1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET4: Implementation of BSD Unix domain sockets. 4 * 5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * 7 * Fixes: 8 * Linus Torvalds : Assorted bug cures. 9 * Niibe Yutaka : async I/O support. 10 * Carsten Paeth : PF_UNIX check, address fixes. 11 * Alan Cox : Limit size of allocated blocks. 12 * Alan Cox : Fixed the stupid socketpair bug. 13 * Alan Cox : BSD compatibility fine tuning. 14 * Alan Cox : Fixed a bug in connect when interrupted. 15 * Alan Cox : Sorted out a proper draft version of 16 * file descriptor passing hacked up from 17 * Mike Shaver's work. 18 * Marty Leisner : Fixes to fd passing 19 * Nick Nevin : recvmsg bugfix. 20 * Alan Cox : Started proper garbage collector 21 * Heiko EiBfeldt : Missing verify_area check 22 * Alan Cox : Started POSIXisms 23 * Andreas Schwab : Replace inode by dentry for proper 24 * reference counting 25 * Kirk Petersen : Made this a module 26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm. 27 * Lots of bug fixes. 28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces 29 * by above two patches. 30 * Andrea Arcangeli : If possible we block in connect(2) 31 * if the max backlog of the listen socket 32 * is been reached. This won't break 33 * old apps and it will avoid huge amount 34 * of socks hashed (this for unix_gc() 35 * performances reasons). 36 * Security fix that limits the max 37 * number of socks to 2*max_files and 38 * the number of skb queueable in the 39 * dgram receiver. 40 * Artur Skawina : Hash function optimizations 41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8) 42 * Malcolm Beattie : Set peercred for socketpair 43 * Michal Ostrowski : Module initialization cleanup. 44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT, 45 * the core infrastructure is doing that 46 * for all net proto families now (2.5.69+) 47 * 48 * Known differences from reference BSD that was tested: 49 * 50 * [TO FIX] 51 * ECONNREFUSED is not returned from one end of a connected() socket to the 52 * other the moment one end closes. 53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark 54 * and a fake inode identifier (nor the BSD first socket fstat twice bug). 55 * [NOT TO FIX] 56 * accept() returns a path name even if the connecting socket has closed 57 * in the meantime (BSD loses the path and gives up). 58 * accept() returns 0 length path for an unbound connector. BSD returns 16 59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??) 60 * socketpair(...SOCK_RAW..) doesn't panic the kernel. 61 * BSD af_unix apparently has connect forgetting to block properly. 62 * (need to check this with the POSIX spec in detail) 63 * 64 * Differences from 2.0.0-11-... (ANK) 65 * Bug fixes and improvements. 66 * - client shutdown killed server socket. 67 * - removed all useless cli/sti pairs. 68 * 69 * Semantic changes/extensions. 70 * - generic control message passing. 71 * - SCM_CREDENTIALS control message. 72 * - "Abstract" (not FS based) socket bindings. 73 * Abstract names are sequences of bytes (not zero terminated) 74 * started by 0, so that this name space does not intersect 75 * with BSD names. 76 */ 77 78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 79 80 #include <linux/module.h> 81 #include <linux/kernel.h> 82 #include <linux/signal.h> 83 #include <linux/sched/signal.h> 84 #include <linux/errno.h> 85 #include <linux/string.h> 86 #include <linux/stat.h> 87 #include <linux/dcache.h> 88 #include <linux/namei.h> 89 #include <linux/socket.h> 90 #include <linux/un.h> 91 #include <linux/fcntl.h> 92 #include <linux/filter.h> 93 #include <linux/termios.h> 94 #include <linux/sockios.h> 95 #include <linux/net.h> 96 #include <linux/in.h> 97 #include <linux/fs.h> 98 #include <linux/slab.h> 99 #include <linux/uaccess.h> 100 #include <linux/skbuff.h> 101 #include <linux/netdevice.h> 102 #include <net/net_namespace.h> 103 #include <net/sock.h> 104 #include <net/tcp_states.h> 105 #include <net/af_unix.h> 106 #include <linux/proc_fs.h> 107 #include <linux/seq_file.h> 108 #include <net/scm.h> 109 #include <linux/init.h> 110 #include <linux/poll.h> 111 #include <linux/rtnetlink.h> 112 #include <linux/mount.h> 113 #include <net/checksum.h> 114 #include <linux/security.h> 115 #include <linux/freezer.h> 116 #include <linux/file.h> 117 #include <linux/btf_ids.h> 118 119 #include "scm.h" 120 121 static atomic_long_t unix_nr_socks; 122 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2]; 123 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2]; 124 125 /* SMP locking strategy: 126 * hash table is protected with spinlock. 127 * each socket state is protected by separate spinlock. 128 */ 129 130 static unsigned int unix_unbound_hash(struct sock *sk) 131 { 132 unsigned long hash = (unsigned long)sk; 133 134 hash ^= hash >> 16; 135 hash ^= hash >> 8; 136 hash ^= sk->sk_type; 137 138 return hash & UNIX_HASH_MOD; 139 } 140 141 static unsigned int unix_bsd_hash(struct inode *i) 142 { 143 return i->i_ino & UNIX_HASH_MOD; 144 } 145 146 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr, 147 int addr_len, int type) 148 { 149 __wsum csum = csum_partial(sunaddr, addr_len, 0); 150 unsigned int hash; 151 152 hash = (__force unsigned int)csum_fold(csum); 153 hash ^= hash >> 8; 154 hash ^= type; 155 156 return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD); 157 } 158 159 static void unix_table_double_lock(struct net *net, 160 unsigned int hash1, unsigned int hash2) 161 { 162 if (hash1 == hash2) { 163 spin_lock(&net->unx.table.locks[hash1]); 164 return; 165 } 166 167 if (hash1 > hash2) 168 swap(hash1, hash2); 169 170 spin_lock(&net->unx.table.locks[hash1]); 171 spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING); 172 } 173 174 static void unix_table_double_unlock(struct net *net, 175 unsigned int hash1, unsigned int hash2) 176 { 177 if (hash1 == hash2) { 178 spin_unlock(&net->unx.table.locks[hash1]); 179 return; 180 } 181 182 spin_unlock(&net->unx.table.locks[hash1]); 183 spin_unlock(&net->unx.table.locks[hash2]); 184 } 185 186 #ifdef CONFIG_SECURITY_NETWORK 187 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 188 { 189 UNIXCB(skb).secid = scm->secid; 190 } 191 192 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 193 { 194 scm->secid = UNIXCB(skb).secid; 195 } 196 197 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 198 { 199 return (scm->secid == UNIXCB(skb).secid); 200 } 201 #else 202 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb) 203 { } 204 205 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb) 206 { } 207 208 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb) 209 { 210 return true; 211 } 212 #endif /* CONFIG_SECURITY_NETWORK */ 213 214 #define unix_peer(sk) (unix_sk(sk)->peer) 215 216 static inline int unix_our_peer(struct sock *sk, struct sock *osk) 217 { 218 return unix_peer(osk) == sk; 219 } 220 221 static inline int unix_may_send(struct sock *sk, struct sock *osk) 222 { 223 return unix_peer(osk) == NULL || unix_our_peer(sk, osk); 224 } 225 226 static inline int unix_recvq_full(const struct sock *sk) 227 { 228 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog; 229 } 230 231 static inline int unix_recvq_full_lockless(const struct sock *sk) 232 { 233 return skb_queue_len_lockless(&sk->sk_receive_queue) > 234 READ_ONCE(sk->sk_max_ack_backlog); 235 } 236 237 struct sock *unix_peer_get(struct sock *s) 238 { 239 struct sock *peer; 240 241 unix_state_lock(s); 242 peer = unix_peer(s); 243 if (peer) 244 sock_hold(peer); 245 unix_state_unlock(s); 246 return peer; 247 } 248 EXPORT_SYMBOL_GPL(unix_peer_get); 249 250 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr, 251 int addr_len) 252 { 253 struct unix_address *addr; 254 255 addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL); 256 if (!addr) 257 return NULL; 258 259 refcount_set(&addr->refcnt, 1); 260 addr->len = addr_len; 261 memcpy(addr->name, sunaddr, addr_len); 262 263 return addr; 264 } 265 266 static inline void unix_release_addr(struct unix_address *addr) 267 { 268 if (refcount_dec_and_test(&addr->refcnt)) 269 kfree(addr); 270 } 271 272 /* 273 * Check unix socket name: 274 * - should be not zero length. 275 * - if started by not zero, should be NULL terminated (FS object) 276 * - if started by zero, it is abstract name. 277 */ 278 279 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len) 280 { 281 if (addr_len <= offsetof(struct sockaddr_un, sun_path) || 282 addr_len > sizeof(*sunaddr)) 283 return -EINVAL; 284 285 if (sunaddr->sun_family != AF_UNIX) 286 return -EINVAL; 287 288 return 0; 289 } 290 291 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len) 292 { 293 /* This may look like an off by one error but it is a bit more 294 * subtle. 108 is the longest valid AF_UNIX path for a binding. 295 * sun_path[108] doesn't as such exist. However in kernel space 296 * we are guaranteed that it is a valid memory location in our 297 * kernel address buffer because syscall functions always pass 298 * a pointer of struct sockaddr_storage which has a bigger buffer 299 * than 108. 300 */ 301 ((char *)sunaddr)[addr_len] = 0; 302 } 303 304 static void __unix_remove_socket(struct sock *sk) 305 { 306 sk_del_node_init(sk); 307 } 308 309 static void __unix_insert_socket(struct net *net, struct sock *sk) 310 { 311 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 312 sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]); 313 } 314 315 static void __unix_set_addr_hash(struct net *net, struct sock *sk, 316 struct unix_address *addr, unsigned int hash) 317 { 318 __unix_remove_socket(sk); 319 smp_store_release(&unix_sk(sk)->addr, addr); 320 321 sk->sk_hash = hash; 322 __unix_insert_socket(net, sk); 323 } 324 325 static void unix_remove_socket(struct net *net, struct sock *sk) 326 { 327 spin_lock(&net->unx.table.locks[sk->sk_hash]); 328 __unix_remove_socket(sk); 329 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 330 } 331 332 static void unix_insert_unbound_socket(struct net *net, struct sock *sk) 333 { 334 spin_lock(&net->unx.table.locks[sk->sk_hash]); 335 __unix_insert_socket(net, sk); 336 spin_unlock(&net->unx.table.locks[sk->sk_hash]); 337 } 338 339 static void unix_insert_bsd_socket(struct sock *sk) 340 { 341 spin_lock(&bsd_socket_locks[sk->sk_hash]); 342 sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]); 343 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 344 } 345 346 static void unix_remove_bsd_socket(struct sock *sk) 347 { 348 if (!hlist_unhashed(&sk->sk_bind_node)) { 349 spin_lock(&bsd_socket_locks[sk->sk_hash]); 350 __sk_del_bind_node(sk); 351 spin_unlock(&bsd_socket_locks[sk->sk_hash]); 352 353 sk_node_init(&sk->sk_bind_node); 354 } 355 } 356 357 static struct sock *__unix_find_socket_byname(struct net *net, 358 struct sockaddr_un *sunname, 359 int len, unsigned int hash) 360 { 361 struct sock *s; 362 363 sk_for_each(s, &net->unx.table.buckets[hash]) { 364 struct unix_sock *u = unix_sk(s); 365 366 if (u->addr->len == len && 367 !memcmp(u->addr->name, sunname, len)) 368 return s; 369 } 370 return NULL; 371 } 372 373 static inline struct sock *unix_find_socket_byname(struct net *net, 374 struct sockaddr_un *sunname, 375 int len, unsigned int hash) 376 { 377 struct sock *s; 378 379 spin_lock(&net->unx.table.locks[hash]); 380 s = __unix_find_socket_byname(net, sunname, len, hash); 381 if (s) 382 sock_hold(s); 383 spin_unlock(&net->unx.table.locks[hash]); 384 return s; 385 } 386 387 static struct sock *unix_find_socket_byinode(struct inode *i) 388 { 389 unsigned int hash = unix_bsd_hash(i); 390 struct sock *s; 391 392 spin_lock(&bsd_socket_locks[hash]); 393 sk_for_each_bound(s, &bsd_socket_buckets[hash]) { 394 struct dentry *dentry = unix_sk(s)->path.dentry; 395 396 if (dentry && d_backing_inode(dentry) == i) { 397 sock_hold(s); 398 spin_unlock(&bsd_socket_locks[hash]); 399 return s; 400 } 401 } 402 spin_unlock(&bsd_socket_locks[hash]); 403 return NULL; 404 } 405 406 /* Support code for asymmetrically connected dgram sockets 407 * 408 * If a datagram socket is connected to a socket not itself connected 409 * to the first socket (eg, /dev/log), clients may only enqueue more 410 * messages if the present receive queue of the server socket is not 411 * "too large". This means there's a second writeability condition 412 * poll and sendmsg need to test. The dgram recv code will do a wake 413 * up on the peer_wait wait queue of a socket upon reception of a 414 * datagram which needs to be propagated to sleeping would-be writers 415 * since these might not have sent anything so far. This can't be 416 * accomplished via poll_wait because the lifetime of the server 417 * socket might be less than that of its clients if these break their 418 * association with it or if the server socket is closed while clients 419 * are still connected to it and there's no way to inform "a polling 420 * implementation" that it should let go of a certain wait queue 421 * 422 * In order to propagate a wake up, a wait_queue_entry_t of the client 423 * socket is enqueued on the peer_wait queue of the server socket 424 * whose wake function does a wake_up on the ordinary client socket 425 * wait queue. This connection is established whenever a write (or 426 * poll for write) hit the flow control condition and broken when the 427 * association to the server socket is dissolved or after a wake up 428 * was relayed. 429 */ 430 431 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags, 432 void *key) 433 { 434 struct unix_sock *u; 435 wait_queue_head_t *u_sleep; 436 437 u = container_of(q, struct unix_sock, peer_wake); 438 439 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait, 440 q); 441 u->peer_wake.private = NULL; 442 443 /* relaying can only happen while the wq still exists */ 444 u_sleep = sk_sleep(&u->sk); 445 if (u_sleep) 446 wake_up_interruptible_poll(u_sleep, key_to_poll(key)); 447 448 return 0; 449 } 450 451 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other) 452 { 453 struct unix_sock *u, *u_other; 454 int rc; 455 456 u = unix_sk(sk); 457 u_other = unix_sk(other); 458 rc = 0; 459 spin_lock(&u_other->peer_wait.lock); 460 461 if (!u->peer_wake.private) { 462 u->peer_wake.private = other; 463 __add_wait_queue(&u_other->peer_wait, &u->peer_wake); 464 465 rc = 1; 466 } 467 468 spin_unlock(&u_other->peer_wait.lock); 469 return rc; 470 } 471 472 static void unix_dgram_peer_wake_disconnect(struct sock *sk, 473 struct sock *other) 474 { 475 struct unix_sock *u, *u_other; 476 477 u = unix_sk(sk); 478 u_other = unix_sk(other); 479 spin_lock(&u_other->peer_wait.lock); 480 481 if (u->peer_wake.private == other) { 482 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake); 483 u->peer_wake.private = NULL; 484 } 485 486 spin_unlock(&u_other->peer_wait.lock); 487 } 488 489 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk, 490 struct sock *other) 491 { 492 unix_dgram_peer_wake_disconnect(sk, other); 493 wake_up_interruptible_poll(sk_sleep(sk), 494 EPOLLOUT | 495 EPOLLWRNORM | 496 EPOLLWRBAND); 497 } 498 499 /* preconditions: 500 * - unix_peer(sk) == other 501 * - association is stable 502 */ 503 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other) 504 { 505 int connected; 506 507 connected = unix_dgram_peer_wake_connect(sk, other); 508 509 /* If other is SOCK_DEAD, we want to make sure we signal 510 * POLLOUT, such that a subsequent write() can get a 511 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs 512 * to other and its full, we will hang waiting for POLLOUT. 513 */ 514 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD)) 515 return 1; 516 517 if (connected) 518 unix_dgram_peer_wake_disconnect(sk, other); 519 520 return 0; 521 } 522 523 static int unix_writable(const struct sock *sk) 524 { 525 return sk->sk_state != TCP_LISTEN && 526 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; 527 } 528 529 static void unix_write_space(struct sock *sk) 530 { 531 struct socket_wq *wq; 532 533 rcu_read_lock(); 534 if (unix_writable(sk)) { 535 wq = rcu_dereference(sk->sk_wq); 536 if (skwq_has_sleeper(wq)) 537 wake_up_interruptible_sync_poll(&wq->wait, 538 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); 539 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); 540 } 541 rcu_read_unlock(); 542 } 543 544 /* When dgram socket disconnects (or changes its peer), we clear its receive 545 * queue of packets arrived from previous peer. First, it allows to do 546 * flow control based only on wmem_alloc; second, sk connected to peer 547 * may receive messages only from that peer. */ 548 static void unix_dgram_disconnected(struct sock *sk, struct sock *other) 549 { 550 if (!skb_queue_empty(&sk->sk_receive_queue)) { 551 skb_queue_purge(&sk->sk_receive_queue); 552 wake_up_interruptible_all(&unix_sk(sk)->peer_wait); 553 554 /* If one link of bidirectional dgram pipe is disconnected, 555 * we signal error. Messages are lost. Do not make this, 556 * when peer was not connected to us. 557 */ 558 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { 559 other->sk_err = ECONNRESET; 560 sk_error_report(other); 561 } 562 } 563 other->sk_state = TCP_CLOSE; 564 } 565 566 static void unix_sock_destructor(struct sock *sk) 567 { 568 struct unix_sock *u = unix_sk(sk); 569 570 skb_queue_purge(&sk->sk_receive_queue); 571 572 DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc)); 573 DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk)); 574 DEBUG_NET_WARN_ON_ONCE(sk->sk_socket); 575 if (!sock_flag(sk, SOCK_DEAD)) { 576 pr_info("Attempt to release alive unix socket: %p\n", sk); 577 return; 578 } 579 580 if (u->addr) 581 unix_release_addr(u->addr); 582 583 atomic_long_dec(&unix_nr_socks); 584 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 585 #ifdef UNIX_REFCNT_DEBUG 586 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk, 587 atomic_long_read(&unix_nr_socks)); 588 #endif 589 } 590 591 static void unix_release_sock(struct sock *sk, int embrion) 592 { 593 struct unix_sock *u = unix_sk(sk); 594 struct sock *skpair; 595 struct sk_buff *skb; 596 struct path path; 597 int state; 598 599 unix_remove_socket(sock_net(sk), sk); 600 unix_remove_bsd_socket(sk); 601 602 /* Clear state */ 603 unix_state_lock(sk); 604 sock_orphan(sk); 605 sk->sk_shutdown = SHUTDOWN_MASK; 606 path = u->path; 607 u->path.dentry = NULL; 608 u->path.mnt = NULL; 609 state = sk->sk_state; 610 sk->sk_state = TCP_CLOSE; 611 612 skpair = unix_peer(sk); 613 unix_peer(sk) = NULL; 614 615 unix_state_unlock(sk); 616 617 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 618 if (u->oob_skb) { 619 kfree_skb(u->oob_skb); 620 u->oob_skb = NULL; 621 } 622 #endif 623 624 wake_up_interruptible_all(&u->peer_wait); 625 626 if (skpair != NULL) { 627 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { 628 unix_state_lock(skpair); 629 /* No more writes */ 630 skpair->sk_shutdown = SHUTDOWN_MASK; 631 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) 632 skpair->sk_err = ECONNRESET; 633 unix_state_unlock(skpair); 634 skpair->sk_state_change(skpair); 635 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); 636 } 637 638 unix_dgram_peer_wake_disconnect(sk, skpair); 639 sock_put(skpair); /* It may now die */ 640 } 641 642 /* Try to flush out this socket. Throw out buffers at least */ 643 644 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 645 if (state == TCP_LISTEN) 646 unix_release_sock(skb->sk, 1); 647 /* passed fds are erased in the kfree_skb hook */ 648 UNIXCB(skb).consumed = skb->len; 649 kfree_skb(skb); 650 } 651 652 if (path.dentry) 653 path_put(&path); 654 655 sock_put(sk); 656 657 /* ---- Socket is dead now and most probably destroyed ---- */ 658 659 /* 660 * Fixme: BSD difference: In BSD all sockets connected to us get 661 * ECONNRESET and we die on the spot. In Linux we behave 662 * like files and pipes do and wait for the last 663 * dereference. 664 * 665 * Can't we simply set sock->err? 666 * 667 * What the above comment does talk about? --ANK(980817) 668 */ 669 670 if (unix_tot_inflight) 671 unix_gc(); /* Garbage collect fds */ 672 } 673 674 static void init_peercred(struct sock *sk) 675 { 676 const struct cred *old_cred; 677 struct pid *old_pid; 678 679 spin_lock(&sk->sk_peer_lock); 680 old_pid = sk->sk_peer_pid; 681 old_cred = sk->sk_peer_cred; 682 sk->sk_peer_pid = get_pid(task_tgid(current)); 683 sk->sk_peer_cred = get_current_cred(); 684 spin_unlock(&sk->sk_peer_lock); 685 686 put_pid(old_pid); 687 put_cred(old_cred); 688 } 689 690 static void copy_peercred(struct sock *sk, struct sock *peersk) 691 { 692 const struct cred *old_cred; 693 struct pid *old_pid; 694 695 if (sk < peersk) { 696 spin_lock(&sk->sk_peer_lock); 697 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING); 698 } else { 699 spin_lock(&peersk->sk_peer_lock); 700 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING); 701 } 702 old_pid = sk->sk_peer_pid; 703 old_cred = sk->sk_peer_cred; 704 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid); 705 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred); 706 707 spin_unlock(&sk->sk_peer_lock); 708 spin_unlock(&peersk->sk_peer_lock); 709 710 put_pid(old_pid); 711 put_cred(old_cred); 712 } 713 714 static int unix_listen(struct socket *sock, int backlog) 715 { 716 int err; 717 struct sock *sk = sock->sk; 718 struct unix_sock *u = unix_sk(sk); 719 720 err = -EOPNOTSUPP; 721 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 722 goto out; /* Only stream/seqpacket sockets accept */ 723 err = -EINVAL; 724 if (!u->addr) 725 goto out; /* No listens on an unbound socket */ 726 unix_state_lock(sk); 727 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) 728 goto out_unlock; 729 if (backlog > sk->sk_max_ack_backlog) 730 wake_up_interruptible_all(&u->peer_wait); 731 sk->sk_max_ack_backlog = backlog; 732 sk->sk_state = TCP_LISTEN; 733 /* set credentials so connect can copy them */ 734 init_peercred(sk); 735 err = 0; 736 737 out_unlock: 738 unix_state_unlock(sk); 739 out: 740 return err; 741 } 742 743 static int unix_release(struct socket *); 744 static int unix_bind(struct socket *, struct sockaddr *, int); 745 static int unix_stream_connect(struct socket *, struct sockaddr *, 746 int addr_len, int flags); 747 static int unix_socketpair(struct socket *, struct socket *); 748 static int unix_accept(struct socket *, struct socket *, int, bool); 749 static int unix_getname(struct socket *, struct sockaddr *, int); 750 static __poll_t unix_poll(struct file *, struct socket *, poll_table *); 751 static __poll_t unix_dgram_poll(struct file *, struct socket *, 752 poll_table *); 753 static int unix_ioctl(struct socket *, unsigned int, unsigned long); 754 #ifdef CONFIG_COMPAT 755 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); 756 #endif 757 static int unix_shutdown(struct socket *, int); 758 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t); 759 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int); 760 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset, 761 size_t size, int flags); 762 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos, 763 struct pipe_inode_info *, size_t size, 764 unsigned int flags); 765 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t); 766 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int); 767 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 768 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 769 static int unix_dgram_connect(struct socket *, struct sockaddr *, 770 int, int); 771 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t); 772 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t, 773 int); 774 775 static int unix_set_peek_off(struct sock *sk, int val) 776 { 777 struct unix_sock *u = unix_sk(sk); 778 779 if (mutex_lock_interruptible(&u->iolock)) 780 return -EINTR; 781 782 sk->sk_peek_off = val; 783 mutex_unlock(&u->iolock); 784 785 return 0; 786 } 787 788 #ifdef CONFIG_PROC_FS 789 static int unix_count_nr_fds(struct sock *sk) 790 { 791 struct sk_buff *skb; 792 struct unix_sock *u; 793 int nr_fds = 0; 794 795 spin_lock(&sk->sk_receive_queue.lock); 796 skb = skb_peek(&sk->sk_receive_queue); 797 while (skb) { 798 u = unix_sk(skb->sk); 799 nr_fds += atomic_read(&u->scm_stat.nr_fds); 800 skb = skb_peek_next(skb, &sk->sk_receive_queue); 801 } 802 spin_unlock(&sk->sk_receive_queue.lock); 803 804 return nr_fds; 805 } 806 807 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock) 808 { 809 struct sock *sk = sock->sk; 810 struct unix_sock *u; 811 int nr_fds; 812 813 if (sk) { 814 u = unix_sk(sk); 815 if (sock->type == SOCK_DGRAM) { 816 nr_fds = atomic_read(&u->scm_stat.nr_fds); 817 goto out_print; 818 } 819 820 unix_state_lock(sk); 821 if (sk->sk_state != TCP_LISTEN) 822 nr_fds = atomic_read(&u->scm_stat.nr_fds); 823 else 824 nr_fds = unix_count_nr_fds(sk); 825 unix_state_unlock(sk); 826 out_print: 827 seq_printf(m, "scm_fds: %u\n", nr_fds); 828 } 829 } 830 #else 831 #define unix_show_fdinfo NULL 832 #endif 833 834 static const struct proto_ops unix_stream_ops = { 835 .family = PF_UNIX, 836 .owner = THIS_MODULE, 837 .release = unix_release, 838 .bind = unix_bind, 839 .connect = unix_stream_connect, 840 .socketpair = unix_socketpair, 841 .accept = unix_accept, 842 .getname = unix_getname, 843 .poll = unix_poll, 844 .ioctl = unix_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = unix_compat_ioctl, 847 #endif 848 .listen = unix_listen, 849 .shutdown = unix_shutdown, 850 .sendmsg = unix_stream_sendmsg, 851 .recvmsg = unix_stream_recvmsg, 852 .read_skb = unix_stream_read_skb, 853 .mmap = sock_no_mmap, 854 .sendpage = unix_stream_sendpage, 855 .splice_read = unix_stream_splice_read, 856 .set_peek_off = unix_set_peek_off, 857 .show_fdinfo = unix_show_fdinfo, 858 }; 859 860 static const struct proto_ops unix_dgram_ops = { 861 .family = PF_UNIX, 862 .owner = THIS_MODULE, 863 .release = unix_release, 864 .bind = unix_bind, 865 .connect = unix_dgram_connect, 866 .socketpair = unix_socketpair, 867 .accept = sock_no_accept, 868 .getname = unix_getname, 869 .poll = unix_dgram_poll, 870 .ioctl = unix_ioctl, 871 #ifdef CONFIG_COMPAT 872 .compat_ioctl = unix_compat_ioctl, 873 #endif 874 .listen = sock_no_listen, 875 .shutdown = unix_shutdown, 876 .sendmsg = unix_dgram_sendmsg, 877 .read_skb = unix_read_skb, 878 .recvmsg = unix_dgram_recvmsg, 879 .mmap = sock_no_mmap, 880 .sendpage = sock_no_sendpage, 881 .set_peek_off = unix_set_peek_off, 882 .show_fdinfo = unix_show_fdinfo, 883 }; 884 885 static const struct proto_ops unix_seqpacket_ops = { 886 .family = PF_UNIX, 887 .owner = THIS_MODULE, 888 .release = unix_release, 889 .bind = unix_bind, 890 .connect = unix_stream_connect, 891 .socketpair = unix_socketpair, 892 .accept = unix_accept, 893 .getname = unix_getname, 894 .poll = unix_dgram_poll, 895 .ioctl = unix_ioctl, 896 #ifdef CONFIG_COMPAT 897 .compat_ioctl = unix_compat_ioctl, 898 #endif 899 .listen = unix_listen, 900 .shutdown = unix_shutdown, 901 .sendmsg = unix_seqpacket_sendmsg, 902 .recvmsg = unix_seqpacket_recvmsg, 903 .mmap = sock_no_mmap, 904 .sendpage = sock_no_sendpage, 905 .set_peek_off = unix_set_peek_off, 906 .show_fdinfo = unix_show_fdinfo, 907 }; 908 909 static void unix_close(struct sock *sk, long timeout) 910 { 911 /* Nothing to do here, unix socket does not need a ->close(). 912 * This is merely for sockmap. 913 */ 914 } 915 916 static void unix_unhash(struct sock *sk) 917 { 918 /* Nothing to do here, unix socket does not need a ->unhash(). 919 * This is merely for sockmap. 920 */ 921 } 922 923 struct proto unix_dgram_proto = { 924 .name = "UNIX", 925 .owner = THIS_MODULE, 926 .obj_size = sizeof(struct unix_sock), 927 .close = unix_close, 928 #ifdef CONFIG_BPF_SYSCALL 929 .psock_update_sk_prot = unix_dgram_bpf_update_proto, 930 #endif 931 }; 932 933 struct proto unix_stream_proto = { 934 .name = "UNIX-STREAM", 935 .owner = THIS_MODULE, 936 .obj_size = sizeof(struct unix_sock), 937 .close = unix_close, 938 .unhash = unix_unhash, 939 #ifdef CONFIG_BPF_SYSCALL 940 .psock_update_sk_prot = unix_stream_bpf_update_proto, 941 #endif 942 }; 943 944 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type) 945 { 946 struct unix_sock *u; 947 struct sock *sk; 948 int err; 949 950 atomic_long_inc(&unix_nr_socks); 951 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) { 952 err = -ENFILE; 953 goto err; 954 } 955 956 if (type == SOCK_STREAM) 957 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern); 958 else /*dgram and seqpacket */ 959 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern); 960 961 if (!sk) { 962 err = -ENOMEM; 963 goto err; 964 } 965 966 sock_init_data(sock, sk); 967 968 sk->sk_hash = unix_unbound_hash(sk); 969 sk->sk_allocation = GFP_KERNEL_ACCOUNT; 970 sk->sk_write_space = unix_write_space; 971 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; 972 sk->sk_destruct = unix_sock_destructor; 973 u = unix_sk(sk); 974 u->path.dentry = NULL; 975 u->path.mnt = NULL; 976 spin_lock_init(&u->lock); 977 atomic_long_set(&u->inflight, 0); 978 INIT_LIST_HEAD(&u->link); 979 mutex_init(&u->iolock); /* single task reading lock */ 980 mutex_init(&u->bindlock); /* single task binding lock */ 981 init_waitqueue_head(&u->peer_wait); 982 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay); 983 memset(&u->scm_stat, 0, sizeof(struct scm_stat)); 984 unix_insert_unbound_socket(net, sk); 985 986 sock_prot_inuse_add(net, sk->sk_prot, 1); 987 988 return sk; 989 990 err: 991 atomic_long_dec(&unix_nr_socks); 992 return ERR_PTR(err); 993 } 994 995 static int unix_create(struct net *net, struct socket *sock, int protocol, 996 int kern) 997 { 998 struct sock *sk; 999 1000 if (protocol && protocol != PF_UNIX) 1001 return -EPROTONOSUPPORT; 1002 1003 sock->state = SS_UNCONNECTED; 1004 1005 switch (sock->type) { 1006 case SOCK_STREAM: 1007 sock->ops = &unix_stream_ops; 1008 break; 1009 /* 1010 * Believe it or not BSD has AF_UNIX, SOCK_RAW though 1011 * nothing uses it. 1012 */ 1013 case SOCK_RAW: 1014 sock->type = SOCK_DGRAM; 1015 fallthrough; 1016 case SOCK_DGRAM: 1017 sock->ops = &unix_dgram_ops; 1018 break; 1019 case SOCK_SEQPACKET: 1020 sock->ops = &unix_seqpacket_ops; 1021 break; 1022 default: 1023 return -ESOCKTNOSUPPORT; 1024 } 1025 1026 sk = unix_create1(net, sock, kern, sock->type); 1027 if (IS_ERR(sk)) 1028 return PTR_ERR(sk); 1029 1030 return 0; 1031 } 1032 1033 static int unix_release(struct socket *sock) 1034 { 1035 struct sock *sk = sock->sk; 1036 1037 if (!sk) 1038 return 0; 1039 1040 sk->sk_prot->close(sk, 0); 1041 unix_release_sock(sk, 0); 1042 sock->sk = NULL; 1043 1044 return 0; 1045 } 1046 1047 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len, 1048 int type) 1049 { 1050 struct inode *inode; 1051 struct path path; 1052 struct sock *sk; 1053 int err; 1054 1055 unix_mkname_bsd(sunaddr, addr_len); 1056 err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path); 1057 if (err) 1058 goto fail; 1059 1060 err = path_permission(&path, MAY_WRITE); 1061 if (err) 1062 goto path_put; 1063 1064 err = -ECONNREFUSED; 1065 inode = d_backing_inode(path.dentry); 1066 if (!S_ISSOCK(inode->i_mode)) 1067 goto path_put; 1068 1069 sk = unix_find_socket_byinode(inode); 1070 if (!sk) 1071 goto path_put; 1072 1073 err = -EPROTOTYPE; 1074 if (sk->sk_type == type) 1075 touch_atime(&path); 1076 else 1077 goto sock_put; 1078 1079 path_put(&path); 1080 1081 return sk; 1082 1083 sock_put: 1084 sock_put(sk); 1085 path_put: 1086 path_put(&path); 1087 fail: 1088 return ERR_PTR(err); 1089 } 1090 1091 static struct sock *unix_find_abstract(struct net *net, 1092 struct sockaddr_un *sunaddr, 1093 int addr_len, int type) 1094 { 1095 unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type); 1096 struct dentry *dentry; 1097 struct sock *sk; 1098 1099 sk = unix_find_socket_byname(net, sunaddr, addr_len, hash); 1100 if (!sk) 1101 return ERR_PTR(-ECONNREFUSED); 1102 1103 dentry = unix_sk(sk)->path.dentry; 1104 if (dentry) 1105 touch_atime(&unix_sk(sk)->path); 1106 1107 return sk; 1108 } 1109 1110 static struct sock *unix_find_other(struct net *net, 1111 struct sockaddr_un *sunaddr, 1112 int addr_len, int type) 1113 { 1114 struct sock *sk; 1115 1116 if (sunaddr->sun_path[0]) 1117 sk = unix_find_bsd(sunaddr, addr_len, type); 1118 else 1119 sk = unix_find_abstract(net, sunaddr, addr_len, type); 1120 1121 return sk; 1122 } 1123 1124 static int unix_autobind(struct sock *sk) 1125 { 1126 unsigned int new_hash, old_hash = sk->sk_hash; 1127 struct unix_sock *u = unix_sk(sk); 1128 struct net *net = sock_net(sk); 1129 struct unix_address *addr; 1130 u32 lastnum, ordernum; 1131 int err; 1132 1133 err = mutex_lock_interruptible(&u->bindlock); 1134 if (err) 1135 return err; 1136 1137 if (u->addr) 1138 goto out; 1139 1140 err = -ENOMEM; 1141 addr = kzalloc(sizeof(*addr) + 1142 offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL); 1143 if (!addr) 1144 goto out; 1145 1146 addr->len = offsetof(struct sockaddr_un, sun_path) + 6; 1147 addr->name->sun_family = AF_UNIX; 1148 refcount_set(&addr->refcnt, 1); 1149 1150 ordernum = get_random_u32(); 1151 lastnum = ordernum & 0xFFFFF; 1152 retry: 1153 ordernum = (ordernum + 1) & 0xFFFFF; 1154 sprintf(addr->name->sun_path + 1, "%05x", ordernum); 1155 1156 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1157 unix_table_double_lock(net, old_hash, new_hash); 1158 1159 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) { 1160 unix_table_double_unlock(net, old_hash, new_hash); 1161 1162 /* __unix_find_socket_byname() may take long time if many names 1163 * are already in use. 1164 */ 1165 cond_resched(); 1166 1167 if (ordernum == lastnum) { 1168 /* Give up if all names seems to be in use. */ 1169 err = -ENOSPC; 1170 unix_release_addr(addr); 1171 goto out; 1172 } 1173 1174 goto retry; 1175 } 1176 1177 __unix_set_addr_hash(net, sk, addr, new_hash); 1178 unix_table_double_unlock(net, old_hash, new_hash); 1179 err = 0; 1180 1181 out: mutex_unlock(&u->bindlock); 1182 return err; 1183 } 1184 1185 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr, 1186 int addr_len) 1187 { 1188 umode_t mode = S_IFSOCK | 1189 (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask()); 1190 unsigned int new_hash, old_hash = sk->sk_hash; 1191 struct unix_sock *u = unix_sk(sk); 1192 struct net *net = sock_net(sk); 1193 struct user_namespace *ns; // barf... 1194 struct unix_address *addr; 1195 struct dentry *dentry; 1196 struct path parent; 1197 int err; 1198 1199 unix_mkname_bsd(sunaddr, addr_len); 1200 addr_len = strlen(sunaddr->sun_path) + 1201 offsetof(struct sockaddr_un, sun_path) + 1; 1202 1203 addr = unix_create_addr(sunaddr, addr_len); 1204 if (!addr) 1205 return -ENOMEM; 1206 1207 /* 1208 * Get the parent directory, calculate the hash for last 1209 * component. 1210 */ 1211 dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0); 1212 if (IS_ERR(dentry)) { 1213 err = PTR_ERR(dentry); 1214 goto out; 1215 } 1216 1217 /* 1218 * All right, let's create it. 1219 */ 1220 ns = mnt_user_ns(parent.mnt); 1221 err = security_path_mknod(&parent, dentry, mode, 0); 1222 if (!err) 1223 err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0); 1224 if (err) 1225 goto out_path; 1226 err = mutex_lock_interruptible(&u->bindlock); 1227 if (err) 1228 goto out_unlink; 1229 if (u->addr) 1230 goto out_unlock; 1231 1232 new_hash = unix_bsd_hash(d_backing_inode(dentry)); 1233 unix_table_double_lock(net, old_hash, new_hash); 1234 u->path.mnt = mntget(parent.mnt); 1235 u->path.dentry = dget(dentry); 1236 __unix_set_addr_hash(net, sk, addr, new_hash); 1237 unix_table_double_unlock(net, old_hash, new_hash); 1238 unix_insert_bsd_socket(sk); 1239 mutex_unlock(&u->bindlock); 1240 done_path_create(&parent, dentry); 1241 return 0; 1242 1243 out_unlock: 1244 mutex_unlock(&u->bindlock); 1245 err = -EINVAL; 1246 out_unlink: 1247 /* failed after successful mknod? unlink what we'd created... */ 1248 vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL); 1249 out_path: 1250 done_path_create(&parent, dentry); 1251 out: 1252 unix_release_addr(addr); 1253 return err == -EEXIST ? -EADDRINUSE : err; 1254 } 1255 1256 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr, 1257 int addr_len) 1258 { 1259 unsigned int new_hash, old_hash = sk->sk_hash; 1260 struct unix_sock *u = unix_sk(sk); 1261 struct net *net = sock_net(sk); 1262 struct unix_address *addr; 1263 int err; 1264 1265 addr = unix_create_addr(sunaddr, addr_len); 1266 if (!addr) 1267 return -ENOMEM; 1268 1269 err = mutex_lock_interruptible(&u->bindlock); 1270 if (err) 1271 goto out; 1272 1273 if (u->addr) { 1274 err = -EINVAL; 1275 goto out_mutex; 1276 } 1277 1278 new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type); 1279 unix_table_double_lock(net, old_hash, new_hash); 1280 1281 if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) 1282 goto out_spin; 1283 1284 __unix_set_addr_hash(net, sk, addr, new_hash); 1285 unix_table_double_unlock(net, old_hash, new_hash); 1286 mutex_unlock(&u->bindlock); 1287 return 0; 1288 1289 out_spin: 1290 unix_table_double_unlock(net, old_hash, new_hash); 1291 err = -EADDRINUSE; 1292 out_mutex: 1293 mutex_unlock(&u->bindlock); 1294 out: 1295 unix_release_addr(addr); 1296 return err; 1297 } 1298 1299 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 1300 { 1301 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1302 struct sock *sk = sock->sk; 1303 int err; 1304 1305 if (addr_len == offsetof(struct sockaddr_un, sun_path) && 1306 sunaddr->sun_family == AF_UNIX) 1307 return unix_autobind(sk); 1308 1309 err = unix_validate_addr(sunaddr, addr_len); 1310 if (err) 1311 return err; 1312 1313 if (sunaddr->sun_path[0]) 1314 err = unix_bind_bsd(sk, sunaddr, addr_len); 1315 else 1316 err = unix_bind_abstract(sk, sunaddr, addr_len); 1317 1318 return err; 1319 } 1320 1321 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) 1322 { 1323 if (unlikely(sk1 == sk2) || !sk2) { 1324 unix_state_lock(sk1); 1325 return; 1326 } 1327 if (sk1 < sk2) { 1328 unix_state_lock(sk1); 1329 unix_state_lock_nested(sk2); 1330 } else { 1331 unix_state_lock(sk2); 1332 unix_state_lock_nested(sk1); 1333 } 1334 } 1335 1336 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) 1337 { 1338 if (unlikely(sk1 == sk2) || !sk2) { 1339 unix_state_unlock(sk1); 1340 return; 1341 } 1342 unix_state_unlock(sk1); 1343 unix_state_unlock(sk2); 1344 } 1345 1346 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, 1347 int alen, int flags) 1348 { 1349 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; 1350 struct sock *sk = sock->sk; 1351 struct sock *other; 1352 int err; 1353 1354 err = -EINVAL; 1355 if (alen < offsetofend(struct sockaddr, sa_family)) 1356 goto out; 1357 1358 if (addr->sa_family != AF_UNSPEC) { 1359 err = unix_validate_addr(sunaddr, alen); 1360 if (err) 1361 goto out; 1362 1363 if (test_bit(SOCK_PASSCRED, &sock->flags) && 1364 !unix_sk(sk)->addr) { 1365 err = unix_autobind(sk); 1366 if (err) 1367 goto out; 1368 } 1369 1370 restart: 1371 other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type); 1372 if (IS_ERR(other)) { 1373 err = PTR_ERR(other); 1374 goto out; 1375 } 1376 1377 unix_state_double_lock(sk, other); 1378 1379 /* Apparently VFS overslept socket death. Retry. */ 1380 if (sock_flag(other, SOCK_DEAD)) { 1381 unix_state_double_unlock(sk, other); 1382 sock_put(other); 1383 goto restart; 1384 } 1385 1386 err = -EPERM; 1387 if (!unix_may_send(sk, other)) 1388 goto out_unlock; 1389 1390 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 1391 if (err) 1392 goto out_unlock; 1393 1394 sk->sk_state = other->sk_state = TCP_ESTABLISHED; 1395 } else { 1396 /* 1397 * 1003.1g breaking connected state with AF_UNSPEC 1398 */ 1399 other = NULL; 1400 unix_state_double_lock(sk, other); 1401 } 1402 1403 /* 1404 * If it was connected, reconnect. 1405 */ 1406 if (unix_peer(sk)) { 1407 struct sock *old_peer = unix_peer(sk); 1408 1409 unix_peer(sk) = other; 1410 if (!other) 1411 sk->sk_state = TCP_CLOSE; 1412 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer); 1413 1414 unix_state_double_unlock(sk, other); 1415 1416 if (other != old_peer) 1417 unix_dgram_disconnected(sk, old_peer); 1418 sock_put(old_peer); 1419 } else { 1420 unix_peer(sk) = other; 1421 unix_state_double_unlock(sk, other); 1422 } 1423 1424 return 0; 1425 1426 out_unlock: 1427 unix_state_double_unlock(sk, other); 1428 sock_put(other); 1429 out: 1430 return err; 1431 } 1432 1433 static long unix_wait_for_peer(struct sock *other, long timeo) 1434 __releases(&unix_sk(other)->lock) 1435 { 1436 struct unix_sock *u = unix_sk(other); 1437 int sched; 1438 DEFINE_WAIT(wait); 1439 1440 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); 1441 1442 sched = !sock_flag(other, SOCK_DEAD) && 1443 !(other->sk_shutdown & RCV_SHUTDOWN) && 1444 unix_recvq_full(other); 1445 1446 unix_state_unlock(other); 1447 1448 if (sched) 1449 timeo = schedule_timeout(timeo); 1450 1451 finish_wait(&u->peer_wait, &wait); 1452 return timeo; 1453 } 1454 1455 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, 1456 int addr_len, int flags) 1457 { 1458 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; 1459 struct sock *sk = sock->sk, *newsk = NULL, *other = NULL; 1460 struct unix_sock *u = unix_sk(sk), *newu, *otheru; 1461 struct net *net = sock_net(sk); 1462 struct sk_buff *skb = NULL; 1463 long timeo; 1464 int err; 1465 int st; 1466 1467 err = unix_validate_addr(sunaddr, addr_len); 1468 if (err) 1469 goto out; 1470 1471 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1472 err = unix_autobind(sk); 1473 if (err) 1474 goto out; 1475 } 1476 1477 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1478 1479 /* First of all allocate resources. 1480 If we will make it after state is locked, 1481 we will have to recheck all again in any case. 1482 */ 1483 1484 /* create new sock for complete connection */ 1485 newsk = unix_create1(net, NULL, 0, sock->type); 1486 if (IS_ERR(newsk)) { 1487 err = PTR_ERR(newsk); 1488 newsk = NULL; 1489 goto out; 1490 } 1491 1492 err = -ENOMEM; 1493 1494 /* Allocate skb for sending to listening sock */ 1495 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); 1496 if (skb == NULL) 1497 goto out; 1498 1499 restart: 1500 /* Find listening sock. */ 1501 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type); 1502 if (IS_ERR(other)) { 1503 err = PTR_ERR(other); 1504 other = NULL; 1505 goto out; 1506 } 1507 1508 /* Latch state of peer */ 1509 unix_state_lock(other); 1510 1511 /* Apparently VFS overslept socket death. Retry. */ 1512 if (sock_flag(other, SOCK_DEAD)) { 1513 unix_state_unlock(other); 1514 sock_put(other); 1515 goto restart; 1516 } 1517 1518 err = -ECONNREFUSED; 1519 if (other->sk_state != TCP_LISTEN) 1520 goto out_unlock; 1521 if (other->sk_shutdown & RCV_SHUTDOWN) 1522 goto out_unlock; 1523 1524 if (unix_recvq_full(other)) { 1525 err = -EAGAIN; 1526 if (!timeo) 1527 goto out_unlock; 1528 1529 timeo = unix_wait_for_peer(other, timeo); 1530 1531 err = sock_intr_errno(timeo); 1532 if (signal_pending(current)) 1533 goto out; 1534 sock_put(other); 1535 goto restart; 1536 } 1537 1538 /* Latch our state. 1539 1540 It is tricky place. We need to grab our state lock and cannot 1541 drop lock on peer. It is dangerous because deadlock is 1542 possible. Connect to self case and simultaneous 1543 attempt to connect are eliminated by checking socket 1544 state. other is TCP_LISTEN, if sk is TCP_LISTEN we 1545 check this before attempt to grab lock. 1546 1547 Well, and we have to recheck the state after socket locked. 1548 */ 1549 st = sk->sk_state; 1550 1551 switch (st) { 1552 case TCP_CLOSE: 1553 /* This is ok... continue with connect */ 1554 break; 1555 case TCP_ESTABLISHED: 1556 /* Socket is already connected */ 1557 err = -EISCONN; 1558 goto out_unlock; 1559 default: 1560 err = -EINVAL; 1561 goto out_unlock; 1562 } 1563 1564 unix_state_lock_nested(sk); 1565 1566 if (sk->sk_state != st) { 1567 unix_state_unlock(sk); 1568 unix_state_unlock(other); 1569 sock_put(other); 1570 goto restart; 1571 } 1572 1573 err = security_unix_stream_connect(sk, other, newsk); 1574 if (err) { 1575 unix_state_unlock(sk); 1576 goto out_unlock; 1577 } 1578 1579 /* The way is open! Fastly set all the necessary fields... */ 1580 1581 sock_hold(sk); 1582 unix_peer(newsk) = sk; 1583 newsk->sk_state = TCP_ESTABLISHED; 1584 newsk->sk_type = sk->sk_type; 1585 init_peercred(newsk); 1586 newu = unix_sk(newsk); 1587 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq); 1588 otheru = unix_sk(other); 1589 1590 /* copy address information from listening to new sock 1591 * 1592 * The contents of *(otheru->addr) and otheru->path 1593 * are seen fully set up here, since we have found 1594 * otheru in hash under its lock. Insertion into the 1595 * hash chain we'd found it in had been done in an 1596 * earlier critical area protected by the chain's lock, 1597 * the same one where we'd set *(otheru->addr) contents, 1598 * as well as otheru->path and otheru->addr itself. 1599 * 1600 * Using smp_store_release() here to set newu->addr 1601 * is enough to make those stores, as well as stores 1602 * to newu->path visible to anyone who gets newu->addr 1603 * by smp_load_acquire(). IOW, the same warranties 1604 * as for unix_sock instances bound in unix_bind() or 1605 * in unix_autobind(). 1606 */ 1607 if (otheru->path.dentry) { 1608 path_get(&otheru->path); 1609 newu->path = otheru->path; 1610 } 1611 refcount_inc(&otheru->addr->refcnt); 1612 smp_store_release(&newu->addr, otheru->addr); 1613 1614 /* Set credentials */ 1615 copy_peercred(sk, other); 1616 1617 sock->state = SS_CONNECTED; 1618 sk->sk_state = TCP_ESTABLISHED; 1619 sock_hold(newsk); 1620 1621 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */ 1622 unix_peer(sk) = newsk; 1623 1624 unix_state_unlock(sk); 1625 1626 /* take ten and send info to listening sock */ 1627 spin_lock(&other->sk_receive_queue.lock); 1628 __skb_queue_tail(&other->sk_receive_queue, skb); 1629 spin_unlock(&other->sk_receive_queue.lock); 1630 unix_state_unlock(other); 1631 other->sk_data_ready(other); 1632 sock_put(other); 1633 return 0; 1634 1635 out_unlock: 1636 if (other) 1637 unix_state_unlock(other); 1638 1639 out: 1640 kfree_skb(skb); 1641 if (newsk) 1642 unix_release_sock(newsk, 0); 1643 if (other) 1644 sock_put(other); 1645 return err; 1646 } 1647 1648 static int unix_socketpair(struct socket *socka, struct socket *sockb) 1649 { 1650 struct sock *ska = socka->sk, *skb = sockb->sk; 1651 1652 /* Join our sockets back to back */ 1653 sock_hold(ska); 1654 sock_hold(skb); 1655 unix_peer(ska) = skb; 1656 unix_peer(skb) = ska; 1657 init_peercred(ska); 1658 init_peercred(skb); 1659 1660 ska->sk_state = TCP_ESTABLISHED; 1661 skb->sk_state = TCP_ESTABLISHED; 1662 socka->state = SS_CONNECTED; 1663 sockb->state = SS_CONNECTED; 1664 return 0; 1665 } 1666 1667 static void unix_sock_inherit_flags(const struct socket *old, 1668 struct socket *new) 1669 { 1670 if (test_bit(SOCK_PASSCRED, &old->flags)) 1671 set_bit(SOCK_PASSCRED, &new->flags); 1672 if (test_bit(SOCK_PASSSEC, &old->flags)) 1673 set_bit(SOCK_PASSSEC, &new->flags); 1674 } 1675 1676 static int unix_accept(struct socket *sock, struct socket *newsock, int flags, 1677 bool kern) 1678 { 1679 struct sock *sk = sock->sk; 1680 struct sock *tsk; 1681 struct sk_buff *skb; 1682 int err; 1683 1684 err = -EOPNOTSUPP; 1685 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) 1686 goto out; 1687 1688 err = -EINVAL; 1689 if (sk->sk_state != TCP_LISTEN) 1690 goto out; 1691 1692 /* If socket state is TCP_LISTEN it cannot change (for now...), 1693 * so that no locks are necessary. 1694 */ 1695 1696 skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, 1697 &err); 1698 if (!skb) { 1699 /* This means receive shutdown. */ 1700 if (err == 0) 1701 err = -EINVAL; 1702 goto out; 1703 } 1704 1705 tsk = skb->sk; 1706 skb_free_datagram(sk, skb); 1707 wake_up_interruptible(&unix_sk(sk)->peer_wait); 1708 1709 /* attach accepted sock to socket */ 1710 unix_state_lock(tsk); 1711 newsock->state = SS_CONNECTED; 1712 unix_sock_inherit_flags(sock, newsock); 1713 sock_graft(tsk, newsock); 1714 unix_state_unlock(tsk); 1715 return 0; 1716 1717 out: 1718 return err; 1719 } 1720 1721 1722 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer) 1723 { 1724 struct sock *sk = sock->sk; 1725 struct unix_address *addr; 1726 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); 1727 int err = 0; 1728 1729 if (peer) { 1730 sk = unix_peer_get(sk); 1731 1732 err = -ENOTCONN; 1733 if (!sk) 1734 goto out; 1735 err = 0; 1736 } else { 1737 sock_hold(sk); 1738 } 1739 1740 addr = smp_load_acquire(&unix_sk(sk)->addr); 1741 if (!addr) { 1742 sunaddr->sun_family = AF_UNIX; 1743 sunaddr->sun_path[0] = 0; 1744 err = offsetof(struct sockaddr_un, sun_path); 1745 } else { 1746 err = addr->len; 1747 memcpy(sunaddr, addr->name, addr->len); 1748 } 1749 sock_put(sk); 1750 out: 1751 return err; 1752 } 1753 1754 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb) 1755 { 1756 scm->fp = scm_fp_dup(UNIXCB(skb).fp); 1757 1758 /* 1759 * Garbage collection of unix sockets starts by selecting a set of 1760 * candidate sockets which have reference only from being in flight 1761 * (total_refs == inflight_refs). This condition is checked once during 1762 * the candidate collection phase, and candidates are marked as such, so 1763 * that non-candidates can later be ignored. While inflight_refs is 1764 * protected by unix_gc_lock, total_refs (file count) is not, hence this 1765 * is an instantaneous decision. 1766 * 1767 * Once a candidate, however, the socket must not be reinstalled into a 1768 * file descriptor while the garbage collection is in progress. 1769 * 1770 * If the above conditions are met, then the directed graph of 1771 * candidates (*) does not change while unix_gc_lock is held. 1772 * 1773 * Any operations that changes the file count through file descriptors 1774 * (dup, close, sendmsg) does not change the graph since candidates are 1775 * not installed in fds. 1776 * 1777 * Dequeing a candidate via recvmsg would install it into an fd, but 1778 * that takes unix_gc_lock to decrement the inflight count, so it's 1779 * serialized with garbage collection. 1780 * 1781 * MSG_PEEK is special in that it does not change the inflight count, 1782 * yet does install the socket into an fd. The following lock/unlock 1783 * pair is to ensure serialization with garbage collection. It must be 1784 * done between incrementing the file count and installing the file into 1785 * an fd. 1786 * 1787 * If garbage collection starts after the barrier provided by the 1788 * lock/unlock, then it will see the elevated refcount and not mark this 1789 * as a candidate. If a garbage collection is already in progress 1790 * before the file count was incremented, then the lock/unlock pair will 1791 * ensure that garbage collection is finished before progressing to 1792 * installing the fd. 1793 * 1794 * (*) A -> B where B is on the queue of A or B is on the queue of C 1795 * which is on the queue of listening socket A. 1796 */ 1797 spin_lock(&unix_gc_lock); 1798 spin_unlock(&unix_gc_lock); 1799 } 1800 1801 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds) 1802 { 1803 int err = 0; 1804 1805 UNIXCB(skb).pid = get_pid(scm->pid); 1806 UNIXCB(skb).uid = scm->creds.uid; 1807 UNIXCB(skb).gid = scm->creds.gid; 1808 UNIXCB(skb).fp = NULL; 1809 unix_get_secdata(scm, skb); 1810 if (scm->fp && send_fds) 1811 err = unix_attach_fds(scm, skb); 1812 1813 skb->destructor = unix_destruct_scm; 1814 return err; 1815 } 1816 1817 static bool unix_passcred_enabled(const struct socket *sock, 1818 const struct sock *other) 1819 { 1820 return test_bit(SOCK_PASSCRED, &sock->flags) || 1821 !other->sk_socket || 1822 test_bit(SOCK_PASSCRED, &other->sk_socket->flags); 1823 } 1824 1825 /* 1826 * Some apps rely on write() giving SCM_CREDENTIALS 1827 * We include credentials if source or destination socket 1828 * asserted SOCK_PASSCRED. 1829 */ 1830 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock, 1831 const struct sock *other) 1832 { 1833 if (UNIXCB(skb).pid) 1834 return; 1835 if (unix_passcred_enabled(sock, other)) { 1836 UNIXCB(skb).pid = get_pid(task_tgid(current)); 1837 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid); 1838 } 1839 } 1840 1841 static int maybe_init_creds(struct scm_cookie *scm, 1842 struct socket *socket, 1843 const struct sock *other) 1844 { 1845 int err; 1846 struct msghdr msg = { .msg_controllen = 0 }; 1847 1848 err = scm_send(socket, &msg, scm, false); 1849 if (err) 1850 return err; 1851 1852 if (unix_passcred_enabled(socket, other)) { 1853 scm->pid = get_pid(task_tgid(current)); 1854 current_uid_gid(&scm->creds.uid, &scm->creds.gid); 1855 } 1856 return err; 1857 } 1858 1859 static bool unix_skb_scm_eq(struct sk_buff *skb, 1860 struct scm_cookie *scm) 1861 { 1862 return UNIXCB(skb).pid == scm->pid && 1863 uid_eq(UNIXCB(skb).uid, scm->creds.uid) && 1864 gid_eq(UNIXCB(skb).gid, scm->creds.gid) && 1865 unix_secdata_eq(scm, skb); 1866 } 1867 1868 static void scm_stat_add(struct sock *sk, struct sk_buff *skb) 1869 { 1870 struct scm_fp_list *fp = UNIXCB(skb).fp; 1871 struct unix_sock *u = unix_sk(sk); 1872 1873 if (unlikely(fp && fp->count)) 1874 atomic_add(fp->count, &u->scm_stat.nr_fds); 1875 } 1876 1877 static void scm_stat_del(struct sock *sk, struct sk_buff *skb) 1878 { 1879 struct scm_fp_list *fp = UNIXCB(skb).fp; 1880 struct unix_sock *u = unix_sk(sk); 1881 1882 if (unlikely(fp && fp->count)) 1883 atomic_sub(fp->count, &u->scm_stat.nr_fds); 1884 } 1885 1886 /* 1887 * Send AF_UNIX data. 1888 */ 1889 1890 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg, 1891 size_t len) 1892 { 1893 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name); 1894 struct sock *sk = sock->sk, *other = NULL; 1895 struct unix_sock *u = unix_sk(sk); 1896 struct scm_cookie scm; 1897 struct sk_buff *skb; 1898 int data_len = 0; 1899 int sk_locked; 1900 long timeo; 1901 int err; 1902 1903 wait_for_unix_gc(); 1904 err = scm_send(sock, msg, &scm, false); 1905 if (err < 0) 1906 return err; 1907 1908 err = -EOPNOTSUPP; 1909 if (msg->msg_flags&MSG_OOB) 1910 goto out; 1911 1912 if (msg->msg_namelen) { 1913 err = unix_validate_addr(sunaddr, msg->msg_namelen); 1914 if (err) 1915 goto out; 1916 } else { 1917 sunaddr = NULL; 1918 err = -ENOTCONN; 1919 other = unix_peer_get(sk); 1920 if (!other) 1921 goto out; 1922 } 1923 1924 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) { 1925 err = unix_autobind(sk); 1926 if (err) 1927 goto out; 1928 } 1929 1930 err = -EMSGSIZE; 1931 if (len > sk->sk_sndbuf - 32) 1932 goto out; 1933 1934 if (len > SKB_MAX_ALLOC) { 1935 data_len = min_t(size_t, 1936 len - SKB_MAX_ALLOC, 1937 MAX_SKB_FRAGS * PAGE_SIZE); 1938 data_len = PAGE_ALIGN(data_len); 1939 1940 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE); 1941 } 1942 1943 skb = sock_alloc_send_pskb(sk, len - data_len, data_len, 1944 msg->msg_flags & MSG_DONTWAIT, &err, 1945 PAGE_ALLOC_COSTLY_ORDER); 1946 if (skb == NULL) 1947 goto out; 1948 1949 err = unix_scm_to_skb(&scm, skb, true); 1950 if (err < 0) 1951 goto out_free; 1952 1953 skb_put(skb, len - data_len); 1954 skb->data_len = data_len; 1955 skb->len = len; 1956 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len); 1957 if (err) 1958 goto out_free; 1959 1960 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1961 1962 restart: 1963 if (!other) { 1964 err = -ECONNRESET; 1965 if (sunaddr == NULL) 1966 goto out_free; 1967 1968 other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen, 1969 sk->sk_type); 1970 if (IS_ERR(other)) { 1971 err = PTR_ERR(other); 1972 other = NULL; 1973 goto out_free; 1974 } 1975 } 1976 1977 if (sk_filter(other, skb) < 0) { 1978 /* Toss the packet but do not return any error to the sender */ 1979 err = len; 1980 goto out_free; 1981 } 1982 1983 sk_locked = 0; 1984 unix_state_lock(other); 1985 restart_locked: 1986 err = -EPERM; 1987 if (!unix_may_send(sk, other)) 1988 goto out_unlock; 1989 1990 if (unlikely(sock_flag(other, SOCK_DEAD))) { 1991 /* 1992 * Check with 1003.1g - what should 1993 * datagram error 1994 */ 1995 unix_state_unlock(other); 1996 sock_put(other); 1997 1998 if (!sk_locked) 1999 unix_state_lock(sk); 2000 2001 err = 0; 2002 if (unix_peer(sk) == other) { 2003 unix_peer(sk) = NULL; 2004 unix_dgram_peer_wake_disconnect_wakeup(sk, other); 2005 2006 unix_state_unlock(sk); 2007 2008 sk->sk_state = TCP_CLOSE; 2009 unix_dgram_disconnected(sk, other); 2010 sock_put(other); 2011 err = -ECONNREFUSED; 2012 } else { 2013 unix_state_unlock(sk); 2014 } 2015 2016 other = NULL; 2017 if (err) 2018 goto out_free; 2019 goto restart; 2020 } 2021 2022 err = -EPIPE; 2023 if (other->sk_shutdown & RCV_SHUTDOWN) 2024 goto out_unlock; 2025 2026 if (sk->sk_type != SOCK_SEQPACKET) { 2027 err = security_unix_may_send(sk->sk_socket, other->sk_socket); 2028 if (err) 2029 goto out_unlock; 2030 } 2031 2032 /* other == sk && unix_peer(other) != sk if 2033 * - unix_peer(sk) == NULL, destination address bound to sk 2034 * - unix_peer(sk) == sk by time of get but disconnected before lock 2035 */ 2036 if (other != sk && 2037 unlikely(unix_peer(other) != sk && 2038 unix_recvq_full_lockless(other))) { 2039 if (timeo) { 2040 timeo = unix_wait_for_peer(other, timeo); 2041 2042 err = sock_intr_errno(timeo); 2043 if (signal_pending(current)) 2044 goto out_free; 2045 2046 goto restart; 2047 } 2048 2049 if (!sk_locked) { 2050 unix_state_unlock(other); 2051 unix_state_double_lock(sk, other); 2052 } 2053 2054 if (unix_peer(sk) != other || 2055 unix_dgram_peer_wake_me(sk, other)) { 2056 err = -EAGAIN; 2057 sk_locked = 1; 2058 goto out_unlock; 2059 } 2060 2061 if (!sk_locked) { 2062 sk_locked = 1; 2063 goto restart_locked; 2064 } 2065 } 2066 2067 if (unlikely(sk_locked)) 2068 unix_state_unlock(sk); 2069 2070 if (sock_flag(other, SOCK_RCVTSTAMP)) 2071 __net_timestamp(skb); 2072 maybe_add_creds(skb, sock, other); 2073 scm_stat_add(other, skb); 2074 skb_queue_tail(&other->sk_receive_queue, skb); 2075 unix_state_unlock(other); 2076 other->sk_data_ready(other); 2077 sock_put(other); 2078 scm_destroy(&scm); 2079 return len; 2080 2081 out_unlock: 2082 if (sk_locked) 2083 unix_state_unlock(sk); 2084 unix_state_unlock(other); 2085 out_free: 2086 kfree_skb(skb); 2087 out: 2088 if (other) 2089 sock_put(other); 2090 scm_destroy(&scm); 2091 return err; 2092 } 2093 2094 /* We use paged skbs for stream sockets, and limit occupancy to 32768 2095 * bytes, and a minimum of a full page. 2096 */ 2097 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768)) 2098 2099 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2100 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other) 2101 { 2102 struct unix_sock *ousk = unix_sk(other); 2103 struct sk_buff *skb; 2104 int err = 0; 2105 2106 skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err); 2107 2108 if (!skb) 2109 return err; 2110 2111 skb_put(skb, 1); 2112 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1); 2113 2114 if (err) { 2115 kfree_skb(skb); 2116 return err; 2117 } 2118 2119 unix_state_lock(other); 2120 2121 if (sock_flag(other, SOCK_DEAD) || 2122 (other->sk_shutdown & RCV_SHUTDOWN)) { 2123 unix_state_unlock(other); 2124 kfree_skb(skb); 2125 return -EPIPE; 2126 } 2127 2128 maybe_add_creds(skb, sock, other); 2129 skb_get(skb); 2130 2131 if (ousk->oob_skb) 2132 consume_skb(ousk->oob_skb); 2133 2134 WRITE_ONCE(ousk->oob_skb, skb); 2135 2136 scm_stat_add(other, skb); 2137 skb_queue_tail(&other->sk_receive_queue, skb); 2138 sk_send_sigurg(other); 2139 unix_state_unlock(other); 2140 other->sk_data_ready(other); 2141 2142 return err; 2143 } 2144 #endif 2145 2146 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg, 2147 size_t len) 2148 { 2149 struct sock *sk = sock->sk; 2150 struct sock *other = NULL; 2151 int err, size; 2152 struct sk_buff *skb; 2153 int sent = 0; 2154 struct scm_cookie scm; 2155 bool fds_sent = false; 2156 int data_len; 2157 2158 wait_for_unix_gc(); 2159 err = scm_send(sock, msg, &scm, false); 2160 if (err < 0) 2161 return err; 2162 2163 err = -EOPNOTSUPP; 2164 if (msg->msg_flags & MSG_OOB) { 2165 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2166 if (len) 2167 len--; 2168 else 2169 #endif 2170 goto out_err; 2171 } 2172 2173 if (msg->msg_namelen) { 2174 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; 2175 goto out_err; 2176 } else { 2177 err = -ENOTCONN; 2178 other = unix_peer(sk); 2179 if (!other) 2180 goto out_err; 2181 } 2182 2183 if (sk->sk_shutdown & SEND_SHUTDOWN) 2184 goto pipe_err; 2185 2186 while (sent < len) { 2187 size = len - sent; 2188 2189 /* Keep two messages in the pipe so it schedules better */ 2190 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64); 2191 2192 /* allow fallback to order-0 allocations */ 2193 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ); 2194 2195 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0)); 2196 2197 data_len = min_t(size_t, size, PAGE_ALIGN(data_len)); 2198 2199 skb = sock_alloc_send_pskb(sk, size - data_len, data_len, 2200 msg->msg_flags & MSG_DONTWAIT, &err, 2201 get_order(UNIX_SKB_FRAGS_SZ)); 2202 if (!skb) 2203 goto out_err; 2204 2205 /* Only send the fds in the first buffer */ 2206 err = unix_scm_to_skb(&scm, skb, !fds_sent); 2207 if (err < 0) { 2208 kfree_skb(skb); 2209 goto out_err; 2210 } 2211 fds_sent = true; 2212 2213 skb_put(skb, size - data_len); 2214 skb->data_len = data_len; 2215 skb->len = size; 2216 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 2217 if (err) { 2218 kfree_skb(skb); 2219 goto out_err; 2220 } 2221 2222 unix_state_lock(other); 2223 2224 if (sock_flag(other, SOCK_DEAD) || 2225 (other->sk_shutdown & RCV_SHUTDOWN)) 2226 goto pipe_err_free; 2227 2228 maybe_add_creds(skb, sock, other); 2229 scm_stat_add(other, skb); 2230 skb_queue_tail(&other->sk_receive_queue, skb); 2231 unix_state_unlock(other); 2232 other->sk_data_ready(other); 2233 sent += size; 2234 } 2235 2236 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2237 if (msg->msg_flags & MSG_OOB) { 2238 err = queue_oob(sock, msg, other); 2239 if (err) 2240 goto out_err; 2241 sent++; 2242 } 2243 #endif 2244 2245 scm_destroy(&scm); 2246 2247 return sent; 2248 2249 pipe_err_free: 2250 unix_state_unlock(other); 2251 kfree_skb(skb); 2252 pipe_err: 2253 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) 2254 send_sig(SIGPIPE, current, 0); 2255 err = -EPIPE; 2256 out_err: 2257 scm_destroy(&scm); 2258 return sent ? : err; 2259 } 2260 2261 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page, 2262 int offset, size_t size, int flags) 2263 { 2264 int err; 2265 bool send_sigpipe = false; 2266 bool init_scm = true; 2267 struct scm_cookie scm; 2268 struct sock *other, *sk = socket->sk; 2269 struct sk_buff *skb, *newskb = NULL, *tail = NULL; 2270 2271 if (flags & MSG_OOB) 2272 return -EOPNOTSUPP; 2273 2274 other = unix_peer(sk); 2275 if (!other || sk->sk_state != TCP_ESTABLISHED) 2276 return -ENOTCONN; 2277 2278 if (false) { 2279 alloc_skb: 2280 unix_state_unlock(other); 2281 mutex_unlock(&unix_sk(other)->iolock); 2282 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT, 2283 &err, 0); 2284 if (!newskb) 2285 goto err; 2286 } 2287 2288 /* we must acquire iolock as we modify already present 2289 * skbs in the sk_receive_queue and mess with skb->len 2290 */ 2291 err = mutex_lock_interruptible(&unix_sk(other)->iolock); 2292 if (err) { 2293 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS; 2294 goto err; 2295 } 2296 2297 if (sk->sk_shutdown & SEND_SHUTDOWN) { 2298 err = -EPIPE; 2299 send_sigpipe = true; 2300 goto err_unlock; 2301 } 2302 2303 unix_state_lock(other); 2304 2305 if (sock_flag(other, SOCK_DEAD) || 2306 other->sk_shutdown & RCV_SHUTDOWN) { 2307 err = -EPIPE; 2308 send_sigpipe = true; 2309 goto err_state_unlock; 2310 } 2311 2312 if (init_scm) { 2313 err = maybe_init_creds(&scm, socket, other); 2314 if (err) 2315 goto err_state_unlock; 2316 init_scm = false; 2317 } 2318 2319 skb = skb_peek_tail(&other->sk_receive_queue); 2320 if (tail && tail == skb) { 2321 skb = newskb; 2322 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) { 2323 if (newskb) { 2324 skb = newskb; 2325 } else { 2326 tail = skb; 2327 goto alloc_skb; 2328 } 2329 } else if (newskb) { 2330 /* this is fast path, we don't necessarily need to 2331 * call to kfree_skb even though with newskb == NULL 2332 * this - does no harm 2333 */ 2334 consume_skb(newskb); 2335 newskb = NULL; 2336 } 2337 2338 if (skb_append_pagefrags(skb, page, offset, size)) { 2339 tail = skb; 2340 goto alloc_skb; 2341 } 2342 2343 skb->len += size; 2344 skb->data_len += size; 2345 skb->truesize += size; 2346 refcount_add(size, &sk->sk_wmem_alloc); 2347 2348 if (newskb) { 2349 err = unix_scm_to_skb(&scm, skb, false); 2350 if (err) 2351 goto err_state_unlock; 2352 spin_lock(&other->sk_receive_queue.lock); 2353 __skb_queue_tail(&other->sk_receive_queue, newskb); 2354 spin_unlock(&other->sk_receive_queue.lock); 2355 } 2356 2357 unix_state_unlock(other); 2358 mutex_unlock(&unix_sk(other)->iolock); 2359 2360 other->sk_data_ready(other); 2361 scm_destroy(&scm); 2362 return size; 2363 2364 err_state_unlock: 2365 unix_state_unlock(other); 2366 err_unlock: 2367 mutex_unlock(&unix_sk(other)->iolock); 2368 err: 2369 kfree_skb(newskb); 2370 if (send_sigpipe && !(flags & MSG_NOSIGNAL)) 2371 send_sig(SIGPIPE, current, 0); 2372 if (!init_scm) 2373 scm_destroy(&scm); 2374 return err; 2375 } 2376 2377 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg, 2378 size_t len) 2379 { 2380 int err; 2381 struct sock *sk = sock->sk; 2382 2383 err = sock_error(sk); 2384 if (err) 2385 return err; 2386 2387 if (sk->sk_state != TCP_ESTABLISHED) 2388 return -ENOTCONN; 2389 2390 if (msg->msg_namelen) 2391 msg->msg_namelen = 0; 2392 2393 return unix_dgram_sendmsg(sock, msg, len); 2394 } 2395 2396 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg, 2397 size_t size, int flags) 2398 { 2399 struct sock *sk = sock->sk; 2400 2401 if (sk->sk_state != TCP_ESTABLISHED) 2402 return -ENOTCONN; 2403 2404 return unix_dgram_recvmsg(sock, msg, size, flags); 2405 } 2406 2407 static void unix_copy_addr(struct msghdr *msg, struct sock *sk) 2408 { 2409 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr); 2410 2411 if (addr) { 2412 msg->msg_namelen = addr->len; 2413 memcpy(msg->msg_name, addr->name, addr->len); 2414 } 2415 } 2416 2417 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size, 2418 int flags) 2419 { 2420 struct scm_cookie scm; 2421 struct socket *sock = sk->sk_socket; 2422 struct unix_sock *u = unix_sk(sk); 2423 struct sk_buff *skb, *last; 2424 long timeo; 2425 int skip; 2426 int err; 2427 2428 err = -EOPNOTSUPP; 2429 if (flags&MSG_OOB) 2430 goto out; 2431 2432 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2433 2434 do { 2435 mutex_lock(&u->iolock); 2436 2437 skip = sk_peek_offset(sk, flags); 2438 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags, 2439 &skip, &err, &last); 2440 if (skb) { 2441 if (!(flags & MSG_PEEK)) 2442 scm_stat_del(sk, skb); 2443 break; 2444 } 2445 2446 mutex_unlock(&u->iolock); 2447 2448 if (err != -EAGAIN) 2449 break; 2450 } while (timeo && 2451 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 2452 &err, &timeo, last)); 2453 2454 if (!skb) { /* implies iolock unlocked */ 2455 unix_state_lock(sk); 2456 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ 2457 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && 2458 (sk->sk_shutdown & RCV_SHUTDOWN)) 2459 err = 0; 2460 unix_state_unlock(sk); 2461 goto out; 2462 } 2463 2464 if (wq_has_sleeper(&u->peer_wait)) 2465 wake_up_interruptible_sync_poll(&u->peer_wait, 2466 EPOLLOUT | EPOLLWRNORM | 2467 EPOLLWRBAND); 2468 2469 if (msg->msg_name) 2470 unix_copy_addr(msg, skb->sk); 2471 2472 if (size > skb->len - skip) 2473 size = skb->len - skip; 2474 else if (size < skb->len - skip) 2475 msg->msg_flags |= MSG_TRUNC; 2476 2477 err = skb_copy_datagram_msg(skb, skip, msg, size); 2478 if (err) 2479 goto out_free; 2480 2481 if (sock_flag(sk, SOCK_RCVTSTAMP)) 2482 __sock_recv_timestamp(msg, sk, skb); 2483 2484 memset(&scm, 0, sizeof(scm)); 2485 2486 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2487 unix_set_secdata(&scm, skb); 2488 2489 if (!(flags & MSG_PEEK)) { 2490 if (UNIXCB(skb).fp) 2491 unix_detach_fds(&scm, skb); 2492 2493 sk_peek_offset_bwd(sk, skb->len); 2494 } else { 2495 /* It is questionable: on PEEK we could: 2496 - do not return fds - good, but too simple 8) 2497 - return fds, and do not return them on read (old strategy, 2498 apparently wrong) 2499 - clone fds (I chose it for now, it is the most universal 2500 solution) 2501 2502 POSIX 1003.1g does not actually define this clearly 2503 at all. POSIX 1003.1g doesn't define a lot of things 2504 clearly however! 2505 2506 */ 2507 2508 sk_peek_offset_fwd(sk, size); 2509 2510 if (UNIXCB(skb).fp) 2511 unix_peek_fds(&scm, skb); 2512 } 2513 err = (flags & MSG_TRUNC) ? skb->len - skip : size; 2514 2515 scm_recv(sock, msg, &scm, flags); 2516 2517 out_free: 2518 skb_free_datagram(sk, skb); 2519 mutex_unlock(&u->iolock); 2520 out: 2521 return err; 2522 } 2523 2524 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 2525 int flags) 2526 { 2527 struct sock *sk = sock->sk; 2528 2529 #ifdef CONFIG_BPF_SYSCALL 2530 const struct proto *prot = READ_ONCE(sk->sk_prot); 2531 2532 if (prot != &unix_dgram_proto) 2533 return prot->recvmsg(sk, msg, size, flags, NULL); 2534 #endif 2535 return __unix_dgram_recvmsg(sk, msg, size, flags); 2536 } 2537 2538 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2539 { 2540 struct unix_sock *u = unix_sk(sk); 2541 struct sk_buff *skb; 2542 int err, copied; 2543 2544 mutex_lock(&u->iolock); 2545 skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err); 2546 mutex_unlock(&u->iolock); 2547 if (!skb) 2548 return err; 2549 2550 copied = recv_actor(sk, skb); 2551 kfree_skb(skb); 2552 2553 return copied; 2554 } 2555 2556 /* 2557 * Sleep until more data has arrived. But check for races.. 2558 */ 2559 static long unix_stream_data_wait(struct sock *sk, long timeo, 2560 struct sk_buff *last, unsigned int last_len, 2561 bool freezable) 2562 { 2563 unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE; 2564 struct sk_buff *tail; 2565 DEFINE_WAIT(wait); 2566 2567 unix_state_lock(sk); 2568 2569 for (;;) { 2570 prepare_to_wait(sk_sleep(sk), &wait, state); 2571 2572 tail = skb_peek_tail(&sk->sk_receive_queue); 2573 if (tail != last || 2574 (tail && tail->len != last_len) || 2575 sk->sk_err || 2576 (sk->sk_shutdown & RCV_SHUTDOWN) || 2577 signal_pending(current) || 2578 !timeo) 2579 break; 2580 2581 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2582 unix_state_unlock(sk); 2583 timeo = schedule_timeout(timeo); 2584 unix_state_lock(sk); 2585 2586 if (sock_flag(sk, SOCK_DEAD)) 2587 break; 2588 2589 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 2590 } 2591 2592 finish_wait(sk_sleep(sk), &wait); 2593 unix_state_unlock(sk); 2594 return timeo; 2595 } 2596 2597 static unsigned int unix_skb_len(const struct sk_buff *skb) 2598 { 2599 return skb->len - UNIXCB(skb).consumed; 2600 } 2601 2602 struct unix_stream_read_state { 2603 int (*recv_actor)(struct sk_buff *, int, int, 2604 struct unix_stream_read_state *); 2605 struct socket *socket; 2606 struct msghdr *msg; 2607 struct pipe_inode_info *pipe; 2608 size_t size; 2609 int flags; 2610 unsigned int splice_flags; 2611 }; 2612 2613 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2614 static int unix_stream_recv_urg(struct unix_stream_read_state *state) 2615 { 2616 struct socket *sock = state->socket; 2617 struct sock *sk = sock->sk; 2618 struct unix_sock *u = unix_sk(sk); 2619 int chunk = 1; 2620 struct sk_buff *oob_skb; 2621 2622 mutex_lock(&u->iolock); 2623 unix_state_lock(sk); 2624 2625 if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) { 2626 unix_state_unlock(sk); 2627 mutex_unlock(&u->iolock); 2628 return -EINVAL; 2629 } 2630 2631 oob_skb = u->oob_skb; 2632 2633 if (!(state->flags & MSG_PEEK)) 2634 WRITE_ONCE(u->oob_skb, NULL); 2635 2636 unix_state_unlock(sk); 2637 2638 chunk = state->recv_actor(oob_skb, 0, chunk, state); 2639 2640 if (!(state->flags & MSG_PEEK)) { 2641 UNIXCB(oob_skb).consumed += 1; 2642 kfree_skb(oob_skb); 2643 } 2644 2645 mutex_unlock(&u->iolock); 2646 2647 if (chunk < 0) 2648 return -EFAULT; 2649 2650 state->msg->msg_flags |= MSG_OOB; 2651 return 1; 2652 } 2653 2654 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk, 2655 int flags, int copied) 2656 { 2657 struct unix_sock *u = unix_sk(sk); 2658 2659 if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) { 2660 skb_unlink(skb, &sk->sk_receive_queue); 2661 consume_skb(skb); 2662 skb = NULL; 2663 } else { 2664 if (skb == u->oob_skb) { 2665 if (copied) { 2666 skb = NULL; 2667 } else if (sock_flag(sk, SOCK_URGINLINE)) { 2668 if (!(flags & MSG_PEEK)) { 2669 WRITE_ONCE(u->oob_skb, NULL); 2670 consume_skb(skb); 2671 } 2672 } else if (!(flags & MSG_PEEK)) { 2673 skb_unlink(skb, &sk->sk_receive_queue); 2674 consume_skb(skb); 2675 skb = skb_peek(&sk->sk_receive_queue); 2676 } 2677 } 2678 } 2679 return skb; 2680 } 2681 #endif 2682 2683 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 2684 { 2685 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) 2686 return -ENOTCONN; 2687 2688 return unix_read_skb(sk, recv_actor); 2689 } 2690 2691 static int unix_stream_read_generic(struct unix_stream_read_state *state, 2692 bool freezable) 2693 { 2694 struct scm_cookie scm; 2695 struct socket *sock = state->socket; 2696 struct sock *sk = sock->sk; 2697 struct unix_sock *u = unix_sk(sk); 2698 int copied = 0; 2699 int flags = state->flags; 2700 int noblock = flags & MSG_DONTWAIT; 2701 bool check_creds = false; 2702 int target; 2703 int err = 0; 2704 long timeo; 2705 int skip; 2706 size_t size = state->size; 2707 unsigned int last_len; 2708 2709 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) { 2710 err = -EINVAL; 2711 goto out; 2712 } 2713 2714 if (unlikely(flags & MSG_OOB)) { 2715 err = -EOPNOTSUPP; 2716 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2717 err = unix_stream_recv_urg(state); 2718 #endif 2719 goto out; 2720 } 2721 2722 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); 2723 timeo = sock_rcvtimeo(sk, noblock); 2724 2725 memset(&scm, 0, sizeof(scm)); 2726 2727 /* Lock the socket to prevent queue disordering 2728 * while sleeps in memcpy_tomsg 2729 */ 2730 mutex_lock(&u->iolock); 2731 2732 skip = max(sk_peek_offset(sk, flags), 0); 2733 2734 do { 2735 int chunk; 2736 bool drop_skb; 2737 struct sk_buff *skb, *last; 2738 2739 redo: 2740 unix_state_lock(sk); 2741 if (sock_flag(sk, SOCK_DEAD)) { 2742 err = -ECONNRESET; 2743 goto unlock; 2744 } 2745 last = skb = skb_peek(&sk->sk_receive_queue); 2746 last_len = last ? last->len : 0; 2747 2748 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 2749 if (skb) { 2750 skb = manage_oob(skb, sk, flags, copied); 2751 if (!skb) { 2752 unix_state_unlock(sk); 2753 if (copied) 2754 break; 2755 goto redo; 2756 } 2757 } 2758 #endif 2759 again: 2760 if (skb == NULL) { 2761 if (copied >= target) 2762 goto unlock; 2763 2764 /* 2765 * POSIX 1003.1g mandates this order. 2766 */ 2767 2768 err = sock_error(sk); 2769 if (err) 2770 goto unlock; 2771 if (sk->sk_shutdown & RCV_SHUTDOWN) 2772 goto unlock; 2773 2774 unix_state_unlock(sk); 2775 if (!timeo) { 2776 err = -EAGAIN; 2777 break; 2778 } 2779 2780 mutex_unlock(&u->iolock); 2781 2782 timeo = unix_stream_data_wait(sk, timeo, last, 2783 last_len, freezable); 2784 2785 if (signal_pending(current)) { 2786 err = sock_intr_errno(timeo); 2787 scm_destroy(&scm); 2788 goto out; 2789 } 2790 2791 mutex_lock(&u->iolock); 2792 goto redo; 2793 unlock: 2794 unix_state_unlock(sk); 2795 break; 2796 } 2797 2798 while (skip >= unix_skb_len(skb)) { 2799 skip -= unix_skb_len(skb); 2800 last = skb; 2801 last_len = skb->len; 2802 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2803 if (!skb) 2804 goto again; 2805 } 2806 2807 unix_state_unlock(sk); 2808 2809 if (check_creds) { 2810 /* Never glue messages from different writers */ 2811 if (!unix_skb_scm_eq(skb, &scm)) 2812 break; 2813 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) { 2814 /* Copy credentials */ 2815 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid); 2816 unix_set_secdata(&scm, skb); 2817 check_creds = true; 2818 } 2819 2820 /* Copy address just once */ 2821 if (state->msg && state->msg->msg_name) { 2822 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, 2823 state->msg->msg_name); 2824 unix_copy_addr(state->msg, skb->sk); 2825 sunaddr = NULL; 2826 } 2827 2828 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size); 2829 skb_get(skb); 2830 chunk = state->recv_actor(skb, skip, chunk, state); 2831 drop_skb = !unix_skb_len(skb); 2832 /* skb is only safe to use if !drop_skb */ 2833 consume_skb(skb); 2834 if (chunk < 0) { 2835 if (copied == 0) 2836 copied = -EFAULT; 2837 break; 2838 } 2839 copied += chunk; 2840 size -= chunk; 2841 2842 if (drop_skb) { 2843 /* the skb was touched by a concurrent reader; 2844 * we should not expect anything from this skb 2845 * anymore and assume it invalid - we can be 2846 * sure it was dropped from the socket queue 2847 * 2848 * let's report a short read 2849 */ 2850 err = 0; 2851 break; 2852 } 2853 2854 /* Mark read part of skb as used */ 2855 if (!(flags & MSG_PEEK)) { 2856 UNIXCB(skb).consumed += chunk; 2857 2858 sk_peek_offset_bwd(sk, chunk); 2859 2860 if (UNIXCB(skb).fp) { 2861 scm_stat_del(sk, skb); 2862 unix_detach_fds(&scm, skb); 2863 } 2864 2865 if (unix_skb_len(skb)) 2866 break; 2867 2868 skb_unlink(skb, &sk->sk_receive_queue); 2869 consume_skb(skb); 2870 2871 if (scm.fp) 2872 break; 2873 } else { 2874 /* It is questionable, see note in unix_dgram_recvmsg. 2875 */ 2876 if (UNIXCB(skb).fp) 2877 unix_peek_fds(&scm, skb); 2878 2879 sk_peek_offset_fwd(sk, chunk); 2880 2881 if (UNIXCB(skb).fp) 2882 break; 2883 2884 skip = 0; 2885 last = skb; 2886 last_len = skb->len; 2887 unix_state_lock(sk); 2888 skb = skb_peek_next(skb, &sk->sk_receive_queue); 2889 if (skb) 2890 goto again; 2891 unix_state_unlock(sk); 2892 break; 2893 } 2894 } while (size); 2895 2896 mutex_unlock(&u->iolock); 2897 if (state->msg) 2898 scm_recv(sock, state->msg, &scm, flags); 2899 else 2900 scm_destroy(&scm); 2901 out: 2902 return copied ? : err; 2903 } 2904 2905 static int unix_stream_read_actor(struct sk_buff *skb, 2906 int skip, int chunk, 2907 struct unix_stream_read_state *state) 2908 { 2909 int ret; 2910 2911 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip, 2912 state->msg, chunk); 2913 return ret ?: chunk; 2914 } 2915 2916 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg, 2917 size_t size, int flags) 2918 { 2919 struct unix_stream_read_state state = { 2920 .recv_actor = unix_stream_read_actor, 2921 .socket = sk->sk_socket, 2922 .msg = msg, 2923 .size = size, 2924 .flags = flags 2925 }; 2926 2927 return unix_stream_read_generic(&state, true); 2928 } 2929 2930 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg, 2931 size_t size, int flags) 2932 { 2933 struct unix_stream_read_state state = { 2934 .recv_actor = unix_stream_read_actor, 2935 .socket = sock, 2936 .msg = msg, 2937 .size = size, 2938 .flags = flags 2939 }; 2940 2941 #ifdef CONFIG_BPF_SYSCALL 2942 struct sock *sk = sock->sk; 2943 const struct proto *prot = READ_ONCE(sk->sk_prot); 2944 2945 if (prot != &unix_stream_proto) 2946 return prot->recvmsg(sk, msg, size, flags, NULL); 2947 #endif 2948 return unix_stream_read_generic(&state, true); 2949 } 2950 2951 static int unix_stream_splice_actor(struct sk_buff *skb, 2952 int skip, int chunk, 2953 struct unix_stream_read_state *state) 2954 { 2955 return skb_splice_bits(skb, state->socket->sk, 2956 UNIXCB(skb).consumed + skip, 2957 state->pipe, chunk, state->splice_flags); 2958 } 2959 2960 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos, 2961 struct pipe_inode_info *pipe, 2962 size_t size, unsigned int flags) 2963 { 2964 struct unix_stream_read_state state = { 2965 .recv_actor = unix_stream_splice_actor, 2966 .socket = sock, 2967 .pipe = pipe, 2968 .size = size, 2969 .splice_flags = flags, 2970 }; 2971 2972 if (unlikely(*ppos)) 2973 return -ESPIPE; 2974 2975 if (sock->file->f_flags & O_NONBLOCK || 2976 flags & SPLICE_F_NONBLOCK) 2977 state.flags = MSG_DONTWAIT; 2978 2979 return unix_stream_read_generic(&state, false); 2980 } 2981 2982 static int unix_shutdown(struct socket *sock, int mode) 2983 { 2984 struct sock *sk = sock->sk; 2985 struct sock *other; 2986 2987 if (mode < SHUT_RD || mode > SHUT_RDWR) 2988 return -EINVAL; 2989 /* This maps: 2990 * SHUT_RD (0) -> RCV_SHUTDOWN (1) 2991 * SHUT_WR (1) -> SEND_SHUTDOWN (2) 2992 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3) 2993 */ 2994 ++mode; 2995 2996 unix_state_lock(sk); 2997 sk->sk_shutdown |= mode; 2998 other = unix_peer(sk); 2999 if (other) 3000 sock_hold(other); 3001 unix_state_unlock(sk); 3002 sk->sk_state_change(sk); 3003 3004 if (other && 3005 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { 3006 3007 int peer_mode = 0; 3008 const struct proto *prot = READ_ONCE(other->sk_prot); 3009 3010 if (prot->unhash) 3011 prot->unhash(other); 3012 if (mode&RCV_SHUTDOWN) 3013 peer_mode |= SEND_SHUTDOWN; 3014 if (mode&SEND_SHUTDOWN) 3015 peer_mode |= RCV_SHUTDOWN; 3016 unix_state_lock(other); 3017 other->sk_shutdown |= peer_mode; 3018 unix_state_unlock(other); 3019 other->sk_state_change(other); 3020 if (peer_mode == SHUTDOWN_MASK) 3021 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); 3022 else if (peer_mode & RCV_SHUTDOWN) 3023 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); 3024 } 3025 if (other) 3026 sock_put(other); 3027 3028 return 0; 3029 } 3030 3031 long unix_inq_len(struct sock *sk) 3032 { 3033 struct sk_buff *skb; 3034 long amount = 0; 3035 3036 if (sk->sk_state == TCP_LISTEN) 3037 return -EINVAL; 3038 3039 spin_lock(&sk->sk_receive_queue.lock); 3040 if (sk->sk_type == SOCK_STREAM || 3041 sk->sk_type == SOCK_SEQPACKET) { 3042 skb_queue_walk(&sk->sk_receive_queue, skb) 3043 amount += unix_skb_len(skb); 3044 } else { 3045 skb = skb_peek(&sk->sk_receive_queue); 3046 if (skb) 3047 amount = skb->len; 3048 } 3049 spin_unlock(&sk->sk_receive_queue.lock); 3050 3051 return amount; 3052 } 3053 EXPORT_SYMBOL_GPL(unix_inq_len); 3054 3055 long unix_outq_len(struct sock *sk) 3056 { 3057 return sk_wmem_alloc_get(sk); 3058 } 3059 EXPORT_SYMBOL_GPL(unix_outq_len); 3060 3061 static int unix_open_file(struct sock *sk) 3062 { 3063 struct path path; 3064 struct file *f; 3065 int fd; 3066 3067 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) 3068 return -EPERM; 3069 3070 if (!smp_load_acquire(&unix_sk(sk)->addr)) 3071 return -ENOENT; 3072 3073 path = unix_sk(sk)->path; 3074 if (!path.dentry) 3075 return -ENOENT; 3076 3077 path_get(&path); 3078 3079 fd = get_unused_fd_flags(O_CLOEXEC); 3080 if (fd < 0) 3081 goto out; 3082 3083 f = dentry_open(&path, O_PATH, current_cred()); 3084 if (IS_ERR(f)) { 3085 put_unused_fd(fd); 3086 fd = PTR_ERR(f); 3087 goto out; 3088 } 3089 3090 fd_install(fd, f); 3091 out: 3092 path_put(&path); 3093 3094 return fd; 3095 } 3096 3097 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3098 { 3099 struct sock *sk = sock->sk; 3100 long amount = 0; 3101 int err; 3102 3103 switch (cmd) { 3104 case SIOCOUTQ: 3105 amount = unix_outq_len(sk); 3106 err = put_user(amount, (int __user *)arg); 3107 break; 3108 case SIOCINQ: 3109 amount = unix_inq_len(sk); 3110 if (amount < 0) 3111 err = amount; 3112 else 3113 err = put_user(amount, (int __user *)arg); 3114 break; 3115 case SIOCUNIXFILE: 3116 err = unix_open_file(sk); 3117 break; 3118 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3119 case SIOCATMARK: 3120 { 3121 struct sk_buff *skb; 3122 int answ = 0; 3123 3124 skb = skb_peek(&sk->sk_receive_queue); 3125 if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb)) 3126 answ = 1; 3127 err = put_user(answ, (int __user *)arg); 3128 } 3129 break; 3130 #endif 3131 default: 3132 err = -ENOIOCTLCMD; 3133 break; 3134 } 3135 return err; 3136 } 3137 3138 #ifdef CONFIG_COMPAT 3139 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 3140 { 3141 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 3142 } 3143 #endif 3144 3145 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait) 3146 { 3147 struct sock *sk = sock->sk; 3148 __poll_t mask; 3149 3150 sock_poll_wait(file, sock, wait); 3151 mask = 0; 3152 3153 /* exceptional events? */ 3154 if (sk->sk_err) 3155 mask |= EPOLLERR; 3156 if (sk->sk_shutdown == SHUTDOWN_MASK) 3157 mask |= EPOLLHUP; 3158 if (sk->sk_shutdown & RCV_SHUTDOWN) 3159 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3160 3161 /* readable? */ 3162 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3163 mask |= EPOLLIN | EPOLLRDNORM; 3164 if (sk_is_readable(sk)) 3165 mask |= EPOLLIN | EPOLLRDNORM; 3166 #if IS_ENABLED(CONFIG_AF_UNIX_OOB) 3167 if (READ_ONCE(unix_sk(sk)->oob_skb)) 3168 mask |= EPOLLPRI; 3169 #endif 3170 3171 /* Connection-based need to check for termination and startup */ 3172 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && 3173 sk->sk_state == TCP_CLOSE) 3174 mask |= EPOLLHUP; 3175 3176 /* 3177 * we set writable also when the other side has shut down the 3178 * connection. This prevents stuck sockets. 3179 */ 3180 if (unix_writable(sk)) 3181 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3182 3183 return mask; 3184 } 3185 3186 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock, 3187 poll_table *wait) 3188 { 3189 struct sock *sk = sock->sk, *other; 3190 unsigned int writable; 3191 __poll_t mask; 3192 3193 sock_poll_wait(file, sock, wait); 3194 mask = 0; 3195 3196 /* exceptional events? */ 3197 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 3198 mask |= EPOLLERR | 3199 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 3200 3201 if (sk->sk_shutdown & RCV_SHUTDOWN) 3202 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 3203 if (sk->sk_shutdown == SHUTDOWN_MASK) 3204 mask |= EPOLLHUP; 3205 3206 /* readable? */ 3207 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 3208 mask |= EPOLLIN | EPOLLRDNORM; 3209 if (sk_is_readable(sk)) 3210 mask |= EPOLLIN | EPOLLRDNORM; 3211 3212 /* Connection-based need to check for termination and startup */ 3213 if (sk->sk_type == SOCK_SEQPACKET) { 3214 if (sk->sk_state == TCP_CLOSE) 3215 mask |= EPOLLHUP; 3216 /* connection hasn't started yet? */ 3217 if (sk->sk_state == TCP_SYN_SENT) 3218 return mask; 3219 } 3220 3221 /* No write status requested, avoid expensive OUT tests. */ 3222 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT))) 3223 return mask; 3224 3225 writable = unix_writable(sk); 3226 if (writable) { 3227 unix_state_lock(sk); 3228 3229 other = unix_peer(sk); 3230 if (other && unix_peer(other) != sk && 3231 unix_recvq_full_lockless(other) && 3232 unix_dgram_peer_wake_me(sk, other)) 3233 writable = 0; 3234 3235 unix_state_unlock(sk); 3236 } 3237 3238 if (writable) 3239 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; 3240 else 3241 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 3242 3243 return mask; 3244 } 3245 3246 #ifdef CONFIG_PROC_FS 3247 3248 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1) 3249 3250 #define get_bucket(x) ((x) >> BUCKET_SPACE) 3251 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1)) 3252 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 3253 3254 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos) 3255 { 3256 unsigned long offset = get_offset(*pos); 3257 unsigned long bucket = get_bucket(*pos); 3258 unsigned long count = 0; 3259 struct sock *sk; 3260 3261 for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]); 3262 sk; sk = sk_next(sk)) { 3263 if (++count == offset) 3264 break; 3265 } 3266 3267 return sk; 3268 } 3269 3270 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos) 3271 { 3272 unsigned long bucket = get_bucket(*pos); 3273 struct net *net = seq_file_net(seq); 3274 struct sock *sk; 3275 3276 while (bucket < UNIX_HASH_SIZE) { 3277 spin_lock(&net->unx.table.locks[bucket]); 3278 3279 sk = unix_from_bucket(seq, pos); 3280 if (sk) 3281 return sk; 3282 3283 spin_unlock(&net->unx.table.locks[bucket]); 3284 3285 *pos = set_bucket_offset(++bucket, 1); 3286 } 3287 3288 return NULL; 3289 } 3290 3291 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk, 3292 loff_t *pos) 3293 { 3294 unsigned long bucket = get_bucket(*pos); 3295 3296 sk = sk_next(sk); 3297 if (sk) 3298 return sk; 3299 3300 3301 spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]); 3302 3303 *pos = set_bucket_offset(++bucket, 1); 3304 3305 return unix_get_first(seq, pos); 3306 } 3307 3308 static void *unix_seq_start(struct seq_file *seq, loff_t *pos) 3309 { 3310 if (!*pos) 3311 return SEQ_START_TOKEN; 3312 3313 return unix_get_first(seq, pos); 3314 } 3315 3316 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3317 { 3318 ++*pos; 3319 3320 if (v == SEQ_START_TOKEN) 3321 return unix_get_first(seq, pos); 3322 3323 return unix_get_next(seq, v, pos); 3324 } 3325 3326 static void unix_seq_stop(struct seq_file *seq, void *v) 3327 { 3328 struct sock *sk = v; 3329 3330 if (sk) 3331 spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]); 3332 } 3333 3334 static int unix_seq_show(struct seq_file *seq, void *v) 3335 { 3336 3337 if (v == SEQ_START_TOKEN) 3338 seq_puts(seq, "Num RefCount Protocol Flags Type St " 3339 "Inode Path\n"); 3340 else { 3341 struct sock *s = v; 3342 struct unix_sock *u = unix_sk(s); 3343 unix_state_lock(s); 3344 3345 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu", 3346 s, 3347 refcount_read(&s->sk_refcnt), 3348 0, 3349 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, 3350 s->sk_type, 3351 s->sk_socket ? 3352 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : 3353 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), 3354 sock_i_ino(s)); 3355 3356 if (u->addr) { // under a hash table lock here 3357 int i, len; 3358 seq_putc(seq, ' '); 3359 3360 i = 0; 3361 len = u->addr->len - 3362 offsetof(struct sockaddr_un, sun_path); 3363 if (u->addr->name->sun_path[0]) { 3364 len--; 3365 } else { 3366 seq_putc(seq, '@'); 3367 i++; 3368 } 3369 for ( ; i < len; i++) 3370 seq_putc(seq, u->addr->name->sun_path[i] ?: 3371 '@'); 3372 } 3373 unix_state_unlock(s); 3374 seq_putc(seq, '\n'); 3375 } 3376 3377 return 0; 3378 } 3379 3380 static const struct seq_operations unix_seq_ops = { 3381 .start = unix_seq_start, 3382 .next = unix_seq_next, 3383 .stop = unix_seq_stop, 3384 .show = unix_seq_show, 3385 }; 3386 3387 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) 3388 struct bpf_unix_iter_state { 3389 struct seq_net_private p; 3390 unsigned int cur_sk; 3391 unsigned int end_sk; 3392 unsigned int max_sk; 3393 struct sock **batch; 3394 bool st_bucket_done; 3395 }; 3396 3397 struct bpf_iter__unix { 3398 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3399 __bpf_md_ptr(struct unix_sock *, unix_sk); 3400 uid_t uid __aligned(8); 3401 }; 3402 3403 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3404 struct unix_sock *unix_sk, uid_t uid) 3405 { 3406 struct bpf_iter__unix ctx; 3407 3408 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3409 ctx.meta = meta; 3410 ctx.unix_sk = unix_sk; 3411 ctx.uid = uid; 3412 return bpf_iter_run_prog(prog, &ctx); 3413 } 3414 3415 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk) 3416 3417 { 3418 struct bpf_unix_iter_state *iter = seq->private; 3419 unsigned int expected = 1; 3420 struct sock *sk; 3421 3422 sock_hold(start_sk); 3423 iter->batch[iter->end_sk++] = start_sk; 3424 3425 for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) { 3426 if (iter->end_sk < iter->max_sk) { 3427 sock_hold(sk); 3428 iter->batch[iter->end_sk++] = sk; 3429 } 3430 3431 expected++; 3432 } 3433 3434 spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]); 3435 3436 return expected; 3437 } 3438 3439 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter) 3440 { 3441 while (iter->cur_sk < iter->end_sk) 3442 sock_put(iter->batch[iter->cur_sk++]); 3443 } 3444 3445 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter, 3446 unsigned int new_batch_sz) 3447 { 3448 struct sock **new_batch; 3449 3450 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3451 GFP_USER | __GFP_NOWARN); 3452 if (!new_batch) 3453 return -ENOMEM; 3454 3455 bpf_iter_unix_put_batch(iter); 3456 kvfree(iter->batch); 3457 iter->batch = new_batch; 3458 iter->max_sk = new_batch_sz; 3459 3460 return 0; 3461 } 3462 3463 static struct sock *bpf_iter_unix_batch(struct seq_file *seq, 3464 loff_t *pos) 3465 { 3466 struct bpf_unix_iter_state *iter = seq->private; 3467 unsigned int expected; 3468 bool resized = false; 3469 struct sock *sk; 3470 3471 if (iter->st_bucket_done) 3472 *pos = set_bucket_offset(get_bucket(*pos) + 1, 1); 3473 3474 again: 3475 /* Get a new batch */ 3476 iter->cur_sk = 0; 3477 iter->end_sk = 0; 3478 3479 sk = unix_get_first(seq, pos); 3480 if (!sk) 3481 return NULL; /* Done */ 3482 3483 expected = bpf_iter_unix_hold_batch(seq, sk); 3484 3485 if (iter->end_sk == expected) { 3486 iter->st_bucket_done = true; 3487 return sk; 3488 } 3489 3490 if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) { 3491 resized = true; 3492 goto again; 3493 } 3494 3495 return sk; 3496 } 3497 3498 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos) 3499 { 3500 if (!*pos) 3501 return SEQ_START_TOKEN; 3502 3503 /* bpf iter does not support lseek, so it always 3504 * continue from where it was stop()-ped. 3505 */ 3506 return bpf_iter_unix_batch(seq, pos); 3507 } 3508 3509 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3510 { 3511 struct bpf_unix_iter_state *iter = seq->private; 3512 struct sock *sk; 3513 3514 /* Whenever seq_next() is called, the iter->cur_sk is 3515 * done with seq_show(), so advance to the next sk in 3516 * the batch. 3517 */ 3518 if (iter->cur_sk < iter->end_sk) 3519 sock_put(iter->batch[iter->cur_sk++]); 3520 3521 ++*pos; 3522 3523 if (iter->cur_sk < iter->end_sk) 3524 sk = iter->batch[iter->cur_sk]; 3525 else 3526 sk = bpf_iter_unix_batch(seq, pos); 3527 3528 return sk; 3529 } 3530 3531 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v) 3532 { 3533 struct bpf_iter_meta meta; 3534 struct bpf_prog *prog; 3535 struct sock *sk = v; 3536 uid_t uid; 3537 bool slow; 3538 int ret; 3539 3540 if (v == SEQ_START_TOKEN) 3541 return 0; 3542 3543 slow = lock_sock_fast(sk); 3544 3545 if (unlikely(sk_unhashed(sk))) { 3546 ret = SEQ_SKIP; 3547 goto unlock; 3548 } 3549 3550 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3551 meta.seq = seq; 3552 prog = bpf_iter_get_info(&meta, false); 3553 ret = unix_prog_seq_show(prog, &meta, v, uid); 3554 unlock: 3555 unlock_sock_fast(sk, slow); 3556 return ret; 3557 } 3558 3559 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v) 3560 { 3561 struct bpf_unix_iter_state *iter = seq->private; 3562 struct bpf_iter_meta meta; 3563 struct bpf_prog *prog; 3564 3565 if (!v) { 3566 meta.seq = seq; 3567 prog = bpf_iter_get_info(&meta, true); 3568 if (prog) 3569 (void)unix_prog_seq_show(prog, &meta, v, 0); 3570 } 3571 3572 if (iter->cur_sk < iter->end_sk) 3573 bpf_iter_unix_put_batch(iter); 3574 } 3575 3576 static const struct seq_operations bpf_iter_unix_seq_ops = { 3577 .start = bpf_iter_unix_seq_start, 3578 .next = bpf_iter_unix_seq_next, 3579 .stop = bpf_iter_unix_seq_stop, 3580 .show = bpf_iter_unix_seq_show, 3581 }; 3582 #endif 3583 #endif 3584 3585 static const struct net_proto_family unix_family_ops = { 3586 .family = PF_UNIX, 3587 .create = unix_create, 3588 .owner = THIS_MODULE, 3589 }; 3590 3591 3592 static int __net_init unix_net_init(struct net *net) 3593 { 3594 int i; 3595 3596 net->unx.sysctl_max_dgram_qlen = 10; 3597 if (unix_sysctl_register(net)) 3598 goto out; 3599 3600 #ifdef CONFIG_PROC_FS 3601 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops, 3602 sizeof(struct seq_net_private))) 3603 goto err_sysctl; 3604 #endif 3605 3606 net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE, 3607 sizeof(spinlock_t), GFP_KERNEL); 3608 if (!net->unx.table.locks) 3609 goto err_proc; 3610 3611 net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE, 3612 sizeof(struct hlist_head), 3613 GFP_KERNEL); 3614 if (!net->unx.table.buckets) 3615 goto free_locks; 3616 3617 for (i = 0; i < UNIX_HASH_SIZE; i++) { 3618 spin_lock_init(&net->unx.table.locks[i]); 3619 INIT_HLIST_HEAD(&net->unx.table.buckets[i]); 3620 } 3621 3622 return 0; 3623 3624 free_locks: 3625 kvfree(net->unx.table.locks); 3626 err_proc: 3627 #ifdef CONFIG_PROC_FS 3628 remove_proc_entry("unix", net->proc_net); 3629 err_sysctl: 3630 #endif 3631 unix_sysctl_unregister(net); 3632 out: 3633 return -ENOMEM; 3634 } 3635 3636 static void __net_exit unix_net_exit(struct net *net) 3637 { 3638 kvfree(net->unx.table.buckets); 3639 kvfree(net->unx.table.locks); 3640 unix_sysctl_unregister(net); 3641 remove_proc_entry("unix", net->proc_net); 3642 } 3643 3644 static struct pernet_operations unix_net_ops = { 3645 .init = unix_net_init, 3646 .exit = unix_net_exit, 3647 }; 3648 3649 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3650 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta, 3651 struct unix_sock *unix_sk, uid_t uid) 3652 3653 #define INIT_BATCH_SZ 16 3654 3655 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux) 3656 { 3657 struct bpf_unix_iter_state *iter = priv_data; 3658 int err; 3659 3660 err = bpf_iter_init_seq_net(priv_data, aux); 3661 if (err) 3662 return err; 3663 3664 err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ); 3665 if (err) { 3666 bpf_iter_fini_seq_net(priv_data); 3667 return err; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static void bpf_iter_fini_unix(void *priv_data) 3674 { 3675 struct bpf_unix_iter_state *iter = priv_data; 3676 3677 bpf_iter_fini_seq_net(priv_data); 3678 kvfree(iter->batch); 3679 } 3680 3681 static const struct bpf_iter_seq_info unix_seq_info = { 3682 .seq_ops = &bpf_iter_unix_seq_ops, 3683 .init_seq_private = bpf_iter_init_unix, 3684 .fini_seq_private = bpf_iter_fini_unix, 3685 .seq_priv_size = sizeof(struct bpf_unix_iter_state), 3686 }; 3687 3688 static const struct bpf_func_proto * 3689 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id, 3690 const struct bpf_prog *prog) 3691 { 3692 switch (func_id) { 3693 case BPF_FUNC_setsockopt: 3694 return &bpf_sk_setsockopt_proto; 3695 case BPF_FUNC_getsockopt: 3696 return &bpf_sk_getsockopt_proto; 3697 default: 3698 return NULL; 3699 } 3700 } 3701 3702 static struct bpf_iter_reg unix_reg_info = { 3703 .target = "unix", 3704 .ctx_arg_info_size = 1, 3705 .ctx_arg_info = { 3706 { offsetof(struct bpf_iter__unix, unix_sk), 3707 PTR_TO_BTF_ID_OR_NULL }, 3708 }, 3709 .get_func_proto = bpf_iter_unix_get_func_proto, 3710 .seq_info = &unix_seq_info, 3711 }; 3712 3713 static void __init bpf_iter_register(void) 3714 { 3715 unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX]; 3716 if (bpf_iter_reg_target(&unix_reg_info)) 3717 pr_warn("Warning: could not register bpf iterator unix\n"); 3718 } 3719 #endif 3720 3721 static int __init af_unix_init(void) 3722 { 3723 int i, rc = -1; 3724 3725 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb)); 3726 3727 for (i = 0; i < UNIX_HASH_SIZE / 2; i++) { 3728 spin_lock_init(&bsd_socket_locks[i]); 3729 INIT_HLIST_HEAD(&bsd_socket_buckets[i]); 3730 } 3731 3732 rc = proto_register(&unix_dgram_proto, 1); 3733 if (rc != 0) { 3734 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3735 goto out; 3736 } 3737 3738 rc = proto_register(&unix_stream_proto, 1); 3739 if (rc != 0) { 3740 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__); 3741 goto out; 3742 } 3743 3744 sock_register(&unix_family_ops); 3745 register_pernet_subsys(&unix_net_ops); 3746 unix_bpf_build_proto(); 3747 3748 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3749 bpf_iter_register(); 3750 #endif 3751 3752 out: 3753 return rc; 3754 } 3755 3756 static void __exit af_unix_exit(void) 3757 { 3758 sock_unregister(PF_UNIX); 3759 proto_unregister(&unix_dgram_proto); 3760 proto_unregister(&unix_stream_proto); 3761 unregister_pernet_subsys(&unix_net_ops); 3762 } 3763 3764 /* Earlier than device_initcall() so that other drivers invoking 3765 request_module() don't end up in a loop when modprobe tries 3766 to use a UNIX socket. But later than subsys_initcall() because 3767 we depend on stuff initialised there */ 3768 fs_initcall(af_unix_init); 3769 module_exit(af_unix_exit); 3770 3771 MODULE_LICENSE("GPL"); 3772 MODULE_ALIAS_NETPROTO(PF_UNIX); 3773