1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <linux/splice.h> 41 #include <crypto/aead.h> 42 43 #include <net/strparser.h> 44 #include <net/tls.h> 45 46 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 47 unsigned int recursion_level) 48 { 49 int start = skb_headlen(skb); 50 int i, chunk = start - offset; 51 struct sk_buff *frag_iter; 52 int elt = 0; 53 54 if (unlikely(recursion_level >= 24)) 55 return -EMSGSIZE; 56 57 if (chunk > 0) { 58 if (chunk > len) 59 chunk = len; 60 elt++; 61 len -= chunk; 62 if (len == 0) 63 return elt; 64 offset += chunk; 65 } 66 67 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 68 int end; 69 70 WARN_ON(start > offset + len); 71 72 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 73 chunk = end - offset; 74 if (chunk > 0) { 75 if (chunk > len) 76 chunk = len; 77 elt++; 78 len -= chunk; 79 if (len == 0) 80 return elt; 81 offset += chunk; 82 } 83 start = end; 84 } 85 86 if (unlikely(skb_has_frag_list(skb))) { 87 skb_walk_frags(skb, frag_iter) { 88 int end, ret; 89 90 WARN_ON(start > offset + len); 91 92 end = start + frag_iter->len; 93 chunk = end - offset; 94 if (chunk > 0) { 95 if (chunk > len) 96 chunk = len; 97 ret = __skb_nsg(frag_iter, offset - start, chunk, 98 recursion_level + 1); 99 if (unlikely(ret < 0)) 100 return ret; 101 elt += ret; 102 len -= chunk; 103 if (len == 0) 104 return elt; 105 offset += chunk; 106 } 107 start = end; 108 } 109 } 110 BUG_ON(len); 111 return elt; 112 } 113 114 /* Return the number of scatterlist elements required to completely map the 115 * skb, or -EMSGSIZE if the recursion depth is exceeded. 116 */ 117 static int skb_nsg(struct sk_buff *skb, int offset, int len) 118 { 119 return __skb_nsg(skb, offset, len, 0); 120 } 121 122 static int padding_length(struct tls_sw_context_rx *ctx, 123 struct tls_prot_info *prot, struct sk_buff *skb) 124 { 125 struct strp_msg *rxm = strp_msg(skb); 126 int sub = 0; 127 128 /* Determine zero-padding length */ 129 if (prot->version == TLS_1_3_VERSION) { 130 char content_type = 0; 131 int err; 132 int back = 17; 133 134 while (content_type == 0) { 135 if (back > rxm->full_len - prot->prepend_size) 136 return -EBADMSG; 137 err = skb_copy_bits(skb, 138 rxm->offset + rxm->full_len - back, 139 &content_type, 1); 140 if (err) 141 return err; 142 if (content_type) 143 break; 144 sub++; 145 back++; 146 } 147 ctx->control = content_type; 148 } 149 return sub; 150 } 151 152 static void tls_decrypt_done(struct crypto_async_request *req, int err) 153 { 154 struct aead_request *aead_req = (struct aead_request *)req; 155 struct scatterlist *sgout = aead_req->dst; 156 struct scatterlist *sgin = aead_req->src; 157 struct tls_sw_context_rx *ctx; 158 struct tls_context *tls_ctx; 159 struct tls_prot_info *prot; 160 struct scatterlist *sg; 161 struct sk_buff *skb; 162 unsigned int pages; 163 int pending; 164 165 skb = (struct sk_buff *)req->data; 166 tls_ctx = tls_get_ctx(skb->sk); 167 ctx = tls_sw_ctx_rx(tls_ctx); 168 prot = &tls_ctx->prot_info; 169 170 /* Propagate if there was an err */ 171 if (err) { 172 if (err == -EBADMSG) 173 TLS_INC_STATS(sock_net(skb->sk), 174 LINUX_MIB_TLSDECRYPTERROR); 175 ctx->async_wait.err = err; 176 tls_err_abort(skb->sk, err); 177 } else { 178 struct strp_msg *rxm = strp_msg(skb); 179 int pad; 180 181 pad = padding_length(ctx, prot, skb); 182 if (pad < 0) { 183 ctx->async_wait.err = pad; 184 tls_err_abort(skb->sk, pad); 185 } else { 186 rxm->full_len -= pad; 187 rxm->offset += prot->prepend_size; 188 rxm->full_len -= prot->overhead_size; 189 } 190 } 191 192 /* After using skb->sk to propagate sk through crypto async callback 193 * we need to NULL it again. 194 */ 195 skb->sk = NULL; 196 197 198 /* Free the destination pages if skb was not decrypted inplace */ 199 if (sgout != sgin) { 200 /* Skip the first S/G entry as it points to AAD */ 201 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 202 if (!sg) 203 break; 204 put_page(sg_page(sg)); 205 } 206 } 207 208 kfree(aead_req); 209 210 spin_lock_bh(&ctx->decrypt_compl_lock); 211 pending = atomic_dec_return(&ctx->decrypt_pending); 212 213 if (!pending && ctx->async_notify) 214 complete(&ctx->async_wait.completion); 215 spin_unlock_bh(&ctx->decrypt_compl_lock); 216 } 217 218 static int tls_do_decryption(struct sock *sk, 219 struct sk_buff *skb, 220 struct scatterlist *sgin, 221 struct scatterlist *sgout, 222 char *iv_recv, 223 size_t data_len, 224 struct aead_request *aead_req, 225 bool async) 226 { 227 struct tls_context *tls_ctx = tls_get_ctx(sk); 228 struct tls_prot_info *prot = &tls_ctx->prot_info; 229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 230 int ret; 231 232 aead_request_set_tfm(aead_req, ctx->aead_recv); 233 aead_request_set_ad(aead_req, prot->aad_size); 234 aead_request_set_crypt(aead_req, sgin, sgout, 235 data_len + prot->tag_size, 236 (u8 *)iv_recv); 237 238 if (async) { 239 /* Using skb->sk to push sk through to crypto async callback 240 * handler. This allows propagating errors up to the socket 241 * if needed. It _must_ be cleared in the async handler 242 * before consume_skb is called. We _know_ skb->sk is NULL 243 * because it is a clone from strparser. 244 */ 245 skb->sk = sk; 246 aead_request_set_callback(aead_req, 247 CRYPTO_TFM_REQ_MAY_BACKLOG, 248 tls_decrypt_done, skb); 249 atomic_inc(&ctx->decrypt_pending); 250 } else { 251 aead_request_set_callback(aead_req, 252 CRYPTO_TFM_REQ_MAY_BACKLOG, 253 crypto_req_done, &ctx->async_wait); 254 } 255 256 ret = crypto_aead_decrypt(aead_req); 257 if (ret == -EINPROGRESS) { 258 if (async) 259 return ret; 260 261 ret = crypto_wait_req(ret, &ctx->async_wait); 262 } 263 264 if (async) 265 atomic_dec(&ctx->decrypt_pending); 266 267 return ret; 268 } 269 270 static void tls_trim_both_msgs(struct sock *sk, int target_size) 271 { 272 struct tls_context *tls_ctx = tls_get_ctx(sk); 273 struct tls_prot_info *prot = &tls_ctx->prot_info; 274 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 275 struct tls_rec *rec = ctx->open_rec; 276 277 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 278 if (target_size > 0) 279 target_size += prot->overhead_size; 280 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 281 } 282 283 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 284 { 285 struct tls_context *tls_ctx = tls_get_ctx(sk); 286 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 287 struct tls_rec *rec = ctx->open_rec; 288 struct sk_msg *msg_en = &rec->msg_encrypted; 289 290 return sk_msg_alloc(sk, msg_en, len, 0); 291 } 292 293 static int tls_clone_plaintext_msg(struct sock *sk, int required) 294 { 295 struct tls_context *tls_ctx = tls_get_ctx(sk); 296 struct tls_prot_info *prot = &tls_ctx->prot_info; 297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 298 struct tls_rec *rec = ctx->open_rec; 299 struct sk_msg *msg_pl = &rec->msg_plaintext; 300 struct sk_msg *msg_en = &rec->msg_encrypted; 301 int skip, len; 302 303 /* We add page references worth len bytes from encrypted sg 304 * at the end of plaintext sg. It is guaranteed that msg_en 305 * has enough required room (ensured by caller). 306 */ 307 len = required - msg_pl->sg.size; 308 309 /* Skip initial bytes in msg_en's data to be able to use 310 * same offset of both plain and encrypted data. 311 */ 312 skip = prot->prepend_size + msg_pl->sg.size; 313 314 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 315 } 316 317 static struct tls_rec *tls_get_rec(struct sock *sk) 318 { 319 struct tls_context *tls_ctx = tls_get_ctx(sk); 320 struct tls_prot_info *prot = &tls_ctx->prot_info; 321 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 322 struct sk_msg *msg_pl, *msg_en; 323 struct tls_rec *rec; 324 int mem_size; 325 326 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 327 328 rec = kzalloc(mem_size, sk->sk_allocation); 329 if (!rec) 330 return NULL; 331 332 msg_pl = &rec->msg_plaintext; 333 msg_en = &rec->msg_encrypted; 334 335 sk_msg_init(msg_pl); 336 sk_msg_init(msg_en); 337 338 sg_init_table(rec->sg_aead_in, 2); 339 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 340 sg_unmark_end(&rec->sg_aead_in[1]); 341 342 sg_init_table(rec->sg_aead_out, 2); 343 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 344 sg_unmark_end(&rec->sg_aead_out[1]); 345 346 return rec; 347 } 348 349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 350 { 351 sk_msg_free(sk, &rec->msg_encrypted); 352 sk_msg_free(sk, &rec->msg_plaintext); 353 kfree(rec); 354 } 355 356 static void tls_free_open_rec(struct sock *sk) 357 { 358 struct tls_context *tls_ctx = tls_get_ctx(sk); 359 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 360 struct tls_rec *rec = ctx->open_rec; 361 362 if (rec) { 363 tls_free_rec(sk, rec); 364 ctx->open_rec = NULL; 365 } 366 } 367 368 int tls_tx_records(struct sock *sk, int flags) 369 { 370 struct tls_context *tls_ctx = tls_get_ctx(sk); 371 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 372 struct tls_rec *rec, *tmp; 373 struct sk_msg *msg_en; 374 int tx_flags, rc = 0; 375 376 if (tls_is_partially_sent_record(tls_ctx)) { 377 rec = list_first_entry(&ctx->tx_list, 378 struct tls_rec, list); 379 380 if (flags == -1) 381 tx_flags = rec->tx_flags; 382 else 383 tx_flags = flags; 384 385 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 386 if (rc) 387 goto tx_err; 388 389 /* Full record has been transmitted. 390 * Remove the head of tx_list 391 */ 392 list_del(&rec->list); 393 sk_msg_free(sk, &rec->msg_plaintext); 394 kfree(rec); 395 } 396 397 /* Tx all ready records */ 398 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 399 if (READ_ONCE(rec->tx_ready)) { 400 if (flags == -1) 401 tx_flags = rec->tx_flags; 402 else 403 tx_flags = flags; 404 405 msg_en = &rec->msg_encrypted; 406 rc = tls_push_sg(sk, tls_ctx, 407 &msg_en->sg.data[msg_en->sg.curr], 408 0, tx_flags); 409 if (rc) 410 goto tx_err; 411 412 list_del(&rec->list); 413 sk_msg_free(sk, &rec->msg_plaintext); 414 kfree(rec); 415 } else { 416 break; 417 } 418 } 419 420 tx_err: 421 if (rc < 0 && rc != -EAGAIN) 422 tls_err_abort(sk, EBADMSG); 423 424 return rc; 425 } 426 427 static void tls_encrypt_done(struct crypto_async_request *req, int err) 428 { 429 struct aead_request *aead_req = (struct aead_request *)req; 430 struct sock *sk = req->data; 431 struct tls_context *tls_ctx = tls_get_ctx(sk); 432 struct tls_prot_info *prot = &tls_ctx->prot_info; 433 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 434 struct scatterlist *sge; 435 struct sk_msg *msg_en; 436 struct tls_rec *rec; 437 bool ready = false; 438 int pending; 439 440 rec = container_of(aead_req, struct tls_rec, aead_req); 441 msg_en = &rec->msg_encrypted; 442 443 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 444 sge->offset -= prot->prepend_size; 445 sge->length += prot->prepend_size; 446 447 /* Check if error is previously set on socket */ 448 if (err || sk->sk_err) { 449 rec = NULL; 450 451 /* If err is already set on socket, return the same code */ 452 if (sk->sk_err) { 453 ctx->async_wait.err = sk->sk_err; 454 } else { 455 ctx->async_wait.err = err; 456 tls_err_abort(sk, err); 457 } 458 } 459 460 if (rec) { 461 struct tls_rec *first_rec; 462 463 /* Mark the record as ready for transmission */ 464 smp_store_mb(rec->tx_ready, true); 465 466 /* If received record is at head of tx_list, schedule tx */ 467 first_rec = list_first_entry(&ctx->tx_list, 468 struct tls_rec, list); 469 if (rec == first_rec) 470 ready = true; 471 } 472 473 spin_lock_bh(&ctx->encrypt_compl_lock); 474 pending = atomic_dec_return(&ctx->encrypt_pending); 475 476 if (!pending && ctx->async_notify) 477 complete(&ctx->async_wait.completion); 478 spin_unlock_bh(&ctx->encrypt_compl_lock); 479 480 if (!ready) 481 return; 482 483 /* Schedule the transmission */ 484 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 485 schedule_delayed_work(&ctx->tx_work.work, 1); 486 } 487 488 static int tls_do_encryption(struct sock *sk, 489 struct tls_context *tls_ctx, 490 struct tls_sw_context_tx *ctx, 491 struct aead_request *aead_req, 492 size_t data_len, u32 start) 493 { 494 struct tls_prot_info *prot = &tls_ctx->prot_info; 495 struct tls_rec *rec = ctx->open_rec; 496 struct sk_msg *msg_en = &rec->msg_encrypted; 497 struct scatterlist *sge = sk_msg_elem(msg_en, start); 498 int rc, iv_offset = 0; 499 500 /* For CCM based ciphers, first byte of IV is a constant */ 501 switch (prot->cipher_type) { 502 case TLS_CIPHER_AES_CCM_128: 503 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 504 iv_offset = 1; 505 break; 506 case TLS_CIPHER_SM4_CCM: 507 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 508 iv_offset = 1; 509 break; 510 } 511 512 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 513 prot->iv_size + prot->salt_size); 514 515 xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq); 516 517 sge->offset += prot->prepend_size; 518 sge->length -= prot->prepend_size; 519 520 msg_en->sg.curr = start; 521 522 aead_request_set_tfm(aead_req, ctx->aead_send); 523 aead_request_set_ad(aead_req, prot->aad_size); 524 aead_request_set_crypt(aead_req, rec->sg_aead_in, 525 rec->sg_aead_out, 526 data_len, rec->iv_data); 527 528 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 529 tls_encrypt_done, sk); 530 531 /* Add the record in tx_list */ 532 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 533 atomic_inc(&ctx->encrypt_pending); 534 535 rc = crypto_aead_encrypt(aead_req); 536 if (!rc || rc != -EINPROGRESS) { 537 atomic_dec(&ctx->encrypt_pending); 538 sge->offset -= prot->prepend_size; 539 sge->length += prot->prepend_size; 540 } 541 542 if (!rc) { 543 WRITE_ONCE(rec->tx_ready, true); 544 } else if (rc != -EINPROGRESS) { 545 list_del(&rec->list); 546 return rc; 547 } 548 549 /* Unhook the record from context if encryption is not failure */ 550 ctx->open_rec = NULL; 551 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 552 return rc; 553 } 554 555 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 556 struct tls_rec **to, struct sk_msg *msg_opl, 557 struct sk_msg *msg_oen, u32 split_point, 558 u32 tx_overhead_size, u32 *orig_end) 559 { 560 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 561 struct scatterlist *sge, *osge, *nsge; 562 u32 orig_size = msg_opl->sg.size; 563 struct scatterlist tmp = { }; 564 struct sk_msg *msg_npl; 565 struct tls_rec *new; 566 int ret; 567 568 new = tls_get_rec(sk); 569 if (!new) 570 return -ENOMEM; 571 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 572 tx_overhead_size, 0); 573 if (ret < 0) { 574 tls_free_rec(sk, new); 575 return ret; 576 } 577 578 *orig_end = msg_opl->sg.end; 579 i = msg_opl->sg.start; 580 sge = sk_msg_elem(msg_opl, i); 581 while (apply && sge->length) { 582 if (sge->length > apply) { 583 u32 len = sge->length - apply; 584 585 get_page(sg_page(sge)); 586 sg_set_page(&tmp, sg_page(sge), len, 587 sge->offset + apply); 588 sge->length = apply; 589 bytes += apply; 590 apply = 0; 591 } else { 592 apply -= sge->length; 593 bytes += sge->length; 594 } 595 596 sk_msg_iter_var_next(i); 597 if (i == msg_opl->sg.end) 598 break; 599 sge = sk_msg_elem(msg_opl, i); 600 } 601 602 msg_opl->sg.end = i; 603 msg_opl->sg.curr = i; 604 msg_opl->sg.copybreak = 0; 605 msg_opl->apply_bytes = 0; 606 msg_opl->sg.size = bytes; 607 608 msg_npl = &new->msg_plaintext; 609 msg_npl->apply_bytes = apply; 610 msg_npl->sg.size = orig_size - bytes; 611 612 j = msg_npl->sg.start; 613 nsge = sk_msg_elem(msg_npl, j); 614 if (tmp.length) { 615 memcpy(nsge, &tmp, sizeof(*nsge)); 616 sk_msg_iter_var_next(j); 617 nsge = sk_msg_elem(msg_npl, j); 618 } 619 620 osge = sk_msg_elem(msg_opl, i); 621 while (osge->length) { 622 memcpy(nsge, osge, sizeof(*nsge)); 623 sg_unmark_end(nsge); 624 sk_msg_iter_var_next(i); 625 sk_msg_iter_var_next(j); 626 if (i == *orig_end) 627 break; 628 osge = sk_msg_elem(msg_opl, i); 629 nsge = sk_msg_elem(msg_npl, j); 630 } 631 632 msg_npl->sg.end = j; 633 msg_npl->sg.curr = j; 634 msg_npl->sg.copybreak = 0; 635 636 *to = new; 637 return 0; 638 } 639 640 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 641 struct tls_rec *from, u32 orig_end) 642 { 643 struct sk_msg *msg_npl = &from->msg_plaintext; 644 struct sk_msg *msg_opl = &to->msg_plaintext; 645 struct scatterlist *osge, *nsge; 646 u32 i, j; 647 648 i = msg_opl->sg.end; 649 sk_msg_iter_var_prev(i); 650 j = msg_npl->sg.start; 651 652 osge = sk_msg_elem(msg_opl, i); 653 nsge = sk_msg_elem(msg_npl, j); 654 655 if (sg_page(osge) == sg_page(nsge) && 656 osge->offset + osge->length == nsge->offset) { 657 osge->length += nsge->length; 658 put_page(sg_page(nsge)); 659 } 660 661 msg_opl->sg.end = orig_end; 662 msg_opl->sg.curr = orig_end; 663 msg_opl->sg.copybreak = 0; 664 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 665 msg_opl->sg.size += msg_npl->sg.size; 666 667 sk_msg_free(sk, &to->msg_encrypted); 668 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 669 670 kfree(from); 671 } 672 673 static int tls_push_record(struct sock *sk, int flags, 674 unsigned char record_type) 675 { 676 struct tls_context *tls_ctx = tls_get_ctx(sk); 677 struct tls_prot_info *prot = &tls_ctx->prot_info; 678 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 679 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 680 u32 i, split_point, orig_end; 681 struct sk_msg *msg_pl, *msg_en; 682 struct aead_request *req; 683 bool split; 684 int rc; 685 686 if (!rec) 687 return 0; 688 689 msg_pl = &rec->msg_plaintext; 690 msg_en = &rec->msg_encrypted; 691 692 split_point = msg_pl->apply_bytes; 693 split = split_point && split_point < msg_pl->sg.size; 694 if (unlikely((!split && 695 msg_pl->sg.size + 696 prot->overhead_size > msg_en->sg.size) || 697 (split && 698 split_point + 699 prot->overhead_size > msg_en->sg.size))) { 700 split = true; 701 split_point = msg_en->sg.size; 702 } 703 if (split) { 704 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 705 split_point, prot->overhead_size, 706 &orig_end); 707 if (rc < 0) 708 return rc; 709 /* This can happen if above tls_split_open_record allocates 710 * a single large encryption buffer instead of two smaller 711 * ones. In this case adjust pointers and continue without 712 * split. 713 */ 714 if (!msg_pl->sg.size) { 715 tls_merge_open_record(sk, rec, tmp, orig_end); 716 msg_pl = &rec->msg_plaintext; 717 msg_en = &rec->msg_encrypted; 718 split = false; 719 } 720 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 721 prot->overhead_size); 722 } 723 724 rec->tx_flags = flags; 725 req = &rec->aead_req; 726 727 i = msg_pl->sg.end; 728 sk_msg_iter_var_prev(i); 729 730 rec->content_type = record_type; 731 if (prot->version == TLS_1_3_VERSION) { 732 /* Add content type to end of message. No padding added */ 733 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 734 sg_mark_end(&rec->sg_content_type); 735 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 736 &rec->sg_content_type); 737 } else { 738 sg_mark_end(sk_msg_elem(msg_pl, i)); 739 } 740 741 if (msg_pl->sg.end < msg_pl->sg.start) { 742 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 743 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 744 msg_pl->sg.data); 745 } 746 747 i = msg_pl->sg.start; 748 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 749 750 i = msg_en->sg.end; 751 sk_msg_iter_var_prev(i); 752 sg_mark_end(sk_msg_elem(msg_en, i)); 753 754 i = msg_en->sg.start; 755 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 756 757 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 758 tls_ctx->tx.rec_seq, record_type, prot); 759 760 tls_fill_prepend(tls_ctx, 761 page_address(sg_page(&msg_en->sg.data[i])) + 762 msg_en->sg.data[i].offset, 763 msg_pl->sg.size + prot->tail_size, 764 record_type); 765 766 tls_ctx->pending_open_record_frags = false; 767 768 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 769 msg_pl->sg.size + prot->tail_size, i); 770 if (rc < 0) { 771 if (rc != -EINPROGRESS) { 772 tls_err_abort(sk, EBADMSG); 773 if (split) { 774 tls_ctx->pending_open_record_frags = true; 775 tls_merge_open_record(sk, rec, tmp, orig_end); 776 } 777 } 778 ctx->async_capable = 1; 779 return rc; 780 } else if (split) { 781 msg_pl = &tmp->msg_plaintext; 782 msg_en = &tmp->msg_encrypted; 783 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 784 tls_ctx->pending_open_record_frags = true; 785 ctx->open_rec = tmp; 786 } 787 788 return tls_tx_records(sk, flags); 789 } 790 791 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 792 bool full_record, u8 record_type, 793 ssize_t *copied, int flags) 794 { 795 struct tls_context *tls_ctx = tls_get_ctx(sk); 796 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 797 struct sk_msg msg_redir = { }; 798 struct sk_psock *psock; 799 struct sock *sk_redir; 800 struct tls_rec *rec; 801 bool enospc, policy; 802 int err = 0, send; 803 u32 delta = 0; 804 805 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 806 psock = sk_psock_get(sk); 807 if (!psock || !policy) { 808 err = tls_push_record(sk, flags, record_type); 809 if (err && sk->sk_err == EBADMSG) { 810 *copied -= sk_msg_free(sk, msg); 811 tls_free_open_rec(sk); 812 err = -sk->sk_err; 813 } 814 if (psock) 815 sk_psock_put(sk, psock); 816 return err; 817 } 818 more_data: 819 enospc = sk_msg_full(msg); 820 if (psock->eval == __SK_NONE) { 821 delta = msg->sg.size; 822 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 823 delta -= msg->sg.size; 824 } 825 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 826 !enospc && !full_record) { 827 err = -ENOSPC; 828 goto out_err; 829 } 830 msg->cork_bytes = 0; 831 send = msg->sg.size; 832 if (msg->apply_bytes && msg->apply_bytes < send) 833 send = msg->apply_bytes; 834 835 switch (psock->eval) { 836 case __SK_PASS: 837 err = tls_push_record(sk, flags, record_type); 838 if (err && sk->sk_err == EBADMSG) { 839 *copied -= sk_msg_free(sk, msg); 840 tls_free_open_rec(sk); 841 err = -sk->sk_err; 842 goto out_err; 843 } 844 break; 845 case __SK_REDIRECT: 846 sk_redir = psock->sk_redir; 847 memcpy(&msg_redir, msg, sizeof(*msg)); 848 if (msg->apply_bytes < send) 849 msg->apply_bytes = 0; 850 else 851 msg->apply_bytes -= send; 852 sk_msg_return_zero(sk, msg, send); 853 msg->sg.size -= send; 854 release_sock(sk); 855 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 856 lock_sock(sk); 857 if (err < 0) { 858 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 859 msg->sg.size = 0; 860 } 861 if (msg->sg.size == 0) 862 tls_free_open_rec(sk); 863 break; 864 case __SK_DROP: 865 default: 866 sk_msg_free_partial(sk, msg, send); 867 if (msg->apply_bytes < send) 868 msg->apply_bytes = 0; 869 else 870 msg->apply_bytes -= send; 871 if (msg->sg.size == 0) 872 tls_free_open_rec(sk); 873 *copied -= (send + delta); 874 err = -EACCES; 875 } 876 877 if (likely(!err)) { 878 bool reset_eval = !ctx->open_rec; 879 880 rec = ctx->open_rec; 881 if (rec) { 882 msg = &rec->msg_plaintext; 883 if (!msg->apply_bytes) 884 reset_eval = true; 885 } 886 if (reset_eval) { 887 psock->eval = __SK_NONE; 888 if (psock->sk_redir) { 889 sock_put(psock->sk_redir); 890 psock->sk_redir = NULL; 891 } 892 } 893 if (rec) 894 goto more_data; 895 } 896 out_err: 897 sk_psock_put(sk, psock); 898 return err; 899 } 900 901 static int tls_sw_push_pending_record(struct sock *sk, int flags) 902 { 903 struct tls_context *tls_ctx = tls_get_ctx(sk); 904 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 905 struct tls_rec *rec = ctx->open_rec; 906 struct sk_msg *msg_pl; 907 size_t copied; 908 909 if (!rec) 910 return 0; 911 912 msg_pl = &rec->msg_plaintext; 913 copied = msg_pl->sg.size; 914 if (!copied) 915 return 0; 916 917 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 918 &copied, flags); 919 } 920 921 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 922 { 923 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 924 struct tls_context *tls_ctx = tls_get_ctx(sk); 925 struct tls_prot_info *prot = &tls_ctx->prot_info; 926 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 927 bool async_capable = ctx->async_capable; 928 unsigned char record_type = TLS_RECORD_TYPE_DATA; 929 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 930 bool eor = !(msg->msg_flags & MSG_MORE); 931 size_t try_to_copy; 932 ssize_t copied = 0; 933 struct sk_msg *msg_pl, *msg_en; 934 struct tls_rec *rec; 935 int required_size; 936 int num_async = 0; 937 bool full_record; 938 int record_room; 939 int num_zc = 0; 940 int orig_size; 941 int ret = 0; 942 int pending; 943 944 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 945 MSG_CMSG_COMPAT)) 946 return -EOPNOTSUPP; 947 948 mutex_lock(&tls_ctx->tx_lock); 949 lock_sock(sk); 950 951 if (unlikely(msg->msg_controllen)) { 952 ret = tls_proccess_cmsg(sk, msg, &record_type); 953 if (ret) { 954 if (ret == -EINPROGRESS) 955 num_async++; 956 else if (ret != -EAGAIN) 957 goto send_end; 958 } 959 } 960 961 while (msg_data_left(msg)) { 962 if (sk->sk_err) { 963 ret = -sk->sk_err; 964 goto send_end; 965 } 966 967 if (ctx->open_rec) 968 rec = ctx->open_rec; 969 else 970 rec = ctx->open_rec = tls_get_rec(sk); 971 if (!rec) { 972 ret = -ENOMEM; 973 goto send_end; 974 } 975 976 msg_pl = &rec->msg_plaintext; 977 msg_en = &rec->msg_encrypted; 978 979 orig_size = msg_pl->sg.size; 980 full_record = false; 981 try_to_copy = msg_data_left(msg); 982 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 983 if (try_to_copy >= record_room) { 984 try_to_copy = record_room; 985 full_record = true; 986 } 987 988 required_size = msg_pl->sg.size + try_to_copy + 989 prot->overhead_size; 990 991 if (!sk_stream_memory_free(sk)) 992 goto wait_for_sndbuf; 993 994 alloc_encrypted: 995 ret = tls_alloc_encrypted_msg(sk, required_size); 996 if (ret) { 997 if (ret != -ENOSPC) 998 goto wait_for_memory; 999 1000 /* Adjust try_to_copy according to the amount that was 1001 * actually allocated. The difference is due 1002 * to max sg elements limit 1003 */ 1004 try_to_copy -= required_size - msg_en->sg.size; 1005 full_record = true; 1006 } 1007 1008 if (!is_kvec && (full_record || eor) && !async_capable) { 1009 u32 first = msg_pl->sg.end; 1010 1011 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1012 msg_pl, try_to_copy); 1013 if (ret) 1014 goto fallback_to_reg_send; 1015 1016 num_zc++; 1017 copied += try_to_copy; 1018 1019 sk_msg_sg_copy_set(msg_pl, first); 1020 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1021 record_type, &copied, 1022 msg->msg_flags); 1023 if (ret) { 1024 if (ret == -EINPROGRESS) 1025 num_async++; 1026 else if (ret == -ENOMEM) 1027 goto wait_for_memory; 1028 else if (ctx->open_rec && ret == -ENOSPC) 1029 goto rollback_iter; 1030 else if (ret != -EAGAIN) 1031 goto send_end; 1032 } 1033 continue; 1034 rollback_iter: 1035 copied -= try_to_copy; 1036 sk_msg_sg_copy_clear(msg_pl, first); 1037 iov_iter_revert(&msg->msg_iter, 1038 msg_pl->sg.size - orig_size); 1039 fallback_to_reg_send: 1040 sk_msg_trim(sk, msg_pl, orig_size); 1041 } 1042 1043 required_size = msg_pl->sg.size + try_to_copy; 1044 1045 ret = tls_clone_plaintext_msg(sk, required_size); 1046 if (ret) { 1047 if (ret != -ENOSPC) 1048 goto send_end; 1049 1050 /* Adjust try_to_copy according to the amount that was 1051 * actually allocated. The difference is due 1052 * to max sg elements limit 1053 */ 1054 try_to_copy -= required_size - msg_pl->sg.size; 1055 full_record = true; 1056 sk_msg_trim(sk, msg_en, 1057 msg_pl->sg.size + prot->overhead_size); 1058 } 1059 1060 if (try_to_copy) { 1061 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1062 msg_pl, try_to_copy); 1063 if (ret < 0) 1064 goto trim_sgl; 1065 } 1066 1067 /* Open records defined only if successfully copied, otherwise 1068 * we would trim the sg but not reset the open record frags. 1069 */ 1070 tls_ctx->pending_open_record_frags = true; 1071 copied += try_to_copy; 1072 if (full_record || eor) { 1073 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1074 record_type, &copied, 1075 msg->msg_flags); 1076 if (ret) { 1077 if (ret == -EINPROGRESS) 1078 num_async++; 1079 else if (ret == -ENOMEM) 1080 goto wait_for_memory; 1081 else if (ret != -EAGAIN) { 1082 if (ret == -ENOSPC) 1083 ret = 0; 1084 goto send_end; 1085 } 1086 } 1087 } 1088 1089 continue; 1090 1091 wait_for_sndbuf: 1092 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1093 wait_for_memory: 1094 ret = sk_stream_wait_memory(sk, &timeo); 1095 if (ret) { 1096 trim_sgl: 1097 if (ctx->open_rec) 1098 tls_trim_both_msgs(sk, orig_size); 1099 goto send_end; 1100 } 1101 1102 if (ctx->open_rec && msg_en->sg.size < required_size) 1103 goto alloc_encrypted; 1104 } 1105 1106 if (!num_async) { 1107 goto send_end; 1108 } else if (num_zc) { 1109 /* Wait for pending encryptions to get completed */ 1110 spin_lock_bh(&ctx->encrypt_compl_lock); 1111 ctx->async_notify = true; 1112 1113 pending = atomic_read(&ctx->encrypt_pending); 1114 spin_unlock_bh(&ctx->encrypt_compl_lock); 1115 if (pending) 1116 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1117 else 1118 reinit_completion(&ctx->async_wait.completion); 1119 1120 /* There can be no concurrent accesses, since we have no 1121 * pending encrypt operations 1122 */ 1123 WRITE_ONCE(ctx->async_notify, false); 1124 1125 if (ctx->async_wait.err) { 1126 ret = ctx->async_wait.err; 1127 copied = 0; 1128 } 1129 } 1130 1131 /* Transmit if any encryptions have completed */ 1132 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1133 cancel_delayed_work(&ctx->tx_work.work); 1134 tls_tx_records(sk, msg->msg_flags); 1135 } 1136 1137 send_end: 1138 ret = sk_stream_error(sk, msg->msg_flags, ret); 1139 1140 release_sock(sk); 1141 mutex_unlock(&tls_ctx->tx_lock); 1142 return copied > 0 ? copied : ret; 1143 } 1144 1145 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1146 int offset, size_t size, int flags) 1147 { 1148 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1149 struct tls_context *tls_ctx = tls_get_ctx(sk); 1150 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1151 struct tls_prot_info *prot = &tls_ctx->prot_info; 1152 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1153 struct sk_msg *msg_pl; 1154 struct tls_rec *rec; 1155 int num_async = 0; 1156 ssize_t copied = 0; 1157 bool full_record; 1158 int record_room; 1159 int ret = 0; 1160 bool eor; 1161 1162 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1163 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1164 1165 /* Call the sk_stream functions to manage the sndbuf mem. */ 1166 while (size > 0) { 1167 size_t copy, required_size; 1168 1169 if (sk->sk_err) { 1170 ret = -sk->sk_err; 1171 goto sendpage_end; 1172 } 1173 1174 if (ctx->open_rec) 1175 rec = ctx->open_rec; 1176 else 1177 rec = ctx->open_rec = tls_get_rec(sk); 1178 if (!rec) { 1179 ret = -ENOMEM; 1180 goto sendpage_end; 1181 } 1182 1183 msg_pl = &rec->msg_plaintext; 1184 1185 full_record = false; 1186 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1187 copy = size; 1188 if (copy >= record_room) { 1189 copy = record_room; 1190 full_record = true; 1191 } 1192 1193 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1194 1195 if (!sk_stream_memory_free(sk)) 1196 goto wait_for_sndbuf; 1197 alloc_payload: 1198 ret = tls_alloc_encrypted_msg(sk, required_size); 1199 if (ret) { 1200 if (ret != -ENOSPC) 1201 goto wait_for_memory; 1202 1203 /* Adjust copy according to the amount that was 1204 * actually allocated. The difference is due 1205 * to max sg elements limit 1206 */ 1207 copy -= required_size - msg_pl->sg.size; 1208 full_record = true; 1209 } 1210 1211 sk_msg_page_add(msg_pl, page, copy, offset); 1212 sk_mem_charge(sk, copy); 1213 1214 offset += copy; 1215 size -= copy; 1216 copied += copy; 1217 1218 tls_ctx->pending_open_record_frags = true; 1219 if (full_record || eor || sk_msg_full(msg_pl)) { 1220 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1221 record_type, &copied, flags); 1222 if (ret) { 1223 if (ret == -EINPROGRESS) 1224 num_async++; 1225 else if (ret == -ENOMEM) 1226 goto wait_for_memory; 1227 else if (ret != -EAGAIN) { 1228 if (ret == -ENOSPC) 1229 ret = 0; 1230 goto sendpage_end; 1231 } 1232 } 1233 } 1234 continue; 1235 wait_for_sndbuf: 1236 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1237 wait_for_memory: 1238 ret = sk_stream_wait_memory(sk, &timeo); 1239 if (ret) { 1240 if (ctx->open_rec) 1241 tls_trim_both_msgs(sk, msg_pl->sg.size); 1242 goto sendpage_end; 1243 } 1244 1245 if (ctx->open_rec) 1246 goto alloc_payload; 1247 } 1248 1249 if (num_async) { 1250 /* Transmit if any encryptions have completed */ 1251 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1252 cancel_delayed_work(&ctx->tx_work.work); 1253 tls_tx_records(sk, flags); 1254 } 1255 } 1256 sendpage_end: 1257 ret = sk_stream_error(sk, flags, ret); 1258 return copied > 0 ? copied : ret; 1259 } 1260 1261 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1262 int offset, size_t size, int flags) 1263 { 1264 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1265 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1266 MSG_NO_SHARED_FRAGS)) 1267 return -EOPNOTSUPP; 1268 1269 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1270 } 1271 1272 int tls_sw_sendpage(struct sock *sk, struct page *page, 1273 int offset, size_t size, int flags) 1274 { 1275 struct tls_context *tls_ctx = tls_get_ctx(sk); 1276 int ret; 1277 1278 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1279 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1280 return -EOPNOTSUPP; 1281 1282 mutex_lock(&tls_ctx->tx_lock); 1283 lock_sock(sk); 1284 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1285 release_sock(sk); 1286 mutex_unlock(&tls_ctx->tx_lock); 1287 return ret; 1288 } 1289 1290 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1291 bool nonblock, long timeo, int *err) 1292 { 1293 struct tls_context *tls_ctx = tls_get_ctx(sk); 1294 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1295 struct sk_buff *skb; 1296 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1297 1298 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1299 if (sk->sk_err) { 1300 *err = sock_error(sk); 1301 return NULL; 1302 } 1303 1304 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1305 __strp_unpause(&ctx->strp); 1306 if (ctx->recv_pkt) 1307 return ctx->recv_pkt; 1308 } 1309 1310 if (sk->sk_shutdown & RCV_SHUTDOWN) 1311 return NULL; 1312 1313 if (sock_flag(sk, SOCK_DONE)) 1314 return NULL; 1315 1316 if (nonblock || !timeo) { 1317 *err = -EAGAIN; 1318 return NULL; 1319 } 1320 1321 add_wait_queue(sk_sleep(sk), &wait); 1322 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1323 sk_wait_event(sk, &timeo, 1324 ctx->recv_pkt != skb || 1325 !sk_psock_queue_empty(psock), 1326 &wait); 1327 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1328 remove_wait_queue(sk_sleep(sk), &wait); 1329 1330 /* Handle signals */ 1331 if (signal_pending(current)) { 1332 *err = sock_intr_errno(timeo); 1333 return NULL; 1334 } 1335 } 1336 1337 return skb; 1338 } 1339 1340 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1341 int length, int *pages_used, 1342 unsigned int *size_used, 1343 struct scatterlist *to, 1344 int to_max_pages) 1345 { 1346 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1347 struct page *pages[MAX_SKB_FRAGS]; 1348 unsigned int size = *size_used; 1349 ssize_t copied, use; 1350 size_t offset; 1351 1352 while (length > 0) { 1353 i = 0; 1354 maxpages = to_max_pages - num_elem; 1355 if (maxpages == 0) { 1356 rc = -EFAULT; 1357 goto out; 1358 } 1359 copied = iov_iter_get_pages(from, pages, 1360 length, 1361 maxpages, &offset); 1362 if (copied <= 0) { 1363 rc = -EFAULT; 1364 goto out; 1365 } 1366 1367 iov_iter_advance(from, copied); 1368 1369 length -= copied; 1370 size += copied; 1371 while (copied) { 1372 use = min_t(int, copied, PAGE_SIZE - offset); 1373 1374 sg_set_page(&to[num_elem], 1375 pages[i], use, offset); 1376 sg_unmark_end(&to[num_elem]); 1377 /* We do not uncharge memory from this API */ 1378 1379 offset = 0; 1380 copied -= use; 1381 1382 i++; 1383 num_elem++; 1384 } 1385 } 1386 /* Mark the end in the last sg entry if newly added */ 1387 if (num_elem > *pages_used) 1388 sg_mark_end(&to[num_elem - 1]); 1389 out: 1390 if (rc) 1391 iov_iter_revert(from, size - *size_used); 1392 *size_used = size; 1393 *pages_used = num_elem; 1394 1395 return rc; 1396 } 1397 1398 /* This function decrypts the input skb into either out_iov or in out_sg 1399 * or in skb buffers itself. The input parameter 'zc' indicates if 1400 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1401 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1402 * NULL, then the decryption happens inside skb buffers itself, i.e. 1403 * zero-copy gets disabled and 'zc' is updated. 1404 */ 1405 1406 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1407 struct iov_iter *out_iov, 1408 struct scatterlist *out_sg, 1409 int *chunk, bool *zc, bool async) 1410 { 1411 struct tls_context *tls_ctx = tls_get_ctx(sk); 1412 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1413 struct tls_prot_info *prot = &tls_ctx->prot_info; 1414 struct strp_msg *rxm = strp_msg(skb); 1415 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1416 struct aead_request *aead_req; 1417 struct sk_buff *unused; 1418 u8 *aad, *iv, *mem = NULL; 1419 struct scatterlist *sgin = NULL; 1420 struct scatterlist *sgout = NULL; 1421 const int data_len = rxm->full_len - prot->overhead_size + 1422 prot->tail_size; 1423 int iv_offset = 0; 1424 1425 if (*zc && (out_iov || out_sg)) { 1426 if (out_iov) 1427 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1428 else 1429 n_sgout = sg_nents(out_sg); 1430 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1431 rxm->full_len - prot->prepend_size); 1432 } else { 1433 n_sgout = 0; 1434 *zc = false; 1435 n_sgin = skb_cow_data(skb, 0, &unused); 1436 } 1437 1438 if (n_sgin < 1) 1439 return -EBADMSG; 1440 1441 /* Increment to accommodate AAD */ 1442 n_sgin = n_sgin + 1; 1443 1444 nsg = n_sgin + n_sgout; 1445 1446 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1447 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1448 mem_size = mem_size + prot->aad_size; 1449 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1450 1451 /* Allocate a single block of memory which contains 1452 * aead_req || sgin[] || sgout[] || aad || iv. 1453 * This order achieves correct alignment for aead_req, sgin, sgout. 1454 */ 1455 mem = kmalloc(mem_size, sk->sk_allocation); 1456 if (!mem) 1457 return -ENOMEM; 1458 1459 /* Segment the allocated memory */ 1460 aead_req = (struct aead_request *)mem; 1461 sgin = (struct scatterlist *)(mem + aead_size); 1462 sgout = sgin + n_sgin; 1463 aad = (u8 *)(sgout + n_sgout); 1464 iv = aad + prot->aad_size; 1465 1466 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1467 switch (prot->cipher_type) { 1468 case TLS_CIPHER_AES_CCM_128: 1469 iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1470 iv_offset = 1; 1471 break; 1472 case TLS_CIPHER_SM4_CCM: 1473 iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1474 iv_offset = 1; 1475 break; 1476 } 1477 1478 /* Prepare IV */ 1479 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1480 iv + iv_offset + prot->salt_size, 1481 prot->iv_size); 1482 if (err < 0) { 1483 kfree(mem); 1484 return err; 1485 } 1486 if (prot->version == TLS_1_3_VERSION || 1487 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) 1488 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1489 crypto_aead_ivsize(ctx->aead_recv)); 1490 else 1491 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1492 1493 xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq); 1494 1495 /* Prepare AAD */ 1496 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1497 prot->tail_size, 1498 tls_ctx->rx.rec_seq, ctx->control, prot); 1499 1500 /* Prepare sgin */ 1501 sg_init_table(sgin, n_sgin); 1502 sg_set_buf(&sgin[0], aad, prot->aad_size); 1503 err = skb_to_sgvec(skb, &sgin[1], 1504 rxm->offset + prot->prepend_size, 1505 rxm->full_len - prot->prepend_size); 1506 if (err < 0) { 1507 kfree(mem); 1508 return err; 1509 } 1510 1511 if (n_sgout) { 1512 if (out_iov) { 1513 sg_init_table(sgout, n_sgout); 1514 sg_set_buf(&sgout[0], aad, prot->aad_size); 1515 1516 *chunk = 0; 1517 err = tls_setup_from_iter(sk, out_iov, data_len, 1518 &pages, chunk, &sgout[1], 1519 (n_sgout - 1)); 1520 if (err < 0) 1521 goto fallback_to_reg_recv; 1522 } else if (out_sg) { 1523 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1524 } else { 1525 goto fallback_to_reg_recv; 1526 } 1527 } else { 1528 fallback_to_reg_recv: 1529 sgout = sgin; 1530 pages = 0; 1531 *chunk = data_len; 1532 *zc = false; 1533 } 1534 1535 /* Prepare and submit AEAD request */ 1536 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1537 data_len, aead_req, async); 1538 if (err == -EINPROGRESS) 1539 return err; 1540 1541 /* Release the pages in case iov was mapped to pages */ 1542 for (; pages > 0; pages--) 1543 put_page(sg_page(&sgout[pages])); 1544 1545 kfree(mem); 1546 return err; 1547 } 1548 1549 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1550 struct iov_iter *dest, int *chunk, bool *zc, 1551 bool async) 1552 { 1553 struct tls_context *tls_ctx = tls_get_ctx(sk); 1554 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1555 struct tls_prot_info *prot = &tls_ctx->prot_info; 1556 struct strp_msg *rxm = strp_msg(skb); 1557 int pad, err = 0; 1558 1559 if (!ctx->decrypted) { 1560 if (tls_ctx->rx_conf == TLS_HW) { 1561 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1562 if (err < 0) 1563 return err; 1564 } 1565 1566 /* Still not decrypted after tls_device */ 1567 if (!ctx->decrypted) { 1568 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1569 async); 1570 if (err < 0) { 1571 if (err == -EINPROGRESS) 1572 tls_advance_record_sn(sk, prot, 1573 &tls_ctx->rx); 1574 else if (err == -EBADMSG) 1575 TLS_INC_STATS(sock_net(sk), 1576 LINUX_MIB_TLSDECRYPTERROR); 1577 return err; 1578 } 1579 } else { 1580 *zc = false; 1581 } 1582 1583 pad = padding_length(ctx, prot, skb); 1584 if (pad < 0) 1585 return pad; 1586 1587 rxm->full_len -= pad; 1588 rxm->offset += prot->prepend_size; 1589 rxm->full_len -= prot->overhead_size; 1590 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1591 ctx->decrypted = 1; 1592 ctx->saved_data_ready(sk); 1593 } else { 1594 *zc = false; 1595 } 1596 1597 return err; 1598 } 1599 1600 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1601 struct scatterlist *sgout) 1602 { 1603 bool zc = true; 1604 int chunk; 1605 1606 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1607 } 1608 1609 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1610 unsigned int len) 1611 { 1612 struct tls_context *tls_ctx = tls_get_ctx(sk); 1613 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1614 1615 if (skb) { 1616 struct strp_msg *rxm = strp_msg(skb); 1617 1618 if (len < rxm->full_len) { 1619 rxm->offset += len; 1620 rxm->full_len -= len; 1621 return false; 1622 } 1623 consume_skb(skb); 1624 } 1625 1626 /* Finished with message */ 1627 ctx->recv_pkt = NULL; 1628 __strp_unpause(&ctx->strp); 1629 1630 return true; 1631 } 1632 1633 /* This function traverses the rx_list in tls receive context to copies the 1634 * decrypted records into the buffer provided by caller zero copy is not 1635 * true. Further, the records are removed from the rx_list if it is not a peek 1636 * case and the record has been consumed completely. 1637 */ 1638 static int process_rx_list(struct tls_sw_context_rx *ctx, 1639 struct msghdr *msg, 1640 u8 *control, 1641 bool *cmsg, 1642 size_t skip, 1643 size_t len, 1644 bool zc, 1645 bool is_peek) 1646 { 1647 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1648 u8 ctrl = *control; 1649 u8 msgc = *cmsg; 1650 struct tls_msg *tlm; 1651 ssize_t copied = 0; 1652 1653 /* Set the record type in 'control' if caller didn't pass it */ 1654 if (!ctrl && skb) { 1655 tlm = tls_msg(skb); 1656 ctrl = tlm->control; 1657 } 1658 1659 while (skip && skb) { 1660 struct strp_msg *rxm = strp_msg(skb); 1661 tlm = tls_msg(skb); 1662 1663 /* Cannot process a record of different type */ 1664 if (ctrl != tlm->control) 1665 return 0; 1666 1667 if (skip < rxm->full_len) 1668 break; 1669 1670 skip = skip - rxm->full_len; 1671 skb = skb_peek_next(skb, &ctx->rx_list); 1672 } 1673 1674 while (len && skb) { 1675 struct sk_buff *next_skb; 1676 struct strp_msg *rxm = strp_msg(skb); 1677 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1678 1679 tlm = tls_msg(skb); 1680 1681 /* Cannot process a record of different type */ 1682 if (ctrl != tlm->control) 1683 return 0; 1684 1685 /* Set record type if not already done. For a non-data record, 1686 * do not proceed if record type could not be copied. 1687 */ 1688 if (!msgc) { 1689 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1690 sizeof(ctrl), &ctrl); 1691 msgc = true; 1692 if (ctrl != TLS_RECORD_TYPE_DATA) { 1693 if (cerr || msg->msg_flags & MSG_CTRUNC) 1694 return -EIO; 1695 1696 *cmsg = msgc; 1697 } 1698 } 1699 1700 if (!zc || (rxm->full_len - skip) > len) { 1701 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1702 msg, chunk); 1703 if (err < 0) 1704 return err; 1705 } 1706 1707 len = len - chunk; 1708 copied = copied + chunk; 1709 1710 /* Consume the data from record if it is non-peek case*/ 1711 if (!is_peek) { 1712 rxm->offset = rxm->offset + chunk; 1713 rxm->full_len = rxm->full_len - chunk; 1714 1715 /* Return if there is unconsumed data in the record */ 1716 if (rxm->full_len - skip) 1717 break; 1718 } 1719 1720 /* The remaining skip-bytes must lie in 1st record in rx_list. 1721 * So from the 2nd record, 'skip' should be 0. 1722 */ 1723 skip = 0; 1724 1725 if (msg) 1726 msg->msg_flags |= MSG_EOR; 1727 1728 next_skb = skb_peek_next(skb, &ctx->rx_list); 1729 1730 if (!is_peek) { 1731 skb_unlink(skb, &ctx->rx_list); 1732 consume_skb(skb); 1733 } 1734 1735 skb = next_skb; 1736 } 1737 1738 *control = ctrl; 1739 return copied; 1740 } 1741 1742 int tls_sw_recvmsg(struct sock *sk, 1743 struct msghdr *msg, 1744 size_t len, 1745 int nonblock, 1746 int flags, 1747 int *addr_len) 1748 { 1749 struct tls_context *tls_ctx = tls_get_ctx(sk); 1750 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1751 struct tls_prot_info *prot = &tls_ctx->prot_info; 1752 struct sk_psock *psock; 1753 unsigned char control = 0; 1754 ssize_t decrypted = 0; 1755 struct strp_msg *rxm; 1756 struct tls_msg *tlm; 1757 struct sk_buff *skb; 1758 ssize_t copied = 0; 1759 bool cmsg = false; 1760 int target, err = 0; 1761 long timeo; 1762 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1763 bool is_peek = flags & MSG_PEEK; 1764 bool bpf_strp_enabled; 1765 int num_async = 0; 1766 int pending; 1767 1768 flags |= nonblock; 1769 1770 if (unlikely(flags & MSG_ERRQUEUE)) 1771 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1772 1773 psock = sk_psock_get(sk); 1774 lock_sock(sk); 1775 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1776 1777 /* Process pending decrypted records. It must be non-zero-copy */ 1778 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1779 is_peek); 1780 if (err < 0) { 1781 tls_err_abort(sk, err); 1782 goto end; 1783 } else { 1784 copied = err; 1785 } 1786 1787 if (len <= copied) 1788 goto recv_end; 1789 1790 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1791 len = len - copied; 1792 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1793 1794 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1795 bool retain_skb = false; 1796 bool zc = false; 1797 int to_decrypt; 1798 int chunk = 0; 1799 bool async_capable; 1800 bool async = false; 1801 1802 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err); 1803 if (!skb) { 1804 if (psock) { 1805 int ret = sk_msg_recvmsg(sk, psock, msg, len, 1806 flags); 1807 1808 if (ret > 0) { 1809 decrypted += ret; 1810 len -= ret; 1811 continue; 1812 } 1813 } 1814 goto recv_end; 1815 } else { 1816 tlm = tls_msg(skb); 1817 if (prot->version == TLS_1_3_VERSION) 1818 tlm->control = 0; 1819 else 1820 tlm->control = ctx->control; 1821 } 1822 1823 rxm = strp_msg(skb); 1824 1825 to_decrypt = rxm->full_len - prot->overhead_size; 1826 1827 if (to_decrypt <= len && !is_kvec && !is_peek && 1828 ctx->control == TLS_RECORD_TYPE_DATA && 1829 prot->version != TLS_1_3_VERSION && 1830 !bpf_strp_enabled) 1831 zc = true; 1832 1833 /* Do not use async mode if record is non-data */ 1834 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1835 async_capable = ctx->async_capable; 1836 else 1837 async_capable = false; 1838 1839 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1840 &chunk, &zc, async_capable); 1841 if (err < 0 && err != -EINPROGRESS) { 1842 tls_err_abort(sk, EBADMSG); 1843 goto recv_end; 1844 } 1845 1846 if (err == -EINPROGRESS) { 1847 async = true; 1848 num_async++; 1849 } else if (prot->version == TLS_1_3_VERSION) { 1850 tlm->control = ctx->control; 1851 } 1852 1853 /* If the type of records being processed is not known yet, 1854 * set it to record type just dequeued. If it is already known, 1855 * but does not match the record type just dequeued, go to end. 1856 * We always get record type here since for tls1.2, record type 1857 * is known just after record is dequeued from stream parser. 1858 * For tls1.3, we disable async. 1859 */ 1860 1861 if (!control) 1862 control = tlm->control; 1863 else if (control != tlm->control) 1864 goto recv_end; 1865 1866 if (!cmsg) { 1867 int cerr; 1868 1869 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1870 sizeof(control), &control); 1871 cmsg = true; 1872 if (control != TLS_RECORD_TYPE_DATA) { 1873 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1874 err = -EIO; 1875 goto recv_end; 1876 } 1877 } 1878 } 1879 1880 if (async) 1881 goto pick_next_record; 1882 1883 if (!zc) { 1884 if (bpf_strp_enabled) { 1885 err = sk_psock_tls_strp_read(psock, skb); 1886 if (err != __SK_PASS) { 1887 rxm->offset = rxm->offset + rxm->full_len; 1888 rxm->full_len = 0; 1889 if (err == __SK_DROP) 1890 consume_skb(skb); 1891 ctx->recv_pkt = NULL; 1892 __strp_unpause(&ctx->strp); 1893 continue; 1894 } 1895 } 1896 1897 if (rxm->full_len > len) { 1898 retain_skb = true; 1899 chunk = len; 1900 } else { 1901 chunk = rxm->full_len; 1902 } 1903 1904 err = skb_copy_datagram_msg(skb, rxm->offset, 1905 msg, chunk); 1906 if (err < 0) 1907 goto recv_end; 1908 1909 if (!is_peek) { 1910 rxm->offset = rxm->offset + chunk; 1911 rxm->full_len = rxm->full_len - chunk; 1912 } 1913 } 1914 1915 pick_next_record: 1916 if (chunk > len) 1917 chunk = len; 1918 1919 decrypted += chunk; 1920 len -= chunk; 1921 1922 /* For async or peek case, queue the current skb */ 1923 if (async || is_peek || retain_skb) { 1924 skb_queue_tail(&ctx->rx_list, skb); 1925 skb = NULL; 1926 } 1927 1928 if (tls_sw_advance_skb(sk, skb, chunk)) { 1929 /* Return full control message to 1930 * userspace before trying to parse 1931 * another message type 1932 */ 1933 msg->msg_flags |= MSG_EOR; 1934 if (control != TLS_RECORD_TYPE_DATA) 1935 goto recv_end; 1936 } else { 1937 break; 1938 } 1939 } 1940 1941 recv_end: 1942 if (num_async) { 1943 /* Wait for all previously submitted records to be decrypted */ 1944 spin_lock_bh(&ctx->decrypt_compl_lock); 1945 ctx->async_notify = true; 1946 pending = atomic_read(&ctx->decrypt_pending); 1947 spin_unlock_bh(&ctx->decrypt_compl_lock); 1948 if (pending) { 1949 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1950 if (err) { 1951 /* one of async decrypt failed */ 1952 tls_err_abort(sk, err); 1953 copied = 0; 1954 decrypted = 0; 1955 goto end; 1956 } 1957 } else { 1958 reinit_completion(&ctx->async_wait.completion); 1959 } 1960 1961 /* There can be no concurrent accesses, since we have no 1962 * pending decrypt operations 1963 */ 1964 WRITE_ONCE(ctx->async_notify, false); 1965 1966 /* Drain records from the rx_list & copy if required */ 1967 if (is_peek || is_kvec) 1968 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1969 decrypted, false, is_peek); 1970 else 1971 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1972 decrypted, true, is_peek); 1973 if (err < 0) { 1974 tls_err_abort(sk, err); 1975 copied = 0; 1976 goto end; 1977 } 1978 } 1979 1980 copied += decrypted; 1981 1982 end: 1983 release_sock(sk); 1984 if (psock) 1985 sk_psock_put(sk, psock); 1986 return copied ? : err; 1987 } 1988 1989 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1990 struct pipe_inode_info *pipe, 1991 size_t len, unsigned int flags) 1992 { 1993 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1994 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1995 struct strp_msg *rxm = NULL; 1996 struct sock *sk = sock->sk; 1997 struct sk_buff *skb; 1998 ssize_t copied = 0; 1999 int err = 0; 2000 long timeo; 2001 int chunk; 2002 bool zc = false; 2003 2004 lock_sock(sk); 2005 2006 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); 2007 2008 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err); 2009 if (!skb) 2010 goto splice_read_end; 2011 2012 if (!ctx->decrypted) { 2013 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 2014 2015 /* splice does not support reading control messages */ 2016 if (ctx->control != TLS_RECORD_TYPE_DATA) { 2017 err = -EINVAL; 2018 goto splice_read_end; 2019 } 2020 2021 if (err < 0) { 2022 tls_err_abort(sk, EBADMSG); 2023 goto splice_read_end; 2024 } 2025 ctx->decrypted = 1; 2026 } 2027 rxm = strp_msg(skb); 2028 2029 chunk = min_t(unsigned int, rxm->full_len, len); 2030 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2031 if (copied < 0) 2032 goto splice_read_end; 2033 2034 tls_sw_advance_skb(sk, skb, copied); 2035 2036 splice_read_end: 2037 release_sock(sk); 2038 return copied ? : err; 2039 } 2040 2041 bool tls_sw_stream_read(const struct sock *sk) 2042 { 2043 struct tls_context *tls_ctx = tls_get_ctx(sk); 2044 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2045 bool ingress_empty = true; 2046 struct sk_psock *psock; 2047 2048 rcu_read_lock(); 2049 psock = sk_psock(sk); 2050 if (psock) 2051 ingress_empty = list_empty(&psock->ingress_msg); 2052 rcu_read_unlock(); 2053 2054 return !ingress_empty || ctx->recv_pkt || 2055 !skb_queue_empty(&ctx->rx_list); 2056 } 2057 2058 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2059 { 2060 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2061 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2062 struct tls_prot_info *prot = &tls_ctx->prot_info; 2063 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2064 struct strp_msg *rxm = strp_msg(skb); 2065 size_t cipher_overhead; 2066 size_t data_len = 0; 2067 int ret; 2068 2069 /* Verify that we have a full TLS header, or wait for more data */ 2070 if (rxm->offset + prot->prepend_size > skb->len) 2071 return 0; 2072 2073 /* Sanity-check size of on-stack buffer. */ 2074 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2075 ret = -EINVAL; 2076 goto read_failure; 2077 } 2078 2079 /* Linearize header to local buffer */ 2080 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2081 2082 if (ret < 0) 2083 goto read_failure; 2084 2085 ctx->control = header[0]; 2086 2087 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2088 2089 cipher_overhead = prot->tag_size; 2090 if (prot->version != TLS_1_3_VERSION && 2091 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2092 cipher_overhead += prot->iv_size; 2093 2094 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2095 prot->tail_size) { 2096 ret = -EMSGSIZE; 2097 goto read_failure; 2098 } 2099 if (data_len < cipher_overhead) { 2100 ret = -EBADMSG; 2101 goto read_failure; 2102 } 2103 2104 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2105 if (header[1] != TLS_1_2_VERSION_MINOR || 2106 header[2] != TLS_1_2_VERSION_MAJOR) { 2107 ret = -EINVAL; 2108 goto read_failure; 2109 } 2110 2111 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2112 TCP_SKB_CB(skb)->seq + rxm->offset); 2113 return data_len + TLS_HEADER_SIZE; 2114 2115 read_failure: 2116 tls_err_abort(strp->sk, ret); 2117 2118 return ret; 2119 } 2120 2121 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2122 { 2123 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2124 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2125 2126 ctx->decrypted = 0; 2127 2128 ctx->recv_pkt = skb; 2129 strp_pause(strp); 2130 2131 ctx->saved_data_ready(strp->sk); 2132 } 2133 2134 static void tls_data_ready(struct sock *sk) 2135 { 2136 struct tls_context *tls_ctx = tls_get_ctx(sk); 2137 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2138 struct sk_psock *psock; 2139 2140 strp_data_ready(&ctx->strp); 2141 2142 psock = sk_psock_get(sk); 2143 if (psock) { 2144 if (!list_empty(&psock->ingress_msg)) 2145 ctx->saved_data_ready(sk); 2146 sk_psock_put(sk, psock); 2147 } 2148 } 2149 2150 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2151 { 2152 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2153 2154 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2155 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2156 cancel_delayed_work_sync(&ctx->tx_work.work); 2157 } 2158 2159 void tls_sw_release_resources_tx(struct sock *sk) 2160 { 2161 struct tls_context *tls_ctx = tls_get_ctx(sk); 2162 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2163 struct tls_rec *rec, *tmp; 2164 int pending; 2165 2166 /* Wait for any pending async encryptions to complete */ 2167 spin_lock_bh(&ctx->encrypt_compl_lock); 2168 ctx->async_notify = true; 2169 pending = atomic_read(&ctx->encrypt_pending); 2170 spin_unlock_bh(&ctx->encrypt_compl_lock); 2171 2172 if (pending) 2173 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2174 2175 tls_tx_records(sk, -1); 2176 2177 /* Free up un-sent records in tx_list. First, free 2178 * the partially sent record if any at head of tx_list. 2179 */ 2180 if (tls_ctx->partially_sent_record) { 2181 tls_free_partial_record(sk, tls_ctx); 2182 rec = list_first_entry(&ctx->tx_list, 2183 struct tls_rec, list); 2184 list_del(&rec->list); 2185 sk_msg_free(sk, &rec->msg_plaintext); 2186 kfree(rec); 2187 } 2188 2189 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2190 list_del(&rec->list); 2191 sk_msg_free(sk, &rec->msg_encrypted); 2192 sk_msg_free(sk, &rec->msg_plaintext); 2193 kfree(rec); 2194 } 2195 2196 crypto_free_aead(ctx->aead_send); 2197 tls_free_open_rec(sk); 2198 } 2199 2200 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2201 { 2202 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2203 2204 kfree(ctx); 2205 } 2206 2207 void tls_sw_release_resources_rx(struct sock *sk) 2208 { 2209 struct tls_context *tls_ctx = tls_get_ctx(sk); 2210 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2211 2212 kfree(tls_ctx->rx.rec_seq); 2213 kfree(tls_ctx->rx.iv); 2214 2215 if (ctx->aead_recv) { 2216 kfree_skb(ctx->recv_pkt); 2217 ctx->recv_pkt = NULL; 2218 skb_queue_purge(&ctx->rx_list); 2219 crypto_free_aead(ctx->aead_recv); 2220 strp_stop(&ctx->strp); 2221 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2222 * we still want to strp_stop(), but sk->sk_data_ready was 2223 * never swapped. 2224 */ 2225 if (ctx->saved_data_ready) { 2226 write_lock_bh(&sk->sk_callback_lock); 2227 sk->sk_data_ready = ctx->saved_data_ready; 2228 write_unlock_bh(&sk->sk_callback_lock); 2229 } 2230 } 2231 } 2232 2233 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2234 { 2235 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2236 2237 strp_done(&ctx->strp); 2238 } 2239 2240 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2241 { 2242 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2243 2244 kfree(ctx); 2245 } 2246 2247 void tls_sw_free_resources_rx(struct sock *sk) 2248 { 2249 struct tls_context *tls_ctx = tls_get_ctx(sk); 2250 2251 tls_sw_release_resources_rx(sk); 2252 tls_sw_free_ctx_rx(tls_ctx); 2253 } 2254 2255 /* The work handler to transmitt the encrypted records in tx_list */ 2256 static void tx_work_handler(struct work_struct *work) 2257 { 2258 struct delayed_work *delayed_work = to_delayed_work(work); 2259 struct tx_work *tx_work = container_of(delayed_work, 2260 struct tx_work, work); 2261 struct sock *sk = tx_work->sk; 2262 struct tls_context *tls_ctx = tls_get_ctx(sk); 2263 struct tls_sw_context_tx *ctx; 2264 2265 if (unlikely(!tls_ctx)) 2266 return; 2267 2268 ctx = tls_sw_ctx_tx(tls_ctx); 2269 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2270 return; 2271 2272 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2273 return; 2274 mutex_lock(&tls_ctx->tx_lock); 2275 lock_sock(sk); 2276 tls_tx_records(sk, -1); 2277 release_sock(sk); 2278 mutex_unlock(&tls_ctx->tx_lock); 2279 } 2280 2281 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2282 { 2283 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2284 2285 /* Schedule the transmission if tx list is ready */ 2286 if (is_tx_ready(tx_ctx) && 2287 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2288 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2289 } 2290 2291 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2292 { 2293 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2294 2295 write_lock_bh(&sk->sk_callback_lock); 2296 rx_ctx->saved_data_ready = sk->sk_data_ready; 2297 sk->sk_data_ready = tls_data_ready; 2298 write_unlock_bh(&sk->sk_callback_lock); 2299 2300 strp_check_rcv(&rx_ctx->strp); 2301 } 2302 2303 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2304 { 2305 struct tls_context *tls_ctx = tls_get_ctx(sk); 2306 struct tls_prot_info *prot = &tls_ctx->prot_info; 2307 struct tls_crypto_info *crypto_info; 2308 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2309 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2310 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2311 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2312 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2313 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2314 struct cipher_context *cctx; 2315 struct crypto_aead **aead; 2316 struct strp_callbacks cb; 2317 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2318 struct crypto_tfm *tfm; 2319 char *iv, *rec_seq, *key, *salt, *cipher_name; 2320 size_t keysize; 2321 int rc = 0; 2322 2323 if (!ctx) { 2324 rc = -EINVAL; 2325 goto out; 2326 } 2327 2328 if (tx) { 2329 if (!ctx->priv_ctx_tx) { 2330 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2331 if (!sw_ctx_tx) { 2332 rc = -ENOMEM; 2333 goto out; 2334 } 2335 ctx->priv_ctx_tx = sw_ctx_tx; 2336 } else { 2337 sw_ctx_tx = 2338 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2339 } 2340 } else { 2341 if (!ctx->priv_ctx_rx) { 2342 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2343 if (!sw_ctx_rx) { 2344 rc = -ENOMEM; 2345 goto out; 2346 } 2347 ctx->priv_ctx_rx = sw_ctx_rx; 2348 } else { 2349 sw_ctx_rx = 2350 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2351 } 2352 } 2353 2354 if (tx) { 2355 crypto_init_wait(&sw_ctx_tx->async_wait); 2356 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2357 crypto_info = &ctx->crypto_send.info; 2358 cctx = &ctx->tx; 2359 aead = &sw_ctx_tx->aead_send; 2360 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2361 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2362 sw_ctx_tx->tx_work.sk = sk; 2363 } else { 2364 crypto_init_wait(&sw_ctx_rx->async_wait); 2365 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2366 crypto_info = &ctx->crypto_recv.info; 2367 cctx = &ctx->rx; 2368 skb_queue_head_init(&sw_ctx_rx->rx_list); 2369 aead = &sw_ctx_rx->aead_recv; 2370 } 2371 2372 switch (crypto_info->cipher_type) { 2373 case TLS_CIPHER_AES_GCM_128: { 2374 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2375 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2376 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2377 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2378 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2379 rec_seq = 2380 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2381 gcm_128_info = 2382 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2383 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2384 key = gcm_128_info->key; 2385 salt = gcm_128_info->salt; 2386 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2387 cipher_name = "gcm(aes)"; 2388 break; 2389 } 2390 case TLS_CIPHER_AES_GCM_256: { 2391 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2392 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2393 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2394 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2395 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2396 rec_seq = 2397 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2398 gcm_256_info = 2399 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2400 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2401 key = gcm_256_info->key; 2402 salt = gcm_256_info->salt; 2403 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2404 cipher_name = "gcm(aes)"; 2405 break; 2406 } 2407 case TLS_CIPHER_AES_CCM_128: { 2408 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2409 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2410 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2411 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2412 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2413 rec_seq = 2414 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2415 ccm_128_info = 2416 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2417 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2418 key = ccm_128_info->key; 2419 salt = ccm_128_info->salt; 2420 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2421 cipher_name = "ccm(aes)"; 2422 break; 2423 } 2424 case TLS_CIPHER_CHACHA20_POLY1305: { 2425 chacha20_poly1305_info = (void *)crypto_info; 2426 nonce_size = 0; 2427 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2428 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2429 iv = chacha20_poly1305_info->iv; 2430 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2431 rec_seq = chacha20_poly1305_info->rec_seq; 2432 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2433 key = chacha20_poly1305_info->key; 2434 salt = chacha20_poly1305_info->salt; 2435 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2436 cipher_name = "rfc7539(chacha20,poly1305)"; 2437 break; 2438 } 2439 case TLS_CIPHER_SM4_GCM: { 2440 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2441 2442 sm4_gcm_info = (void *)crypto_info; 2443 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2444 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2445 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2446 iv = sm4_gcm_info->iv; 2447 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2448 rec_seq = sm4_gcm_info->rec_seq; 2449 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2450 key = sm4_gcm_info->key; 2451 salt = sm4_gcm_info->salt; 2452 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2453 cipher_name = "gcm(sm4)"; 2454 break; 2455 } 2456 case TLS_CIPHER_SM4_CCM: { 2457 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2458 2459 sm4_ccm_info = (void *)crypto_info; 2460 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2461 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2462 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2463 iv = sm4_ccm_info->iv; 2464 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2465 rec_seq = sm4_ccm_info->rec_seq; 2466 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2467 key = sm4_ccm_info->key; 2468 salt = sm4_ccm_info->salt; 2469 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2470 cipher_name = "ccm(sm4)"; 2471 break; 2472 } 2473 default: 2474 rc = -EINVAL; 2475 goto free_priv; 2476 } 2477 2478 /* Sanity-check the sizes for stack allocations. */ 2479 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2480 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2481 rc = -EINVAL; 2482 goto free_priv; 2483 } 2484 2485 if (crypto_info->version == TLS_1_3_VERSION) { 2486 nonce_size = 0; 2487 prot->aad_size = TLS_HEADER_SIZE; 2488 prot->tail_size = 1; 2489 } else { 2490 prot->aad_size = TLS_AAD_SPACE_SIZE; 2491 prot->tail_size = 0; 2492 } 2493 2494 prot->version = crypto_info->version; 2495 prot->cipher_type = crypto_info->cipher_type; 2496 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2497 prot->tag_size = tag_size; 2498 prot->overhead_size = prot->prepend_size + 2499 prot->tag_size + prot->tail_size; 2500 prot->iv_size = iv_size; 2501 prot->salt_size = salt_size; 2502 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2503 if (!cctx->iv) { 2504 rc = -ENOMEM; 2505 goto free_priv; 2506 } 2507 /* Note: 128 & 256 bit salt are the same size */ 2508 prot->rec_seq_size = rec_seq_size; 2509 memcpy(cctx->iv, salt, salt_size); 2510 memcpy(cctx->iv + salt_size, iv, iv_size); 2511 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2512 if (!cctx->rec_seq) { 2513 rc = -ENOMEM; 2514 goto free_iv; 2515 } 2516 2517 if (!*aead) { 2518 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2519 if (IS_ERR(*aead)) { 2520 rc = PTR_ERR(*aead); 2521 *aead = NULL; 2522 goto free_rec_seq; 2523 } 2524 } 2525 2526 ctx->push_pending_record = tls_sw_push_pending_record; 2527 2528 rc = crypto_aead_setkey(*aead, key, keysize); 2529 2530 if (rc) 2531 goto free_aead; 2532 2533 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2534 if (rc) 2535 goto free_aead; 2536 2537 if (sw_ctx_rx) { 2538 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2539 2540 if (crypto_info->version == TLS_1_3_VERSION) 2541 sw_ctx_rx->async_capable = 0; 2542 else 2543 sw_ctx_rx->async_capable = 2544 !!(tfm->__crt_alg->cra_flags & 2545 CRYPTO_ALG_ASYNC); 2546 2547 /* Set up strparser */ 2548 memset(&cb, 0, sizeof(cb)); 2549 cb.rcv_msg = tls_queue; 2550 cb.parse_msg = tls_read_size; 2551 2552 strp_init(&sw_ctx_rx->strp, sk, &cb); 2553 } 2554 2555 goto out; 2556 2557 free_aead: 2558 crypto_free_aead(*aead); 2559 *aead = NULL; 2560 free_rec_seq: 2561 kfree(cctx->rec_seq); 2562 cctx->rec_seq = NULL; 2563 free_iv: 2564 kfree(cctx->iv); 2565 cctx->iv = NULL; 2566 free_priv: 2567 if (tx) { 2568 kfree(ctx->priv_ctx_tx); 2569 ctx->priv_ctx_tx = NULL; 2570 } else { 2571 kfree(ctx->priv_ctx_rx); 2572 ctx->priv_ctx_rx = NULL; 2573 } 2574 out: 2575 return rc; 2576 } 2577