112 } 3113 3114 #ifdef CONFIG_COMPAT 3115 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3116 { 3117 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3118 } 3119 #endif 3120 3121 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3122 { 3123 struct sock *sk = sock->sk; 3124 __poll_t mask; 3125 3126 sock_poll_wait(file, sock, wait); 3127 mask = 0; 3128 3129 /* exceptional events? */ 3130 if (sk->sk_err) 3131 mask |= EPOLLERR; 3132 if (sk->sk_shutdown == SHUTDOWN_MASK) 3133 mask |= EPOLLHUP; 3134 if (sk->sk_shutdown & RCV_SHUTDOWN) 3135 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3136 3137 /* readable? */ 3138 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3139 mask |= EPOLLIN | EPOLLRDNORM; 3140 if (sk_is_readable(sk)) 3141 mask |= EPOLLIN | EPOLLRDNORM; 3142 3143 /* Connection-based need to check for termination and startup */ 3144 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3145 sk->sk_state == TCP_CLOSE) 3146 mask |= EPOLLHUP; 3147 3148 /* 3149 * we set writable also when the other side has shut down the 3150 * connection. This prevents stuck sockets. 3151 */ 3152 if (unix_writable(sk)) 3153 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3154 3155 return mask; 3156 } 3157 3158 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3159 poll_table *wait) 3160 { 3161 struct sock *sk = sock->sk, *other; 3162 unsigned int writable; 3163 __poll_t mask; 3164 3165 sock_poll_wait(file, sock, wait); 3166 mask = 0; 3167 3168 /* exceptional events? */ 3169 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 3170 mask |= EPOLLERR | 3171 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3172 3173 if (sk->sk_shutdown & RCV_SHUTDOWN) 3174 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3175 if (sk->sk_shutdown == SHUTDOWN_MASK) 3176 mask |= EPOLLHUP; 3177 3178 /* readable? */ 3179 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3180 mask |= EPOLLIN | EPOLLRDNORM; 3181 if (sk_is_readable(sk)) 3182 mask |= EPOLLIN | EPOLLRDNORM; 3183 3184 /* Connection-based need to check for termination and startup */ 3185 if (sk->sk_type == SOCK_SEQPACKET) { 3186 if (sk->sk_state == TCP_CLOSE) 3187 mask |= EPOLLHUP; 3188 /* connection hasn't started yet? */ 3189 if (sk->sk_state == TCP_SYN_SENT) 3190 return mask; 3191 } 3192 3193 /* No write status requested, avoid expensive OUT tests. */ 3194 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3195 return mask; 3196 3197 writable = unix_writable(sk); 3198 if (writable) { 3199 unix_state_lock(sk); 3200 3201 other = unix_peer(sk); 3202 if (other && unix_peer(other) != sk && 3203 unix_recvq_full_lockless(other) && 3204 unix_dgram_peer_wake_me(sk, other)) 3205 writable = 0; 3206 3207 unix_state_unlock(sk); 3208 } 3209 3210 if (writable) 3211 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3212 else 3213 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3214 3215 return mask; 3216 } 3217 3218 #ifdef CONFIG_PROC_FS 3219 3220 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3221 3222 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3223 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3224 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3225 3226 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3227 { 3228 unsigned long offset = get_offset(*pos); 3229 unsigned long bucket = get_bucket(*pos); 3230 struct sock *sk; 3231 unsigned long count = 0; 3232 3233 for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) { 3234 if (sock_net(sk) != seq_file_net(seq)) 3235 continue; 3236 if (++count == offset) 3237 break; 3238 } 3239 3240 return sk; 3241 } 3242 3243 static struct sock *unix_next_socket(struct seq_file *seq, 3244 struct sock *sk, 3245 loff_t *pos) 3246 { 3247 unsigned long bucket = get_bucket(*pos); 3248 3249 while (sk > (struct sock *)SEQ_START_TOKEN) { 3250 sk = sk_next(sk); 3251 if (!sk) 3252 goto next_bucket; 3253 if (sock_net(sk) == seq_file_net(seq)) 3254 return sk; 3255 } 3256 3257 do { 3258 spin_lock(&unix_table_locks[bucket]); 3259 sk = unix_from_bucket(seq, pos); 3260 if (sk) 3261 return sk; 3262 3263 next_bucket: 3264 spin_unlock(&unix_table_locks[bucket++]); 3265 *pos = set_bucket_offset(bucket, 1); 3266 } while (bucket < ARRAY_SIZE(unix_socket_table)); 3267 3268 return NULL; 3269 } 3270 3271 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3272 { 3273 if (!*pos) 3274 return SEQ_START_TOKEN; 3275 3276 if (get_bucket(*pos) >= ARRAY_SIZE(unix_socket_table)) 3277 return NULL; 3278 3279 return unix_next_socket(seq, NULL, pos); 3280 } 3281 3282 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3283 { 3284 ++*pos; 3285 return unix_next_socket(seq, v, pos); 3286 } 3287 3288 static void unix_seq_stop(struct seq_file *seq, void *v) 3289 { 3290 struct sock *sk = v; 3291 3292 if (sk) 3293 spin_unlock(&unix_table_locks[sk->sk_hash]); 3294 } 3295 3296 static int unix_seq_show(struct seq_file *seq, void *v) 3297 { 3298 3299 if (v == SEQ_START_TOKEN) 3300 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3301 "Inode Path\n"); 3302 else { 3303 struct sock *s = v; 3304 struct unix_sock *u = unix_sk(s); 3305 unix_state_lock(s); 3306 3307 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3308 s, 3309 refcount_read(&s->sk_refcnt), 3310 0, 3311 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3312 s->sk_type, 3313 s->sk_socket ? 3314 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3315 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3316 sock_i_ino(s)); 3317 3318 if (u->addr) { // under unix_table_locks here 3319 int i, len; 3320 seq_putc(seq, ' '); 3321 3322 i = 0; 3323 len = u->addr->len - 3324 offsetof(struct sockaddr_un, sun_path); 3325 if (u->addr->name->sun_path[0]) { 3326 len--; 3327 } else { 3328 seq_putc(seq, '@'); 3329 i++; 3330 } 3331 for ( ; i < len; i++) 3332 seq_putc(seq, u->addr->name->sun_path[i] ?: 3333 '@'); 3334 } 3335 unix_state_unlock(s); 3336 seq_putc(seq, '\n'); 3337 } 3338 3339 return 0; 3340 } 3341 3342 static const struct seq_operations unix_seq_ops = { 3343 .start = unix_seq_start, 3344 .next = unix_seq_next, 3345 .stop = unix_seq_stop, 3346 .show = unix_seq_show, 3347 }; 3348 3349 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3350 struct bpf_iter__unix { 3351 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3352 __bpf_md_ptr(struct unix_sock *, unix_sk); 3353 uid_t uid __aligned(8); 3354 }; 3355 3356 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3357 struct unix_sock *unix_sk, uid_t uid) 3358 { 3359 struct bpf_iter__unix ctx; 3360 3361 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3362 ctx.meta = meta; 3363 ctx.unix_sk = unix_sk; 3364 ctx.uid = uid; 3365 return bpf_iter_run_prog(prog, &ctx); 3366 } 3367 3368 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3369 { 3370 struct bpf_iter_meta meta; 3371 struct bpf_prog *prog; 3372 struct sock *sk = v; 3373 uid_t uid; 3374 3375 if (v == SEQ_START_TOKEN) 3376 return 0; 3377 3378 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3379 meta.seq = seq; 3380 prog = bpf_iter_get_info(&meta, false); 3381 return unix_prog_seq_show(prog, &meta, v, uid); 3382 } 3383 3384 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3385 { 3386 struct bpf_iter_meta meta; 3387 struct bpf_prog *prog; 3388 3389 if (!v) { 3390 meta.seq = seq; 3391 prog = bpf_iter_get_info(&meta, true); 3392 if (prog) 3393 (void)unix_prog_seq_show(prog, &meta, v, 0); 3394 } 3395 3396 unix_seq_stop(seq, v); 3397 } 3398 3399 static const struct seq_operations bpf_iter_unix_seq_ops = { 3400 .start = unix_seq_start, 3401 .next = unix_seq_next, 3402 .stop = bpf_iter_unix_seq_stop, 3403 .show = bpf_iter_unix_seq_show, 3404 }; 3405 #endif 3406 #endif 3407 3408 static const struct net_proto_family unix_family_ops = { 3409 .family = PF_UNIX, 3410 .create = unix_create, 3411 .owner = THIS_MODULE, 3412 }; 3413 3414 3415 static int __net_init unix_net_init(struct net *net) 3416 { 3417 int error = -ENOMEM; 3418 3419 net->unx.sysctl_max_dgram_qlen = 10; 3420 if (unix_sysctl_register(net)) 3421 goto out; 3422 3423 #ifdef CONFIG_PROC_FS 3424 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3425 sizeof(struct seq_net_private))) { 3426 unix_sysctl_unregister(net); 3427 goto out; 3428 } 3429 #endif 3430 error = 0; 3431 out: 3432 return error; 3433 } 3434 3435 static void __net_exit unix_net_exit(struct net *net) 3436 { 3437 unix_sysctl_unregister(net); 3438 remove_proc_entry("unix", net->proc_net); 3439 } 3440 3441 static struct pernet_operations unix_net_ops = { 3442 .init = unix_net_init, 3443 .exit = unix_net_exit, 3444 }; 3445 3446 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3447 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3448 struct unix_sock *unix_sk, uid_t uid) 3449 3450 static const struct bpf_iter_seq_info unix_seq_info = { 3451 .seq_ops = &bpf_iter_unix_seq_ops, 3452 .init_seq_private = bpf_iter_init_seq_net, 3453 .fini_seq_private = bpf_iter_fini_seq_net, 3454 .seq_priv_size = sizeof(struct seq_net_private), 3455 }; 3456 3457 static struct bpf_iter_reg unix_reg_info = { 3458 .target = "unix", 3459 .ctx_arg_info_size = 1, 3460 .ctx_arg_info = { 3461 { offsetof(struct bpf_iter__unix, unix_sk), 3462 PTR_TO_BTF_ID_OR_NULL }, 3463 }, 3464 .seq_info = &unix_seq_info, 3465 }; 3466 3467 static void __init bpf_iter_register(void) 3468 { 3469 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3470 if (bpf_iter_reg_target(&unix_reg_info)) 3471 pr_warn("Warning: could not register bpf iterator unix\n"); 3472 } 3473 #endif 3474 3475 static int __init af_unix_init(void) 3476 { 3477 int i, rc = -1; 3478 3479 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3480 3481 for (i = 0; i < 2 * UNIX_HASH_SIZE; i++) 3482 spin_lock_init(&unix_table_locks[i]); 3483 3484 rc = proto_register(&unix_dgram_proto, 1); 3485 if (rc != 0) { 3486 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3487 goto out; 3488 } 3489 3490 rc = proto_register(&unix_stream_proto, 1); 3491 if (rc != 0) { 3492 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3493 goto out; 3494 } 3495 3496 sock_register(&unix_family_ops); 3497 register_pernet_subsys(&unix_net_ops); 3498 unix_bpf_build_proto(); 3499 3500 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3501 bpf_iter_register(); 3502 #endif 3503 3504 out: 3505 return rc; 3506 } 3507 3508 static void __exit af_unix_exit(void) 3509 { 3510 sock_unregister(PF_UNIX); 3511 proto_unregister(&unix_dgram_proto); 3512 proto_unregister(&unix_stream_proto); 3513 unregister_pernet_subsys(&unix_net_ops); 3514 } 3515 3516 /* Earlier than device_initcall() so that other drivers invoking 3517 request_module() don't end up in a loop when modprobe tries 3518 to use a UNIX socket. But later than subsys_initcall() because 3519 we depend on stuff initialised there */ 3520 fs_initcall(af_unix_init); 3521 module_exit(af_unix_exit); 3522 3523 MODULE_LICENSE("GPL"); 3524 MODULE_ALIAS_NETPROTO(PF_UNIX); 3525