1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 spin_lock_bh(&ctx->decrypt_compl_lock); 210 pending = atomic_dec_return(&ctx->decrypt_pending); 211 212 if (!pending && ctx->async_notify) 213 complete(&ctx->async_wait.completion); 214 spin_unlock_bh(&ctx->decrypt_compl_lock); 215 } 216 217 static int tls_do_decryption(struct sock *sk, 218 struct sk_buff *skb, 219 struct scatterlist *sgin, 220 struct scatterlist *sgout, 221 char *iv_recv, 222 size_t data_len, 223 struct aead_request *aead_req, 224 bool async) 225 { 226 struct tls_context *tls_ctx = tls_get_ctx(sk); 227 struct tls_prot_info *prot = &tls_ctx->prot_info; 228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 229 int ret; 230 231 aead_request_set_tfm(aead_req, ctx->aead_recv); 232 aead_request_set_ad(aead_req, prot->aad_size); 233 aead_request_set_crypt(aead_req, sgin, sgout, 234 data_len + prot->tag_size, 235 (u8 *)iv_recv); 236 237 if (async) { 238 /* Using skb->sk to push sk through to crypto async callback 239 * handler. This allows propagating errors up to the socket 240 * if needed. It _must_ be cleared in the async handler 241 * before consume_skb is called. We _know_ skb->sk is NULL 242 * because it is a clone from strparser. 243 */ 244 skb->sk = sk; 245 aead_request_set_callback(aead_req, 246 CRYPTO_TFM_REQ_MAY_BACKLOG, 247 tls_decrypt_done, skb); 248 atomic_inc(&ctx->decrypt_pending); 249 } else { 250 aead_request_set_callback(aead_req, 251 CRYPTO_TFM_REQ_MAY_BACKLOG, 252 crypto_req_done, &ctx->async_wait); 253 } 254 255 ret = crypto_aead_decrypt(aead_req); 256 if (ret == -EINPROGRESS) { 257 if (async) 258 return ret; 259 260 ret = crypto_wait_req(ret, &ctx->async_wait); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 spin_lock_bh(&ctx->encrypt_compl_lock); 473 pending = atomic_dec_return(&ctx->encrypt_pending); 474 475 if (!pending && ctx->async_notify) 476 complete(&ctx->async_wait.completion); 477 spin_unlock_bh(&ctx->encrypt_compl_lock); 478 479 if (!ready) 480 return; 481 482 /* Schedule the transmission */ 483 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 484 schedule_delayed_work(&ctx->tx_work.work, 1); 485 } 486 487 static int tls_do_encryption(struct sock *sk, 488 struct tls_context *tls_ctx, 489 struct tls_sw_context_tx *ctx, 490 struct aead_request *aead_req, 491 size_t data_len, u32 start) 492 { 493 struct tls_prot_info *prot = &tls_ctx->prot_info; 494 struct tls_rec *rec = ctx->open_rec; 495 struct sk_msg *msg_en = &rec->msg_encrypted; 496 struct scatterlist *sge = sk_msg_elem(msg_en, start); 497 int rc, iv_offset = 0; 498 499 /* For CCM based ciphers, first byte of IV is a constant */ 500 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 501 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 502 iv_offset = 1; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 509 510 sge->offset += prot->prepend_size; 511 sge->length -= prot->prepend_size; 512 513 msg_en->sg.curr = start; 514 515 aead_request_set_tfm(aead_req, ctx->aead_send); 516 aead_request_set_ad(aead_req, prot->aad_size); 517 aead_request_set_crypt(aead_req, rec->sg_aead_in, 518 rec->sg_aead_out, 519 data_len, rec->iv_data); 520 521 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 522 tls_encrypt_done, sk); 523 524 /* Add the record in tx_list */ 525 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 526 atomic_inc(&ctx->encrypt_pending); 527 528 rc = crypto_aead_encrypt(aead_req); 529 if (!rc || rc != -EINPROGRESS) { 530 atomic_dec(&ctx->encrypt_pending); 531 sge->offset -= prot->prepend_size; 532 sge->length += prot->prepend_size; 533 } 534 535 if (!rc) { 536 WRITE_ONCE(rec->tx_ready, true); 537 } else if (rc != -EINPROGRESS) { 538 list_del(&rec->list); 539 return rc; 540 } 541 542 /* Unhook the record from context if encryption is not failure */ 543 ctx->open_rec = NULL; 544 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 545 return rc; 546 } 547 548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 549 struct tls_rec **to, struct sk_msg *msg_opl, 550 struct sk_msg *msg_oen, u32 split_point, 551 u32 tx_overhead_size, u32 *orig_end) 552 { 553 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 554 struct scatterlist *sge, *osge, *nsge; 555 u32 orig_size = msg_opl->sg.size; 556 struct scatterlist tmp = { }; 557 struct sk_msg *msg_npl; 558 struct tls_rec *new; 559 int ret; 560 561 new = tls_get_rec(sk); 562 if (!new) 563 return -ENOMEM; 564 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 565 tx_overhead_size, 0); 566 if (ret < 0) { 567 tls_free_rec(sk, new); 568 return ret; 569 } 570 571 *orig_end = msg_opl->sg.end; 572 i = msg_opl->sg.start; 573 sge = sk_msg_elem(msg_opl, i); 574 while (apply && sge->length) { 575 if (sge->length > apply) { 576 u32 len = sge->length - apply; 577 578 get_page(sg_page(sge)); 579 sg_set_page(&tmp, sg_page(sge), len, 580 sge->offset + apply); 581 sge->length = apply; 582 bytes += apply; 583 apply = 0; 584 } else { 585 apply -= sge->length; 586 bytes += sge->length; 587 } 588 589 sk_msg_iter_var_next(i); 590 if (i == msg_opl->sg.end) 591 break; 592 sge = sk_msg_elem(msg_opl, i); 593 } 594 595 msg_opl->sg.end = i; 596 msg_opl->sg.curr = i; 597 msg_opl->sg.copybreak = 0; 598 msg_opl->apply_bytes = 0; 599 msg_opl->sg.size = bytes; 600 601 msg_npl = &new->msg_plaintext; 602 msg_npl->apply_bytes = apply; 603 msg_npl->sg.size = orig_size - bytes; 604 605 j = msg_npl->sg.start; 606 nsge = sk_msg_elem(msg_npl, j); 607 if (tmp.length) { 608 memcpy(nsge, &tmp, sizeof(*nsge)); 609 sk_msg_iter_var_next(j); 610 nsge = sk_msg_elem(msg_npl, j); 611 } 612 613 osge = sk_msg_elem(msg_opl, i); 614 while (osge->length) { 615 memcpy(nsge, osge, sizeof(*nsge)); 616 sg_unmark_end(nsge); 617 sk_msg_iter_var_next(i); 618 sk_msg_iter_var_next(j); 619 if (i == *orig_end) 620 break; 621 osge = sk_msg_elem(msg_opl, i); 622 nsge = sk_msg_elem(msg_npl, j); 623 } 624 625 msg_npl->sg.end = j; 626 msg_npl->sg.curr = j; 627 msg_npl->sg.copybreak = 0; 628 629 *to = new; 630 return 0; 631 } 632 633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 634 struct tls_rec *from, u32 orig_end) 635 { 636 struct sk_msg *msg_npl = &from->msg_plaintext; 637 struct sk_msg *msg_opl = &to->msg_plaintext; 638 struct scatterlist *osge, *nsge; 639 u32 i, j; 640 641 i = msg_opl->sg.end; 642 sk_msg_iter_var_prev(i); 643 j = msg_npl->sg.start; 644 645 osge = sk_msg_elem(msg_opl, i); 646 nsge = sk_msg_elem(msg_npl, j); 647 648 if (sg_page(osge) == sg_page(nsge) && 649 osge->offset + osge->length == nsge->offset) { 650 osge->length += nsge->length; 651 put_page(sg_page(nsge)); 652 } 653 654 msg_opl->sg.end = orig_end; 655 msg_opl->sg.curr = orig_end; 656 msg_opl->sg.copybreak = 0; 657 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 658 msg_opl->sg.size += msg_npl->sg.size; 659 660 sk_msg_free(sk, &to->msg_encrypted); 661 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 662 663 kfree(from); 664 } 665 666 static int tls_push_record(struct sock *sk, int flags, 667 unsigned char record_type) 668 { 669 struct tls_context *tls_ctx = tls_get_ctx(sk); 670 struct tls_prot_info *prot = &tls_ctx->prot_info; 671 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 672 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 673 u32 i, split_point, uninitialized_var(orig_end); 674 struct sk_msg *msg_pl, *msg_en; 675 struct aead_request *req; 676 bool split; 677 int rc; 678 679 if (!rec) 680 return 0; 681 682 msg_pl = &rec->msg_plaintext; 683 msg_en = &rec->msg_encrypted; 684 685 split_point = msg_pl->apply_bytes; 686 split = split_point && split_point < msg_pl->sg.size; 687 if (unlikely((!split && 688 msg_pl->sg.size + 689 prot->overhead_size > msg_en->sg.size) || 690 (split && 691 split_point + 692 prot->overhead_size > msg_en->sg.size))) { 693 split = true; 694 split_point = msg_en->sg.size; 695 } 696 if (split) { 697 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 698 split_point, prot->overhead_size, 699 &orig_end); 700 if (rc < 0) 701 return rc; 702 /* This can happen if above tls_split_open_record allocates 703 * a single large encryption buffer instead of two smaller 704 * ones. In this case adjust pointers and continue without 705 * split. 706 */ 707 if (!msg_pl->sg.size) { 708 tls_merge_open_record(sk, rec, tmp, orig_end); 709 msg_pl = &rec->msg_plaintext; 710 msg_en = &rec->msg_encrypted; 711 split = false; 712 } 713 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 714 prot->overhead_size); 715 } 716 717 rec->tx_flags = flags; 718 req = &rec->aead_req; 719 720 i = msg_pl->sg.end; 721 sk_msg_iter_var_prev(i); 722 723 rec->content_type = record_type; 724 if (prot->version == TLS_1_3_VERSION) { 725 /* Add content type to end of message. No padding added */ 726 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 727 sg_mark_end(&rec->sg_content_type); 728 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 729 &rec->sg_content_type); 730 } else { 731 sg_mark_end(sk_msg_elem(msg_pl, i)); 732 } 733 734 if (msg_pl->sg.end < msg_pl->sg.start) { 735 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 736 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 737 msg_pl->sg.data); 738 } 739 740 i = msg_pl->sg.start; 741 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 742 743 i = msg_en->sg.end; 744 sk_msg_iter_var_prev(i); 745 sg_mark_end(sk_msg_elem(msg_en, i)); 746 747 i = msg_en->sg.start; 748 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 749 750 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 751 tls_ctx->tx.rec_seq, prot->rec_seq_size, 752 record_type, prot->version); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type, prot->version); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 sk_redir = psock->sk_redir; 841 memcpy(&msg_redir, msg, sizeof(*msg)); 842 if (msg->apply_bytes < send) 843 msg->apply_bytes = 0; 844 else 845 msg->apply_bytes -= send; 846 sk_msg_return_zero(sk, msg, send); 847 msg->sg.size -= send; 848 release_sock(sk); 849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 850 lock_sock(sk); 851 if (err < 0) { 852 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 853 msg->sg.size = 0; 854 } 855 if (msg->sg.size == 0) 856 tls_free_open_rec(sk); 857 break; 858 case __SK_DROP: 859 default: 860 sk_msg_free_partial(sk, msg, send); 861 if (msg->apply_bytes < send) 862 msg->apply_bytes = 0; 863 else 864 msg->apply_bytes -= send; 865 if (msg->sg.size == 0) 866 tls_free_open_rec(sk); 867 *copied -= (send + delta); 868 err = -EACCES; 869 } 870 871 if (likely(!err)) { 872 bool reset_eval = !ctx->open_rec; 873 874 rec = ctx->open_rec; 875 if (rec) { 876 msg = &rec->msg_plaintext; 877 if (!msg->apply_bytes) 878 reset_eval = true; 879 } 880 if (reset_eval) { 881 psock->eval = __SK_NONE; 882 if (psock->sk_redir) { 883 sock_put(psock->sk_redir); 884 psock->sk_redir = NULL; 885 } 886 } 887 if (rec) 888 goto more_data; 889 } 890 out_err: 891 sk_psock_put(sk, psock); 892 return err; 893 } 894 895 static int tls_sw_push_pending_record(struct sock *sk, int flags) 896 { 897 struct tls_context *tls_ctx = tls_get_ctx(sk); 898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 899 struct tls_rec *rec = ctx->open_rec; 900 struct sk_msg *msg_pl; 901 size_t copied; 902 903 if (!rec) 904 return 0; 905 906 msg_pl = &rec->msg_plaintext; 907 copied = msg_pl->sg.size; 908 if (!copied) 909 return 0; 910 911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 912 &copied, flags); 913 } 914 915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 916 { 917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 918 struct tls_context *tls_ctx = tls_get_ctx(sk); 919 struct tls_prot_info *prot = &tls_ctx->prot_info; 920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 921 bool async_capable = ctx->async_capable; 922 unsigned char record_type = TLS_RECORD_TYPE_DATA; 923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 924 bool eor = !(msg->msg_flags & MSG_MORE); 925 size_t try_to_copy; 926 ssize_t copied = 0; 927 struct sk_msg *msg_pl, *msg_en; 928 struct tls_rec *rec; 929 int required_size; 930 int num_async = 0; 931 bool full_record; 932 int record_room; 933 int num_zc = 0; 934 int orig_size; 935 int ret = 0; 936 int pending; 937 938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 939 return -EOPNOTSUPP; 940 941 mutex_lock(&tls_ctx->tx_lock); 942 lock_sock(sk); 943 944 if (unlikely(msg->msg_controllen)) { 945 ret = tls_proccess_cmsg(sk, msg, &record_type); 946 if (ret) { 947 if (ret == -EINPROGRESS) 948 num_async++; 949 else if (ret != -EAGAIN) 950 goto send_end; 951 } 952 } 953 954 while (msg_data_left(msg)) { 955 if (sk->sk_err) { 956 ret = -sk->sk_err; 957 goto send_end; 958 } 959 960 if (ctx->open_rec) 961 rec = ctx->open_rec; 962 else 963 rec = ctx->open_rec = tls_get_rec(sk); 964 if (!rec) { 965 ret = -ENOMEM; 966 goto send_end; 967 } 968 969 msg_pl = &rec->msg_plaintext; 970 msg_en = &rec->msg_encrypted; 971 972 orig_size = msg_pl->sg.size; 973 full_record = false; 974 try_to_copy = msg_data_left(msg); 975 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 976 if (try_to_copy >= record_room) { 977 try_to_copy = record_room; 978 full_record = true; 979 } 980 981 required_size = msg_pl->sg.size + try_to_copy + 982 prot->overhead_size; 983 984 if (!sk_stream_memory_free(sk)) 985 goto wait_for_sndbuf; 986 987 alloc_encrypted: 988 ret = tls_alloc_encrypted_msg(sk, required_size); 989 if (ret) { 990 if (ret != -ENOSPC) 991 goto wait_for_memory; 992 993 /* Adjust try_to_copy according to the amount that was 994 * actually allocated. The difference is due 995 * to max sg elements limit 996 */ 997 try_to_copy -= required_size - msg_en->sg.size; 998 full_record = true; 999 } 1000 1001 if (!is_kvec && (full_record || eor) && !async_capable) { 1002 u32 first = msg_pl->sg.end; 1003 1004 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1005 msg_pl, try_to_copy); 1006 if (ret) 1007 goto fallback_to_reg_send; 1008 1009 num_zc++; 1010 copied += try_to_copy; 1011 1012 sk_msg_sg_copy_set(msg_pl, first); 1013 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1014 record_type, &copied, 1015 msg->msg_flags); 1016 if (ret) { 1017 if (ret == -EINPROGRESS) 1018 num_async++; 1019 else if (ret == -ENOMEM) 1020 goto wait_for_memory; 1021 else if (ctx->open_rec && ret == -ENOSPC) 1022 goto rollback_iter; 1023 else if (ret != -EAGAIN) 1024 goto send_end; 1025 } 1026 continue; 1027 rollback_iter: 1028 copied -= try_to_copy; 1029 sk_msg_sg_copy_clear(msg_pl, first); 1030 iov_iter_revert(&msg->msg_iter, 1031 msg_pl->sg.size - orig_size); 1032 fallback_to_reg_send: 1033 sk_msg_trim(sk, msg_pl, orig_size); 1034 } 1035 1036 required_size = msg_pl->sg.size + try_to_copy; 1037 1038 ret = tls_clone_plaintext_msg(sk, required_size); 1039 if (ret) { 1040 if (ret != -ENOSPC) 1041 goto send_end; 1042 1043 /* Adjust try_to_copy according to the amount that was 1044 * actually allocated. The difference is due 1045 * to max sg elements limit 1046 */ 1047 try_to_copy -= required_size - msg_pl->sg.size; 1048 full_record = true; 1049 sk_msg_trim(sk, msg_en, 1050 msg_pl->sg.size + prot->overhead_size); 1051 } 1052 1053 if (try_to_copy) { 1054 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1055 msg_pl, try_to_copy); 1056 if (ret < 0) 1057 goto trim_sgl; 1058 } 1059 1060 /* Open records defined only if successfully copied, otherwise 1061 * we would trim the sg but not reset the open record frags. 1062 */ 1063 tls_ctx->pending_open_record_frags = true; 1064 copied += try_to_copy; 1065 if (full_record || eor) { 1066 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1067 record_type, &copied, 1068 msg->msg_flags); 1069 if (ret) { 1070 if (ret == -EINPROGRESS) 1071 num_async++; 1072 else if (ret == -ENOMEM) 1073 goto wait_for_memory; 1074 else if (ret != -EAGAIN) { 1075 if (ret == -ENOSPC) 1076 ret = 0; 1077 goto send_end; 1078 } 1079 } 1080 } 1081 1082 continue; 1083 1084 wait_for_sndbuf: 1085 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1086 wait_for_memory: 1087 ret = sk_stream_wait_memory(sk, &timeo); 1088 if (ret) { 1089 trim_sgl: 1090 if (ctx->open_rec) 1091 tls_trim_both_msgs(sk, orig_size); 1092 goto send_end; 1093 } 1094 1095 if (ctx->open_rec && msg_en->sg.size < required_size) 1096 goto alloc_encrypted; 1097 } 1098 1099 if (!num_async) { 1100 goto send_end; 1101 } else if (num_zc) { 1102 /* Wait for pending encryptions to get completed */ 1103 spin_lock_bh(&ctx->encrypt_compl_lock); 1104 ctx->async_notify = true; 1105 1106 pending = atomic_read(&ctx->encrypt_pending); 1107 spin_unlock_bh(&ctx->encrypt_compl_lock); 1108 if (pending) 1109 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1110 else 1111 reinit_completion(&ctx->async_wait.completion); 1112 1113 /* There can be no concurrent accesses, since we have no 1114 * pending encrypt operations 1115 */ 1116 WRITE_ONCE(ctx->async_notify, false); 1117 1118 if (ctx->async_wait.err) { 1119 ret = ctx->async_wait.err; 1120 copied = 0; 1121 } 1122 } 1123 1124 /* Transmit if any encryptions have completed */ 1125 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1126 cancel_delayed_work(&ctx->tx_work.work); 1127 tls_tx_records(sk, msg->msg_flags); 1128 } 1129 1130 send_end: 1131 ret = sk_stream_error(sk, msg->msg_flags, ret); 1132 1133 release_sock(sk); 1134 mutex_unlock(&tls_ctx->tx_lock); 1135 return copied > 0 ? copied : ret; 1136 } 1137 1138 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1139 int offset, size_t size, int flags) 1140 { 1141 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1142 struct tls_context *tls_ctx = tls_get_ctx(sk); 1143 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1144 struct tls_prot_info *prot = &tls_ctx->prot_info; 1145 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1146 struct sk_msg *msg_pl; 1147 struct tls_rec *rec; 1148 int num_async = 0; 1149 ssize_t copied = 0; 1150 bool full_record; 1151 int record_room; 1152 int ret = 0; 1153 bool eor; 1154 1155 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1156 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1157 1158 /* Call the sk_stream functions to manage the sndbuf mem. */ 1159 while (size > 0) { 1160 size_t copy, required_size; 1161 1162 if (sk->sk_err) { 1163 ret = -sk->sk_err; 1164 goto sendpage_end; 1165 } 1166 1167 if (ctx->open_rec) 1168 rec = ctx->open_rec; 1169 else 1170 rec = ctx->open_rec = tls_get_rec(sk); 1171 if (!rec) { 1172 ret = -ENOMEM; 1173 goto sendpage_end; 1174 } 1175 1176 msg_pl = &rec->msg_plaintext; 1177 1178 full_record = false; 1179 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1180 copy = size; 1181 if (copy >= record_room) { 1182 copy = record_room; 1183 full_record = true; 1184 } 1185 1186 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1187 1188 if (!sk_stream_memory_free(sk)) 1189 goto wait_for_sndbuf; 1190 alloc_payload: 1191 ret = tls_alloc_encrypted_msg(sk, required_size); 1192 if (ret) { 1193 if (ret != -ENOSPC) 1194 goto wait_for_memory; 1195 1196 /* Adjust copy according to the amount that was 1197 * actually allocated. The difference is due 1198 * to max sg elements limit 1199 */ 1200 copy -= required_size - msg_pl->sg.size; 1201 full_record = true; 1202 } 1203 1204 sk_msg_page_add(msg_pl, page, copy, offset); 1205 sk_mem_charge(sk, copy); 1206 1207 offset += copy; 1208 size -= copy; 1209 copied += copy; 1210 1211 tls_ctx->pending_open_record_frags = true; 1212 if (full_record || eor || sk_msg_full(msg_pl)) { 1213 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1214 record_type, &copied, flags); 1215 if (ret) { 1216 if (ret == -EINPROGRESS) 1217 num_async++; 1218 else if (ret == -ENOMEM) 1219 goto wait_for_memory; 1220 else if (ret != -EAGAIN) { 1221 if (ret == -ENOSPC) 1222 ret = 0; 1223 goto sendpage_end; 1224 } 1225 } 1226 } 1227 continue; 1228 wait_for_sndbuf: 1229 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1230 wait_for_memory: 1231 ret = sk_stream_wait_memory(sk, &timeo); 1232 if (ret) { 1233 if (ctx->open_rec) 1234 tls_trim_both_msgs(sk, msg_pl->sg.size); 1235 goto sendpage_end; 1236 } 1237 1238 if (ctx->open_rec) 1239 goto alloc_payload; 1240 } 1241 1242 if (num_async) { 1243 /* Transmit if any encryptions have completed */ 1244 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1245 cancel_delayed_work(&ctx->tx_work.work); 1246 tls_tx_records(sk, flags); 1247 } 1248 } 1249 sendpage_end: 1250 ret = sk_stream_error(sk, flags, ret); 1251 return copied > 0 ? copied : ret; 1252 } 1253 1254 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1255 int offset, size_t size, int flags) 1256 { 1257 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1258 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1259 MSG_NO_SHARED_FRAGS)) 1260 return -EOPNOTSUPP; 1261 1262 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1263 } 1264 1265 int tls_sw_sendpage(struct sock *sk, struct page *page, 1266 int offset, size_t size, int flags) 1267 { 1268 struct tls_context *tls_ctx = tls_get_ctx(sk); 1269 int ret; 1270 1271 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1272 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1273 return -EOPNOTSUPP; 1274 1275 mutex_lock(&tls_ctx->tx_lock); 1276 lock_sock(sk); 1277 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1278 release_sock(sk); 1279 mutex_unlock(&tls_ctx->tx_lock); 1280 return ret; 1281 } 1282 1283 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1284 int flags, long timeo, int *err) 1285 { 1286 struct tls_context *tls_ctx = tls_get_ctx(sk); 1287 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1288 struct sk_buff *skb; 1289 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1290 1291 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1292 if (sk->sk_err) { 1293 *err = sock_error(sk); 1294 return NULL; 1295 } 1296 1297 if (sk->sk_shutdown & RCV_SHUTDOWN) 1298 return NULL; 1299 1300 if (sock_flag(sk, SOCK_DONE)) 1301 return NULL; 1302 1303 if ((flags & MSG_DONTWAIT) || !timeo) { 1304 *err = -EAGAIN; 1305 return NULL; 1306 } 1307 1308 add_wait_queue(sk_sleep(sk), &wait); 1309 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1310 sk_wait_event(sk, &timeo, 1311 ctx->recv_pkt != skb || 1312 !sk_psock_queue_empty(psock), 1313 &wait); 1314 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1315 remove_wait_queue(sk_sleep(sk), &wait); 1316 1317 /* Handle signals */ 1318 if (signal_pending(current)) { 1319 *err = sock_intr_errno(timeo); 1320 return NULL; 1321 } 1322 } 1323 1324 return skb; 1325 } 1326 1327 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1328 int length, int *pages_used, 1329 unsigned int *size_used, 1330 struct scatterlist *to, 1331 int to_max_pages) 1332 { 1333 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1334 struct page *pages[MAX_SKB_FRAGS]; 1335 unsigned int size = *size_used; 1336 ssize_t copied, use; 1337 size_t offset; 1338 1339 while (length > 0) { 1340 i = 0; 1341 maxpages = to_max_pages - num_elem; 1342 if (maxpages == 0) { 1343 rc = -EFAULT; 1344 goto out; 1345 } 1346 copied = iov_iter_get_pages(from, pages, 1347 length, 1348 maxpages, &offset); 1349 if (copied <= 0) { 1350 rc = -EFAULT; 1351 goto out; 1352 } 1353 1354 iov_iter_advance(from, copied); 1355 1356 length -= copied; 1357 size += copied; 1358 while (copied) { 1359 use = min_t(int, copied, PAGE_SIZE - offset); 1360 1361 sg_set_page(&to[num_elem], 1362 pages[i], use, offset); 1363 sg_unmark_end(&to[num_elem]); 1364 /* We do not uncharge memory from this API */ 1365 1366 offset = 0; 1367 copied -= use; 1368 1369 i++; 1370 num_elem++; 1371 } 1372 } 1373 /* Mark the end in the last sg entry if newly added */ 1374 if (num_elem > *pages_used) 1375 sg_mark_end(&to[num_elem - 1]); 1376 out: 1377 if (rc) 1378 iov_iter_revert(from, size - *size_used); 1379 *size_used = size; 1380 *pages_used = num_elem; 1381 1382 return rc; 1383 } 1384 1385 /* This function decrypts the input skb into either out_iov or in out_sg 1386 * or in skb buffers itself. The input parameter 'zc' indicates if 1387 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1388 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1389 * NULL, then the decryption happens inside skb buffers itself, i.e. 1390 * zero-copy gets disabled and 'zc' is updated. 1391 */ 1392 1393 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1394 struct iov_iter *out_iov, 1395 struct scatterlist *out_sg, 1396 int *chunk, bool *zc, bool async) 1397 { 1398 struct tls_context *tls_ctx = tls_get_ctx(sk); 1399 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1400 struct tls_prot_info *prot = &tls_ctx->prot_info; 1401 struct strp_msg *rxm = strp_msg(skb); 1402 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1403 struct aead_request *aead_req; 1404 struct sk_buff *unused; 1405 u8 *aad, *iv, *mem = NULL; 1406 struct scatterlist *sgin = NULL; 1407 struct scatterlist *sgout = NULL; 1408 const int data_len = rxm->full_len - prot->overhead_size + 1409 prot->tail_size; 1410 int iv_offset = 0; 1411 1412 if (*zc && (out_iov || out_sg)) { 1413 if (out_iov) 1414 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1415 else 1416 n_sgout = sg_nents(out_sg); 1417 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1418 rxm->full_len - prot->prepend_size); 1419 } else { 1420 n_sgout = 0; 1421 *zc = false; 1422 n_sgin = skb_cow_data(skb, 0, &unused); 1423 } 1424 1425 if (n_sgin < 1) 1426 return -EBADMSG; 1427 1428 /* Increment to accommodate AAD */ 1429 n_sgin = n_sgin + 1; 1430 1431 nsg = n_sgin + n_sgout; 1432 1433 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1434 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1435 mem_size = mem_size + prot->aad_size; 1436 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1437 1438 /* Allocate a single block of memory which contains 1439 * aead_req || sgin[] || sgout[] || aad || iv. 1440 * This order achieves correct alignment for aead_req, sgin, sgout. 1441 */ 1442 mem = kmalloc(mem_size, sk->sk_allocation); 1443 if (!mem) 1444 return -ENOMEM; 1445 1446 /* Segment the allocated memory */ 1447 aead_req = (struct aead_request *)mem; 1448 sgin = (struct scatterlist *)(mem + aead_size); 1449 sgout = sgin + n_sgin; 1450 aad = (u8 *)(sgout + n_sgout); 1451 iv = aad + prot->aad_size; 1452 1453 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1454 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1455 iv[0] = 2; 1456 iv_offset = 1; 1457 } 1458 1459 /* Prepare IV */ 1460 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1461 iv + iv_offset + prot->salt_size, 1462 prot->iv_size); 1463 if (err < 0) { 1464 kfree(mem); 1465 return err; 1466 } 1467 if (prot->version == TLS_1_3_VERSION) 1468 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1469 crypto_aead_ivsize(ctx->aead_recv)); 1470 else 1471 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1472 1473 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1474 1475 /* Prepare AAD */ 1476 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1477 prot->tail_size, 1478 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1479 ctx->control, prot->version); 1480 1481 /* Prepare sgin */ 1482 sg_init_table(sgin, n_sgin); 1483 sg_set_buf(&sgin[0], aad, prot->aad_size); 1484 err = skb_to_sgvec(skb, &sgin[1], 1485 rxm->offset + prot->prepend_size, 1486 rxm->full_len - prot->prepend_size); 1487 if (err < 0) { 1488 kfree(mem); 1489 return err; 1490 } 1491 1492 if (n_sgout) { 1493 if (out_iov) { 1494 sg_init_table(sgout, n_sgout); 1495 sg_set_buf(&sgout[0], aad, prot->aad_size); 1496 1497 *chunk = 0; 1498 err = tls_setup_from_iter(sk, out_iov, data_len, 1499 &pages, chunk, &sgout[1], 1500 (n_sgout - 1)); 1501 if (err < 0) 1502 goto fallback_to_reg_recv; 1503 } else if (out_sg) { 1504 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1505 } else { 1506 goto fallback_to_reg_recv; 1507 } 1508 } else { 1509 fallback_to_reg_recv: 1510 sgout = sgin; 1511 pages = 0; 1512 *chunk = data_len; 1513 *zc = false; 1514 } 1515 1516 /* Prepare and submit AEAD request */ 1517 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1518 data_len, aead_req, async); 1519 if (err == -EINPROGRESS) 1520 return err; 1521 1522 /* Release the pages in case iov was mapped to pages */ 1523 for (; pages > 0; pages--) 1524 put_page(sg_page(&sgout[pages])); 1525 1526 kfree(mem); 1527 return err; 1528 } 1529 1530 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1531 struct iov_iter *dest, int *chunk, bool *zc, 1532 bool async) 1533 { 1534 struct tls_context *tls_ctx = tls_get_ctx(sk); 1535 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1536 struct tls_prot_info *prot = &tls_ctx->prot_info; 1537 struct strp_msg *rxm = strp_msg(skb); 1538 int pad, err = 0; 1539 1540 if (!ctx->decrypted) { 1541 if (tls_ctx->rx_conf == TLS_HW) { 1542 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1543 if (err < 0) 1544 return err; 1545 } 1546 1547 /* Still not decrypted after tls_device */ 1548 if (!ctx->decrypted) { 1549 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1550 async); 1551 if (err < 0) { 1552 if (err == -EINPROGRESS) 1553 tls_advance_record_sn(sk, prot, 1554 &tls_ctx->rx); 1555 else if (err == -EBADMSG) 1556 TLS_INC_STATS(sock_net(sk), 1557 LINUX_MIB_TLSDECRYPTERROR); 1558 return err; 1559 } 1560 } else { 1561 *zc = false; 1562 } 1563 1564 pad = padding_length(ctx, prot, skb); 1565 if (pad < 0) 1566 return pad; 1567 1568 rxm->full_len -= pad; 1569 rxm->offset += prot->prepend_size; 1570 rxm->full_len -= prot->overhead_size; 1571 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1572 ctx->decrypted = 1; 1573 ctx->saved_data_ready(sk); 1574 } else { 1575 *zc = false; 1576 } 1577 1578 return err; 1579 } 1580 1581 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1582 struct scatterlist *sgout) 1583 { 1584 bool zc = true; 1585 int chunk; 1586 1587 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1588 } 1589 1590 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1591 unsigned int len) 1592 { 1593 struct tls_context *tls_ctx = tls_get_ctx(sk); 1594 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1595 1596 if (skb) { 1597 struct strp_msg *rxm = strp_msg(skb); 1598 1599 if (len < rxm->full_len) { 1600 rxm->offset += len; 1601 rxm->full_len -= len; 1602 return false; 1603 } 1604 consume_skb(skb); 1605 } 1606 1607 /* Finished with message */ 1608 ctx->recv_pkt = NULL; 1609 __strp_unpause(&ctx->strp); 1610 1611 return true; 1612 } 1613 1614 /* This function traverses the rx_list in tls receive context to copies the 1615 * decrypted records into the buffer provided by caller zero copy is not 1616 * true. Further, the records are removed from the rx_list if it is not a peek 1617 * case and the record has been consumed completely. 1618 */ 1619 static int process_rx_list(struct tls_sw_context_rx *ctx, 1620 struct msghdr *msg, 1621 u8 *control, 1622 bool *cmsg, 1623 size_t skip, 1624 size_t len, 1625 bool zc, 1626 bool is_peek) 1627 { 1628 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1629 u8 ctrl = *control; 1630 u8 msgc = *cmsg; 1631 struct tls_msg *tlm; 1632 ssize_t copied = 0; 1633 1634 /* Set the record type in 'control' if caller didn't pass it */ 1635 if (!ctrl && skb) { 1636 tlm = tls_msg(skb); 1637 ctrl = tlm->control; 1638 } 1639 1640 while (skip && skb) { 1641 struct strp_msg *rxm = strp_msg(skb); 1642 tlm = tls_msg(skb); 1643 1644 /* Cannot process a record of different type */ 1645 if (ctrl != tlm->control) 1646 return 0; 1647 1648 if (skip < rxm->full_len) 1649 break; 1650 1651 skip = skip - rxm->full_len; 1652 skb = skb_peek_next(skb, &ctx->rx_list); 1653 } 1654 1655 while (len && skb) { 1656 struct sk_buff *next_skb; 1657 struct strp_msg *rxm = strp_msg(skb); 1658 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1659 1660 tlm = tls_msg(skb); 1661 1662 /* Cannot process a record of different type */ 1663 if (ctrl != tlm->control) 1664 return 0; 1665 1666 /* Set record type if not already done. For a non-data record, 1667 * do not proceed if record type could not be copied. 1668 */ 1669 if (!msgc) { 1670 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1671 sizeof(ctrl), &ctrl); 1672 msgc = true; 1673 if (ctrl != TLS_RECORD_TYPE_DATA) { 1674 if (cerr || msg->msg_flags & MSG_CTRUNC) 1675 return -EIO; 1676 1677 *cmsg = msgc; 1678 } 1679 } 1680 1681 if (!zc || (rxm->full_len - skip) > len) { 1682 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1683 msg, chunk); 1684 if (err < 0) 1685 return err; 1686 } 1687 1688 len = len - chunk; 1689 copied = copied + chunk; 1690 1691 /* Consume the data from record if it is non-peek case*/ 1692 if (!is_peek) { 1693 rxm->offset = rxm->offset + chunk; 1694 rxm->full_len = rxm->full_len - chunk; 1695 1696 /* Return if there is unconsumed data in the record */ 1697 if (rxm->full_len - skip) 1698 break; 1699 } 1700 1701 /* The remaining skip-bytes must lie in 1st record in rx_list. 1702 * So from the 2nd record, 'skip' should be 0. 1703 */ 1704 skip = 0; 1705 1706 if (msg) 1707 msg->msg_flags |= MSG_EOR; 1708 1709 next_skb = skb_peek_next(skb, &ctx->rx_list); 1710 1711 if (!is_peek) { 1712 skb_unlink(skb, &ctx->rx_list); 1713 consume_skb(skb); 1714 } 1715 1716 skb = next_skb; 1717 } 1718 1719 *control = ctrl; 1720 return copied; 1721 } 1722 1723 int tls_sw_recvmsg(struct sock *sk, 1724 struct msghdr *msg, 1725 size_t len, 1726 int nonblock, 1727 int flags, 1728 int *addr_len) 1729 { 1730 struct tls_context *tls_ctx = tls_get_ctx(sk); 1731 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1732 struct tls_prot_info *prot = &tls_ctx->prot_info; 1733 struct sk_psock *psock; 1734 unsigned char control = 0; 1735 ssize_t decrypted = 0; 1736 struct strp_msg *rxm; 1737 struct tls_msg *tlm; 1738 struct sk_buff *skb; 1739 ssize_t copied = 0; 1740 bool cmsg = false; 1741 int target, err = 0; 1742 long timeo; 1743 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1744 bool is_peek = flags & MSG_PEEK; 1745 bool bpf_strp_enabled; 1746 int num_async = 0; 1747 int pending; 1748 1749 flags |= nonblock; 1750 1751 if (unlikely(flags & MSG_ERRQUEUE)) 1752 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1753 1754 psock = sk_psock_get(sk); 1755 lock_sock(sk); 1756 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1757 1758 /* Process pending decrypted records. It must be non-zero-copy */ 1759 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1760 is_peek); 1761 if (err < 0) { 1762 tls_err_abort(sk, err); 1763 goto end; 1764 } else { 1765 copied = err; 1766 } 1767 1768 if (len <= copied) 1769 goto recv_end; 1770 1771 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1772 len = len - copied; 1773 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1774 1775 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1776 bool retain_skb = false; 1777 bool zc = false; 1778 int to_decrypt; 1779 int chunk = 0; 1780 bool async_capable; 1781 bool async = false; 1782 1783 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1784 if (!skb) { 1785 if (psock) { 1786 int ret = __tcp_bpf_recvmsg(sk, psock, 1787 msg, len, flags); 1788 1789 if (ret > 0) { 1790 decrypted += ret; 1791 len -= ret; 1792 continue; 1793 } 1794 } 1795 goto recv_end; 1796 } else { 1797 tlm = tls_msg(skb); 1798 if (prot->version == TLS_1_3_VERSION) 1799 tlm->control = 0; 1800 else 1801 tlm->control = ctx->control; 1802 } 1803 1804 rxm = strp_msg(skb); 1805 1806 to_decrypt = rxm->full_len - prot->overhead_size; 1807 1808 if (to_decrypt <= len && !is_kvec && !is_peek && 1809 ctx->control == TLS_RECORD_TYPE_DATA && 1810 prot->version != TLS_1_3_VERSION && 1811 !bpf_strp_enabled) 1812 zc = true; 1813 1814 /* Do not use async mode if record is non-data */ 1815 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1816 async_capable = ctx->async_capable; 1817 else 1818 async_capable = false; 1819 1820 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1821 &chunk, &zc, async_capable); 1822 if (err < 0 && err != -EINPROGRESS) { 1823 tls_err_abort(sk, EBADMSG); 1824 goto recv_end; 1825 } 1826 1827 if (err == -EINPROGRESS) { 1828 async = true; 1829 num_async++; 1830 } else if (prot->version == TLS_1_3_VERSION) { 1831 tlm->control = ctx->control; 1832 } 1833 1834 /* If the type of records being processed is not known yet, 1835 * set it to record type just dequeued. If it is already known, 1836 * but does not match the record type just dequeued, go to end. 1837 * We always get record type here since for tls1.2, record type 1838 * is known just after record is dequeued from stream parser. 1839 * For tls1.3, we disable async. 1840 */ 1841 1842 if (!control) 1843 control = tlm->control; 1844 else if (control != tlm->control) 1845 goto recv_end; 1846 1847 if (!cmsg) { 1848 int cerr; 1849 1850 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1851 sizeof(control), &control); 1852 cmsg = true; 1853 if (control != TLS_RECORD_TYPE_DATA) { 1854 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1855 err = -EIO; 1856 goto recv_end; 1857 } 1858 } 1859 } 1860 1861 if (async) 1862 goto pick_next_record; 1863 1864 if (!zc) { 1865 if (bpf_strp_enabled) { 1866 err = sk_psock_tls_strp_read(psock, skb); 1867 if (err != __SK_PASS) { 1868 rxm->offset = rxm->offset + rxm->full_len; 1869 rxm->full_len = 0; 1870 if (err == __SK_DROP) 1871 consume_skb(skb); 1872 ctx->recv_pkt = NULL; 1873 __strp_unpause(&ctx->strp); 1874 continue; 1875 } 1876 } 1877 1878 if (rxm->full_len > len) { 1879 retain_skb = true; 1880 chunk = len; 1881 } else { 1882 chunk = rxm->full_len; 1883 } 1884 1885 err = skb_copy_datagram_msg(skb, rxm->offset, 1886 msg, chunk); 1887 if (err < 0) 1888 goto recv_end; 1889 1890 if (!is_peek) { 1891 rxm->offset = rxm->offset + chunk; 1892 rxm->full_len = rxm->full_len - chunk; 1893 } 1894 } 1895 1896 pick_next_record: 1897 if (chunk > len) 1898 chunk = len; 1899 1900 decrypted += chunk; 1901 len -= chunk; 1902 1903 /* For async or peek case, queue the current skb */ 1904 if (async || is_peek || retain_skb) { 1905 skb_queue_tail(&ctx->rx_list, skb); 1906 skb = NULL; 1907 } 1908 1909 if (tls_sw_advance_skb(sk, skb, chunk)) { 1910 /* Return full control message to 1911 * userspace before trying to parse 1912 * another message type 1913 */ 1914 msg->msg_flags |= MSG_EOR; 1915 if (ctx->control != TLS_RECORD_TYPE_DATA) 1916 goto recv_end; 1917 } else { 1918 break; 1919 } 1920 } 1921 1922 recv_end: 1923 if (num_async) { 1924 /* Wait for all previously submitted records to be decrypted */ 1925 spin_lock_bh(&ctx->decrypt_compl_lock); 1926 ctx->async_notify = true; 1927 pending = atomic_read(&ctx->decrypt_pending); 1928 spin_unlock_bh(&ctx->decrypt_compl_lock); 1929 if (pending) { 1930 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1931 if (err) { 1932 /* one of async decrypt failed */ 1933 tls_err_abort(sk, err); 1934 copied = 0; 1935 decrypted = 0; 1936 goto end; 1937 } 1938 } else { 1939 reinit_completion(&ctx->async_wait.completion); 1940 } 1941 1942 /* There can be no concurrent accesses, since we have no 1943 * pending decrypt operations 1944 */ 1945 WRITE_ONCE(ctx->async_notify, false); 1946 1947 /* Drain records from the rx_list & copy if required */ 1948 if (is_peek || is_kvec) 1949 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1950 decrypted, false, is_peek); 1951 else 1952 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1953 decrypted, true, is_peek); 1954 if (err < 0) { 1955 tls_err_abort(sk, err); 1956 copied = 0; 1957 goto end; 1958 } 1959 } 1960 1961 copied += decrypted; 1962 1963 end: 1964 release_sock(sk); 1965 if (psock) 1966 sk_psock_put(sk, psock); 1967 return copied ? : err; 1968 } 1969 1970 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1971 struct pipe_inode_info *pipe, 1972 size_t len, unsigned int flags) 1973 { 1974 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1975 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1976 struct strp_msg *rxm = NULL; 1977 struct sock *sk = sock->sk; 1978 struct sk_buff *skb; 1979 ssize_t copied = 0; 1980 int err = 0; 1981 long timeo; 1982 int chunk; 1983 bool zc = false; 1984 1985 lock_sock(sk); 1986 1987 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1988 1989 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1990 if (!skb) 1991 goto splice_read_end; 1992 1993 if (!ctx->decrypted) { 1994 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1995 1996 /* splice does not support reading control messages */ 1997 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1998 err = -EINVAL; 1999 goto splice_read_end; 2000 } 2001 2002 if (err < 0) { 2003 tls_err_abort(sk, EBADMSG); 2004 goto splice_read_end; 2005 } 2006 ctx->decrypted = 1; 2007 } 2008 rxm = strp_msg(skb); 2009 2010 chunk = min_t(unsigned int, rxm->full_len, len); 2011 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2012 if (copied < 0) 2013 goto splice_read_end; 2014 2015 if (likely(!(flags & MSG_PEEK))) 2016 tls_sw_advance_skb(sk, skb, copied); 2017 2018 splice_read_end: 2019 release_sock(sk); 2020 return copied ? : err; 2021 } 2022 2023 bool tls_sw_stream_read(const struct sock *sk) 2024 { 2025 struct tls_context *tls_ctx = tls_get_ctx(sk); 2026 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2027 bool ingress_empty = true; 2028 struct sk_psock *psock; 2029 2030 rcu_read_lock(); 2031 psock = sk_psock(sk); 2032 if (psock) 2033 ingress_empty = list_empty(&psock->ingress_msg); 2034 rcu_read_unlock(); 2035 2036 return !ingress_empty || ctx->recv_pkt || 2037 !skb_queue_empty(&ctx->rx_list); 2038 } 2039 2040 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2041 { 2042 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2043 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2044 struct tls_prot_info *prot = &tls_ctx->prot_info; 2045 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2046 struct strp_msg *rxm = strp_msg(skb); 2047 size_t cipher_overhead; 2048 size_t data_len = 0; 2049 int ret; 2050 2051 /* Verify that we have a full TLS header, or wait for more data */ 2052 if (rxm->offset + prot->prepend_size > skb->len) 2053 return 0; 2054 2055 /* Sanity-check size of on-stack buffer. */ 2056 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2057 ret = -EINVAL; 2058 goto read_failure; 2059 } 2060 2061 /* Linearize header to local buffer */ 2062 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2063 2064 if (ret < 0) 2065 goto read_failure; 2066 2067 ctx->control = header[0]; 2068 2069 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2070 2071 cipher_overhead = prot->tag_size; 2072 if (prot->version != TLS_1_3_VERSION) 2073 cipher_overhead += prot->iv_size; 2074 2075 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2076 prot->tail_size) { 2077 ret = -EMSGSIZE; 2078 goto read_failure; 2079 } 2080 if (data_len < cipher_overhead) { 2081 ret = -EBADMSG; 2082 goto read_failure; 2083 } 2084 2085 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2086 if (header[1] != TLS_1_2_VERSION_MINOR || 2087 header[2] != TLS_1_2_VERSION_MAJOR) { 2088 ret = -EINVAL; 2089 goto read_failure; 2090 } 2091 2092 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2093 TCP_SKB_CB(skb)->seq + rxm->offset); 2094 return data_len + TLS_HEADER_SIZE; 2095 2096 read_failure: 2097 tls_err_abort(strp->sk, ret); 2098 2099 return ret; 2100 } 2101 2102 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2103 { 2104 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2105 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2106 2107 ctx->decrypted = 0; 2108 2109 ctx->recv_pkt = skb; 2110 strp_pause(strp); 2111 2112 ctx->saved_data_ready(strp->sk); 2113 } 2114 2115 static void tls_data_ready(struct sock *sk) 2116 { 2117 struct tls_context *tls_ctx = tls_get_ctx(sk); 2118 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2119 struct sk_psock *psock; 2120 2121 strp_data_ready(&ctx->strp); 2122 2123 psock = sk_psock_get(sk); 2124 if (psock) { 2125 if (!list_empty(&psock->ingress_msg)) 2126 ctx->saved_data_ready(sk); 2127 sk_psock_put(sk, psock); 2128 } 2129 } 2130 2131 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2132 { 2133 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2134 2135 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2136 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2137 cancel_delayed_work_sync(&ctx->tx_work.work); 2138 } 2139 2140 void tls_sw_release_resources_tx(struct sock *sk) 2141 { 2142 struct tls_context *tls_ctx = tls_get_ctx(sk); 2143 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2144 struct tls_rec *rec, *tmp; 2145 2146 /* Wait for any pending async encryptions to complete */ 2147 smp_store_mb(ctx->async_notify, true); 2148 if (atomic_read(&ctx->encrypt_pending)) 2149 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2150 2151 tls_tx_records(sk, -1); 2152 2153 /* Free up un-sent records in tx_list. First, free 2154 * the partially sent record if any at head of tx_list. 2155 */ 2156 if (tls_ctx->partially_sent_record) { 2157 tls_free_partial_record(sk, tls_ctx); 2158 rec = list_first_entry(&ctx->tx_list, 2159 struct tls_rec, list); 2160 list_del(&rec->list); 2161 sk_msg_free(sk, &rec->msg_plaintext); 2162 kfree(rec); 2163 } 2164 2165 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2166 list_del(&rec->list); 2167 sk_msg_free(sk, &rec->msg_encrypted); 2168 sk_msg_free(sk, &rec->msg_plaintext); 2169 kfree(rec); 2170 } 2171 2172 crypto_free_aead(ctx->aead_send); 2173 tls_free_open_rec(sk); 2174 } 2175 2176 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2177 { 2178 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2179 2180 kfree(ctx); 2181 } 2182 2183 void tls_sw_release_resources_rx(struct sock *sk) 2184 { 2185 struct tls_context *tls_ctx = tls_get_ctx(sk); 2186 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2187 2188 kfree(tls_ctx->rx.rec_seq); 2189 kfree(tls_ctx->rx.iv); 2190 2191 if (ctx->aead_recv) { 2192 kfree_skb(ctx->recv_pkt); 2193 ctx->recv_pkt = NULL; 2194 skb_queue_purge(&ctx->rx_list); 2195 crypto_free_aead(ctx->aead_recv); 2196 strp_stop(&ctx->strp); 2197 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2198 * we still want to strp_stop(), but sk->sk_data_ready was 2199 * never swapped. 2200 */ 2201 if (ctx->saved_data_ready) { 2202 write_lock_bh(&sk->sk_callback_lock); 2203 sk->sk_data_ready = ctx->saved_data_ready; 2204 write_unlock_bh(&sk->sk_callback_lock); 2205 } 2206 } 2207 } 2208 2209 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2210 { 2211 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2212 2213 strp_done(&ctx->strp); 2214 } 2215 2216 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2217 { 2218 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2219 2220 kfree(ctx); 2221 } 2222 2223 void tls_sw_free_resources_rx(struct sock *sk) 2224 { 2225 struct tls_context *tls_ctx = tls_get_ctx(sk); 2226 2227 tls_sw_release_resources_rx(sk); 2228 tls_sw_free_ctx_rx(tls_ctx); 2229 } 2230 2231 /* The work handler to transmitt the encrypted records in tx_list */ 2232 static void tx_work_handler(struct work_struct *work) 2233 { 2234 struct delayed_work *delayed_work = to_delayed_work(work); 2235 struct tx_work *tx_work = container_of(delayed_work, 2236 struct tx_work, work); 2237 struct sock *sk = tx_work->sk; 2238 struct tls_context *tls_ctx = tls_get_ctx(sk); 2239 struct tls_sw_context_tx *ctx; 2240 2241 if (unlikely(!tls_ctx)) 2242 return; 2243 2244 ctx = tls_sw_ctx_tx(tls_ctx); 2245 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2246 return; 2247 2248 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2249 return; 2250 mutex_lock(&tls_ctx->tx_lock); 2251 lock_sock(sk); 2252 tls_tx_records(sk, -1); 2253 release_sock(sk); 2254 mutex_unlock(&tls_ctx->tx_lock); 2255 } 2256 2257 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2258 { 2259 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2260 2261 /* Schedule the transmission if tx list is ready */ 2262 if (is_tx_ready(tx_ctx) && 2263 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2264 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2265 } 2266 2267 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2268 { 2269 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2270 2271 write_lock_bh(&sk->sk_callback_lock); 2272 rx_ctx->saved_data_ready = sk->sk_data_ready; 2273 sk->sk_data_ready = tls_data_ready; 2274 write_unlock_bh(&sk->sk_callback_lock); 2275 2276 strp_check_rcv(&rx_ctx->strp); 2277 } 2278 2279 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2280 { 2281 struct tls_context *tls_ctx = tls_get_ctx(sk); 2282 struct tls_prot_info *prot = &tls_ctx->prot_info; 2283 struct tls_crypto_info *crypto_info; 2284 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2285 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2286 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2287 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2288 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2289 struct cipher_context *cctx; 2290 struct crypto_aead **aead; 2291 struct strp_callbacks cb; 2292 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2293 struct crypto_tfm *tfm; 2294 char *iv, *rec_seq, *key, *salt, *cipher_name; 2295 size_t keysize; 2296 int rc = 0; 2297 2298 if (!ctx) { 2299 rc = -EINVAL; 2300 goto out; 2301 } 2302 2303 if (tx) { 2304 if (!ctx->priv_ctx_tx) { 2305 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2306 if (!sw_ctx_tx) { 2307 rc = -ENOMEM; 2308 goto out; 2309 } 2310 ctx->priv_ctx_tx = sw_ctx_tx; 2311 } else { 2312 sw_ctx_tx = 2313 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2314 } 2315 } else { 2316 if (!ctx->priv_ctx_rx) { 2317 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2318 if (!sw_ctx_rx) { 2319 rc = -ENOMEM; 2320 goto out; 2321 } 2322 ctx->priv_ctx_rx = sw_ctx_rx; 2323 } else { 2324 sw_ctx_rx = 2325 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2326 } 2327 } 2328 2329 if (tx) { 2330 crypto_init_wait(&sw_ctx_tx->async_wait); 2331 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2332 crypto_info = &ctx->crypto_send.info; 2333 cctx = &ctx->tx; 2334 aead = &sw_ctx_tx->aead_send; 2335 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2336 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2337 sw_ctx_tx->tx_work.sk = sk; 2338 } else { 2339 crypto_init_wait(&sw_ctx_rx->async_wait); 2340 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2341 crypto_info = &ctx->crypto_recv.info; 2342 cctx = &ctx->rx; 2343 skb_queue_head_init(&sw_ctx_rx->rx_list); 2344 aead = &sw_ctx_rx->aead_recv; 2345 } 2346 2347 switch (crypto_info->cipher_type) { 2348 case TLS_CIPHER_AES_GCM_128: { 2349 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2350 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2351 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2352 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2353 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2354 rec_seq = 2355 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2356 gcm_128_info = 2357 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2358 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2359 key = gcm_128_info->key; 2360 salt = gcm_128_info->salt; 2361 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2362 cipher_name = "gcm(aes)"; 2363 break; 2364 } 2365 case TLS_CIPHER_AES_GCM_256: { 2366 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2367 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2368 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2369 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2370 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2371 rec_seq = 2372 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2373 gcm_256_info = 2374 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2375 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2376 key = gcm_256_info->key; 2377 salt = gcm_256_info->salt; 2378 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2379 cipher_name = "gcm(aes)"; 2380 break; 2381 } 2382 case TLS_CIPHER_AES_CCM_128: { 2383 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2384 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2385 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2386 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2387 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2388 rec_seq = 2389 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2390 ccm_128_info = 2391 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2392 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2393 key = ccm_128_info->key; 2394 salt = ccm_128_info->salt; 2395 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2396 cipher_name = "ccm(aes)"; 2397 break; 2398 } 2399 default: 2400 rc = -EINVAL; 2401 goto free_priv; 2402 } 2403 2404 /* Sanity-check the sizes for stack allocations. */ 2405 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2406 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2407 rc = -EINVAL; 2408 goto free_priv; 2409 } 2410 2411 if (crypto_info->version == TLS_1_3_VERSION) { 2412 nonce_size = 0; 2413 prot->aad_size = TLS_HEADER_SIZE; 2414 prot->tail_size = 1; 2415 } else { 2416 prot->aad_size = TLS_AAD_SPACE_SIZE; 2417 prot->tail_size = 0; 2418 } 2419 2420 prot->version = crypto_info->version; 2421 prot->cipher_type = crypto_info->cipher_type; 2422 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2423 prot->tag_size = tag_size; 2424 prot->overhead_size = prot->prepend_size + 2425 prot->tag_size + prot->tail_size; 2426 prot->iv_size = iv_size; 2427 prot->salt_size = salt_size; 2428 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2429 if (!cctx->iv) { 2430 rc = -ENOMEM; 2431 goto free_priv; 2432 } 2433 /* Note: 128 & 256 bit salt are the same size */ 2434 prot->rec_seq_size = rec_seq_size; 2435 memcpy(cctx->iv, salt, salt_size); 2436 memcpy(cctx->iv + salt_size, iv, iv_size); 2437 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2438 if (!cctx->rec_seq) { 2439 rc = -ENOMEM; 2440 goto free_iv; 2441 } 2442 2443 if (!*aead) { 2444 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2445 if (IS_ERR(*aead)) { 2446 rc = PTR_ERR(*aead); 2447 *aead = NULL; 2448 goto free_rec_seq; 2449 } 2450 } 2451 2452 ctx->push_pending_record = tls_sw_push_pending_record; 2453 2454 rc = crypto_aead_setkey(*aead, key, keysize); 2455 2456 if (rc) 2457 goto free_aead; 2458 2459 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2460 if (rc) 2461 goto free_aead; 2462 2463 if (sw_ctx_rx) { 2464 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2465 2466 if (crypto_info->version == TLS_1_3_VERSION) 2467 sw_ctx_rx->async_capable = 0; 2468 else 2469 sw_ctx_rx->async_capable = 2470 !!(tfm->__crt_alg->cra_flags & 2471 CRYPTO_ALG_ASYNC); 2472 2473 /* Set up strparser */ 2474 memset(&cb, 0, sizeof(cb)); 2475 cb.rcv_msg = tls_queue; 2476 cb.parse_msg = tls_read_size; 2477 2478 strp_init(&sw_ctx_rx->strp, sk, &cb); 2479 } 2480 2481 goto out; 2482 2483 free_aead: 2484 crypto_free_aead(*aead); 2485 *aead = NULL; 2486 free_rec_seq: 2487 kfree(cctx->rec_seq); 2488 cctx->rec_seq = NULL; 2489 free_iv: 2490 kfree(cctx->iv); 2491 cctx->iv = NULL; 2492 free_priv: 2493 if (tx) { 2494 kfree(ctx->priv_ctx_tx); 2495 ctx->priv_ctx_tx = NULL; 2496 } else { 2497 kfree(ctx->priv_ctx_rx); 2498 ctx->priv_ctx_rx = NULL; 2499 } 2500 out: 2501 return rc; 2502 } 2503