xref: /openbmc/linux/net/tls/tls_sw.c (revision f1b5618e013af28b3c78daf424436a79674423c0)
1  /*
2   * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3   * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4   * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5   * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6   * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7   * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8   *
9   * This software is available to you under a choice of one of two
10   * licenses.  You may choose to be licensed under the terms of the GNU
11   * General Public License (GPL) Version 2, available from the file
12   * COPYING in the main directory of this source tree, or the
13   * OpenIB.org BSD license below:
14   *
15   *     Redistribution and use in source and binary forms, with or
16   *     without modification, are permitted provided that the following
17   *     conditions are met:
18   *
19   *      - Redistributions of source code must retain the above
20   *        copyright notice, this list of conditions and the following
21   *        disclaimer.
22   *
23   *      - Redistributions in binary form must reproduce the above
24   *        copyright notice, this list of conditions and the following
25   *        disclaimer in the documentation and/or other materials
26   *        provided with the distribution.
27   *
28   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29   * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30   * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31   * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32   * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33   * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34   * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35   * SOFTWARE.
36   */
37  
38  #include <linux/sched/signal.h>
39  #include <linux/module.h>
40  #include <crypto/aead.h>
41  
42  #include <net/strparser.h>
43  #include <net/tls.h>
44  
45  #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46  
47  static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                       unsigned int recursion_level)
49  {
50          int start = skb_headlen(skb);
51          int i, chunk = start - offset;
52          struct sk_buff *frag_iter;
53          int elt = 0;
54  
55          if (unlikely(recursion_level >= 24))
56                  return -EMSGSIZE;
57  
58          if (chunk > 0) {
59                  if (chunk > len)
60                          chunk = len;
61                  elt++;
62                  len -= chunk;
63                  if (len == 0)
64                          return elt;
65                  offset += chunk;
66          }
67  
68          for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                  int end;
70  
71                  WARN_ON(start > offset + len);
72  
73                  end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                  chunk = end - offset;
75                  if (chunk > 0) {
76                          if (chunk > len)
77                                  chunk = len;
78                          elt++;
79                          len -= chunk;
80                          if (len == 0)
81                                  return elt;
82                          offset += chunk;
83                  }
84                  start = end;
85          }
86  
87          if (unlikely(skb_has_frag_list(skb))) {
88                  skb_walk_frags(skb, frag_iter) {
89                          int end, ret;
90  
91                          WARN_ON(start > offset + len);
92  
93                          end = start + frag_iter->len;
94                          chunk = end - offset;
95                          if (chunk > 0) {
96                                  if (chunk > len)
97                                          chunk = len;
98                                  ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                  recursion_level + 1);
100                                  if (unlikely(ret < 0))
101                                          return ret;
102                                  elt += ret;
103                                  len -= chunk;
104                                  if (len == 0)
105                                          return elt;
106                                  offset += chunk;
107                          }
108                          start = end;
109                  }
110          }
111          BUG_ON(len);
112          return elt;
113  }
114  
115  /* Return the number of scatterlist elements required to completely map the
116   * skb, or -EMSGSIZE if the recursion depth is exceeded.
117   */
118  static int skb_nsg(struct sk_buff *skb, int offset, int len)
119  {
120          return __skb_nsg(skb, offset, len, 0);
121  }
122  
123  static int padding_length(struct tls_sw_context_rx *ctx,
124  			  struct tls_context *tls_ctx, struct sk_buff *skb)
125  {
126  	struct strp_msg *rxm = strp_msg(skb);
127  	int sub = 0;
128  
129  	/* Determine zero-padding length */
130  	if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
131  		char content_type = 0;
132  		int err;
133  		int back = 17;
134  
135  		while (content_type == 0) {
136  			if (back > rxm->full_len)
137  				return -EBADMSG;
138  			err = skb_copy_bits(skb,
139  					    rxm->offset + rxm->full_len - back,
140  					    &content_type, 1);
141  			if (content_type)
142  				break;
143  			sub++;
144  			back++;
145  		}
146  		ctx->control = content_type;
147  	}
148  	return sub;
149  }
150  
151  static void tls_decrypt_done(struct crypto_async_request *req, int err)
152  {
153  	struct aead_request *aead_req = (struct aead_request *)req;
154  	struct scatterlist *sgout = aead_req->dst;
155  	struct scatterlist *sgin = aead_req->src;
156  	struct tls_sw_context_rx *ctx;
157  	struct tls_context *tls_ctx;
158  	struct tls_prot_info *prot;
159  	struct scatterlist *sg;
160  	struct sk_buff *skb;
161  	unsigned int pages;
162  	int pending;
163  
164  	skb = (struct sk_buff *)req->data;
165  	tls_ctx = tls_get_ctx(skb->sk);
166  	ctx = tls_sw_ctx_rx(tls_ctx);
167  	prot = &tls_ctx->prot_info;
168  
169  	/* Propagate if there was an err */
170  	if (err) {
171  		ctx->async_wait.err = err;
172  		tls_err_abort(skb->sk, err);
173  	} else {
174  		struct strp_msg *rxm = strp_msg(skb);
175  		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
176  		rxm->offset += prot->prepend_size;
177  		rxm->full_len -= prot->overhead_size;
178  	}
179  
180  	/* After using skb->sk to propagate sk through crypto async callback
181  	 * we need to NULL it again.
182  	 */
183  	skb->sk = NULL;
184  
185  
186  	/* Free the destination pages if skb was not decrypted inplace */
187  	if (sgout != sgin) {
188  		/* Skip the first S/G entry as it points to AAD */
189  		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
190  			if (!sg)
191  				break;
192  			put_page(sg_page(sg));
193  		}
194  	}
195  
196  	kfree(aead_req);
197  
198  	pending = atomic_dec_return(&ctx->decrypt_pending);
199  
200  	if (!pending && READ_ONCE(ctx->async_notify))
201  		complete(&ctx->async_wait.completion);
202  }
203  
204  static int tls_do_decryption(struct sock *sk,
205  			     struct sk_buff *skb,
206  			     struct scatterlist *sgin,
207  			     struct scatterlist *sgout,
208  			     char *iv_recv,
209  			     size_t data_len,
210  			     struct aead_request *aead_req,
211  			     bool async)
212  {
213  	struct tls_context *tls_ctx = tls_get_ctx(sk);
214  	struct tls_prot_info *prot = &tls_ctx->prot_info;
215  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
216  	int ret;
217  
218  	aead_request_set_tfm(aead_req, ctx->aead_recv);
219  	aead_request_set_ad(aead_req, prot->aad_size);
220  	aead_request_set_crypt(aead_req, sgin, sgout,
221  			       data_len + prot->tag_size,
222  			       (u8 *)iv_recv);
223  
224  	if (async) {
225  		/* Using skb->sk to push sk through to crypto async callback
226  		 * handler. This allows propagating errors up to the socket
227  		 * if needed. It _must_ be cleared in the async handler
228  		 * before kfree_skb is called. We _know_ skb->sk is NULL
229  		 * because it is a clone from strparser.
230  		 */
231  		skb->sk = sk;
232  		aead_request_set_callback(aead_req,
233  					  CRYPTO_TFM_REQ_MAY_BACKLOG,
234  					  tls_decrypt_done, skb);
235  		atomic_inc(&ctx->decrypt_pending);
236  	} else {
237  		aead_request_set_callback(aead_req,
238  					  CRYPTO_TFM_REQ_MAY_BACKLOG,
239  					  crypto_req_done, &ctx->async_wait);
240  	}
241  
242  	ret = crypto_aead_decrypt(aead_req);
243  	if (ret == -EINPROGRESS) {
244  		if (async)
245  			return ret;
246  
247  		ret = crypto_wait_req(ret, &ctx->async_wait);
248  	}
249  
250  	if (async)
251  		atomic_dec(&ctx->decrypt_pending);
252  
253  	return ret;
254  }
255  
256  static void tls_trim_both_msgs(struct sock *sk, int target_size)
257  {
258  	struct tls_context *tls_ctx = tls_get_ctx(sk);
259  	struct tls_prot_info *prot = &tls_ctx->prot_info;
260  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
261  	struct tls_rec *rec = ctx->open_rec;
262  
263  	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
264  	if (target_size > 0)
265  		target_size += prot->overhead_size;
266  	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
267  }
268  
269  static int tls_alloc_encrypted_msg(struct sock *sk, int len)
270  {
271  	struct tls_context *tls_ctx = tls_get_ctx(sk);
272  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
273  	struct tls_rec *rec = ctx->open_rec;
274  	struct sk_msg *msg_en = &rec->msg_encrypted;
275  
276  	return sk_msg_alloc(sk, msg_en, len, 0);
277  }
278  
279  static int tls_clone_plaintext_msg(struct sock *sk, int required)
280  {
281  	struct tls_context *tls_ctx = tls_get_ctx(sk);
282  	struct tls_prot_info *prot = &tls_ctx->prot_info;
283  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284  	struct tls_rec *rec = ctx->open_rec;
285  	struct sk_msg *msg_pl = &rec->msg_plaintext;
286  	struct sk_msg *msg_en = &rec->msg_encrypted;
287  	int skip, len;
288  
289  	/* We add page references worth len bytes from encrypted sg
290  	 * at the end of plaintext sg. It is guaranteed that msg_en
291  	 * has enough required room (ensured by caller).
292  	 */
293  	len = required - msg_pl->sg.size;
294  
295  	/* Skip initial bytes in msg_en's data to be able to use
296  	 * same offset of both plain and encrypted data.
297  	 */
298  	skip = prot->prepend_size + msg_pl->sg.size;
299  
300  	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
301  }
302  
303  static struct tls_rec *tls_get_rec(struct sock *sk)
304  {
305  	struct tls_context *tls_ctx = tls_get_ctx(sk);
306  	struct tls_prot_info *prot = &tls_ctx->prot_info;
307  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
308  	struct sk_msg *msg_pl, *msg_en;
309  	struct tls_rec *rec;
310  	int mem_size;
311  
312  	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
313  
314  	rec = kzalloc(mem_size, sk->sk_allocation);
315  	if (!rec)
316  		return NULL;
317  
318  	msg_pl = &rec->msg_plaintext;
319  	msg_en = &rec->msg_encrypted;
320  
321  	sk_msg_init(msg_pl);
322  	sk_msg_init(msg_en);
323  
324  	sg_init_table(rec->sg_aead_in, 2);
325  	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
326  	sg_unmark_end(&rec->sg_aead_in[1]);
327  
328  	sg_init_table(rec->sg_aead_out, 2);
329  	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
330  	sg_unmark_end(&rec->sg_aead_out[1]);
331  
332  	return rec;
333  }
334  
335  static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
336  {
337  	sk_msg_free(sk, &rec->msg_encrypted);
338  	sk_msg_free(sk, &rec->msg_plaintext);
339  	kfree(rec);
340  }
341  
342  static void tls_free_open_rec(struct sock *sk)
343  {
344  	struct tls_context *tls_ctx = tls_get_ctx(sk);
345  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
346  	struct tls_rec *rec = ctx->open_rec;
347  
348  	if (rec) {
349  		tls_free_rec(sk, rec);
350  		ctx->open_rec = NULL;
351  	}
352  }
353  
354  int tls_tx_records(struct sock *sk, int flags)
355  {
356  	struct tls_context *tls_ctx = tls_get_ctx(sk);
357  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
358  	struct tls_rec *rec, *tmp;
359  	struct sk_msg *msg_en;
360  	int tx_flags, rc = 0;
361  
362  	if (tls_is_partially_sent_record(tls_ctx)) {
363  		rec = list_first_entry(&ctx->tx_list,
364  				       struct tls_rec, list);
365  
366  		if (flags == -1)
367  			tx_flags = rec->tx_flags;
368  		else
369  			tx_flags = flags;
370  
371  		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
372  		if (rc)
373  			goto tx_err;
374  
375  		/* Full record has been transmitted.
376  		 * Remove the head of tx_list
377  		 */
378  		list_del(&rec->list);
379  		sk_msg_free(sk, &rec->msg_plaintext);
380  		kfree(rec);
381  	}
382  
383  	/* Tx all ready records */
384  	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
385  		if (READ_ONCE(rec->tx_ready)) {
386  			if (flags == -1)
387  				tx_flags = rec->tx_flags;
388  			else
389  				tx_flags = flags;
390  
391  			msg_en = &rec->msg_encrypted;
392  			rc = tls_push_sg(sk, tls_ctx,
393  					 &msg_en->sg.data[msg_en->sg.curr],
394  					 0, tx_flags);
395  			if (rc)
396  				goto tx_err;
397  
398  			list_del(&rec->list);
399  			sk_msg_free(sk, &rec->msg_plaintext);
400  			kfree(rec);
401  		} else {
402  			break;
403  		}
404  	}
405  
406  tx_err:
407  	if (rc < 0 && rc != -EAGAIN)
408  		tls_err_abort(sk, EBADMSG);
409  
410  	return rc;
411  }
412  
413  static void tls_encrypt_done(struct crypto_async_request *req, int err)
414  {
415  	struct aead_request *aead_req = (struct aead_request *)req;
416  	struct sock *sk = req->data;
417  	struct tls_context *tls_ctx = tls_get_ctx(sk);
418  	struct tls_prot_info *prot = &tls_ctx->prot_info;
419  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
420  	struct scatterlist *sge;
421  	struct sk_msg *msg_en;
422  	struct tls_rec *rec;
423  	bool ready = false;
424  	int pending;
425  
426  	rec = container_of(aead_req, struct tls_rec, aead_req);
427  	msg_en = &rec->msg_encrypted;
428  
429  	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
430  	sge->offset -= prot->prepend_size;
431  	sge->length += prot->prepend_size;
432  
433  	/* Check if error is previously set on socket */
434  	if (err || sk->sk_err) {
435  		rec = NULL;
436  
437  		/* If err is already set on socket, return the same code */
438  		if (sk->sk_err) {
439  			ctx->async_wait.err = sk->sk_err;
440  		} else {
441  			ctx->async_wait.err = err;
442  			tls_err_abort(sk, err);
443  		}
444  	}
445  
446  	if (rec) {
447  		struct tls_rec *first_rec;
448  
449  		/* Mark the record as ready for transmission */
450  		smp_store_mb(rec->tx_ready, true);
451  
452  		/* If received record is at head of tx_list, schedule tx */
453  		first_rec = list_first_entry(&ctx->tx_list,
454  					     struct tls_rec, list);
455  		if (rec == first_rec)
456  			ready = true;
457  	}
458  
459  	pending = atomic_dec_return(&ctx->encrypt_pending);
460  
461  	if (!pending && READ_ONCE(ctx->async_notify))
462  		complete(&ctx->async_wait.completion);
463  
464  	if (!ready)
465  		return;
466  
467  	/* Schedule the transmission */
468  	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
469  		schedule_delayed_work(&ctx->tx_work.work, 1);
470  }
471  
472  static int tls_do_encryption(struct sock *sk,
473  			     struct tls_context *tls_ctx,
474  			     struct tls_sw_context_tx *ctx,
475  			     struct aead_request *aead_req,
476  			     size_t data_len, u32 start)
477  {
478  	struct tls_prot_info *prot = &tls_ctx->prot_info;
479  	struct tls_rec *rec = ctx->open_rec;
480  	struct sk_msg *msg_en = &rec->msg_encrypted;
481  	struct scatterlist *sge = sk_msg_elem(msg_en, start);
482  	int rc;
483  
484  	memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
485  	xor_iv_with_seq(prot->version, rec->iv_data,
486  			tls_ctx->tx.rec_seq);
487  
488  	sge->offset += prot->prepend_size;
489  	sge->length -= prot->prepend_size;
490  
491  	msg_en->sg.curr = start;
492  
493  	aead_request_set_tfm(aead_req, ctx->aead_send);
494  	aead_request_set_ad(aead_req, prot->aad_size);
495  	aead_request_set_crypt(aead_req, rec->sg_aead_in,
496  			       rec->sg_aead_out,
497  			       data_len, rec->iv_data);
498  
499  	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
500  				  tls_encrypt_done, sk);
501  
502  	/* Add the record in tx_list */
503  	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
504  	atomic_inc(&ctx->encrypt_pending);
505  
506  	rc = crypto_aead_encrypt(aead_req);
507  	if (!rc || rc != -EINPROGRESS) {
508  		atomic_dec(&ctx->encrypt_pending);
509  		sge->offset -= prot->prepend_size;
510  		sge->length += prot->prepend_size;
511  	}
512  
513  	if (!rc) {
514  		WRITE_ONCE(rec->tx_ready, true);
515  	} else if (rc != -EINPROGRESS) {
516  		list_del(&rec->list);
517  		return rc;
518  	}
519  
520  	/* Unhook the record from context if encryption is not failure */
521  	ctx->open_rec = NULL;
522  	tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
523  	return rc;
524  }
525  
526  static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
527  				 struct tls_rec **to, struct sk_msg *msg_opl,
528  				 struct sk_msg *msg_oen, u32 split_point,
529  				 u32 tx_overhead_size, u32 *orig_end)
530  {
531  	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
532  	struct scatterlist *sge, *osge, *nsge;
533  	u32 orig_size = msg_opl->sg.size;
534  	struct scatterlist tmp = { };
535  	struct sk_msg *msg_npl;
536  	struct tls_rec *new;
537  	int ret;
538  
539  	new = tls_get_rec(sk);
540  	if (!new)
541  		return -ENOMEM;
542  	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
543  			   tx_overhead_size, 0);
544  	if (ret < 0) {
545  		tls_free_rec(sk, new);
546  		return ret;
547  	}
548  
549  	*orig_end = msg_opl->sg.end;
550  	i = msg_opl->sg.start;
551  	sge = sk_msg_elem(msg_opl, i);
552  	while (apply && sge->length) {
553  		if (sge->length > apply) {
554  			u32 len = sge->length - apply;
555  
556  			get_page(sg_page(sge));
557  			sg_set_page(&tmp, sg_page(sge), len,
558  				    sge->offset + apply);
559  			sge->length = apply;
560  			bytes += apply;
561  			apply = 0;
562  		} else {
563  			apply -= sge->length;
564  			bytes += sge->length;
565  		}
566  
567  		sk_msg_iter_var_next(i);
568  		if (i == msg_opl->sg.end)
569  			break;
570  		sge = sk_msg_elem(msg_opl, i);
571  	}
572  
573  	msg_opl->sg.end = i;
574  	msg_opl->sg.curr = i;
575  	msg_opl->sg.copybreak = 0;
576  	msg_opl->apply_bytes = 0;
577  	msg_opl->sg.size = bytes;
578  
579  	msg_npl = &new->msg_plaintext;
580  	msg_npl->apply_bytes = apply;
581  	msg_npl->sg.size = orig_size - bytes;
582  
583  	j = msg_npl->sg.start;
584  	nsge = sk_msg_elem(msg_npl, j);
585  	if (tmp.length) {
586  		memcpy(nsge, &tmp, sizeof(*nsge));
587  		sk_msg_iter_var_next(j);
588  		nsge = sk_msg_elem(msg_npl, j);
589  	}
590  
591  	osge = sk_msg_elem(msg_opl, i);
592  	while (osge->length) {
593  		memcpy(nsge, osge, sizeof(*nsge));
594  		sg_unmark_end(nsge);
595  		sk_msg_iter_var_next(i);
596  		sk_msg_iter_var_next(j);
597  		if (i == *orig_end)
598  			break;
599  		osge = sk_msg_elem(msg_opl, i);
600  		nsge = sk_msg_elem(msg_npl, j);
601  	}
602  
603  	msg_npl->sg.end = j;
604  	msg_npl->sg.curr = j;
605  	msg_npl->sg.copybreak = 0;
606  
607  	*to = new;
608  	return 0;
609  }
610  
611  static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
612  				  struct tls_rec *from, u32 orig_end)
613  {
614  	struct sk_msg *msg_npl = &from->msg_plaintext;
615  	struct sk_msg *msg_opl = &to->msg_plaintext;
616  	struct scatterlist *osge, *nsge;
617  	u32 i, j;
618  
619  	i = msg_opl->sg.end;
620  	sk_msg_iter_var_prev(i);
621  	j = msg_npl->sg.start;
622  
623  	osge = sk_msg_elem(msg_opl, i);
624  	nsge = sk_msg_elem(msg_npl, j);
625  
626  	if (sg_page(osge) == sg_page(nsge) &&
627  	    osge->offset + osge->length == nsge->offset) {
628  		osge->length += nsge->length;
629  		put_page(sg_page(nsge));
630  	}
631  
632  	msg_opl->sg.end = orig_end;
633  	msg_opl->sg.curr = orig_end;
634  	msg_opl->sg.copybreak = 0;
635  	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
636  	msg_opl->sg.size += msg_npl->sg.size;
637  
638  	sk_msg_free(sk, &to->msg_encrypted);
639  	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
640  
641  	kfree(from);
642  }
643  
644  static int tls_push_record(struct sock *sk, int flags,
645  			   unsigned char record_type)
646  {
647  	struct tls_context *tls_ctx = tls_get_ctx(sk);
648  	struct tls_prot_info *prot = &tls_ctx->prot_info;
649  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
650  	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
651  	u32 i, split_point, uninitialized_var(orig_end);
652  	struct sk_msg *msg_pl, *msg_en;
653  	struct aead_request *req;
654  	bool split;
655  	int rc;
656  
657  	if (!rec)
658  		return 0;
659  
660  	msg_pl = &rec->msg_plaintext;
661  	msg_en = &rec->msg_encrypted;
662  
663  	split_point = msg_pl->apply_bytes;
664  	split = split_point && split_point < msg_pl->sg.size;
665  	if (split) {
666  		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
667  					   split_point, prot->overhead_size,
668  					   &orig_end);
669  		if (rc < 0)
670  			return rc;
671  		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
672  			    prot->overhead_size);
673  	}
674  
675  	rec->tx_flags = flags;
676  	req = &rec->aead_req;
677  
678  	i = msg_pl->sg.end;
679  	sk_msg_iter_var_prev(i);
680  
681  	rec->content_type = record_type;
682  	if (prot->version == TLS_1_3_VERSION) {
683  		/* Add content type to end of message.  No padding added */
684  		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
685  		sg_mark_end(&rec->sg_content_type);
686  		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
687  			 &rec->sg_content_type);
688  	} else {
689  		sg_mark_end(sk_msg_elem(msg_pl, i));
690  	}
691  
692  	i = msg_pl->sg.start;
693  	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
694  		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
695  
696  	i = msg_en->sg.end;
697  	sk_msg_iter_var_prev(i);
698  	sg_mark_end(sk_msg_elem(msg_en, i));
699  
700  	i = msg_en->sg.start;
701  	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
702  
703  	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
704  		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
705  		     record_type, prot->version);
706  
707  	tls_fill_prepend(tls_ctx,
708  			 page_address(sg_page(&msg_en->sg.data[i])) +
709  			 msg_en->sg.data[i].offset,
710  			 msg_pl->sg.size + prot->tail_size,
711  			 record_type, prot->version);
712  
713  	tls_ctx->pending_open_record_frags = false;
714  
715  	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
716  			       msg_pl->sg.size + prot->tail_size, i);
717  	if (rc < 0) {
718  		if (rc != -EINPROGRESS) {
719  			tls_err_abort(sk, EBADMSG);
720  			if (split) {
721  				tls_ctx->pending_open_record_frags = true;
722  				tls_merge_open_record(sk, rec, tmp, orig_end);
723  			}
724  		}
725  		ctx->async_capable = 1;
726  		return rc;
727  	} else if (split) {
728  		msg_pl = &tmp->msg_plaintext;
729  		msg_en = &tmp->msg_encrypted;
730  		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
731  		tls_ctx->pending_open_record_frags = true;
732  		ctx->open_rec = tmp;
733  	}
734  
735  	return tls_tx_records(sk, flags);
736  }
737  
738  static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
739  			       bool full_record, u8 record_type,
740  			       size_t *copied, int flags)
741  {
742  	struct tls_context *tls_ctx = tls_get_ctx(sk);
743  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
744  	struct sk_msg msg_redir = { };
745  	struct sk_psock *psock;
746  	struct sock *sk_redir;
747  	struct tls_rec *rec;
748  	bool enospc, policy;
749  	int err = 0, send;
750  	u32 delta = 0;
751  
752  	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
753  	psock = sk_psock_get(sk);
754  	if (!psock || !policy)
755  		return tls_push_record(sk, flags, record_type);
756  more_data:
757  	enospc = sk_msg_full(msg);
758  	if (psock->eval == __SK_NONE) {
759  		delta = msg->sg.size;
760  		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
761  		if (delta < msg->sg.size)
762  			delta -= msg->sg.size;
763  		else
764  			delta = 0;
765  	}
766  	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
767  	    !enospc && !full_record) {
768  		err = -ENOSPC;
769  		goto out_err;
770  	}
771  	msg->cork_bytes = 0;
772  	send = msg->sg.size;
773  	if (msg->apply_bytes && msg->apply_bytes < send)
774  		send = msg->apply_bytes;
775  
776  	switch (psock->eval) {
777  	case __SK_PASS:
778  		err = tls_push_record(sk, flags, record_type);
779  		if (err < 0) {
780  			*copied -= sk_msg_free(sk, msg);
781  			tls_free_open_rec(sk);
782  			goto out_err;
783  		}
784  		break;
785  	case __SK_REDIRECT:
786  		sk_redir = psock->sk_redir;
787  		memcpy(&msg_redir, msg, sizeof(*msg));
788  		if (msg->apply_bytes < send)
789  			msg->apply_bytes = 0;
790  		else
791  			msg->apply_bytes -= send;
792  		sk_msg_return_zero(sk, msg, send);
793  		msg->sg.size -= send;
794  		release_sock(sk);
795  		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
796  		lock_sock(sk);
797  		if (err < 0) {
798  			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
799  			msg->sg.size = 0;
800  		}
801  		if (msg->sg.size == 0)
802  			tls_free_open_rec(sk);
803  		break;
804  	case __SK_DROP:
805  	default:
806  		sk_msg_free_partial(sk, msg, send);
807  		if (msg->apply_bytes < send)
808  			msg->apply_bytes = 0;
809  		else
810  			msg->apply_bytes -= send;
811  		if (msg->sg.size == 0)
812  			tls_free_open_rec(sk);
813  		*copied -= (send + delta);
814  		err = -EACCES;
815  	}
816  
817  	if (likely(!err)) {
818  		bool reset_eval = !ctx->open_rec;
819  
820  		rec = ctx->open_rec;
821  		if (rec) {
822  			msg = &rec->msg_plaintext;
823  			if (!msg->apply_bytes)
824  				reset_eval = true;
825  		}
826  		if (reset_eval) {
827  			psock->eval = __SK_NONE;
828  			if (psock->sk_redir) {
829  				sock_put(psock->sk_redir);
830  				psock->sk_redir = NULL;
831  			}
832  		}
833  		if (rec)
834  			goto more_data;
835  	}
836   out_err:
837  	sk_psock_put(sk, psock);
838  	return err;
839  }
840  
841  static int tls_sw_push_pending_record(struct sock *sk, int flags)
842  {
843  	struct tls_context *tls_ctx = tls_get_ctx(sk);
844  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
845  	struct tls_rec *rec = ctx->open_rec;
846  	struct sk_msg *msg_pl;
847  	size_t copied;
848  
849  	if (!rec)
850  		return 0;
851  
852  	msg_pl = &rec->msg_plaintext;
853  	copied = msg_pl->sg.size;
854  	if (!copied)
855  		return 0;
856  
857  	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
858  				   &copied, flags);
859  }
860  
861  int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
862  {
863  	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
864  	struct tls_context *tls_ctx = tls_get_ctx(sk);
865  	struct tls_prot_info *prot = &tls_ctx->prot_info;
866  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
867  	bool async_capable = ctx->async_capable;
868  	unsigned char record_type = TLS_RECORD_TYPE_DATA;
869  	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
870  	bool eor = !(msg->msg_flags & MSG_MORE);
871  	size_t try_to_copy, copied = 0;
872  	struct sk_msg *msg_pl, *msg_en;
873  	struct tls_rec *rec;
874  	int required_size;
875  	int num_async = 0;
876  	bool full_record;
877  	int record_room;
878  	int num_zc = 0;
879  	int orig_size;
880  	int ret = 0;
881  
882  	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
883  		return -ENOTSUPP;
884  
885  	lock_sock(sk);
886  
887  	/* Wait till there is any pending write on socket */
888  	if (unlikely(sk->sk_write_pending)) {
889  		ret = wait_on_pending_writer(sk, &timeo);
890  		if (unlikely(ret))
891  			goto send_end;
892  	}
893  
894  	if (unlikely(msg->msg_controllen)) {
895  		ret = tls_proccess_cmsg(sk, msg, &record_type);
896  		if (ret) {
897  			if (ret == -EINPROGRESS)
898  				num_async++;
899  			else if (ret != -EAGAIN)
900  				goto send_end;
901  		}
902  	}
903  
904  	while (msg_data_left(msg)) {
905  		if (sk->sk_err) {
906  			ret = -sk->sk_err;
907  			goto send_end;
908  		}
909  
910  		if (ctx->open_rec)
911  			rec = ctx->open_rec;
912  		else
913  			rec = ctx->open_rec = tls_get_rec(sk);
914  		if (!rec) {
915  			ret = -ENOMEM;
916  			goto send_end;
917  		}
918  
919  		msg_pl = &rec->msg_plaintext;
920  		msg_en = &rec->msg_encrypted;
921  
922  		orig_size = msg_pl->sg.size;
923  		full_record = false;
924  		try_to_copy = msg_data_left(msg);
925  		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
926  		if (try_to_copy >= record_room) {
927  			try_to_copy = record_room;
928  			full_record = true;
929  		}
930  
931  		required_size = msg_pl->sg.size + try_to_copy +
932  				prot->overhead_size;
933  
934  		if (!sk_stream_memory_free(sk))
935  			goto wait_for_sndbuf;
936  
937  alloc_encrypted:
938  		ret = tls_alloc_encrypted_msg(sk, required_size);
939  		if (ret) {
940  			if (ret != -ENOSPC)
941  				goto wait_for_memory;
942  
943  			/* Adjust try_to_copy according to the amount that was
944  			 * actually allocated. The difference is due
945  			 * to max sg elements limit
946  			 */
947  			try_to_copy -= required_size - msg_en->sg.size;
948  			full_record = true;
949  		}
950  
951  		if (!is_kvec && (full_record || eor) && !async_capable) {
952  			u32 first = msg_pl->sg.end;
953  
954  			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
955  							msg_pl, try_to_copy);
956  			if (ret)
957  				goto fallback_to_reg_send;
958  
959  			rec->inplace_crypto = 0;
960  
961  			num_zc++;
962  			copied += try_to_copy;
963  
964  			sk_msg_sg_copy_set(msg_pl, first);
965  			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
966  						  record_type, &copied,
967  						  msg->msg_flags);
968  			if (ret) {
969  				if (ret == -EINPROGRESS)
970  					num_async++;
971  				else if (ret == -ENOMEM)
972  					goto wait_for_memory;
973  				else if (ret == -ENOSPC)
974  					goto rollback_iter;
975  				else if (ret != -EAGAIN)
976  					goto send_end;
977  			}
978  			continue;
979  rollback_iter:
980  			copied -= try_to_copy;
981  			sk_msg_sg_copy_clear(msg_pl, first);
982  			iov_iter_revert(&msg->msg_iter,
983  					msg_pl->sg.size - orig_size);
984  fallback_to_reg_send:
985  			sk_msg_trim(sk, msg_pl, orig_size);
986  		}
987  
988  		required_size = msg_pl->sg.size + try_to_copy;
989  
990  		ret = tls_clone_plaintext_msg(sk, required_size);
991  		if (ret) {
992  			if (ret != -ENOSPC)
993  				goto send_end;
994  
995  			/* Adjust try_to_copy according to the amount that was
996  			 * actually allocated. The difference is due
997  			 * to max sg elements limit
998  			 */
999  			try_to_copy -= required_size - msg_pl->sg.size;
1000  			full_record = true;
1001  			sk_msg_trim(sk, msg_en,
1002  				    msg_pl->sg.size + prot->overhead_size);
1003  		}
1004  
1005  		if (try_to_copy) {
1006  			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1007  						       msg_pl, try_to_copy);
1008  			if (ret < 0)
1009  				goto trim_sgl;
1010  		}
1011  
1012  		/* Open records defined only if successfully copied, otherwise
1013  		 * we would trim the sg but not reset the open record frags.
1014  		 */
1015  		tls_ctx->pending_open_record_frags = true;
1016  		copied += try_to_copy;
1017  		if (full_record || eor) {
1018  			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1019  						  record_type, &copied,
1020  						  msg->msg_flags);
1021  			if (ret) {
1022  				if (ret == -EINPROGRESS)
1023  					num_async++;
1024  				else if (ret == -ENOMEM)
1025  					goto wait_for_memory;
1026  				else if (ret != -EAGAIN) {
1027  					if (ret == -ENOSPC)
1028  						ret = 0;
1029  					goto send_end;
1030  				}
1031  			}
1032  		}
1033  
1034  		continue;
1035  
1036  wait_for_sndbuf:
1037  		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1038  wait_for_memory:
1039  		ret = sk_stream_wait_memory(sk, &timeo);
1040  		if (ret) {
1041  trim_sgl:
1042  			tls_trim_both_msgs(sk, orig_size);
1043  			goto send_end;
1044  		}
1045  
1046  		if (msg_en->sg.size < required_size)
1047  			goto alloc_encrypted;
1048  	}
1049  
1050  	if (!num_async) {
1051  		goto send_end;
1052  	} else if (num_zc) {
1053  		/* Wait for pending encryptions to get completed */
1054  		smp_store_mb(ctx->async_notify, true);
1055  
1056  		if (atomic_read(&ctx->encrypt_pending))
1057  			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1058  		else
1059  			reinit_completion(&ctx->async_wait.completion);
1060  
1061  		WRITE_ONCE(ctx->async_notify, false);
1062  
1063  		if (ctx->async_wait.err) {
1064  			ret = ctx->async_wait.err;
1065  			copied = 0;
1066  		}
1067  	}
1068  
1069  	/* Transmit if any encryptions have completed */
1070  	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1071  		cancel_delayed_work(&ctx->tx_work.work);
1072  		tls_tx_records(sk, msg->msg_flags);
1073  	}
1074  
1075  send_end:
1076  	ret = sk_stream_error(sk, msg->msg_flags, ret);
1077  
1078  	release_sock(sk);
1079  	return copied ? copied : ret;
1080  }
1081  
1082  static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1083  			      int offset, size_t size, int flags)
1084  {
1085  	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1087  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1088  	struct tls_prot_info *prot = &tls_ctx->prot_info;
1089  	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1090  	struct sk_msg *msg_pl;
1091  	struct tls_rec *rec;
1092  	int num_async = 0;
1093  	size_t copied = 0;
1094  	bool full_record;
1095  	int record_room;
1096  	int ret = 0;
1097  	bool eor;
1098  
1099  	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1100  	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1101  
1102  	/* Wait till there is any pending write on socket */
1103  	if (unlikely(sk->sk_write_pending)) {
1104  		ret = wait_on_pending_writer(sk, &timeo);
1105  		if (unlikely(ret))
1106  			goto sendpage_end;
1107  	}
1108  
1109  	/* Call the sk_stream functions to manage the sndbuf mem. */
1110  	while (size > 0) {
1111  		size_t copy, required_size;
1112  
1113  		if (sk->sk_err) {
1114  			ret = -sk->sk_err;
1115  			goto sendpage_end;
1116  		}
1117  
1118  		if (ctx->open_rec)
1119  			rec = ctx->open_rec;
1120  		else
1121  			rec = ctx->open_rec = tls_get_rec(sk);
1122  		if (!rec) {
1123  			ret = -ENOMEM;
1124  			goto sendpage_end;
1125  		}
1126  
1127  		msg_pl = &rec->msg_plaintext;
1128  
1129  		full_record = false;
1130  		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1131  		copied = 0;
1132  		copy = size;
1133  		if (copy >= record_room) {
1134  			copy = record_room;
1135  			full_record = true;
1136  		}
1137  
1138  		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1139  
1140  		if (!sk_stream_memory_free(sk))
1141  			goto wait_for_sndbuf;
1142  alloc_payload:
1143  		ret = tls_alloc_encrypted_msg(sk, required_size);
1144  		if (ret) {
1145  			if (ret != -ENOSPC)
1146  				goto wait_for_memory;
1147  
1148  			/* Adjust copy according to the amount that was
1149  			 * actually allocated. The difference is due
1150  			 * to max sg elements limit
1151  			 */
1152  			copy -= required_size - msg_pl->sg.size;
1153  			full_record = true;
1154  		}
1155  
1156  		sk_msg_page_add(msg_pl, page, copy, offset);
1157  		sk_mem_charge(sk, copy);
1158  
1159  		offset += copy;
1160  		size -= copy;
1161  		copied += copy;
1162  
1163  		tls_ctx->pending_open_record_frags = true;
1164  		if (full_record || eor || sk_msg_full(msg_pl)) {
1165  			rec->inplace_crypto = 0;
1166  			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1167  						  record_type, &copied, flags);
1168  			if (ret) {
1169  				if (ret == -EINPROGRESS)
1170  					num_async++;
1171  				else if (ret == -ENOMEM)
1172  					goto wait_for_memory;
1173  				else if (ret != -EAGAIN) {
1174  					if (ret == -ENOSPC)
1175  						ret = 0;
1176  					goto sendpage_end;
1177  				}
1178  			}
1179  		}
1180  		continue;
1181  wait_for_sndbuf:
1182  		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1183  wait_for_memory:
1184  		ret = sk_stream_wait_memory(sk, &timeo);
1185  		if (ret) {
1186  			tls_trim_both_msgs(sk, msg_pl->sg.size);
1187  			goto sendpage_end;
1188  		}
1189  
1190  		goto alloc_payload;
1191  	}
1192  
1193  	if (num_async) {
1194  		/* Transmit if any encryptions have completed */
1195  		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1196  			cancel_delayed_work(&ctx->tx_work.work);
1197  			tls_tx_records(sk, flags);
1198  		}
1199  	}
1200  sendpage_end:
1201  	ret = sk_stream_error(sk, flags, ret);
1202  	return copied ? copied : ret;
1203  }
1204  
1205  int tls_sw_sendpage(struct sock *sk, struct page *page,
1206  		    int offset, size_t size, int flags)
1207  {
1208  	int ret;
1209  
1210  	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1211  		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1212  		return -ENOTSUPP;
1213  
1214  	lock_sock(sk);
1215  	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1216  	release_sock(sk);
1217  	return ret;
1218  }
1219  
1220  static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1221  				     int flags, long timeo, int *err)
1222  {
1223  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1224  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1225  	struct sk_buff *skb;
1226  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1227  
1228  	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1229  		if (sk->sk_err) {
1230  			*err = sock_error(sk);
1231  			return NULL;
1232  		}
1233  
1234  		if (sk->sk_shutdown & RCV_SHUTDOWN)
1235  			return NULL;
1236  
1237  		if (sock_flag(sk, SOCK_DONE))
1238  			return NULL;
1239  
1240  		if ((flags & MSG_DONTWAIT) || !timeo) {
1241  			*err = -EAGAIN;
1242  			return NULL;
1243  		}
1244  
1245  		add_wait_queue(sk_sleep(sk), &wait);
1246  		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1247  		sk_wait_event(sk, &timeo,
1248  			      ctx->recv_pkt != skb ||
1249  			      !sk_psock_queue_empty(psock),
1250  			      &wait);
1251  		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252  		remove_wait_queue(sk_sleep(sk), &wait);
1253  
1254  		/* Handle signals */
1255  		if (signal_pending(current)) {
1256  			*err = sock_intr_errno(timeo);
1257  			return NULL;
1258  		}
1259  	}
1260  
1261  	return skb;
1262  }
1263  
1264  static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1265  			       int length, int *pages_used,
1266  			       unsigned int *size_used,
1267  			       struct scatterlist *to,
1268  			       int to_max_pages)
1269  {
1270  	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1271  	struct page *pages[MAX_SKB_FRAGS];
1272  	unsigned int size = *size_used;
1273  	ssize_t copied, use;
1274  	size_t offset;
1275  
1276  	while (length > 0) {
1277  		i = 0;
1278  		maxpages = to_max_pages - num_elem;
1279  		if (maxpages == 0) {
1280  			rc = -EFAULT;
1281  			goto out;
1282  		}
1283  		copied = iov_iter_get_pages(from, pages,
1284  					    length,
1285  					    maxpages, &offset);
1286  		if (copied <= 0) {
1287  			rc = -EFAULT;
1288  			goto out;
1289  		}
1290  
1291  		iov_iter_advance(from, copied);
1292  
1293  		length -= copied;
1294  		size += copied;
1295  		while (copied) {
1296  			use = min_t(int, copied, PAGE_SIZE - offset);
1297  
1298  			sg_set_page(&to[num_elem],
1299  				    pages[i], use, offset);
1300  			sg_unmark_end(&to[num_elem]);
1301  			/* We do not uncharge memory from this API */
1302  
1303  			offset = 0;
1304  			copied -= use;
1305  
1306  			i++;
1307  			num_elem++;
1308  		}
1309  	}
1310  	/* Mark the end in the last sg entry if newly added */
1311  	if (num_elem > *pages_used)
1312  		sg_mark_end(&to[num_elem - 1]);
1313  out:
1314  	if (rc)
1315  		iov_iter_revert(from, size - *size_used);
1316  	*size_used = size;
1317  	*pages_used = num_elem;
1318  
1319  	return rc;
1320  }
1321  
1322  /* This function decrypts the input skb into either out_iov or in out_sg
1323   * or in skb buffers itself. The input parameter 'zc' indicates if
1324   * zero-copy mode needs to be tried or not. With zero-copy mode, either
1325   * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1326   * NULL, then the decryption happens inside skb buffers itself, i.e.
1327   * zero-copy gets disabled and 'zc' is updated.
1328   */
1329  
1330  static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1331  			    struct iov_iter *out_iov,
1332  			    struct scatterlist *out_sg,
1333  			    int *chunk, bool *zc, bool async)
1334  {
1335  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1336  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1337  	struct tls_prot_info *prot = &tls_ctx->prot_info;
1338  	struct strp_msg *rxm = strp_msg(skb);
1339  	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1340  	struct aead_request *aead_req;
1341  	struct sk_buff *unused;
1342  	u8 *aad, *iv, *mem = NULL;
1343  	struct scatterlist *sgin = NULL;
1344  	struct scatterlist *sgout = NULL;
1345  	const int data_len = rxm->full_len - prot->overhead_size +
1346  			     prot->tail_size;
1347  
1348  	if (*zc && (out_iov || out_sg)) {
1349  		if (out_iov)
1350  			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1351  		else
1352  			n_sgout = sg_nents(out_sg);
1353  		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1354  				 rxm->full_len - prot->prepend_size);
1355  	} else {
1356  		n_sgout = 0;
1357  		*zc = false;
1358  		n_sgin = skb_cow_data(skb, 0, &unused);
1359  	}
1360  
1361  	if (n_sgin < 1)
1362  		return -EBADMSG;
1363  
1364  	/* Increment to accommodate AAD */
1365  	n_sgin = n_sgin + 1;
1366  
1367  	nsg = n_sgin + n_sgout;
1368  
1369  	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1370  	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1371  	mem_size = mem_size + prot->aad_size;
1372  	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1373  
1374  	/* Allocate a single block of memory which contains
1375  	 * aead_req || sgin[] || sgout[] || aad || iv.
1376  	 * This order achieves correct alignment for aead_req, sgin, sgout.
1377  	 */
1378  	mem = kmalloc(mem_size, sk->sk_allocation);
1379  	if (!mem)
1380  		return -ENOMEM;
1381  
1382  	/* Segment the allocated memory */
1383  	aead_req = (struct aead_request *)mem;
1384  	sgin = (struct scatterlist *)(mem + aead_size);
1385  	sgout = sgin + n_sgin;
1386  	aad = (u8 *)(sgout + n_sgout);
1387  	iv = aad + prot->aad_size;
1388  
1389  	/* Prepare IV */
1390  	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1391  			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1392  			    prot->iv_size);
1393  	if (err < 0) {
1394  		kfree(mem);
1395  		return err;
1396  	}
1397  	if (prot->version == TLS_1_3_VERSION)
1398  		memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv));
1399  	else
1400  		memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1401  
1402  	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1403  
1404  	/* Prepare AAD */
1405  	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1406  		     prot->tail_size,
1407  		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1408  		     ctx->control, prot->version);
1409  
1410  	/* Prepare sgin */
1411  	sg_init_table(sgin, n_sgin);
1412  	sg_set_buf(&sgin[0], aad, prot->aad_size);
1413  	err = skb_to_sgvec(skb, &sgin[1],
1414  			   rxm->offset + prot->prepend_size,
1415  			   rxm->full_len - prot->prepend_size);
1416  	if (err < 0) {
1417  		kfree(mem);
1418  		return err;
1419  	}
1420  
1421  	if (n_sgout) {
1422  		if (out_iov) {
1423  			sg_init_table(sgout, n_sgout);
1424  			sg_set_buf(&sgout[0], aad, prot->aad_size);
1425  
1426  			*chunk = 0;
1427  			err = tls_setup_from_iter(sk, out_iov, data_len,
1428  						  &pages, chunk, &sgout[1],
1429  						  (n_sgout - 1));
1430  			if (err < 0)
1431  				goto fallback_to_reg_recv;
1432  		} else if (out_sg) {
1433  			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1434  		} else {
1435  			goto fallback_to_reg_recv;
1436  		}
1437  	} else {
1438  fallback_to_reg_recv:
1439  		sgout = sgin;
1440  		pages = 0;
1441  		*chunk = data_len;
1442  		*zc = false;
1443  	}
1444  
1445  	/* Prepare and submit AEAD request */
1446  	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1447  				data_len, aead_req, async);
1448  	if (err == -EINPROGRESS)
1449  		return err;
1450  
1451  	/* Release the pages in case iov was mapped to pages */
1452  	for (; pages > 0; pages--)
1453  		put_page(sg_page(&sgout[pages]));
1454  
1455  	kfree(mem);
1456  	return err;
1457  }
1458  
1459  static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1460  			      struct iov_iter *dest, int *chunk, bool *zc,
1461  			      bool async)
1462  {
1463  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1464  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1465  	struct tls_prot_info *prot = &tls_ctx->prot_info;
1466  	int version = prot->version;
1467  	struct strp_msg *rxm = strp_msg(skb);
1468  	int err = 0;
1469  
1470  	if (!ctx->decrypted) {
1471  #ifdef CONFIG_TLS_DEVICE
1472  		err = tls_device_decrypted(sk, skb);
1473  		if (err < 0)
1474  			return err;
1475  #endif
1476  		/* Still not decrypted after tls_device */
1477  		if (!ctx->decrypted) {
1478  			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1479  					       async);
1480  			if (err < 0) {
1481  				if (err == -EINPROGRESS)
1482  					tls_advance_record_sn(sk, &tls_ctx->rx,
1483  							      version);
1484  
1485  				return err;
1486  			}
1487  		}
1488  
1489  		rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1490  		rxm->offset += prot->prepend_size;
1491  		rxm->full_len -= prot->overhead_size;
1492  		tls_advance_record_sn(sk, &tls_ctx->rx, version);
1493  		ctx->decrypted = true;
1494  		ctx->saved_data_ready(sk);
1495  	} else {
1496  		*zc = false;
1497  	}
1498  
1499  	return err;
1500  }
1501  
1502  int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1503  		struct scatterlist *sgout)
1504  {
1505  	bool zc = true;
1506  	int chunk;
1507  
1508  	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1509  }
1510  
1511  static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1512  			       unsigned int len)
1513  {
1514  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1515  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1516  
1517  	if (skb) {
1518  		struct strp_msg *rxm = strp_msg(skb);
1519  
1520  		if (len < rxm->full_len) {
1521  			rxm->offset += len;
1522  			rxm->full_len -= len;
1523  			return false;
1524  		}
1525  		kfree_skb(skb);
1526  	}
1527  
1528  	/* Finished with message */
1529  	ctx->recv_pkt = NULL;
1530  	__strp_unpause(&ctx->strp);
1531  
1532  	return true;
1533  }
1534  
1535  /* This function traverses the rx_list in tls receive context to copies the
1536   * decrypted records into the buffer provided by caller zero copy is not
1537   * true. Further, the records are removed from the rx_list if it is not a peek
1538   * case and the record has been consumed completely.
1539   */
1540  static int process_rx_list(struct tls_sw_context_rx *ctx,
1541  			   struct msghdr *msg,
1542  			   u8 *control,
1543  			   bool *cmsg,
1544  			   size_t skip,
1545  			   size_t len,
1546  			   bool zc,
1547  			   bool is_peek)
1548  {
1549  	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1550  	u8 ctrl = *control;
1551  	u8 msgc = *cmsg;
1552  	struct tls_msg *tlm;
1553  	ssize_t copied = 0;
1554  
1555  	/* Set the record type in 'control' if caller didn't pass it */
1556  	if (!ctrl && skb) {
1557  		tlm = tls_msg(skb);
1558  		ctrl = tlm->control;
1559  	}
1560  
1561  	while (skip && skb) {
1562  		struct strp_msg *rxm = strp_msg(skb);
1563  		tlm = tls_msg(skb);
1564  
1565  		/* Cannot process a record of different type */
1566  		if (ctrl != tlm->control)
1567  			return 0;
1568  
1569  		if (skip < rxm->full_len)
1570  			break;
1571  
1572  		skip = skip - rxm->full_len;
1573  		skb = skb_peek_next(skb, &ctx->rx_list);
1574  	}
1575  
1576  	while (len && skb) {
1577  		struct sk_buff *next_skb;
1578  		struct strp_msg *rxm = strp_msg(skb);
1579  		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1580  
1581  		tlm = tls_msg(skb);
1582  
1583  		/* Cannot process a record of different type */
1584  		if (ctrl != tlm->control)
1585  			return 0;
1586  
1587  		/* Set record type if not already done. For a non-data record,
1588  		 * do not proceed if record type could not be copied.
1589  		 */
1590  		if (!msgc) {
1591  			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1592  					    sizeof(ctrl), &ctrl);
1593  			msgc = true;
1594  			if (ctrl != TLS_RECORD_TYPE_DATA) {
1595  				if (cerr || msg->msg_flags & MSG_CTRUNC)
1596  					return -EIO;
1597  
1598  				*cmsg = msgc;
1599  			}
1600  		}
1601  
1602  		if (!zc || (rxm->full_len - skip) > len) {
1603  			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1604  						    msg, chunk);
1605  			if (err < 0)
1606  				return err;
1607  		}
1608  
1609  		len = len - chunk;
1610  		copied = copied + chunk;
1611  
1612  		/* Consume the data from record if it is non-peek case*/
1613  		if (!is_peek) {
1614  			rxm->offset = rxm->offset + chunk;
1615  			rxm->full_len = rxm->full_len - chunk;
1616  
1617  			/* Return if there is unconsumed data in the record */
1618  			if (rxm->full_len - skip)
1619  				break;
1620  		}
1621  
1622  		/* The remaining skip-bytes must lie in 1st record in rx_list.
1623  		 * So from the 2nd record, 'skip' should be 0.
1624  		 */
1625  		skip = 0;
1626  
1627  		if (msg)
1628  			msg->msg_flags |= MSG_EOR;
1629  
1630  		next_skb = skb_peek_next(skb, &ctx->rx_list);
1631  
1632  		if (!is_peek) {
1633  			skb_unlink(skb, &ctx->rx_list);
1634  			kfree_skb(skb);
1635  		}
1636  
1637  		skb = next_skb;
1638  	}
1639  
1640  	*control = ctrl;
1641  	return copied;
1642  }
1643  
1644  int tls_sw_recvmsg(struct sock *sk,
1645  		   struct msghdr *msg,
1646  		   size_t len,
1647  		   int nonblock,
1648  		   int flags,
1649  		   int *addr_len)
1650  {
1651  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1652  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1653  	struct tls_prot_info *prot = &tls_ctx->prot_info;
1654  	struct sk_psock *psock;
1655  	unsigned char control = 0;
1656  	ssize_t decrypted = 0;
1657  	struct strp_msg *rxm;
1658  	struct tls_msg *tlm;
1659  	struct sk_buff *skb;
1660  	ssize_t copied = 0;
1661  	bool cmsg = false;
1662  	int target, err = 0;
1663  	long timeo;
1664  	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1665  	bool is_peek = flags & MSG_PEEK;
1666  	int num_async = 0;
1667  
1668  	flags |= nonblock;
1669  
1670  	if (unlikely(flags & MSG_ERRQUEUE))
1671  		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1672  
1673  	psock = sk_psock_get(sk);
1674  	lock_sock(sk);
1675  
1676  	/* Process pending decrypted records. It must be non-zero-copy */
1677  	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1678  			      is_peek);
1679  	if (err < 0) {
1680  		tls_err_abort(sk, err);
1681  		goto end;
1682  	} else {
1683  		copied = err;
1684  	}
1685  
1686  	len = len - copied;
1687  	if (len) {
1688  		target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1689  		timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1690  	} else {
1691  		goto recv_end;
1692  	}
1693  
1694  	do {
1695  		bool retain_skb = false;
1696  		bool zc = false;
1697  		int to_decrypt;
1698  		int chunk = 0;
1699  		bool async_capable;
1700  		bool async = false;
1701  
1702  		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1703  		if (!skb) {
1704  			if (psock) {
1705  				int ret = __tcp_bpf_recvmsg(sk, psock,
1706  							    msg, len, flags);
1707  
1708  				if (ret > 0) {
1709  					decrypted += ret;
1710  					len -= ret;
1711  					continue;
1712  				}
1713  			}
1714  			goto recv_end;
1715  		} else {
1716  			tlm = tls_msg(skb);
1717  			if (prot->version == TLS_1_3_VERSION)
1718  				tlm->control = 0;
1719  			else
1720  				tlm->control = ctx->control;
1721  		}
1722  
1723  		rxm = strp_msg(skb);
1724  
1725  		to_decrypt = rxm->full_len - prot->overhead_size;
1726  
1727  		if (to_decrypt <= len && !is_kvec && !is_peek &&
1728  		    ctx->control == TLS_RECORD_TYPE_DATA &&
1729  		    prot->version != TLS_1_3_VERSION)
1730  			zc = true;
1731  
1732  		/* Do not use async mode if record is non-data */
1733  		if (ctx->control == TLS_RECORD_TYPE_DATA)
1734  			async_capable = ctx->async_capable;
1735  		else
1736  			async_capable = false;
1737  
1738  		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1739  					 &chunk, &zc, async_capable);
1740  		if (err < 0 && err != -EINPROGRESS) {
1741  			tls_err_abort(sk, EBADMSG);
1742  			goto recv_end;
1743  		}
1744  
1745  		if (err == -EINPROGRESS) {
1746  			async = true;
1747  			num_async++;
1748  		} else if (prot->version == TLS_1_3_VERSION) {
1749  			tlm->control = ctx->control;
1750  		}
1751  
1752  		/* If the type of records being processed is not known yet,
1753  		 * set it to record type just dequeued. If it is already known,
1754  		 * but does not match the record type just dequeued, go to end.
1755  		 * We always get record type here since for tls1.2, record type
1756  		 * is known just after record is dequeued from stream parser.
1757  		 * For tls1.3, we disable async.
1758  		 */
1759  
1760  		if (!control)
1761  			control = tlm->control;
1762  		else if (control != tlm->control)
1763  			goto recv_end;
1764  
1765  		if (!cmsg) {
1766  			int cerr;
1767  
1768  			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1769  					sizeof(control), &control);
1770  			cmsg = true;
1771  			if (control != TLS_RECORD_TYPE_DATA) {
1772  				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1773  					err = -EIO;
1774  					goto recv_end;
1775  				}
1776  			}
1777  		}
1778  
1779  		if (async)
1780  			goto pick_next_record;
1781  
1782  		if (!zc) {
1783  			if (rxm->full_len > len) {
1784  				retain_skb = true;
1785  				chunk = len;
1786  			} else {
1787  				chunk = rxm->full_len;
1788  			}
1789  
1790  			err = skb_copy_datagram_msg(skb, rxm->offset,
1791  						    msg, chunk);
1792  			if (err < 0)
1793  				goto recv_end;
1794  
1795  			if (!is_peek) {
1796  				rxm->offset = rxm->offset + chunk;
1797  				rxm->full_len = rxm->full_len - chunk;
1798  			}
1799  		}
1800  
1801  pick_next_record:
1802  		if (chunk > len)
1803  			chunk = len;
1804  
1805  		decrypted += chunk;
1806  		len -= chunk;
1807  
1808  		/* For async or peek case, queue the current skb */
1809  		if (async || is_peek || retain_skb) {
1810  			skb_queue_tail(&ctx->rx_list, skb);
1811  			skb = NULL;
1812  		}
1813  
1814  		if (tls_sw_advance_skb(sk, skb, chunk)) {
1815  			/* Return full control message to
1816  			 * userspace before trying to parse
1817  			 * another message type
1818  			 */
1819  			msg->msg_flags |= MSG_EOR;
1820  			if (ctx->control != TLS_RECORD_TYPE_DATA)
1821  				goto recv_end;
1822  		} else {
1823  			break;
1824  		}
1825  
1826  		/* If we have a new message from strparser, continue now. */
1827  		if (decrypted >= target && !ctx->recv_pkt)
1828  			break;
1829  	} while (len);
1830  
1831  recv_end:
1832  	if (num_async) {
1833  		/* Wait for all previously submitted records to be decrypted */
1834  		smp_store_mb(ctx->async_notify, true);
1835  		if (atomic_read(&ctx->decrypt_pending)) {
1836  			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1837  			if (err) {
1838  				/* one of async decrypt failed */
1839  				tls_err_abort(sk, err);
1840  				copied = 0;
1841  				decrypted = 0;
1842  				goto end;
1843  			}
1844  		} else {
1845  			reinit_completion(&ctx->async_wait.completion);
1846  		}
1847  		WRITE_ONCE(ctx->async_notify, false);
1848  
1849  		/* Drain records from the rx_list & copy if required */
1850  		if (is_peek || is_kvec)
1851  			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1852  					      decrypted, false, is_peek);
1853  		else
1854  			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1855  					      decrypted, true, is_peek);
1856  		if (err < 0) {
1857  			tls_err_abort(sk, err);
1858  			copied = 0;
1859  			goto end;
1860  		}
1861  	}
1862  
1863  	copied += decrypted;
1864  
1865  end:
1866  	release_sock(sk);
1867  	if (psock)
1868  		sk_psock_put(sk, psock);
1869  	return copied ? : err;
1870  }
1871  
1872  ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1873  			   struct pipe_inode_info *pipe,
1874  			   size_t len, unsigned int flags)
1875  {
1876  	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1877  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1878  	struct strp_msg *rxm = NULL;
1879  	struct sock *sk = sock->sk;
1880  	struct sk_buff *skb;
1881  	ssize_t copied = 0;
1882  	int err = 0;
1883  	long timeo;
1884  	int chunk;
1885  	bool zc = false;
1886  
1887  	lock_sock(sk);
1888  
1889  	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1890  
1891  	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1892  	if (!skb)
1893  		goto splice_read_end;
1894  
1895  	if (!ctx->decrypted) {
1896  		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1897  
1898  		/* splice does not support reading control messages */
1899  		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1900  			err = -ENOTSUPP;
1901  			goto splice_read_end;
1902  		}
1903  
1904  		if (err < 0) {
1905  			tls_err_abort(sk, EBADMSG);
1906  			goto splice_read_end;
1907  		}
1908  		ctx->decrypted = true;
1909  	}
1910  	rxm = strp_msg(skb);
1911  
1912  	chunk = min_t(unsigned int, rxm->full_len, len);
1913  	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1914  	if (copied < 0)
1915  		goto splice_read_end;
1916  
1917  	if (likely(!(flags & MSG_PEEK)))
1918  		tls_sw_advance_skb(sk, skb, copied);
1919  
1920  splice_read_end:
1921  	release_sock(sk);
1922  	return copied ? : err;
1923  }
1924  
1925  bool tls_sw_stream_read(const struct sock *sk)
1926  {
1927  	struct tls_context *tls_ctx = tls_get_ctx(sk);
1928  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1929  	bool ingress_empty = true;
1930  	struct sk_psock *psock;
1931  
1932  	rcu_read_lock();
1933  	psock = sk_psock(sk);
1934  	if (psock)
1935  		ingress_empty = list_empty(&psock->ingress_msg);
1936  	rcu_read_unlock();
1937  
1938  	return !ingress_empty || ctx->recv_pkt;
1939  }
1940  
1941  static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1942  {
1943  	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1944  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1945  	struct tls_prot_info *prot = &tls_ctx->prot_info;
1946  	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1947  	struct strp_msg *rxm = strp_msg(skb);
1948  	size_t cipher_overhead;
1949  	size_t data_len = 0;
1950  	int ret;
1951  
1952  	/* Verify that we have a full TLS header, or wait for more data */
1953  	if (rxm->offset + prot->prepend_size > skb->len)
1954  		return 0;
1955  
1956  	/* Sanity-check size of on-stack buffer. */
1957  	if (WARN_ON(prot->prepend_size > sizeof(header))) {
1958  		ret = -EINVAL;
1959  		goto read_failure;
1960  	}
1961  
1962  	/* Linearize header to local buffer */
1963  	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1964  
1965  	if (ret < 0)
1966  		goto read_failure;
1967  
1968  	ctx->control = header[0];
1969  
1970  	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1971  
1972  	cipher_overhead = prot->tag_size;
1973  	if (prot->version != TLS_1_3_VERSION)
1974  		cipher_overhead += prot->iv_size;
1975  
1976  	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1977  	    prot->tail_size) {
1978  		ret = -EMSGSIZE;
1979  		goto read_failure;
1980  	}
1981  	if (data_len < cipher_overhead) {
1982  		ret = -EBADMSG;
1983  		goto read_failure;
1984  	}
1985  
1986  	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
1987  	if (header[1] != TLS_1_2_VERSION_MINOR ||
1988  	    header[2] != TLS_1_2_VERSION_MAJOR) {
1989  		ret = -EINVAL;
1990  		goto read_failure;
1991  	}
1992  #ifdef CONFIG_TLS_DEVICE
1993  	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1994  			     *(u64*)tls_ctx->rx.rec_seq);
1995  #endif
1996  	return data_len + TLS_HEADER_SIZE;
1997  
1998  read_failure:
1999  	tls_err_abort(strp->sk, ret);
2000  
2001  	return ret;
2002  }
2003  
2004  static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2005  {
2006  	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2007  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2008  
2009  	ctx->decrypted = false;
2010  
2011  	ctx->recv_pkt = skb;
2012  	strp_pause(strp);
2013  
2014  	ctx->saved_data_ready(strp->sk);
2015  }
2016  
2017  static void tls_data_ready(struct sock *sk)
2018  {
2019  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2020  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2021  	struct sk_psock *psock;
2022  
2023  	strp_data_ready(&ctx->strp);
2024  
2025  	psock = sk_psock_get(sk);
2026  	if (psock && !list_empty(&psock->ingress_msg)) {
2027  		ctx->saved_data_ready(sk);
2028  		sk_psock_put(sk, psock);
2029  	}
2030  }
2031  
2032  void tls_sw_free_resources_tx(struct sock *sk)
2033  {
2034  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2035  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2036  	struct tls_rec *rec, *tmp;
2037  
2038  	/* Wait for any pending async encryptions to complete */
2039  	smp_store_mb(ctx->async_notify, true);
2040  	if (atomic_read(&ctx->encrypt_pending))
2041  		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2042  
2043  	release_sock(sk);
2044  	cancel_delayed_work_sync(&ctx->tx_work.work);
2045  	lock_sock(sk);
2046  
2047  	/* Tx whatever records we can transmit and abandon the rest */
2048  	tls_tx_records(sk, -1);
2049  
2050  	/* Free up un-sent records in tx_list. First, free
2051  	 * the partially sent record if any at head of tx_list.
2052  	 */
2053  	if (tls_ctx->partially_sent_record) {
2054  		struct scatterlist *sg = tls_ctx->partially_sent_record;
2055  
2056  		while (1) {
2057  			put_page(sg_page(sg));
2058  			sk_mem_uncharge(sk, sg->length);
2059  
2060  			if (sg_is_last(sg))
2061  				break;
2062  			sg++;
2063  		}
2064  
2065  		tls_ctx->partially_sent_record = NULL;
2066  
2067  		rec = list_first_entry(&ctx->tx_list,
2068  				       struct tls_rec, list);
2069  		list_del(&rec->list);
2070  		sk_msg_free(sk, &rec->msg_plaintext);
2071  		kfree(rec);
2072  	}
2073  
2074  	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2075  		list_del(&rec->list);
2076  		sk_msg_free(sk, &rec->msg_encrypted);
2077  		sk_msg_free(sk, &rec->msg_plaintext);
2078  		kfree(rec);
2079  	}
2080  
2081  	crypto_free_aead(ctx->aead_send);
2082  	tls_free_open_rec(sk);
2083  
2084  	kfree(ctx);
2085  }
2086  
2087  void tls_sw_release_resources_rx(struct sock *sk)
2088  {
2089  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2090  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2091  
2092  	if (ctx->aead_recv) {
2093  		kfree_skb(ctx->recv_pkt);
2094  		ctx->recv_pkt = NULL;
2095  		skb_queue_purge(&ctx->rx_list);
2096  		crypto_free_aead(ctx->aead_recv);
2097  		strp_stop(&ctx->strp);
2098  		write_lock_bh(&sk->sk_callback_lock);
2099  		sk->sk_data_ready = ctx->saved_data_ready;
2100  		write_unlock_bh(&sk->sk_callback_lock);
2101  		release_sock(sk);
2102  		strp_done(&ctx->strp);
2103  		lock_sock(sk);
2104  	}
2105  }
2106  
2107  void tls_sw_free_resources_rx(struct sock *sk)
2108  {
2109  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2110  	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2111  
2112  	tls_sw_release_resources_rx(sk);
2113  
2114  	kfree(ctx);
2115  }
2116  
2117  /* The work handler to transmitt the encrypted records in tx_list */
2118  static void tx_work_handler(struct work_struct *work)
2119  {
2120  	struct delayed_work *delayed_work = to_delayed_work(work);
2121  	struct tx_work *tx_work = container_of(delayed_work,
2122  					       struct tx_work, work);
2123  	struct sock *sk = tx_work->sk;
2124  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2125  	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2126  
2127  	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2128  		return;
2129  
2130  	lock_sock(sk);
2131  	tls_tx_records(sk, -1);
2132  	release_sock(sk);
2133  }
2134  
2135  void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2136  {
2137  	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2138  
2139  	/* Schedule the transmission if tx list is ready */
2140  	if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2141  		/* Schedule the transmission */
2142  		if (!test_and_set_bit(BIT_TX_SCHEDULED,
2143  				      &tx_ctx->tx_bitmask))
2144  			schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2145  	}
2146  }
2147  
2148  int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2149  {
2150  	struct tls_context *tls_ctx = tls_get_ctx(sk);
2151  	struct tls_prot_info *prot = &tls_ctx->prot_info;
2152  	struct tls_crypto_info *crypto_info;
2153  	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2154  	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2155  	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2156  	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2157  	struct cipher_context *cctx;
2158  	struct crypto_aead **aead;
2159  	struct strp_callbacks cb;
2160  	u16 nonce_size, tag_size, iv_size, rec_seq_size;
2161  	struct crypto_tfm *tfm;
2162  	char *iv, *rec_seq, *key, *salt;
2163  	size_t keysize;
2164  	int rc = 0;
2165  
2166  	if (!ctx) {
2167  		rc = -EINVAL;
2168  		goto out;
2169  	}
2170  
2171  	if (tx) {
2172  		if (!ctx->priv_ctx_tx) {
2173  			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2174  			if (!sw_ctx_tx) {
2175  				rc = -ENOMEM;
2176  				goto out;
2177  			}
2178  			ctx->priv_ctx_tx = sw_ctx_tx;
2179  		} else {
2180  			sw_ctx_tx =
2181  				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2182  		}
2183  	} else {
2184  		if (!ctx->priv_ctx_rx) {
2185  			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2186  			if (!sw_ctx_rx) {
2187  				rc = -ENOMEM;
2188  				goto out;
2189  			}
2190  			ctx->priv_ctx_rx = sw_ctx_rx;
2191  		} else {
2192  			sw_ctx_rx =
2193  				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2194  		}
2195  	}
2196  
2197  	if (tx) {
2198  		crypto_init_wait(&sw_ctx_tx->async_wait);
2199  		crypto_info = &ctx->crypto_send.info;
2200  		cctx = &ctx->tx;
2201  		aead = &sw_ctx_tx->aead_send;
2202  		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2203  		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2204  		sw_ctx_tx->tx_work.sk = sk;
2205  	} else {
2206  		crypto_init_wait(&sw_ctx_rx->async_wait);
2207  		crypto_info = &ctx->crypto_recv.info;
2208  		cctx = &ctx->rx;
2209  		skb_queue_head_init(&sw_ctx_rx->rx_list);
2210  		aead = &sw_ctx_rx->aead_recv;
2211  	}
2212  
2213  	switch (crypto_info->cipher_type) {
2214  	case TLS_CIPHER_AES_GCM_128: {
2215  		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2216  		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2217  		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2218  		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2219  		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2220  		rec_seq =
2221  		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2222  		gcm_128_info =
2223  			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2224  		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2225  		key = gcm_128_info->key;
2226  		salt = gcm_128_info->salt;
2227  		break;
2228  	}
2229  	case TLS_CIPHER_AES_GCM_256: {
2230  		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2231  		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2232  		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2233  		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2234  		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2235  		rec_seq =
2236  		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2237  		gcm_256_info =
2238  			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2239  		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2240  		key = gcm_256_info->key;
2241  		salt = gcm_256_info->salt;
2242  		break;
2243  	}
2244  	default:
2245  		rc = -EINVAL;
2246  		goto free_priv;
2247  	}
2248  
2249  	/* Sanity-check the IV size for stack allocations. */
2250  	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2251  		rc = -EINVAL;
2252  		goto free_priv;
2253  	}
2254  
2255  	if (crypto_info->version == TLS_1_3_VERSION) {
2256  		nonce_size = 0;
2257  		prot->aad_size = TLS_HEADER_SIZE;
2258  		prot->tail_size = 1;
2259  	} else {
2260  		prot->aad_size = TLS_AAD_SPACE_SIZE;
2261  		prot->tail_size = 0;
2262  	}
2263  
2264  	prot->version = crypto_info->version;
2265  	prot->cipher_type = crypto_info->cipher_type;
2266  	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2267  	prot->tag_size = tag_size;
2268  	prot->overhead_size = prot->prepend_size +
2269  			      prot->tag_size + prot->tail_size;
2270  	prot->iv_size = iv_size;
2271  	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
2272  			   GFP_KERNEL);
2273  	if (!cctx->iv) {
2274  		rc = -ENOMEM;
2275  		goto free_priv;
2276  	}
2277  	/* Note: 128 & 256 bit salt are the same size */
2278  	memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
2279  	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
2280  	prot->rec_seq_size = rec_seq_size;
2281  	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2282  	if (!cctx->rec_seq) {
2283  		rc = -ENOMEM;
2284  		goto free_iv;
2285  	}
2286  
2287  	if (!*aead) {
2288  		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
2289  		if (IS_ERR(*aead)) {
2290  			rc = PTR_ERR(*aead);
2291  			*aead = NULL;
2292  			goto free_rec_seq;
2293  		}
2294  	}
2295  
2296  	ctx->push_pending_record = tls_sw_push_pending_record;
2297  
2298  	rc = crypto_aead_setkey(*aead, key, keysize);
2299  
2300  	if (rc)
2301  		goto free_aead;
2302  
2303  	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2304  	if (rc)
2305  		goto free_aead;
2306  
2307  	if (sw_ctx_rx) {
2308  		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2309  
2310  		if (crypto_info->version == TLS_1_3_VERSION)
2311  			sw_ctx_rx->async_capable = false;
2312  		else
2313  			sw_ctx_rx->async_capable =
2314  				tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2315  
2316  		/* Set up strparser */
2317  		memset(&cb, 0, sizeof(cb));
2318  		cb.rcv_msg = tls_queue;
2319  		cb.parse_msg = tls_read_size;
2320  
2321  		strp_init(&sw_ctx_rx->strp, sk, &cb);
2322  
2323  		write_lock_bh(&sk->sk_callback_lock);
2324  		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2325  		sk->sk_data_ready = tls_data_ready;
2326  		write_unlock_bh(&sk->sk_callback_lock);
2327  
2328  		strp_check_rcv(&sw_ctx_rx->strp);
2329  	}
2330  
2331  	goto out;
2332  
2333  free_aead:
2334  	crypto_free_aead(*aead);
2335  	*aead = NULL;
2336  free_rec_seq:
2337  	kfree(cctx->rec_seq);
2338  	cctx->rec_seq = NULL;
2339  free_iv:
2340  	kfree(cctx->iv);
2341  	cctx->iv = NULL;
2342  free_priv:
2343  	if (tx) {
2344  		kfree(ctx->priv_ctx_tx);
2345  		ctx->priv_ctx_tx = NULL;
2346  	} else {
2347  		kfree(ctx->priv_ctx_rx);
2348  		ctx->priv_ctx_rx = NULL;
2349  	}
2350  out:
2351  	return rc;
2352  }
2353