1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } else if (ret == -EBADMSG) { 260 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 pending = atomic_dec_return(&ctx->encrypt_pending); 473 474 if (!pending && READ_ONCE(ctx->async_notify)) 475 complete(&ctx->async_wait.completion); 476 477 if (!ready) 478 return; 479 480 /* Schedule the transmission */ 481 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 482 schedule_delayed_work(&ctx->tx_work.work, 1); 483 } 484 485 static int tls_do_encryption(struct sock *sk, 486 struct tls_context *tls_ctx, 487 struct tls_sw_context_tx *ctx, 488 struct aead_request *aead_req, 489 size_t data_len, u32 start) 490 { 491 struct tls_prot_info *prot = &tls_ctx->prot_info; 492 struct tls_rec *rec = ctx->open_rec; 493 struct sk_msg *msg_en = &rec->msg_encrypted; 494 struct scatterlist *sge = sk_msg_elem(msg_en, start); 495 int rc, iv_offset = 0; 496 497 /* For CCM based ciphers, first byte of IV is a constant */ 498 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 499 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 500 iv_offset = 1; 501 } 502 503 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 504 prot->iv_size + prot->salt_size); 505 506 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 507 508 sge->offset += prot->prepend_size; 509 sge->length -= prot->prepend_size; 510 511 msg_en->sg.curr = start; 512 513 aead_request_set_tfm(aead_req, ctx->aead_send); 514 aead_request_set_ad(aead_req, prot->aad_size); 515 aead_request_set_crypt(aead_req, rec->sg_aead_in, 516 rec->sg_aead_out, 517 data_len, rec->iv_data); 518 519 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 520 tls_encrypt_done, sk); 521 522 /* Add the record in tx_list */ 523 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 524 atomic_inc(&ctx->encrypt_pending); 525 526 rc = crypto_aead_encrypt(aead_req); 527 if (!rc || rc != -EINPROGRESS) { 528 atomic_dec(&ctx->encrypt_pending); 529 sge->offset -= prot->prepend_size; 530 sge->length += prot->prepend_size; 531 } 532 533 if (!rc) { 534 WRITE_ONCE(rec->tx_ready, true); 535 } else if (rc != -EINPROGRESS) { 536 list_del(&rec->list); 537 return rc; 538 } 539 540 /* Unhook the record from context if encryption is not failure */ 541 ctx->open_rec = NULL; 542 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 543 return rc; 544 } 545 546 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 547 struct tls_rec **to, struct sk_msg *msg_opl, 548 struct sk_msg *msg_oen, u32 split_point, 549 u32 tx_overhead_size, u32 *orig_end) 550 { 551 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 552 struct scatterlist *sge, *osge, *nsge; 553 u32 orig_size = msg_opl->sg.size; 554 struct scatterlist tmp = { }; 555 struct sk_msg *msg_npl; 556 struct tls_rec *new; 557 int ret; 558 559 new = tls_get_rec(sk); 560 if (!new) 561 return -ENOMEM; 562 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 563 tx_overhead_size, 0); 564 if (ret < 0) { 565 tls_free_rec(sk, new); 566 return ret; 567 } 568 569 *orig_end = msg_opl->sg.end; 570 i = msg_opl->sg.start; 571 sge = sk_msg_elem(msg_opl, i); 572 while (apply && sge->length) { 573 if (sge->length > apply) { 574 u32 len = sge->length - apply; 575 576 get_page(sg_page(sge)); 577 sg_set_page(&tmp, sg_page(sge), len, 578 sge->offset + apply); 579 sge->length = apply; 580 bytes += apply; 581 apply = 0; 582 } else { 583 apply -= sge->length; 584 bytes += sge->length; 585 } 586 587 sk_msg_iter_var_next(i); 588 if (i == msg_opl->sg.end) 589 break; 590 sge = sk_msg_elem(msg_opl, i); 591 } 592 593 msg_opl->sg.end = i; 594 msg_opl->sg.curr = i; 595 msg_opl->sg.copybreak = 0; 596 msg_opl->apply_bytes = 0; 597 msg_opl->sg.size = bytes; 598 599 msg_npl = &new->msg_plaintext; 600 msg_npl->apply_bytes = apply; 601 msg_npl->sg.size = orig_size - bytes; 602 603 j = msg_npl->sg.start; 604 nsge = sk_msg_elem(msg_npl, j); 605 if (tmp.length) { 606 memcpy(nsge, &tmp, sizeof(*nsge)); 607 sk_msg_iter_var_next(j); 608 nsge = sk_msg_elem(msg_npl, j); 609 } 610 611 osge = sk_msg_elem(msg_opl, i); 612 while (osge->length) { 613 memcpy(nsge, osge, sizeof(*nsge)); 614 sg_unmark_end(nsge); 615 sk_msg_iter_var_next(i); 616 sk_msg_iter_var_next(j); 617 if (i == *orig_end) 618 break; 619 osge = sk_msg_elem(msg_opl, i); 620 nsge = sk_msg_elem(msg_npl, j); 621 } 622 623 msg_npl->sg.end = j; 624 msg_npl->sg.curr = j; 625 msg_npl->sg.copybreak = 0; 626 627 *to = new; 628 return 0; 629 } 630 631 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 632 struct tls_rec *from, u32 orig_end) 633 { 634 struct sk_msg *msg_npl = &from->msg_plaintext; 635 struct sk_msg *msg_opl = &to->msg_plaintext; 636 struct scatterlist *osge, *nsge; 637 u32 i, j; 638 639 i = msg_opl->sg.end; 640 sk_msg_iter_var_prev(i); 641 j = msg_npl->sg.start; 642 643 osge = sk_msg_elem(msg_opl, i); 644 nsge = sk_msg_elem(msg_npl, j); 645 646 if (sg_page(osge) == sg_page(nsge) && 647 osge->offset + osge->length == nsge->offset) { 648 osge->length += nsge->length; 649 put_page(sg_page(nsge)); 650 } 651 652 msg_opl->sg.end = orig_end; 653 msg_opl->sg.curr = orig_end; 654 msg_opl->sg.copybreak = 0; 655 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 656 msg_opl->sg.size += msg_npl->sg.size; 657 658 sk_msg_free(sk, &to->msg_encrypted); 659 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 660 661 kfree(from); 662 } 663 664 static int tls_push_record(struct sock *sk, int flags, 665 unsigned char record_type) 666 { 667 struct tls_context *tls_ctx = tls_get_ctx(sk); 668 struct tls_prot_info *prot = &tls_ctx->prot_info; 669 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 670 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 671 u32 i, split_point, uninitialized_var(orig_end); 672 struct sk_msg *msg_pl, *msg_en; 673 struct aead_request *req; 674 bool split; 675 int rc; 676 677 if (!rec) 678 return 0; 679 680 msg_pl = &rec->msg_plaintext; 681 msg_en = &rec->msg_encrypted; 682 683 split_point = msg_pl->apply_bytes; 684 split = split_point && split_point < msg_pl->sg.size; 685 if (split) { 686 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 687 split_point, prot->overhead_size, 688 &orig_end); 689 if (rc < 0) 690 return rc; 691 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 692 prot->overhead_size); 693 } 694 695 rec->tx_flags = flags; 696 req = &rec->aead_req; 697 698 i = msg_pl->sg.end; 699 sk_msg_iter_var_prev(i); 700 701 rec->content_type = record_type; 702 if (prot->version == TLS_1_3_VERSION) { 703 /* Add content type to end of message. No padding added */ 704 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 705 sg_mark_end(&rec->sg_content_type); 706 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 707 &rec->sg_content_type); 708 } else { 709 sg_mark_end(sk_msg_elem(msg_pl, i)); 710 } 711 712 i = msg_pl->sg.start; 713 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 714 715 i = msg_en->sg.end; 716 sk_msg_iter_var_prev(i); 717 sg_mark_end(sk_msg_elem(msg_en, i)); 718 719 i = msg_en->sg.start; 720 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 721 722 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 723 tls_ctx->tx.rec_seq, prot->rec_seq_size, 724 record_type, prot->version); 725 726 tls_fill_prepend(tls_ctx, 727 page_address(sg_page(&msg_en->sg.data[i])) + 728 msg_en->sg.data[i].offset, 729 msg_pl->sg.size + prot->tail_size, 730 record_type, prot->version); 731 732 tls_ctx->pending_open_record_frags = false; 733 734 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 735 msg_pl->sg.size + prot->tail_size, i); 736 if (rc < 0) { 737 if (rc != -EINPROGRESS) { 738 tls_err_abort(sk, EBADMSG); 739 if (split) { 740 tls_ctx->pending_open_record_frags = true; 741 tls_merge_open_record(sk, rec, tmp, orig_end); 742 } 743 } 744 ctx->async_capable = 1; 745 return rc; 746 } else if (split) { 747 msg_pl = &tmp->msg_plaintext; 748 msg_en = &tmp->msg_encrypted; 749 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 750 tls_ctx->pending_open_record_frags = true; 751 ctx->open_rec = tmp; 752 } 753 754 return tls_tx_records(sk, flags); 755 } 756 757 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 758 bool full_record, u8 record_type, 759 size_t *copied, int flags) 760 { 761 struct tls_context *tls_ctx = tls_get_ctx(sk); 762 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 763 struct sk_msg msg_redir = { }; 764 struct sk_psock *psock; 765 struct sock *sk_redir; 766 struct tls_rec *rec; 767 bool enospc, policy; 768 int err = 0, send; 769 u32 delta = 0; 770 771 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 772 psock = sk_psock_get(sk); 773 if (!psock || !policy) { 774 err = tls_push_record(sk, flags, record_type); 775 if (err) { 776 *copied -= sk_msg_free(sk, msg); 777 tls_free_open_rec(sk); 778 } 779 return err; 780 } 781 more_data: 782 enospc = sk_msg_full(msg); 783 if (psock->eval == __SK_NONE) { 784 delta = msg->sg.size; 785 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 786 if (delta < msg->sg.size) 787 delta -= msg->sg.size; 788 else 789 delta = 0; 790 } 791 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 792 !enospc && !full_record) { 793 err = -ENOSPC; 794 goto out_err; 795 } 796 msg->cork_bytes = 0; 797 send = msg->sg.size; 798 if (msg->apply_bytes && msg->apply_bytes < send) 799 send = msg->apply_bytes; 800 801 switch (psock->eval) { 802 case __SK_PASS: 803 err = tls_push_record(sk, flags, record_type); 804 if (err < 0) { 805 *copied -= sk_msg_free(sk, msg); 806 tls_free_open_rec(sk); 807 goto out_err; 808 } 809 break; 810 case __SK_REDIRECT: 811 sk_redir = psock->sk_redir; 812 memcpy(&msg_redir, msg, sizeof(*msg)); 813 if (msg->apply_bytes < send) 814 msg->apply_bytes = 0; 815 else 816 msg->apply_bytes -= send; 817 sk_msg_return_zero(sk, msg, send); 818 msg->sg.size -= send; 819 release_sock(sk); 820 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 821 lock_sock(sk); 822 if (err < 0) { 823 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 824 msg->sg.size = 0; 825 } 826 if (msg->sg.size == 0) 827 tls_free_open_rec(sk); 828 break; 829 case __SK_DROP: 830 default: 831 sk_msg_free_partial(sk, msg, send); 832 if (msg->apply_bytes < send) 833 msg->apply_bytes = 0; 834 else 835 msg->apply_bytes -= send; 836 if (msg->sg.size == 0) 837 tls_free_open_rec(sk); 838 *copied -= (send + delta); 839 err = -EACCES; 840 } 841 842 if (likely(!err)) { 843 bool reset_eval = !ctx->open_rec; 844 845 rec = ctx->open_rec; 846 if (rec) { 847 msg = &rec->msg_plaintext; 848 if (!msg->apply_bytes) 849 reset_eval = true; 850 } 851 if (reset_eval) { 852 psock->eval = __SK_NONE; 853 if (psock->sk_redir) { 854 sock_put(psock->sk_redir); 855 psock->sk_redir = NULL; 856 } 857 } 858 if (rec) 859 goto more_data; 860 } 861 out_err: 862 sk_psock_put(sk, psock); 863 return err; 864 } 865 866 static int tls_sw_push_pending_record(struct sock *sk, int flags) 867 { 868 struct tls_context *tls_ctx = tls_get_ctx(sk); 869 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 870 struct tls_rec *rec = ctx->open_rec; 871 struct sk_msg *msg_pl; 872 size_t copied; 873 874 if (!rec) 875 return 0; 876 877 msg_pl = &rec->msg_plaintext; 878 copied = msg_pl->sg.size; 879 if (!copied) 880 return 0; 881 882 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 883 &copied, flags); 884 } 885 886 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 887 { 888 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 889 struct tls_context *tls_ctx = tls_get_ctx(sk); 890 struct tls_prot_info *prot = &tls_ctx->prot_info; 891 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 892 bool async_capable = ctx->async_capable; 893 unsigned char record_type = TLS_RECORD_TYPE_DATA; 894 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 895 bool eor = !(msg->msg_flags & MSG_MORE); 896 size_t try_to_copy, copied = 0; 897 struct sk_msg *msg_pl, *msg_en; 898 struct tls_rec *rec; 899 int required_size; 900 int num_async = 0; 901 bool full_record; 902 int record_room; 903 int num_zc = 0; 904 int orig_size; 905 int ret = 0; 906 907 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 908 return -EOPNOTSUPP; 909 910 mutex_lock(&tls_ctx->tx_lock); 911 lock_sock(sk); 912 913 if (unlikely(msg->msg_controllen)) { 914 ret = tls_proccess_cmsg(sk, msg, &record_type); 915 if (ret) { 916 if (ret == -EINPROGRESS) 917 num_async++; 918 else if (ret != -EAGAIN) 919 goto send_end; 920 } 921 } 922 923 while (msg_data_left(msg)) { 924 if (sk->sk_err) { 925 ret = -sk->sk_err; 926 goto send_end; 927 } 928 929 if (ctx->open_rec) 930 rec = ctx->open_rec; 931 else 932 rec = ctx->open_rec = tls_get_rec(sk); 933 if (!rec) { 934 ret = -ENOMEM; 935 goto send_end; 936 } 937 938 msg_pl = &rec->msg_plaintext; 939 msg_en = &rec->msg_encrypted; 940 941 orig_size = msg_pl->sg.size; 942 full_record = false; 943 try_to_copy = msg_data_left(msg); 944 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 945 if (try_to_copy >= record_room) { 946 try_to_copy = record_room; 947 full_record = true; 948 } 949 950 required_size = msg_pl->sg.size + try_to_copy + 951 prot->overhead_size; 952 953 if (!sk_stream_memory_free(sk)) 954 goto wait_for_sndbuf; 955 956 alloc_encrypted: 957 ret = tls_alloc_encrypted_msg(sk, required_size); 958 if (ret) { 959 if (ret != -ENOSPC) 960 goto wait_for_memory; 961 962 /* Adjust try_to_copy according to the amount that was 963 * actually allocated. The difference is due 964 * to max sg elements limit 965 */ 966 try_to_copy -= required_size - msg_en->sg.size; 967 full_record = true; 968 } 969 970 if (!is_kvec && (full_record || eor) && !async_capable) { 971 u32 first = msg_pl->sg.end; 972 973 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 974 msg_pl, try_to_copy); 975 if (ret) 976 goto fallback_to_reg_send; 977 978 num_zc++; 979 copied += try_to_copy; 980 981 sk_msg_sg_copy_set(msg_pl, first); 982 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 983 record_type, &copied, 984 msg->msg_flags); 985 if (ret) { 986 if (ret == -EINPROGRESS) 987 num_async++; 988 else if (ret == -ENOMEM) 989 goto wait_for_memory; 990 else if (ctx->open_rec && ret == -ENOSPC) 991 goto rollback_iter; 992 else if (ret != -EAGAIN) 993 goto send_end; 994 } 995 continue; 996 rollback_iter: 997 copied -= try_to_copy; 998 sk_msg_sg_copy_clear(msg_pl, first); 999 iov_iter_revert(&msg->msg_iter, 1000 msg_pl->sg.size - orig_size); 1001 fallback_to_reg_send: 1002 sk_msg_trim(sk, msg_pl, orig_size); 1003 } 1004 1005 required_size = msg_pl->sg.size + try_to_copy; 1006 1007 ret = tls_clone_plaintext_msg(sk, required_size); 1008 if (ret) { 1009 if (ret != -ENOSPC) 1010 goto send_end; 1011 1012 /* Adjust try_to_copy according to the amount that was 1013 * actually allocated. The difference is due 1014 * to max sg elements limit 1015 */ 1016 try_to_copy -= required_size - msg_pl->sg.size; 1017 full_record = true; 1018 sk_msg_trim(sk, msg_en, 1019 msg_pl->sg.size + prot->overhead_size); 1020 } 1021 1022 if (try_to_copy) { 1023 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1024 msg_pl, try_to_copy); 1025 if (ret < 0) 1026 goto trim_sgl; 1027 } 1028 1029 /* Open records defined only if successfully copied, otherwise 1030 * we would trim the sg but not reset the open record frags. 1031 */ 1032 tls_ctx->pending_open_record_frags = true; 1033 copied += try_to_copy; 1034 if (full_record || eor) { 1035 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1036 record_type, &copied, 1037 msg->msg_flags); 1038 if (ret) { 1039 if (ret == -EINPROGRESS) 1040 num_async++; 1041 else if (ret == -ENOMEM) 1042 goto wait_for_memory; 1043 else if (ret != -EAGAIN) { 1044 if (ret == -ENOSPC) 1045 ret = 0; 1046 goto send_end; 1047 } 1048 } 1049 } 1050 1051 continue; 1052 1053 wait_for_sndbuf: 1054 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1055 wait_for_memory: 1056 ret = sk_stream_wait_memory(sk, &timeo); 1057 if (ret) { 1058 trim_sgl: 1059 if (ctx->open_rec) 1060 tls_trim_both_msgs(sk, orig_size); 1061 goto send_end; 1062 } 1063 1064 if (ctx->open_rec && msg_en->sg.size < required_size) 1065 goto alloc_encrypted; 1066 } 1067 1068 if (!num_async) { 1069 goto send_end; 1070 } else if (num_zc) { 1071 /* Wait for pending encryptions to get completed */ 1072 smp_store_mb(ctx->async_notify, true); 1073 1074 if (atomic_read(&ctx->encrypt_pending)) 1075 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1076 else 1077 reinit_completion(&ctx->async_wait.completion); 1078 1079 WRITE_ONCE(ctx->async_notify, false); 1080 1081 if (ctx->async_wait.err) { 1082 ret = ctx->async_wait.err; 1083 copied = 0; 1084 } 1085 } 1086 1087 /* Transmit if any encryptions have completed */ 1088 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1089 cancel_delayed_work(&ctx->tx_work.work); 1090 tls_tx_records(sk, msg->msg_flags); 1091 } 1092 1093 send_end: 1094 ret = sk_stream_error(sk, msg->msg_flags, ret); 1095 1096 release_sock(sk); 1097 mutex_unlock(&tls_ctx->tx_lock); 1098 return copied ? copied : ret; 1099 } 1100 1101 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1102 int offset, size_t size, int flags) 1103 { 1104 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1105 struct tls_context *tls_ctx = tls_get_ctx(sk); 1106 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1107 struct tls_prot_info *prot = &tls_ctx->prot_info; 1108 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1109 struct sk_msg *msg_pl; 1110 struct tls_rec *rec; 1111 int num_async = 0; 1112 size_t copied = 0; 1113 bool full_record; 1114 int record_room; 1115 int ret = 0; 1116 bool eor; 1117 1118 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1119 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1120 1121 /* Call the sk_stream functions to manage the sndbuf mem. */ 1122 while (size > 0) { 1123 size_t copy, required_size; 1124 1125 if (sk->sk_err) { 1126 ret = -sk->sk_err; 1127 goto sendpage_end; 1128 } 1129 1130 if (ctx->open_rec) 1131 rec = ctx->open_rec; 1132 else 1133 rec = ctx->open_rec = tls_get_rec(sk); 1134 if (!rec) { 1135 ret = -ENOMEM; 1136 goto sendpage_end; 1137 } 1138 1139 msg_pl = &rec->msg_plaintext; 1140 1141 full_record = false; 1142 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1143 copy = size; 1144 if (copy >= record_room) { 1145 copy = record_room; 1146 full_record = true; 1147 } 1148 1149 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1150 1151 if (!sk_stream_memory_free(sk)) 1152 goto wait_for_sndbuf; 1153 alloc_payload: 1154 ret = tls_alloc_encrypted_msg(sk, required_size); 1155 if (ret) { 1156 if (ret != -ENOSPC) 1157 goto wait_for_memory; 1158 1159 /* Adjust copy according to the amount that was 1160 * actually allocated. The difference is due 1161 * to max sg elements limit 1162 */ 1163 copy -= required_size - msg_pl->sg.size; 1164 full_record = true; 1165 } 1166 1167 sk_msg_page_add(msg_pl, page, copy, offset); 1168 sk_mem_charge(sk, copy); 1169 1170 offset += copy; 1171 size -= copy; 1172 copied += copy; 1173 1174 tls_ctx->pending_open_record_frags = true; 1175 if (full_record || eor || sk_msg_full(msg_pl)) { 1176 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1177 record_type, &copied, flags); 1178 if (ret) { 1179 if (ret == -EINPROGRESS) 1180 num_async++; 1181 else if (ret == -ENOMEM) 1182 goto wait_for_memory; 1183 else if (ret != -EAGAIN) { 1184 if (ret == -ENOSPC) 1185 ret = 0; 1186 goto sendpage_end; 1187 } 1188 } 1189 } 1190 continue; 1191 wait_for_sndbuf: 1192 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1193 wait_for_memory: 1194 ret = sk_stream_wait_memory(sk, &timeo); 1195 if (ret) { 1196 if (ctx->open_rec) 1197 tls_trim_both_msgs(sk, msg_pl->sg.size); 1198 goto sendpage_end; 1199 } 1200 1201 if (ctx->open_rec) 1202 goto alloc_payload; 1203 } 1204 1205 if (num_async) { 1206 /* Transmit if any encryptions have completed */ 1207 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1208 cancel_delayed_work(&ctx->tx_work.work); 1209 tls_tx_records(sk, flags); 1210 } 1211 } 1212 sendpage_end: 1213 ret = sk_stream_error(sk, flags, ret); 1214 return copied ? copied : ret; 1215 } 1216 1217 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1218 int offset, size_t size, int flags) 1219 { 1220 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1221 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1222 MSG_NO_SHARED_FRAGS)) 1223 return -EOPNOTSUPP; 1224 1225 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1226 } 1227 1228 int tls_sw_sendpage(struct sock *sk, struct page *page, 1229 int offset, size_t size, int flags) 1230 { 1231 struct tls_context *tls_ctx = tls_get_ctx(sk); 1232 int ret; 1233 1234 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1235 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1236 return -EOPNOTSUPP; 1237 1238 mutex_lock(&tls_ctx->tx_lock); 1239 lock_sock(sk); 1240 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1241 release_sock(sk); 1242 mutex_unlock(&tls_ctx->tx_lock); 1243 return ret; 1244 } 1245 1246 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1247 int flags, long timeo, int *err) 1248 { 1249 struct tls_context *tls_ctx = tls_get_ctx(sk); 1250 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1251 struct sk_buff *skb; 1252 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1253 1254 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1255 if (sk->sk_err) { 1256 *err = sock_error(sk); 1257 return NULL; 1258 } 1259 1260 if (sk->sk_shutdown & RCV_SHUTDOWN) 1261 return NULL; 1262 1263 if (sock_flag(sk, SOCK_DONE)) 1264 return NULL; 1265 1266 if ((flags & MSG_DONTWAIT) || !timeo) { 1267 *err = -EAGAIN; 1268 return NULL; 1269 } 1270 1271 add_wait_queue(sk_sleep(sk), &wait); 1272 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1273 sk_wait_event(sk, &timeo, 1274 ctx->recv_pkt != skb || 1275 !sk_psock_queue_empty(psock), 1276 &wait); 1277 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1278 remove_wait_queue(sk_sleep(sk), &wait); 1279 1280 /* Handle signals */ 1281 if (signal_pending(current)) { 1282 *err = sock_intr_errno(timeo); 1283 return NULL; 1284 } 1285 } 1286 1287 return skb; 1288 } 1289 1290 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1291 int length, int *pages_used, 1292 unsigned int *size_used, 1293 struct scatterlist *to, 1294 int to_max_pages) 1295 { 1296 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1297 struct page *pages[MAX_SKB_FRAGS]; 1298 unsigned int size = *size_used; 1299 ssize_t copied, use; 1300 size_t offset; 1301 1302 while (length > 0) { 1303 i = 0; 1304 maxpages = to_max_pages - num_elem; 1305 if (maxpages == 0) { 1306 rc = -EFAULT; 1307 goto out; 1308 } 1309 copied = iov_iter_get_pages(from, pages, 1310 length, 1311 maxpages, &offset); 1312 if (copied <= 0) { 1313 rc = -EFAULT; 1314 goto out; 1315 } 1316 1317 iov_iter_advance(from, copied); 1318 1319 length -= copied; 1320 size += copied; 1321 while (copied) { 1322 use = min_t(int, copied, PAGE_SIZE - offset); 1323 1324 sg_set_page(&to[num_elem], 1325 pages[i], use, offset); 1326 sg_unmark_end(&to[num_elem]); 1327 /* We do not uncharge memory from this API */ 1328 1329 offset = 0; 1330 copied -= use; 1331 1332 i++; 1333 num_elem++; 1334 } 1335 } 1336 /* Mark the end in the last sg entry if newly added */ 1337 if (num_elem > *pages_used) 1338 sg_mark_end(&to[num_elem - 1]); 1339 out: 1340 if (rc) 1341 iov_iter_revert(from, size - *size_used); 1342 *size_used = size; 1343 *pages_used = num_elem; 1344 1345 return rc; 1346 } 1347 1348 /* This function decrypts the input skb into either out_iov or in out_sg 1349 * or in skb buffers itself. The input parameter 'zc' indicates if 1350 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1351 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1352 * NULL, then the decryption happens inside skb buffers itself, i.e. 1353 * zero-copy gets disabled and 'zc' is updated. 1354 */ 1355 1356 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1357 struct iov_iter *out_iov, 1358 struct scatterlist *out_sg, 1359 int *chunk, bool *zc, bool async) 1360 { 1361 struct tls_context *tls_ctx = tls_get_ctx(sk); 1362 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1363 struct tls_prot_info *prot = &tls_ctx->prot_info; 1364 struct strp_msg *rxm = strp_msg(skb); 1365 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1366 struct aead_request *aead_req; 1367 struct sk_buff *unused; 1368 u8 *aad, *iv, *mem = NULL; 1369 struct scatterlist *sgin = NULL; 1370 struct scatterlist *sgout = NULL; 1371 const int data_len = rxm->full_len - prot->overhead_size + 1372 prot->tail_size; 1373 int iv_offset = 0; 1374 1375 if (*zc && (out_iov || out_sg)) { 1376 if (out_iov) 1377 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1378 else 1379 n_sgout = sg_nents(out_sg); 1380 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1381 rxm->full_len - prot->prepend_size); 1382 } else { 1383 n_sgout = 0; 1384 *zc = false; 1385 n_sgin = skb_cow_data(skb, 0, &unused); 1386 } 1387 1388 if (n_sgin < 1) 1389 return -EBADMSG; 1390 1391 /* Increment to accommodate AAD */ 1392 n_sgin = n_sgin + 1; 1393 1394 nsg = n_sgin + n_sgout; 1395 1396 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1397 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1398 mem_size = mem_size + prot->aad_size; 1399 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1400 1401 /* Allocate a single block of memory which contains 1402 * aead_req || sgin[] || sgout[] || aad || iv. 1403 * This order achieves correct alignment for aead_req, sgin, sgout. 1404 */ 1405 mem = kmalloc(mem_size, sk->sk_allocation); 1406 if (!mem) 1407 return -ENOMEM; 1408 1409 /* Segment the allocated memory */ 1410 aead_req = (struct aead_request *)mem; 1411 sgin = (struct scatterlist *)(mem + aead_size); 1412 sgout = sgin + n_sgin; 1413 aad = (u8 *)(sgout + n_sgout); 1414 iv = aad + prot->aad_size; 1415 1416 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1417 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1418 iv[0] = 2; 1419 iv_offset = 1; 1420 } 1421 1422 /* Prepare IV */ 1423 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1424 iv + iv_offset + prot->salt_size, 1425 prot->iv_size); 1426 if (err < 0) { 1427 kfree(mem); 1428 return err; 1429 } 1430 if (prot->version == TLS_1_3_VERSION) 1431 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1432 crypto_aead_ivsize(ctx->aead_recv)); 1433 else 1434 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1435 1436 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1437 1438 /* Prepare AAD */ 1439 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1440 prot->tail_size, 1441 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1442 ctx->control, prot->version); 1443 1444 /* Prepare sgin */ 1445 sg_init_table(sgin, n_sgin); 1446 sg_set_buf(&sgin[0], aad, prot->aad_size); 1447 err = skb_to_sgvec(skb, &sgin[1], 1448 rxm->offset + prot->prepend_size, 1449 rxm->full_len - prot->prepend_size); 1450 if (err < 0) { 1451 kfree(mem); 1452 return err; 1453 } 1454 1455 if (n_sgout) { 1456 if (out_iov) { 1457 sg_init_table(sgout, n_sgout); 1458 sg_set_buf(&sgout[0], aad, prot->aad_size); 1459 1460 *chunk = 0; 1461 err = tls_setup_from_iter(sk, out_iov, data_len, 1462 &pages, chunk, &sgout[1], 1463 (n_sgout - 1)); 1464 if (err < 0) 1465 goto fallback_to_reg_recv; 1466 } else if (out_sg) { 1467 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1468 } else { 1469 goto fallback_to_reg_recv; 1470 } 1471 } else { 1472 fallback_to_reg_recv: 1473 sgout = sgin; 1474 pages = 0; 1475 *chunk = data_len; 1476 *zc = false; 1477 } 1478 1479 /* Prepare and submit AEAD request */ 1480 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1481 data_len, aead_req, async); 1482 if (err == -EINPROGRESS) 1483 return err; 1484 1485 /* Release the pages in case iov was mapped to pages */ 1486 for (; pages > 0; pages--) 1487 put_page(sg_page(&sgout[pages])); 1488 1489 kfree(mem); 1490 return err; 1491 } 1492 1493 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1494 struct iov_iter *dest, int *chunk, bool *zc, 1495 bool async) 1496 { 1497 struct tls_context *tls_ctx = tls_get_ctx(sk); 1498 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1499 struct tls_prot_info *prot = &tls_ctx->prot_info; 1500 struct strp_msg *rxm = strp_msg(skb); 1501 int pad, err = 0; 1502 1503 if (!ctx->decrypted) { 1504 if (tls_ctx->rx_conf == TLS_HW) { 1505 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1506 if (err < 0) 1507 return err; 1508 } 1509 1510 /* Still not decrypted after tls_device */ 1511 if (!ctx->decrypted) { 1512 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1513 async); 1514 if (err < 0) { 1515 if (err == -EINPROGRESS) 1516 tls_advance_record_sn(sk, prot, 1517 &tls_ctx->rx); 1518 1519 return err; 1520 } 1521 } else { 1522 *zc = false; 1523 } 1524 1525 pad = padding_length(ctx, prot, skb); 1526 if (pad < 0) 1527 return pad; 1528 1529 rxm->full_len -= pad; 1530 rxm->offset += prot->prepend_size; 1531 rxm->full_len -= prot->overhead_size; 1532 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1533 ctx->decrypted = 1; 1534 ctx->saved_data_ready(sk); 1535 } else { 1536 *zc = false; 1537 } 1538 1539 return err; 1540 } 1541 1542 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1543 struct scatterlist *sgout) 1544 { 1545 bool zc = true; 1546 int chunk; 1547 1548 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1549 } 1550 1551 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1552 unsigned int len) 1553 { 1554 struct tls_context *tls_ctx = tls_get_ctx(sk); 1555 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1556 1557 if (skb) { 1558 struct strp_msg *rxm = strp_msg(skb); 1559 1560 if (len < rxm->full_len) { 1561 rxm->offset += len; 1562 rxm->full_len -= len; 1563 return false; 1564 } 1565 consume_skb(skb); 1566 } 1567 1568 /* Finished with message */ 1569 ctx->recv_pkt = NULL; 1570 __strp_unpause(&ctx->strp); 1571 1572 return true; 1573 } 1574 1575 /* This function traverses the rx_list in tls receive context to copies the 1576 * decrypted records into the buffer provided by caller zero copy is not 1577 * true. Further, the records are removed from the rx_list if it is not a peek 1578 * case and the record has been consumed completely. 1579 */ 1580 static int process_rx_list(struct tls_sw_context_rx *ctx, 1581 struct msghdr *msg, 1582 u8 *control, 1583 bool *cmsg, 1584 size_t skip, 1585 size_t len, 1586 bool zc, 1587 bool is_peek) 1588 { 1589 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1590 u8 ctrl = *control; 1591 u8 msgc = *cmsg; 1592 struct tls_msg *tlm; 1593 ssize_t copied = 0; 1594 1595 /* Set the record type in 'control' if caller didn't pass it */ 1596 if (!ctrl && skb) { 1597 tlm = tls_msg(skb); 1598 ctrl = tlm->control; 1599 } 1600 1601 while (skip && skb) { 1602 struct strp_msg *rxm = strp_msg(skb); 1603 tlm = tls_msg(skb); 1604 1605 /* Cannot process a record of different type */ 1606 if (ctrl != tlm->control) 1607 return 0; 1608 1609 if (skip < rxm->full_len) 1610 break; 1611 1612 skip = skip - rxm->full_len; 1613 skb = skb_peek_next(skb, &ctx->rx_list); 1614 } 1615 1616 while (len && skb) { 1617 struct sk_buff *next_skb; 1618 struct strp_msg *rxm = strp_msg(skb); 1619 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1620 1621 tlm = tls_msg(skb); 1622 1623 /* Cannot process a record of different type */ 1624 if (ctrl != tlm->control) 1625 return 0; 1626 1627 /* Set record type if not already done. For a non-data record, 1628 * do not proceed if record type could not be copied. 1629 */ 1630 if (!msgc) { 1631 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1632 sizeof(ctrl), &ctrl); 1633 msgc = true; 1634 if (ctrl != TLS_RECORD_TYPE_DATA) { 1635 if (cerr || msg->msg_flags & MSG_CTRUNC) 1636 return -EIO; 1637 1638 *cmsg = msgc; 1639 } 1640 } 1641 1642 if (!zc || (rxm->full_len - skip) > len) { 1643 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1644 msg, chunk); 1645 if (err < 0) 1646 return err; 1647 } 1648 1649 len = len - chunk; 1650 copied = copied + chunk; 1651 1652 /* Consume the data from record if it is non-peek case*/ 1653 if (!is_peek) { 1654 rxm->offset = rxm->offset + chunk; 1655 rxm->full_len = rxm->full_len - chunk; 1656 1657 /* Return if there is unconsumed data in the record */ 1658 if (rxm->full_len - skip) 1659 break; 1660 } 1661 1662 /* The remaining skip-bytes must lie in 1st record in rx_list. 1663 * So from the 2nd record, 'skip' should be 0. 1664 */ 1665 skip = 0; 1666 1667 if (msg) 1668 msg->msg_flags |= MSG_EOR; 1669 1670 next_skb = skb_peek_next(skb, &ctx->rx_list); 1671 1672 if (!is_peek) { 1673 skb_unlink(skb, &ctx->rx_list); 1674 consume_skb(skb); 1675 } 1676 1677 skb = next_skb; 1678 } 1679 1680 *control = ctrl; 1681 return copied; 1682 } 1683 1684 int tls_sw_recvmsg(struct sock *sk, 1685 struct msghdr *msg, 1686 size_t len, 1687 int nonblock, 1688 int flags, 1689 int *addr_len) 1690 { 1691 struct tls_context *tls_ctx = tls_get_ctx(sk); 1692 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1693 struct tls_prot_info *prot = &tls_ctx->prot_info; 1694 struct sk_psock *psock; 1695 unsigned char control = 0; 1696 ssize_t decrypted = 0; 1697 struct strp_msg *rxm; 1698 struct tls_msg *tlm; 1699 struct sk_buff *skb; 1700 ssize_t copied = 0; 1701 bool cmsg = false; 1702 int target, err = 0; 1703 long timeo; 1704 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1705 bool is_peek = flags & MSG_PEEK; 1706 int num_async = 0; 1707 1708 flags |= nonblock; 1709 1710 if (unlikely(flags & MSG_ERRQUEUE)) 1711 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1712 1713 psock = sk_psock_get(sk); 1714 lock_sock(sk); 1715 1716 /* Process pending decrypted records. It must be non-zero-copy */ 1717 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1718 is_peek); 1719 if (err < 0) { 1720 tls_err_abort(sk, err); 1721 goto end; 1722 } else { 1723 copied = err; 1724 } 1725 1726 if (len <= copied) 1727 goto recv_end; 1728 1729 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1730 len = len - copied; 1731 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1732 1733 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1734 bool retain_skb = false; 1735 bool zc = false; 1736 int to_decrypt; 1737 int chunk = 0; 1738 bool async_capable; 1739 bool async = false; 1740 1741 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1742 if (!skb) { 1743 if (psock) { 1744 int ret = __tcp_bpf_recvmsg(sk, psock, 1745 msg, len, flags); 1746 1747 if (ret > 0) { 1748 decrypted += ret; 1749 len -= ret; 1750 continue; 1751 } 1752 } 1753 goto recv_end; 1754 } else { 1755 tlm = tls_msg(skb); 1756 if (prot->version == TLS_1_3_VERSION) 1757 tlm->control = 0; 1758 else 1759 tlm->control = ctx->control; 1760 } 1761 1762 rxm = strp_msg(skb); 1763 1764 to_decrypt = rxm->full_len - prot->overhead_size; 1765 1766 if (to_decrypt <= len && !is_kvec && !is_peek && 1767 ctx->control == TLS_RECORD_TYPE_DATA && 1768 prot->version != TLS_1_3_VERSION) 1769 zc = true; 1770 1771 /* Do not use async mode if record is non-data */ 1772 if (ctx->control == TLS_RECORD_TYPE_DATA) 1773 async_capable = ctx->async_capable; 1774 else 1775 async_capable = false; 1776 1777 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1778 &chunk, &zc, async_capable); 1779 if (err < 0 && err != -EINPROGRESS) { 1780 tls_err_abort(sk, EBADMSG); 1781 goto recv_end; 1782 } 1783 1784 if (err == -EINPROGRESS) { 1785 async = true; 1786 num_async++; 1787 } else if (prot->version == TLS_1_3_VERSION) { 1788 tlm->control = ctx->control; 1789 } 1790 1791 /* If the type of records being processed is not known yet, 1792 * set it to record type just dequeued. If it is already known, 1793 * but does not match the record type just dequeued, go to end. 1794 * We always get record type here since for tls1.2, record type 1795 * is known just after record is dequeued from stream parser. 1796 * For tls1.3, we disable async. 1797 */ 1798 1799 if (!control) 1800 control = tlm->control; 1801 else if (control != tlm->control) 1802 goto recv_end; 1803 1804 if (!cmsg) { 1805 int cerr; 1806 1807 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1808 sizeof(control), &control); 1809 cmsg = true; 1810 if (control != TLS_RECORD_TYPE_DATA) { 1811 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1812 err = -EIO; 1813 goto recv_end; 1814 } 1815 } 1816 } 1817 1818 if (async) 1819 goto pick_next_record; 1820 1821 if (!zc) { 1822 if (rxm->full_len > len) { 1823 retain_skb = true; 1824 chunk = len; 1825 } else { 1826 chunk = rxm->full_len; 1827 } 1828 1829 err = skb_copy_datagram_msg(skb, rxm->offset, 1830 msg, chunk); 1831 if (err < 0) 1832 goto recv_end; 1833 1834 if (!is_peek) { 1835 rxm->offset = rxm->offset + chunk; 1836 rxm->full_len = rxm->full_len - chunk; 1837 } 1838 } 1839 1840 pick_next_record: 1841 if (chunk > len) 1842 chunk = len; 1843 1844 decrypted += chunk; 1845 len -= chunk; 1846 1847 /* For async or peek case, queue the current skb */ 1848 if (async || is_peek || retain_skb) { 1849 skb_queue_tail(&ctx->rx_list, skb); 1850 skb = NULL; 1851 } 1852 1853 if (tls_sw_advance_skb(sk, skb, chunk)) { 1854 /* Return full control message to 1855 * userspace before trying to parse 1856 * another message type 1857 */ 1858 msg->msg_flags |= MSG_EOR; 1859 if (ctx->control != TLS_RECORD_TYPE_DATA) 1860 goto recv_end; 1861 } else { 1862 break; 1863 } 1864 } 1865 1866 recv_end: 1867 if (num_async) { 1868 /* Wait for all previously submitted records to be decrypted */ 1869 smp_store_mb(ctx->async_notify, true); 1870 if (atomic_read(&ctx->decrypt_pending)) { 1871 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1872 if (err) { 1873 /* one of async decrypt failed */ 1874 tls_err_abort(sk, err); 1875 copied = 0; 1876 decrypted = 0; 1877 goto end; 1878 } 1879 } else { 1880 reinit_completion(&ctx->async_wait.completion); 1881 } 1882 WRITE_ONCE(ctx->async_notify, false); 1883 1884 /* Drain records from the rx_list & copy if required */ 1885 if (is_peek || is_kvec) 1886 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1887 decrypted, false, is_peek); 1888 else 1889 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1890 decrypted, true, is_peek); 1891 if (err < 0) { 1892 tls_err_abort(sk, err); 1893 copied = 0; 1894 goto end; 1895 } 1896 } 1897 1898 copied += decrypted; 1899 1900 end: 1901 release_sock(sk); 1902 if (psock) 1903 sk_psock_put(sk, psock); 1904 return copied ? : err; 1905 } 1906 1907 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1908 struct pipe_inode_info *pipe, 1909 size_t len, unsigned int flags) 1910 { 1911 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1912 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1913 struct strp_msg *rxm = NULL; 1914 struct sock *sk = sock->sk; 1915 struct sk_buff *skb; 1916 ssize_t copied = 0; 1917 int err = 0; 1918 long timeo; 1919 int chunk; 1920 bool zc = false; 1921 1922 lock_sock(sk); 1923 1924 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1925 1926 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1927 if (!skb) 1928 goto splice_read_end; 1929 1930 if (!ctx->decrypted) { 1931 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1932 1933 /* splice does not support reading control messages */ 1934 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1935 err = -EINVAL; 1936 goto splice_read_end; 1937 } 1938 1939 if (err < 0) { 1940 tls_err_abort(sk, EBADMSG); 1941 goto splice_read_end; 1942 } 1943 ctx->decrypted = 1; 1944 } 1945 rxm = strp_msg(skb); 1946 1947 chunk = min_t(unsigned int, rxm->full_len, len); 1948 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1949 if (copied < 0) 1950 goto splice_read_end; 1951 1952 if (likely(!(flags & MSG_PEEK))) 1953 tls_sw_advance_skb(sk, skb, copied); 1954 1955 splice_read_end: 1956 release_sock(sk); 1957 return copied ? : err; 1958 } 1959 1960 bool tls_sw_stream_read(const struct sock *sk) 1961 { 1962 struct tls_context *tls_ctx = tls_get_ctx(sk); 1963 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1964 bool ingress_empty = true; 1965 struct sk_psock *psock; 1966 1967 rcu_read_lock(); 1968 psock = sk_psock(sk); 1969 if (psock) 1970 ingress_empty = list_empty(&psock->ingress_msg); 1971 rcu_read_unlock(); 1972 1973 return !ingress_empty || ctx->recv_pkt || 1974 !skb_queue_empty(&ctx->rx_list); 1975 } 1976 1977 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1978 { 1979 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1980 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1981 struct tls_prot_info *prot = &tls_ctx->prot_info; 1982 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1983 struct strp_msg *rxm = strp_msg(skb); 1984 size_t cipher_overhead; 1985 size_t data_len = 0; 1986 int ret; 1987 1988 /* Verify that we have a full TLS header, or wait for more data */ 1989 if (rxm->offset + prot->prepend_size > skb->len) 1990 return 0; 1991 1992 /* Sanity-check size of on-stack buffer. */ 1993 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1994 ret = -EINVAL; 1995 goto read_failure; 1996 } 1997 1998 /* Linearize header to local buffer */ 1999 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2000 2001 if (ret < 0) 2002 goto read_failure; 2003 2004 ctx->control = header[0]; 2005 2006 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2007 2008 cipher_overhead = prot->tag_size; 2009 if (prot->version != TLS_1_3_VERSION) 2010 cipher_overhead += prot->iv_size; 2011 2012 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2013 prot->tail_size) { 2014 ret = -EMSGSIZE; 2015 goto read_failure; 2016 } 2017 if (data_len < cipher_overhead) { 2018 ret = -EBADMSG; 2019 goto read_failure; 2020 } 2021 2022 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2023 if (header[1] != TLS_1_2_VERSION_MINOR || 2024 header[2] != TLS_1_2_VERSION_MAJOR) { 2025 ret = -EINVAL; 2026 goto read_failure; 2027 } 2028 2029 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2030 TCP_SKB_CB(skb)->seq + rxm->offset); 2031 return data_len + TLS_HEADER_SIZE; 2032 2033 read_failure: 2034 tls_err_abort(strp->sk, ret); 2035 2036 return ret; 2037 } 2038 2039 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2040 { 2041 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2042 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2043 2044 ctx->decrypted = 0; 2045 2046 ctx->recv_pkt = skb; 2047 strp_pause(strp); 2048 2049 ctx->saved_data_ready(strp->sk); 2050 } 2051 2052 static void tls_data_ready(struct sock *sk) 2053 { 2054 struct tls_context *tls_ctx = tls_get_ctx(sk); 2055 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2056 struct sk_psock *psock; 2057 2058 strp_data_ready(&ctx->strp); 2059 2060 psock = sk_psock_get(sk); 2061 if (psock && !list_empty(&psock->ingress_msg)) { 2062 ctx->saved_data_ready(sk); 2063 sk_psock_put(sk, psock); 2064 } 2065 } 2066 2067 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2068 { 2069 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2070 2071 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2072 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2073 cancel_delayed_work_sync(&ctx->tx_work.work); 2074 } 2075 2076 void tls_sw_release_resources_tx(struct sock *sk) 2077 { 2078 struct tls_context *tls_ctx = tls_get_ctx(sk); 2079 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2080 struct tls_rec *rec, *tmp; 2081 2082 /* Wait for any pending async encryptions to complete */ 2083 smp_store_mb(ctx->async_notify, true); 2084 if (atomic_read(&ctx->encrypt_pending)) 2085 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2086 2087 tls_tx_records(sk, -1); 2088 2089 /* Free up un-sent records in tx_list. First, free 2090 * the partially sent record if any at head of tx_list. 2091 */ 2092 if (tls_ctx->partially_sent_record) { 2093 tls_free_partial_record(sk, tls_ctx); 2094 rec = list_first_entry(&ctx->tx_list, 2095 struct tls_rec, list); 2096 list_del(&rec->list); 2097 sk_msg_free(sk, &rec->msg_plaintext); 2098 kfree(rec); 2099 } 2100 2101 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2102 list_del(&rec->list); 2103 sk_msg_free(sk, &rec->msg_encrypted); 2104 sk_msg_free(sk, &rec->msg_plaintext); 2105 kfree(rec); 2106 } 2107 2108 crypto_free_aead(ctx->aead_send); 2109 tls_free_open_rec(sk); 2110 } 2111 2112 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2113 { 2114 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2115 2116 kfree(ctx); 2117 } 2118 2119 void tls_sw_release_resources_rx(struct sock *sk) 2120 { 2121 struct tls_context *tls_ctx = tls_get_ctx(sk); 2122 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2123 2124 kfree(tls_ctx->rx.rec_seq); 2125 kfree(tls_ctx->rx.iv); 2126 2127 if (ctx->aead_recv) { 2128 kfree_skb(ctx->recv_pkt); 2129 ctx->recv_pkt = NULL; 2130 skb_queue_purge(&ctx->rx_list); 2131 crypto_free_aead(ctx->aead_recv); 2132 strp_stop(&ctx->strp); 2133 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2134 * we still want to strp_stop(), but sk->sk_data_ready was 2135 * never swapped. 2136 */ 2137 if (ctx->saved_data_ready) { 2138 write_lock_bh(&sk->sk_callback_lock); 2139 sk->sk_data_ready = ctx->saved_data_ready; 2140 write_unlock_bh(&sk->sk_callback_lock); 2141 } 2142 } 2143 } 2144 2145 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2146 { 2147 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2148 2149 strp_done(&ctx->strp); 2150 } 2151 2152 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2153 { 2154 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2155 2156 kfree(ctx); 2157 } 2158 2159 void tls_sw_free_resources_rx(struct sock *sk) 2160 { 2161 struct tls_context *tls_ctx = tls_get_ctx(sk); 2162 2163 tls_sw_release_resources_rx(sk); 2164 tls_sw_free_ctx_rx(tls_ctx); 2165 } 2166 2167 /* The work handler to transmitt the encrypted records in tx_list */ 2168 static void tx_work_handler(struct work_struct *work) 2169 { 2170 struct delayed_work *delayed_work = to_delayed_work(work); 2171 struct tx_work *tx_work = container_of(delayed_work, 2172 struct tx_work, work); 2173 struct sock *sk = tx_work->sk; 2174 struct tls_context *tls_ctx = tls_get_ctx(sk); 2175 struct tls_sw_context_tx *ctx; 2176 2177 if (unlikely(!tls_ctx)) 2178 return; 2179 2180 ctx = tls_sw_ctx_tx(tls_ctx); 2181 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2182 return; 2183 2184 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2185 return; 2186 mutex_lock(&tls_ctx->tx_lock); 2187 lock_sock(sk); 2188 tls_tx_records(sk, -1); 2189 release_sock(sk); 2190 mutex_unlock(&tls_ctx->tx_lock); 2191 } 2192 2193 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2194 { 2195 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2196 2197 /* Schedule the transmission if tx list is ready */ 2198 if (is_tx_ready(tx_ctx) && 2199 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2200 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2201 } 2202 2203 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2204 { 2205 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2206 2207 write_lock_bh(&sk->sk_callback_lock); 2208 rx_ctx->saved_data_ready = sk->sk_data_ready; 2209 sk->sk_data_ready = tls_data_ready; 2210 write_unlock_bh(&sk->sk_callback_lock); 2211 2212 strp_check_rcv(&rx_ctx->strp); 2213 } 2214 2215 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2216 { 2217 struct tls_context *tls_ctx = tls_get_ctx(sk); 2218 struct tls_prot_info *prot = &tls_ctx->prot_info; 2219 struct tls_crypto_info *crypto_info; 2220 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2221 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2222 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2223 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2224 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2225 struct cipher_context *cctx; 2226 struct crypto_aead **aead; 2227 struct strp_callbacks cb; 2228 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2229 struct crypto_tfm *tfm; 2230 char *iv, *rec_seq, *key, *salt, *cipher_name; 2231 size_t keysize; 2232 int rc = 0; 2233 2234 if (!ctx) { 2235 rc = -EINVAL; 2236 goto out; 2237 } 2238 2239 if (tx) { 2240 if (!ctx->priv_ctx_tx) { 2241 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2242 if (!sw_ctx_tx) { 2243 rc = -ENOMEM; 2244 goto out; 2245 } 2246 ctx->priv_ctx_tx = sw_ctx_tx; 2247 } else { 2248 sw_ctx_tx = 2249 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2250 } 2251 } else { 2252 if (!ctx->priv_ctx_rx) { 2253 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2254 if (!sw_ctx_rx) { 2255 rc = -ENOMEM; 2256 goto out; 2257 } 2258 ctx->priv_ctx_rx = sw_ctx_rx; 2259 } else { 2260 sw_ctx_rx = 2261 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2262 } 2263 } 2264 2265 if (tx) { 2266 crypto_init_wait(&sw_ctx_tx->async_wait); 2267 crypto_info = &ctx->crypto_send.info; 2268 cctx = &ctx->tx; 2269 aead = &sw_ctx_tx->aead_send; 2270 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2271 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2272 sw_ctx_tx->tx_work.sk = sk; 2273 } else { 2274 crypto_init_wait(&sw_ctx_rx->async_wait); 2275 crypto_info = &ctx->crypto_recv.info; 2276 cctx = &ctx->rx; 2277 skb_queue_head_init(&sw_ctx_rx->rx_list); 2278 aead = &sw_ctx_rx->aead_recv; 2279 } 2280 2281 switch (crypto_info->cipher_type) { 2282 case TLS_CIPHER_AES_GCM_128: { 2283 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2284 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2285 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2286 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2287 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2288 rec_seq = 2289 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2290 gcm_128_info = 2291 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2292 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2293 key = gcm_128_info->key; 2294 salt = gcm_128_info->salt; 2295 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2296 cipher_name = "gcm(aes)"; 2297 break; 2298 } 2299 case TLS_CIPHER_AES_GCM_256: { 2300 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2301 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2302 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2303 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2304 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2305 rec_seq = 2306 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2307 gcm_256_info = 2308 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2309 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2310 key = gcm_256_info->key; 2311 salt = gcm_256_info->salt; 2312 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2313 cipher_name = "gcm(aes)"; 2314 break; 2315 } 2316 case TLS_CIPHER_AES_CCM_128: { 2317 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2318 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2319 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2320 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2321 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2322 rec_seq = 2323 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2324 ccm_128_info = 2325 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2326 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2327 key = ccm_128_info->key; 2328 salt = ccm_128_info->salt; 2329 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2330 cipher_name = "ccm(aes)"; 2331 break; 2332 } 2333 default: 2334 rc = -EINVAL; 2335 goto free_priv; 2336 } 2337 2338 /* Sanity-check the sizes for stack allocations. */ 2339 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2340 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2341 rc = -EINVAL; 2342 goto free_priv; 2343 } 2344 2345 if (crypto_info->version == TLS_1_3_VERSION) { 2346 nonce_size = 0; 2347 prot->aad_size = TLS_HEADER_SIZE; 2348 prot->tail_size = 1; 2349 } else { 2350 prot->aad_size = TLS_AAD_SPACE_SIZE; 2351 prot->tail_size = 0; 2352 } 2353 2354 prot->version = crypto_info->version; 2355 prot->cipher_type = crypto_info->cipher_type; 2356 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2357 prot->tag_size = tag_size; 2358 prot->overhead_size = prot->prepend_size + 2359 prot->tag_size + prot->tail_size; 2360 prot->iv_size = iv_size; 2361 prot->salt_size = salt_size; 2362 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2363 if (!cctx->iv) { 2364 rc = -ENOMEM; 2365 goto free_priv; 2366 } 2367 /* Note: 128 & 256 bit salt are the same size */ 2368 prot->rec_seq_size = rec_seq_size; 2369 memcpy(cctx->iv, salt, salt_size); 2370 memcpy(cctx->iv + salt_size, iv, iv_size); 2371 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2372 if (!cctx->rec_seq) { 2373 rc = -ENOMEM; 2374 goto free_iv; 2375 } 2376 2377 if (!*aead) { 2378 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2379 if (IS_ERR(*aead)) { 2380 rc = PTR_ERR(*aead); 2381 *aead = NULL; 2382 goto free_rec_seq; 2383 } 2384 } 2385 2386 ctx->push_pending_record = tls_sw_push_pending_record; 2387 2388 rc = crypto_aead_setkey(*aead, key, keysize); 2389 2390 if (rc) 2391 goto free_aead; 2392 2393 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2394 if (rc) 2395 goto free_aead; 2396 2397 if (sw_ctx_rx) { 2398 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2399 2400 if (crypto_info->version == TLS_1_3_VERSION) 2401 sw_ctx_rx->async_capable = 0; 2402 else 2403 sw_ctx_rx->async_capable = 2404 !!(tfm->__crt_alg->cra_flags & 2405 CRYPTO_ALG_ASYNC); 2406 2407 /* Set up strparser */ 2408 memset(&cb, 0, sizeof(cb)); 2409 cb.rcv_msg = tls_queue; 2410 cb.parse_msg = tls_read_size; 2411 2412 strp_init(&sw_ctx_rx->strp, sk, &cb); 2413 } 2414 2415 goto out; 2416 2417 free_aead: 2418 crypto_free_aead(*aead); 2419 *aead = NULL; 2420 free_rec_seq: 2421 kfree(cctx->rec_seq); 2422 cctx->rec_seq = NULL; 2423 free_iv: 2424 kfree(cctx->iv); 2425 cctx->iv = NULL; 2426 free_priv: 2427 if (tx) { 2428 kfree(ctx->priv_ctx_tx); 2429 ctx->priv_ctx_tx = NULL; 2430 } else { 2431 kfree(ctx->priv_ctx_rx); 2432 ctx->priv_ctx_rx = NULL; 2433 } 2434 out: 2435 return rc; 2436 } 2437