xref: /openbmc/linux/net/tls/tls_sw.c (revision e330fb14)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <linux/splice.h>
41 #include <crypto/aead.h>
42 
43 #include <net/strparser.h>
44 #include <net/tls.h>
45 
46 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
47                      unsigned int recursion_level)
48 {
49         int start = skb_headlen(skb);
50         int i, chunk = start - offset;
51         struct sk_buff *frag_iter;
52         int elt = 0;
53 
54         if (unlikely(recursion_level >= 24))
55                 return -EMSGSIZE;
56 
57         if (chunk > 0) {
58                 if (chunk > len)
59                         chunk = len;
60                 elt++;
61                 len -= chunk;
62                 if (len == 0)
63                         return elt;
64                 offset += chunk;
65         }
66 
67         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
68                 int end;
69 
70                 WARN_ON(start > offset + len);
71 
72                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
73                 chunk = end - offset;
74                 if (chunk > 0) {
75                         if (chunk > len)
76                                 chunk = len;
77                         elt++;
78                         len -= chunk;
79                         if (len == 0)
80                                 return elt;
81                         offset += chunk;
82                 }
83                 start = end;
84         }
85 
86         if (unlikely(skb_has_frag_list(skb))) {
87                 skb_walk_frags(skb, frag_iter) {
88                         int end, ret;
89 
90                         WARN_ON(start > offset + len);
91 
92                         end = start + frag_iter->len;
93                         chunk = end - offset;
94                         if (chunk > 0) {
95                                 if (chunk > len)
96                                         chunk = len;
97                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
98                                                 recursion_level + 1);
99                                 if (unlikely(ret < 0))
100                                         return ret;
101                                 elt += ret;
102                                 len -= chunk;
103                                 if (len == 0)
104                                         return elt;
105                                 offset += chunk;
106                         }
107                         start = end;
108                 }
109         }
110         BUG_ON(len);
111         return elt;
112 }
113 
114 /* Return the number of scatterlist elements required to completely map the
115  * skb, or -EMSGSIZE if the recursion depth is exceeded.
116  */
117 static int skb_nsg(struct sk_buff *skb, int offset, int len)
118 {
119         return __skb_nsg(skb, offset, len, 0);
120 }
121 
122 static int padding_length(struct tls_sw_context_rx *ctx,
123 			  struct tls_prot_info *prot, struct sk_buff *skb)
124 {
125 	struct strp_msg *rxm = strp_msg(skb);
126 	int sub = 0;
127 
128 	/* Determine zero-padding length */
129 	if (prot->version == TLS_1_3_VERSION) {
130 		char content_type = 0;
131 		int err;
132 		int back = 17;
133 
134 		while (content_type == 0) {
135 			if (back > rxm->full_len - prot->prepend_size)
136 				return -EBADMSG;
137 			err = skb_copy_bits(skb,
138 					    rxm->offset + rxm->full_len - back,
139 					    &content_type, 1);
140 			if (err)
141 				return err;
142 			if (content_type)
143 				break;
144 			sub++;
145 			back++;
146 		}
147 		ctx->control = content_type;
148 	}
149 	return sub;
150 }
151 
152 static void tls_decrypt_done(struct crypto_async_request *req, int err)
153 {
154 	struct aead_request *aead_req = (struct aead_request *)req;
155 	struct scatterlist *sgout = aead_req->dst;
156 	struct scatterlist *sgin = aead_req->src;
157 	struct tls_sw_context_rx *ctx;
158 	struct tls_context *tls_ctx;
159 	struct tls_prot_info *prot;
160 	struct scatterlist *sg;
161 	struct sk_buff *skb;
162 	unsigned int pages;
163 	int pending;
164 
165 	skb = (struct sk_buff *)req->data;
166 	tls_ctx = tls_get_ctx(skb->sk);
167 	ctx = tls_sw_ctx_rx(tls_ctx);
168 	prot = &tls_ctx->prot_info;
169 
170 	/* Propagate if there was an err */
171 	if (err) {
172 		if (err == -EBADMSG)
173 			TLS_INC_STATS(sock_net(skb->sk),
174 				      LINUX_MIB_TLSDECRYPTERROR);
175 		ctx->async_wait.err = err;
176 		tls_err_abort(skb->sk, err);
177 	} else {
178 		struct strp_msg *rxm = strp_msg(skb);
179 		int pad;
180 
181 		pad = padding_length(ctx, prot, skb);
182 		if (pad < 0) {
183 			ctx->async_wait.err = pad;
184 			tls_err_abort(skb->sk, pad);
185 		} else {
186 			rxm->full_len -= pad;
187 			rxm->offset += prot->prepend_size;
188 			rxm->full_len -= prot->overhead_size;
189 		}
190 	}
191 
192 	/* After using skb->sk to propagate sk through crypto async callback
193 	 * we need to NULL it again.
194 	 */
195 	skb->sk = NULL;
196 
197 
198 	/* Free the destination pages if skb was not decrypted inplace */
199 	if (sgout != sgin) {
200 		/* Skip the first S/G entry as it points to AAD */
201 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
202 			if (!sg)
203 				break;
204 			put_page(sg_page(sg));
205 		}
206 	}
207 
208 	kfree(aead_req);
209 
210 	spin_lock_bh(&ctx->decrypt_compl_lock);
211 	pending = atomic_dec_return(&ctx->decrypt_pending);
212 
213 	if (!pending && ctx->async_notify)
214 		complete(&ctx->async_wait.completion);
215 	spin_unlock_bh(&ctx->decrypt_compl_lock);
216 }
217 
218 static int tls_do_decryption(struct sock *sk,
219 			     struct sk_buff *skb,
220 			     struct scatterlist *sgin,
221 			     struct scatterlist *sgout,
222 			     char *iv_recv,
223 			     size_t data_len,
224 			     struct aead_request *aead_req,
225 			     bool async)
226 {
227 	struct tls_context *tls_ctx = tls_get_ctx(sk);
228 	struct tls_prot_info *prot = &tls_ctx->prot_info;
229 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
230 	int ret;
231 
232 	aead_request_set_tfm(aead_req, ctx->aead_recv);
233 	aead_request_set_ad(aead_req, prot->aad_size);
234 	aead_request_set_crypt(aead_req, sgin, sgout,
235 			       data_len + prot->tag_size,
236 			       (u8 *)iv_recv);
237 
238 	if (async) {
239 		/* Using skb->sk to push sk through to crypto async callback
240 		 * handler. This allows propagating errors up to the socket
241 		 * if needed. It _must_ be cleared in the async handler
242 		 * before consume_skb is called. We _know_ skb->sk is NULL
243 		 * because it is a clone from strparser.
244 		 */
245 		skb->sk = sk;
246 		aead_request_set_callback(aead_req,
247 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
248 					  tls_decrypt_done, skb);
249 		atomic_inc(&ctx->decrypt_pending);
250 	} else {
251 		aead_request_set_callback(aead_req,
252 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
253 					  crypto_req_done, &ctx->async_wait);
254 	}
255 
256 	ret = crypto_aead_decrypt(aead_req);
257 	if (ret == -EINPROGRESS) {
258 		if (async)
259 			return ret;
260 
261 		ret = crypto_wait_req(ret, &ctx->async_wait);
262 	}
263 
264 	if (async)
265 		atomic_dec(&ctx->decrypt_pending);
266 
267 	return ret;
268 }
269 
270 static void tls_trim_both_msgs(struct sock *sk, int target_size)
271 {
272 	struct tls_context *tls_ctx = tls_get_ctx(sk);
273 	struct tls_prot_info *prot = &tls_ctx->prot_info;
274 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
275 	struct tls_rec *rec = ctx->open_rec;
276 
277 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
278 	if (target_size > 0)
279 		target_size += prot->overhead_size;
280 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
281 }
282 
283 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
284 {
285 	struct tls_context *tls_ctx = tls_get_ctx(sk);
286 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
287 	struct tls_rec *rec = ctx->open_rec;
288 	struct sk_msg *msg_en = &rec->msg_encrypted;
289 
290 	return sk_msg_alloc(sk, msg_en, len, 0);
291 }
292 
293 static int tls_clone_plaintext_msg(struct sock *sk, int required)
294 {
295 	struct tls_context *tls_ctx = tls_get_ctx(sk);
296 	struct tls_prot_info *prot = &tls_ctx->prot_info;
297 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
298 	struct tls_rec *rec = ctx->open_rec;
299 	struct sk_msg *msg_pl = &rec->msg_plaintext;
300 	struct sk_msg *msg_en = &rec->msg_encrypted;
301 	int skip, len;
302 
303 	/* We add page references worth len bytes from encrypted sg
304 	 * at the end of plaintext sg. It is guaranteed that msg_en
305 	 * has enough required room (ensured by caller).
306 	 */
307 	len = required - msg_pl->sg.size;
308 
309 	/* Skip initial bytes in msg_en's data to be able to use
310 	 * same offset of both plain and encrypted data.
311 	 */
312 	skip = prot->prepend_size + msg_pl->sg.size;
313 
314 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
315 }
316 
317 static struct tls_rec *tls_get_rec(struct sock *sk)
318 {
319 	struct tls_context *tls_ctx = tls_get_ctx(sk);
320 	struct tls_prot_info *prot = &tls_ctx->prot_info;
321 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
322 	struct sk_msg *msg_pl, *msg_en;
323 	struct tls_rec *rec;
324 	int mem_size;
325 
326 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
327 
328 	rec = kzalloc(mem_size, sk->sk_allocation);
329 	if (!rec)
330 		return NULL;
331 
332 	msg_pl = &rec->msg_plaintext;
333 	msg_en = &rec->msg_encrypted;
334 
335 	sk_msg_init(msg_pl);
336 	sk_msg_init(msg_en);
337 
338 	sg_init_table(rec->sg_aead_in, 2);
339 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
340 	sg_unmark_end(&rec->sg_aead_in[1]);
341 
342 	sg_init_table(rec->sg_aead_out, 2);
343 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
344 	sg_unmark_end(&rec->sg_aead_out[1]);
345 
346 	return rec;
347 }
348 
349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
350 {
351 	sk_msg_free(sk, &rec->msg_encrypted);
352 	sk_msg_free(sk, &rec->msg_plaintext);
353 	kfree(rec);
354 }
355 
356 static void tls_free_open_rec(struct sock *sk)
357 {
358 	struct tls_context *tls_ctx = tls_get_ctx(sk);
359 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
360 	struct tls_rec *rec = ctx->open_rec;
361 
362 	if (rec) {
363 		tls_free_rec(sk, rec);
364 		ctx->open_rec = NULL;
365 	}
366 }
367 
368 int tls_tx_records(struct sock *sk, int flags)
369 {
370 	struct tls_context *tls_ctx = tls_get_ctx(sk);
371 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
372 	struct tls_rec *rec, *tmp;
373 	struct sk_msg *msg_en;
374 	int tx_flags, rc = 0;
375 
376 	if (tls_is_partially_sent_record(tls_ctx)) {
377 		rec = list_first_entry(&ctx->tx_list,
378 				       struct tls_rec, list);
379 
380 		if (flags == -1)
381 			tx_flags = rec->tx_flags;
382 		else
383 			tx_flags = flags;
384 
385 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
386 		if (rc)
387 			goto tx_err;
388 
389 		/* Full record has been transmitted.
390 		 * Remove the head of tx_list
391 		 */
392 		list_del(&rec->list);
393 		sk_msg_free(sk, &rec->msg_plaintext);
394 		kfree(rec);
395 	}
396 
397 	/* Tx all ready records */
398 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
399 		if (READ_ONCE(rec->tx_ready)) {
400 			if (flags == -1)
401 				tx_flags = rec->tx_flags;
402 			else
403 				tx_flags = flags;
404 
405 			msg_en = &rec->msg_encrypted;
406 			rc = tls_push_sg(sk, tls_ctx,
407 					 &msg_en->sg.data[msg_en->sg.curr],
408 					 0, tx_flags);
409 			if (rc)
410 				goto tx_err;
411 
412 			list_del(&rec->list);
413 			sk_msg_free(sk, &rec->msg_plaintext);
414 			kfree(rec);
415 		} else {
416 			break;
417 		}
418 	}
419 
420 tx_err:
421 	if (rc < 0 && rc != -EAGAIN)
422 		tls_err_abort(sk, EBADMSG);
423 
424 	return rc;
425 }
426 
427 static void tls_encrypt_done(struct crypto_async_request *req, int err)
428 {
429 	struct aead_request *aead_req = (struct aead_request *)req;
430 	struct sock *sk = req->data;
431 	struct tls_context *tls_ctx = tls_get_ctx(sk);
432 	struct tls_prot_info *prot = &tls_ctx->prot_info;
433 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
434 	struct scatterlist *sge;
435 	struct sk_msg *msg_en;
436 	struct tls_rec *rec;
437 	bool ready = false;
438 	int pending;
439 
440 	rec = container_of(aead_req, struct tls_rec, aead_req);
441 	msg_en = &rec->msg_encrypted;
442 
443 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
444 	sge->offset -= prot->prepend_size;
445 	sge->length += prot->prepend_size;
446 
447 	/* Check if error is previously set on socket */
448 	if (err || sk->sk_err) {
449 		rec = NULL;
450 
451 		/* If err is already set on socket, return the same code */
452 		if (sk->sk_err) {
453 			ctx->async_wait.err = sk->sk_err;
454 		} else {
455 			ctx->async_wait.err = err;
456 			tls_err_abort(sk, err);
457 		}
458 	}
459 
460 	if (rec) {
461 		struct tls_rec *first_rec;
462 
463 		/* Mark the record as ready for transmission */
464 		smp_store_mb(rec->tx_ready, true);
465 
466 		/* If received record is at head of tx_list, schedule tx */
467 		first_rec = list_first_entry(&ctx->tx_list,
468 					     struct tls_rec, list);
469 		if (rec == first_rec)
470 			ready = true;
471 	}
472 
473 	spin_lock_bh(&ctx->encrypt_compl_lock);
474 	pending = atomic_dec_return(&ctx->encrypt_pending);
475 
476 	if (!pending && ctx->async_notify)
477 		complete(&ctx->async_wait.completion);
478 	spin_unlock_bh(&ctx->encrypt_compl_lock);
479 
480 	if (!ready)
481 		return;
482 
483 	/* Schedule the transmission */
484 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
485 		schedule_delayed_work(&ctx->tx_work.work, 1);
486 }
487 
488 static int tls_do_encryption(struct sock *sk,
489 			     struct tls_context *tls_ctx,
490 			     struct tls_sw_context_tx *ctx,
491 			     struct aead_request *aead_req,
492 			     size_t data_len, u32 start)
493 {
494 	struct tls_prot_info *prot = &tls_ctx->prot_info;
495 	struct tls_rec *rec = ctx->open_rec;
496 	struct sk_msg *msg_en = &rec->msg_encrypted;
497 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
498 	int rc, iv_offset = 0;
499 
500 	/* For CCM based ciphers, first byte of IV is a constant */
501 	switch (prot->cipher_type) {
502 	case TLS_CIPHER_AES_CCM_128:
503 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
504 		iv_offset = 1;
505 		break;
506 	case TLS_CIPHER_SM4_CCM:
507 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
508 		iv_offset = 1;
509 		break;
510 	}
511 
512 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
513 	       prot->iv_size + prot->salt_size);
514 
515 	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
516 
517 	sge->offset += prot->prepend_size;
518 	sge->length -= prot->prepend_size;
519 
520 	msg_en->sg.curr = start;
521 
522 	aead_request_set_tfm(aead_req, ctx->aead_send);
523 	aead_request_set_ad(aead_req, prot->aad_size);
524 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
525 			       rec->sg_aead_out,
526 			       data_len, rec->iv_data);
527 
528 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
529 				  tls_encrypt_done, sk);
530 
531 	/* Add the record in tx_list */
532 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
533 	atomic_inc(&ctx->encrypt_pending);
534 
535 	rc = crypto_aead_encrypt(aead_req);
536 	if (!rc || rc != -EINPROGRESS) {
537 		atomic_dec(&ctx->encrypt_pending);
538 		sge->offset -= prot->prepend_size;
539 		sge->length += prot->prepend_size;
540 	}
541 
542 	if (!rc) {
543 		WRITE_ONCE(rec->tx_ready, true);
544 	} else if (rc != -EINPROGRESS) {
545 		list_del(&rec->list);
546 		return rc;
547 	}
548 
549 	/* Unhook the record from context if encryption is not failure */
550 	ctx->open_rec = NULL;
551 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
552 	return rc;
553 }
554 
555 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
556 				 struct tls_rec **to, struct sk_msg *msg_opl,
557 				 struct sk_msg *msg_oen, u32 split_point,
558 				 u32 tx_overhead_size, u32 *orig_end)
559 {
560 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
561 	struct scatterlist *sge, *osge, *nsge;
562 	u32 orig_size = msg_opl->sg.size;
563 	struct scatterlist tmp = { };
564 	struct sk_msg *msg_npl;
565 	struct tls_rec *new;
566 	int ret;
567 
568 	new = tls_get_rec(sk);
569 	if (!new)
570 		return -ENOMEM;
571 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
572 			   tx_overhead_size, 0);
573 	if (ret < 0) {
574 		tls_free_rec(sk, new);
575 		return ret;
576 	}
577 
578 	*orig_end = msg_opl->sg.end;
579 	i = msg_opl->sg.start;
580 	sge = sk_msg_elem(msg_opl, i);
581 	while (apply && sge->length) {
582 		if (sge->length > apply) {
583 			u32 len = sge->length - apply;
584 
585 			get_page(sg_page(sge));
586 			sg_set_page(&tmp, sg_page(sge), len,
587 				    sge->offset + apply);
588 			sge->length = apply;
589 			bytes += apply;
590 			apply = 0;
591 		} else {
592 			apply -= sge->length;
593 			bytes += sge->length;
594 		}
595 
596 		sk_msg_iter_var_next(i);
597 		if (i == msg_opl->sg.end)
598 			break;
599 		sge = sk_msg_elem(msg_opl, i);
600 	}
601 
602 	msg_opl->sg.end = i;
603 	msg_opl->sg.curr = i;
604 	msg_opl->sg.copybreak = 0;
605 	msg_opl->apply_bytes = 0;
606 	msg_opl->sg.size = bytes;
607 
608 	msg_npl = &new->msg_plaintext;
609 	msg_npl->apply_bytes = apply;
610 	msg_npl->sg.size = orig_size - bytes;
611 
612 	j = msg_npl->sg.start;
613 	nsge = sk_msg_elem(msg_npl, j);
614 	if (tmp.length) {
615 		memcpy(nsge, &tmp, sizeof(*nsge));
616 		sk_msg_iter_var_next(j);
617 		nsge = sk_msg_elem(msg_npl, j);
618 	}
619 
620 	osge = sk_msg_elem(msg_opl, i);
621 	while (osge->length) {
622 		memcpy(nsge, osge, sizeof(*nsge));
623 		sg_unmark_end(nsge);
624 		sk_msg_iter_var_next(i);
625 		sk_msg_iter_var_next(j);
626 		if (i == *orig_end)
627 			break;
628 		osge = sk_msg_elem(msg_opl, i);
629 		nsge = sk_msg_elem(msg_npl, j);
630 	}
631 
632 	msg_npl->sg.end = j;
633 	msg_npl->sg.curr = j;
634 	msg_npl->sg.copybreak = 0;
635 
636 	*to = new;
637 	return 0;
638 }
639 
640 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
641 				  struct tls_rec *from, u32 orig_end)
642 {
643 	struct sk_msg *msg_npl = &from->msg_plaintext;
644 	struct sk_msg *msg_opl = &to->msg_plaintext;
645 	struct scatterlist *osge, *nsge;
646 	u32 i, j;
647 
648 	i = msg_opl->sg.end;
649 	sk_msg_iter_var_prev(i);
650 	j = msg_npl->sg.start;
651 
652 	osge = sk_msg_elem(msg_opl, i);
653 	nsge = sk_msg_elem(msg_npl, j);
654 
655 	if (sg_page(osge) == sg_page(nsge) &&
656 	    osge->offset + osge->length == nsge->offset) {
657 		osge->length += nsge->length;
658 		put_page(sg_page(nsge));
659 	}
660 
661 	msg_opl->sg.end = orig_end;
662 	msg_opl->sg.curr = orig_end;
663 	msg_opl->sg.copybreak = 0;
664 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
665 	msg_opl->sg.size += msg_npl->sg.size;
666 
667 	sk_msg_free(sk, &to->msg_encrypted);
668 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
669 
670 	kfree(from);
671 }
672 
673 static int tls_push_record(struct sock *sk, int flags,
674 			   unsigned char record_type)
675 {
676 	struct tls_context *tls_ctx = tls_get_ctx(sk);
677 	struct tls_prot_info *prot = &tls_ctx->prot_info;
678 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
679 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
680 	u32 i, split_point, orig_end;
681 	struct sk_msg *msg_pl, *msg_en;
682 	struct aead_request *req;
683 	bool split;
684 	int rc;
685 
686 	if (!rec)
687 		return 0;
688 
689 	msg_pl = &rec->msg_plaintext;
690 	msg_en = &rec->msg_encrypted;
691 
692 	split_point = msg_pl->apply_bytes;
693 	split = split_point && split_point < msg_pl->sg.size;
694 	if (unlikely((!split &&
695 		      msg_pl->sg.size +
696 		      prot->overhead_size > msg_en->sg.size) ||
697 		     (split &&
698 		      split_point +
699 		      prot->overhead_size > msg_en->sg.size))) {
700 		split = true;
701 		split_point = msg_en->sg.size;
702 	}
703 	if (split) {
704 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
705 					   split_point, prot->overhead_size,
706 					   &orig_end);
707 		if (rc < 0)
708 			return rc;
709 		/* This can happen if above tls_split_open_record allocates
710 		 * a single large encryption buffer instead of two smaller
711 		 * ones. In this case adjust pointers and continue without
712 		 * split.
713 		 */
714 		if (!msg_pl->sg.size) {
715 			tls_merge_open_record(sk, rec, tmp, orig_end);
716 			msg_pl = &rec->msg_plaintext;
717 			msg_en = &rec->msg_encrypted;
718 			split = false;
719 		}
720 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
721 			    prot->overhead_size);
722 	}
723 
724 	rec->tx_flags = flags;
725 	req = &rec->aead_req;
726 
727 	i = msg_pl->sg.end;
728 	sk_msg_iter_var_prev(i);
729 
730 	rec->content_type = record_type;
731 	if (prot->version == TLS_1_3_VERSION) {
732 		/* Add content type to end of message.  No padding added */
733 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
734 		sg_mark_end(&rec->sg_content_type);
735 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
736 			 &rec->sg_content_type);
737 	} else {
738 		sg_mark_end(sk_msg_elem(msg_pl, i));
739 	}
740 
741 	if (msg_pl->sg.end < msg_pl->sg.start) {
742 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
743 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
744 			 msg_pl->sg.data);
745 	}
746 
747 	i = msg_pl->sg.start;
748 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
749 
750 	i = msg_en->sg.end;
751 	sk_msg_iter_var_prev(i);
752 	sg_mark_end(sk_msg_elem(msg_en, i));
753 
754 	i = msg_en->sg.start;
755 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
756 
757 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
758 		     tls_ctx->tx.rec_seq, record_type, prot);
759 
760 	tls_fill_prepend(tls_ctx,
761 			 page_address(sg_page(&msg_en->sg.data[i])) +
762 			 msg_en->sg.data[i].offset,
763 			 msg_pl->sg.size + prot->tail_size,
764 			 record_type);
765 
766 	tls_ctx->pending_open_record_frags = false;
767 
768 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
769 			       msg_pl->sg.size + prot->tail_size, i);
770 	if (rc < 0) {
771 		if (rc != -EINPROGRESS) {
772 			tls_err_abort(sk, EBADMSG);
773 			if (split) {
774 				tls_ctx->pending_open_record_frags = true;
775 				tls_merge_open_record(sk, rec, tmp, orig_end);
776 			}
777 		}
778 		ctx->async_capable = 1;
779 		return rc;
780 	} else if (split) {
781 		msg_pl = &tmp->msg_plaintext;
782 		msg_en = &tmp->msg_encrypted;
783 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
784 		tls_ctx->pending_open_record_frags = true;
785 		ctx->open_rec = tmp;
786 	}
787 
788 	return tls_tx_records(sk, flags);
789 }
790 
791 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
792 			       bool full_record, u8 record_type,
793 			       ssize_t *copied, int flags)
794 {
795 	struct tls_context *tls_ctx = tls_get_ctx(sk);
796 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
797 	struct sk_msg msg_redir = { };
798 	struct sk_psock *psock;
799 	struct sock *sk_redir;
800 	struct tls_rec *rec;
801 	bool enospc, policy;
802 	int err = 0, send;
803 	u32 delta = 0;
804 
805 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
806 	psock = sk_psock_get(sk);
807 	if (!psock || !policy) {
808 		err = tls_push_record(sk, flags, record_type);
809 		if (err && sk->sk_err == EBADMSG) {
810 			*copied -= sk_msg_free(sk, msg);
811 			tls_free_open_rec(sk);
812 			err = -sk->sk_err;
813 		}
814 		if (psock)
815 			sk_psock_put(sk, psock);
816 		return err;
817 	}
818 more_data:
819 	enospc = sk_msg_full(msg);
820 	if (psock->eval == __SK_NONE) {
821 		delta = msg->sg.size;
822 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
823 		delta -= msg->sg.size;
824 	}
825 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
826 	    !enospc && !full_record) {
827 		err = -ENOSPC;
828 		goto out_err;
829 	}
830 	msg->cork_bytes = 0;
831 	send = msg->sg.size;
832 	if (msg->apply_bytes && msg->apply_bytes < send)
833 		send = msg->apply_bytes;
834 
835 	switch (psock->eval) {
836 	case __SK_PASS:
837 		err = tls_push_record(sk, flags, record_type);
838 		if (err && sk->sk_err == EBADMSG) {
839 			*copied -= sk_msg_free(sk, msg);
840 			tls_free_open_rec(sk);
841 			err = -sk->sk_err;
842 			goto out_err;
843 		}
844 		break;
845 	case __SK_REDIRECT:
846 		sk_redir = psock->sk_redir;
847 		memcpy(&msg_redir, msg, sizeof(*msg));
848 		if (msg->apply_bytes < send)
849 			msg->apply_bytes = 0;
850 		else
851 			msg->apply_bytes -= send;
852 		sk_msg_return_zero(sk, msg, send);
853 		msg->sg.size -= send;
854 		release_sock(sk);
855 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
856 		lock_sock(sk);
857 		if (err < 0) {
858 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
859 			msg->sg.size = 0;
860 		}
861 		if (msg->sg.size == 0)
862 			tls_free_open_rec(sk);
863 		break;
864 	case __SK_DROP:
865 	default:
866 		sk_msg_free_partial(sk, msg, send);
867 		if (msg->apply_bytes < send)
868 			msg->apply_bytes = 0;
869 		else
870 			msg->apply_bytes -= send;
871 		if (msg->sg.size == 0)
872 			tls_free_open_rec(sk);
873 		*copied -= (send + delta);
874 		err = -EACCES;
875 	}
876 
877 	if (likely(!err)) {
878 		bool reset_eval = !ctx->open_rec;
879 
880 		rec = ctx->open_rec;
881 		if (rec) {
882 			msg = &rec->msg_plaintext;
883 			if (!msg->apply_bytes)
884 				reset_eval = true;
885 		}
886 		if (reset_eval) {
887 			psock->eval = __SK_NONE;
888 			if (psock->sk_redir) {
889 				sock_put(psock->sk_redir);
890 				psock->sk_redir = NULL;
891 			}
892 		}
893 		if (rec)
894 			goto more_data;
895 	}
896  out_err:
897 	sk_psock_put(sk, psock);
898 	return err;
899 }
900 
901 static int tls_sw_push_pending_record(struct sock *sk, int flags)
902 {
903 	struct tls_context *tls_ctx = tls_get_ctx(sk);
904 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
905 	struct tls_rec *rec = ctx->open_rec;
906 	struct sk_msg *msg_pl;
907 	size_t copied;
908 
909 	if (!rec)
910 		return 0;
911 
912 	msg_pl = &rec->msg_plaintext;
913 	copied = msg_pl->sg.size;
914 	if (!copied)
915 		return 0;
916 
917 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
918 				   &copied, flags);
919 }
920 
921 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
922 {
923 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
924 	struct tls_context *tls_ctx = tls_get_ctx(sk);
925 	struct tls_prot_info *prot = &tls_ctx->prot_info;
926 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
927 	bool async_capable = ctx->async_capable;
928 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
929 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
930 	bool eor = !(msg->msg_flags & MSG_MORE);
931 	size_t try_to_copy;
932 	ssize_t copied = 0;
933 	struct sk_msg *msg_pl, *msg_en;
934 	struct tls_rec *rec;
935 	int required_size;
936 	int num_async = 0;
937 	bool full_record;
938 	int record_room;
939 	int num_zc = 0;
940 	int orig_size;
941 	int ret = 0;
942 	int pending;
943 
944 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
945 			       MSG_CMSG_COMPAT))
946 		return -EOPNOTSUPP;
947 
948 	mutex_lock(&tls_ctx->tx_lock);
949 	lock_sock(sk);
950 
951 	if (unlikely(msg->msg_controllen)) {
952 		ret = tls_proccess_cmsg(sk, msg, &record_type);
953 		if (ret) {
954 			if (ret == -EINPROGRESS)
955 				num_async++;
956 			else if (ret != -EAGAIN)
957 				goto send_end;
958 		}
959 	}
960 
961 	while (msg_data_left(msg)) {
962 		if (sk->sk_err) {
963 			ret = -sk->sk_err;
964 			goto send_end;
965 		}
966 
967 		if (ctx->open_rec)
968 			rec = ctx->open_rec;
969 		else
970 			rec = ctx->open_rec = tls_get_rec(sk);
971 		if (!rec) {
972 			ret = -ENOMEM;
973 			goto send_end;
974 		}
975 
976 		msg_pl = &rec->msg_plaintext;
977 		msg_en = &rec->msg_encrypted;
978 
979 		orig_size = msg_pl->sg.size;
980 		full_record = false;
981 		try_to_copy = msg_data_left(msg);
982 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
983 		if (try_to_copy >= record_room) {
984 			try_to_copy = record_room;
985 			full_record = true;
986 		}
987 
988 		required_size = msg_pl->sg.size + try_to_copy +
989 				prot->overhead_size;
990 
991 		if (!sk_stream_memory_free(sk))
992 			goto wait_for_sndbuf;
993 
994 alloc_encrypted:
995 		ret = tls_alloc_encrypted_msg(sk, required_size);
996 		if (ret) {
997 			if (ret != -ENOSPC)
998 				goto wait_for_memory;
999 
1000 			/* Adjust try_to_copy according to the amount that was
1001 			 * actually allocated. The difference is due
1002 			 * to max sg elements limit
1003 			 */
1004 			try_to_copy -= required_size - msg_en->sg.size;
1005 			full_record = true;
1006 		}
1007 
1008 		if (!is_kvec && (full_record || eor) && !async_capable) {
1009 			u32 first = msg_pl->sg.end;
1010 
1011 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1012 							msg_pl, try_to_copy);
1013 			if (ret)
1014 				goto fallback_to_reg_send;
1015 
1016 			num_zc++;
1017 			copied += try_to_copy;
1018 
1019 			sk_msg_sg_copy_set(msg_pl, first);
1020 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1021 						  record_type, &copied,
1022 						  msg->msg_flags);
1023 			if (ret) {
1024 				if (ret == -EINPROGRESS)
1025 					num_async++;
1026 				else if (ret == -ENOMEM)
1027 					goto wait_for_memory;
1028 				else if (ctx->open_rec && ret == -ENOSPC)
1029 					goto rollback_iter;
1030 				else if (ret != -EAGAIN)
1031 					goto send_end;
1032 			}
1033 			continue;
1034 rollback_iter:
1035 			copied -= try_to_copy;
1036 			sk_msg_sg_copy_clear(msg_pl, first);
1037 			iov_iter_revert(&msg->msg_iter,
1038 					msg_pl->sg.size - orig_size);
1039 fallback_to_reg_send:
1040 			sk_msg_trim(sk, msg_pl, orig_size);
1041 		}
1042 
1043 		required_size = msg_pl->sg.size + try_to_copy;
1044 
1045 		ret = tls_clone_plaintext_msg(sk, required_size);
1046 		if (ret) {
1047 			if (ret != -ENOSPC)
1048 				goto send_end;
1049 
1050 			/* Adjust try_to_copy according to the amount that was
1051 			 * actually allocated. The difference is due
1052 			 * to max sg elements limit
1053 			 */
1054 			try_to_copy -= required_size - msg_pl->sg.size;
1055 			full_record = true;
1056 			sk_msg_trim(sk, msg_en,
1057 				    msg_pl->sg.size + prot->overhead_size);
1058 		}
1059 
1060 		if (try_to_copy) {
1061 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1062 						       msg_pl, try_to_copy);
1063 			if (ret < 0)
1064 				goto trim_sgl;
1065 		}
1066 
1067 		/* Open records defined only if successfully copied, otherwise
1068 		 * we would trim the sg but not reset the open record frags.
1069 		 */
1070 		tls_ctx->pending_open_record_frags = true;
1071 		copied += try_to_copy;
1072 		if (full_record || eor) {
1073 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1074 						  record_type, &copied,
1075 						  msg->msg_flags);
1076 			if (ret) {
1077 				if (ret == -EINPROGRESS)
1078 					num_async++;
1079 				else if (ret == -ENOMEM)
1080 					goto wait_for_memory;
1081 				else if (ret != -EAGAIN) {
1082 					if (ret == -ENOSPC)
1083 						ret = 0;
1084 					goto send_end;
1085 				}
1086 			}
1087 		}
1088 
1089 		continue;
1090 
1091 wait_for_sndbuf:
1092 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1093 wait_for_memory:
1094 		ret = sk_stream_wait_memory(sk, &timeo);
1095 		if (ret) {
1096 trim_sgl:
1097 			if (ctx->open_rec)
1098 				tls_trim_both_msgs(sk, orig_size);
1099 			goto send_end;
1100 		}
1101 
1102 		if (ctx->open_rec && msg_en->sg.size < required_size)
1103 			goto alloc_encrypted;
1104 	}
1105 
1106 	if (!num_async) {
1107 		goto send_end;
1108 	} else if (num_zc) {
1109 		/* Wait for pending encryptions to get completed */
1110 		spin_lock_bh(&ctx->encrypt_compl_lock);
1111 		ctx->async_notify = true;
1112 
1113 		pending = atomic_read(&ctx->encrypt_pending);
1114 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1115 		if (pending)
1116 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1117 		else
1118 			reinit_completion(&ctx->async_wait.completion);
1119 
1120 		/* There can be no concurrent accesses, since we have no
1121 		 * pending encrypt operations
1122 		 */
1123 		WRITE_ONCE(ctx->async_notify, false);
1124 
1125 		if (ctx->async_wait.err) {
1126 			ret = ctx->async_wait.err;
1127 			copied = 0;
1128 		}
1129 	}
1130 
1131 	/* Transmit if any encryptions have completed */
1132 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1133 		cancel_delayed_work(&ctx->tx_work.work);
1134 		tls_tx_records(sk, msg->msg_flags);
1135 	}
1136 
1137 send_end:
1138 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1139 
1140 	release_sock(sk);
1141 	mutex_unlock(&tls_ctx->tx_lock);
1142 	return copied > 0 ? copied : ret;
1143 }
1144 
1145 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1146 			      int offset, size_t size, int flags)
1147 {
1148 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1150 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1151 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1152 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1153 	struct sk_msg *msg_pl;
1154 	struct tls_rec *rec;
1155 	int num_async = 0;
1156 	ssize_t copied = 0;
1157 	bool full_record;
1158 	int record_room;
1159 	int ret = 0;
1160 	bool eor;
1161 
1162 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1163 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1164 
1165 	/* Call the sk_stream functions to manage the sndbuf mem. */
1166 	while (size > 0) {
1167 		size_t copy, required_size;
1168 
1169 		if (sk->sk_err) {
1170 			ret = -sk->sk_err;
1171 			goto sendpage_end;
1172 		}
1173 
1174 		if (ctx->open_rec)
1175 			rec = ctx->open_rec;
1176 		else
1177 			rec = ctx->open_rec = tls_get_rec(sk);
1178 		if (!rec) {
1179 			ret = -ENOMEM;
1180 			goto sendpage_end;
1181 		}
1182 
1183 		msg_pl = &rec->msg_plaintext;
1184 
1185 		full_record = false;
1186 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1187 		copy = size;
1188 		if (copy >= record_room) {
1189 			copy = record_room;
1190 			full_record = true;
1191 		}
1192 
1193 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1194 
1195 		if (!sk_stream_memory_free(sk))
1196 			goto wait_for_sndbuf;
1197 alloc_payload:
1198 		ret = tls_alloc_encrypted_msg(sk, required_size);
1199 		if (ret) {
1200 			if (ret != -ENOSPC)
1201 				goto wait_for_memory;
1202 
1203 			/* Adjust copy according to the amount that was
1204 			 * actually allocated. The difference is due
1205 			 * to max sg elements limit
1206 			 */
1207 			copy -= required_size - msg_pl->sg.size;
1208 			full_record = true;
1209 		}
1210 
1211 		sk_msg_page_add(msg_pl, page, copy, offset);
1212 		sk_mem_charge(sk, copy);
1213 
1214 		offset += copy;
1215 		size -= copy;
1216 		copied += copy;
1217 
1218 		tls_ctx->pending_open_record_frags = true;
1219 		if (full_record || eor || sk_msg_full(msg_pl)) {
1220 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1221 						  record_type, &copied, flags);
1222 			if (ret) {
1223 				if (ret == -EINPROGRESS)
1224 					num_async++;
1225 				else if (ret == -ENOMEM)
1226 					goto wait_for_memory;
1227 				else if (ret != -EAGAIN) {
1228 					if (ret == -ENOSPC)
1229 						ret = 0;
1230 					goto sendpage_end;
1231 				}
1232 			}
1233 		}
1234 		continue;
1235 wait_for_sndbuf:
1236 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1237 wait_for_memory:
1238 		ret = sk_stream_wait_memory(sk, &timeo);
1239 		if (ret) {
1240 			if (ctx->open_rec)
1241 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1242 			goto sendpage_end;
1243 		}
1244 
1245 		if (ctx->open_rec)
1246 			goto alloc_payload;
1247 	}
1248 
1249 	if (num_async) {
1250 		/* Transmit if any encryptions have completed */
1251 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1252 			cancel_delayed_work(&ctx->tx_work.work);
1253 			tls_tx_records(sk, flags);
1254 		}
1255 	}
1256 sendpage_end:
1257 	ret = sk_stream_error(sk, flags, ret);
1258 	return copied > 0 ? copied : ret;
1259 }
1260 
1261 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1262 			   int offset, size_t size, int flags)
1263 {
1264 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1265 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1266 		      MSG_NO_SHARED_FRAGS))
1267 		return -EOPNOTSUPP;
1268 
1269 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1270 }
1271 
1272 int tls_sw_sendpage(struct sock *sk, struct page *page,
1273 		    int offset, size_t size, int flags)
1274 {
1275 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1276 	int ret;
1277 
1278 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1279 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1280 		return -EOPNOTSUPP;
1281 
1282 	mutex_lock(&tls_ctx->tx_lock);
1283 	lock_sock(sk);
1284 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1285 	release_sock(sk);
1286 	mutex_unlock(&tls_ctx->tx_lock);
1287 	return ret;
1288 }
1289 
1290 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1291 				     bool nonblock, long timeo, int *err)
1292 {
1293 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1294 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1295 	struct sk_buff *skb;
1296 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1297 
1298 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1299 		if (sk->sk_err) {
1300 			*err = sock_error(sk);
1301 			return NULL;
1302 		}
1303 
1304 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305 			__strp_unpause(&ctx->strp);
1306 			if (ctx->recv_pkt)
1307 				return ctx->recv_pkt;
1308 		}
1309 
1310 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1311 			return NULL;
1312 
1313 		if (sock_flag(sk, SOCK_DONE))
1314 			return NULL;
1315 
1316 		if (nonblock || !timeo) {
1317 			*err = -EAGAIN;
1318 			return NULL;
1319 		}
1320 
1321 		add_wait_queue(sk_sleep(sk), &wait);
1322 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1323 		sk_wait_event(sk, &timeo,
1324 			      ctx->recv_pkt != skb ||
1325 			      !sk_psock_queue_empty(psock),
1326 			      &wait);
1327 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328 		remove_wait_queue(sk_sleep(sk), &wait);
1329 
1330 		/* Handle signals */
1331 		if (signal_pending(current)) {
1332 			*err = sock_intr_errno(timeo);
1333 			return NULL;
1334 		}
1335 	}
1336 
1337 	return skb;
1338 }
1339 
1340 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1341 			       int length, int *pages_used,
1342 			       unsigned int *size_used,
1343 			       struct scatterlist *to,
1344 			       int to_max_pages)
1345 {
1346 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1347 	struct page *pages[MAX_SKB_FRAGS];
1348 	unsigned int size = *size_used;
1349 	ssize_t copied, use;
1350 	size_t offset;
1351 
1352 	while (length > 0) {
1353 		i = 0;
1354 		maxpages = to_max_pages - num_elem;
1355 		if (maxpages == 0) {
1356 			rc = -EFAULT;
1357 			goto out;
1358 		}
1359 		copied = iov_iter_get_pages(from, pages,
1360 					    length,
1361 					    maxpages, &offset);
1362 		if (copied <= 0) {
1363 			rc = -EFAULT;
1364 			goto out;
1365 		}
1366 
1367 		iov_iter_advance(from, copied);
1368 
1369 		length -= copied;
1370 		size += copied;
1371 		while (copied) {
1372 			use = min_t(int, copied, PAGE_SIZE - offset);
1373 
1374 			sg_set_page(&to[num_elem],
1375 				    pages[i], use, offset);
1376 			sg_unmark_end(&to[num_elem]);
1377 			/* We do not uncharge memory from this API */
1378 
1379 			offset = 0;
1380 			copied -= use;
1381 
1382 			i++;
1383 			num_elem++;
1384 		}
1385 	}
1386 	/* Mark the end in the last sg entry if newly added */
1387 	if (num_elem > *pages_used)
1388 		sg_mark_end(&to[num_elem - 1]);
1389 out:
1390 	if (rc)
1391 		iov_iter_revert(from, size - *size_used);
1392 	*size_used = size;
1393 	*pages_used = num_elem;
1394 
1395 	return rc;
1396 }
1397 
1398 /* This function decrypts the input skb into either out_iov or in out_sg
1399  * or in skb buffers itself. The input parameter 'zc' indicates if
1400  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1401  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1402  * NULL, then the decryption happens inside skb buffers itself, i.e.
1403  * zero-copy gets disabled and 'zc' is updated.
1404  */
1405 
1406 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1407 			    struct iov_iter *out_iov,
1408 			    struct scatterlist *out_sg,
1409 			    int *chunk, bool *zc, bool async)
1410 {
1411 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1412 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1413 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1414 	struct strp_msg *rxm = strp_msg(skb);
1415 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1416 	struct aead_request *aead_req;
1417 	struct sk_buff *unused;
1418 	u8 *aad, *iv, *mem = NULL;
1419 	struct scatterlist *sgin = NULL;
1420 	struct scatterlist *sgout = NULL;
1421 	const int data_len = rxm->full_len - prot->overhead_size +
1422 			     prot->tail_size;
1423 	int iv_offset = 0;
1424 
1425 	if (*zc && (out_iov || out_sg)) {
1426 		if (out_iov)
1427 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1428 		else
1429 			n_sgout = sg_nents(out_sg);
1430 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1431 				 rxm->full_len - prot->prepend_size);
1432 	} else {
1433 		n_sgout = 0;
1434 		*zc = false;
1435 		n_sgin = skb_cow_data(skb, 0, &unused);
1436 	}
1437 
1438 	if (n_sgin < 1)
1439 		return -EBADMSG;
1440 
1441 	/* Increment to accommodate AAD */
1442 	n_sgin = n_sgin + 1;
1443 
1444 	nsg = n_sgin + n_sgout;
1445 
1446 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1447 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1448 	mem_size = mem_size + prot->aad_size;
1449 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1450 
1451 	/* Allocate a single block of memory which contains
1452 	 * aead_req || sgin[] || sgout[] || aad || iv.
1453 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1454 	 */
1455 	mem = kmalloc(mem_size, sk->sk_allocation);
1456 	if (!mem)
1457 		return -ENOMEM;
1458 
1459 	/* Segment the allocated memory */
1460 	aead_req = (struct aead_request *)mem;
1461 	sgin = (struct scatterlist *)(mem + aead_size);
1462 	sgout = sgin + n_sgin;
1463 	aad = (u8 *)(sgout + n_sgout);
1464 	iv = aad + prot->aad_size;
1465 
1466 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1467 	switch (prot->cipher_type) {
1468 	case TLS_CIPHER_AES_CCM_128:
1469 		iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1470 		iv_offset = 1;
1471 		break;
1472 	case TLS_CIPHER_SM4_CCM:
1473 		iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1474 		iv_offset = 1;
1475 		break;
1476 	}
1477 
1478 	/* Prepare IV */
1479 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1480 			    iv + iv_offset + prot->salt_size,
1481 			    prot->iv_size);
1482 	if (err < 0) {
1483 		kfree(mem);
1484 		return err;
1485 	}
1486 	if (prot->version == TLS_1_3_VERSION ||
1487 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1488 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1489 		       crypto_aead_ivsize(ctx->aead_recv));
1490 	else
1491 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1492 
1493 	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1494 
1495 	/* Prepare AAD */
1496 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1497 		     prot->tail_size,
1498 		     tls_ctx->rx.rec_seq, ctx->control, prot);
1499 
1500 	/* Prepare sgin */
1501 	sg_init_table(sgin, n_sgin);
1502 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1503 	err = skb_to_sgvec(skb, &sgin[1],
1504 			   rxm->offset + prot->prepend_size,
1505 			   rxm->full_len - prot->prepend_size);
1506 	if (err < 0) {
1507 		kfree(mem);
1508 		return err;
1509 	}
1510 
1511 	if (n_sgout) {
1512 		if (out_iov) {
1513 			sg_init_table(sgout, n_sgout);
1514 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1515 
1516 			*chunk = 0;
1517 			err = tls_setup_from_iter(sk, out_iov, data_len,
1518 						  &pages, chunk, &sgout[1],
1519 						  (n_sgout - 1));
1520 			if (err < 0)
1521 				goto fallback_to_reg_recv;
1522 		} else if (out_sg) {
1523 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1524 		} else {
1525 			goto fallback_to_reg_recv;
1526 		}
1527 	} else {
1528 fallback_to_reg_recv:
1529 		sgout = sgin;
1530 		pages = 0;
1531 		*chunk = data_len;
1532 		*zc = false;
1533 	}
1534 
1535 	/* Prepare and submit AEAD request */
1536 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1537 				data_len, aead_req, async);
1538 	if (err == -EINPROGRESS)
1539 		return err;
1540 
1541 	/* Release the pages in case iov was mapped to pages */
1542 	for (; pages > 0; pages--)
1543 		put_page(sg_page(&sgout[pages]));
1544 
1545 	kfree(mem);
1546 	return err;
1547 }
1548 
1549 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1550 			      struct iov_iter *dest, int *chunk, bool *zc,
1551 			      bool async)
1552 {
1553 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1554 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1555 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1556 	struct strp_msg *rxm = strp_msg(skb);
1557 	int pad, err = 0;
1558 
1559 	if (!ctx->decrypted) {
1560 		if (tls_ctx->rx_conf == TLS_HW) {
1561 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1562 			if (err < 0)
1563 				return err;
1564 		}
1565 
1566 		/* Still not decrypted after tls_device */
1567 		if (!ctx->decrypted) {
1568 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1569 					       async);
1570 			if (err < 0) {
1571 				if (err == -EINPROGRESS)
1572 					tls_advance_record_sn(sk, prot,
1573 							      &tls_ctx->rx);
1574 				else if (err == -EBADMSG)
1575 					TLS_INC_STATS(sock_net(sk),
1576 						      LINUX_MIB_TLSDECRYPTERROR);
1577 				return err;
1578 			}
1579 		} else {
1580 			*zc = false;
1581 		}
1582 
1583 		pad = padding_length(ctx, prot, skb);
1584 		if (pad < 0)
1585 			return pad;
1586 
1587 		rxm->full_len -= pad;
1588 		rxm->offset += prot->prepend_size;
1589 		rxm->full_len -= prot->overhead_size;
1590 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1591 		ctx->decrypted = 1;
1592 		ctx->saved_data_ready(sk);
1593 	} else {
1594 		*zc = false;
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1601 		struct scatterlist *sgout)
1602 {
1603 	bool zc = true;
1604 	int chunk;
1605 
1606 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1607 }
1608 
1609 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1610 			       unsigned int len)
1611 {
1612 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1613 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1614 
1615 	if (skb) {
1616 		struct strp_msg *rxm = strp_msg(skb);
1617 
1618 		if (len < rxm->full_len) {
1619 			rxm->offset += len;
1620 			rxm->full_len -= len;
1621 			return false;
1622 		}
1623 		consume_skb(skb);
1624 	}
1625 
1626 	/* Finished with message */
1627 	ctx->recv_pkt = NULL;
1628 	__strp_unpause(&ctx->strp);
1629 
1630 	return true;
1631 }
1632 
1633 /* This function traverses the rx_list in tls receive context to copies the
1634  * decrypted records into the buffer provided by caller zero copy is not
1635  * true. Further, the records are removed from the rx_list if it is not a peek
1636  * case and the record has been consumed completely.
1637  */
1638 static int process_rx_list(struct tls_sw_context_rx *ctx,
1639 			   struct msghdr *msg,
1640 			   u8 *control,
1641 			   bool *cmsg,
1642 			   size_t skip,
1643 			   size_t len,
1644 			   bool zc,
1645 			   bool is_peek)
1646 {
1647 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1648 	u8 ctrl = *control;
1649 	u8 msgc = *cmsg;
1650 	struct tls_msg *tlm;
1651 	ssize_t copied = 0;
1652 
1653 	/* Set the record type in 'control' if caller didn't pass it */
1654 	if (!ctrl && skb) {
1655 		tlm = tls_msg(skb);
1656 		ctrl = tlm->control;
1657 	}
1658 
1659 	while (skip && skb) {
1660 		struct strp_msg *rxm = strp_msg(skb);
1661 		tlm = tls_msg(skb);
1662 
1663 		/* Cannot process a record of different type */
1664 		if (ctrl != tlm->control)
1665 			return 0;
1666 
1667 		if (skip < rxm->full_len)
1668 			break;
1669 
1670 		skip = skip - rxm->full_len;
1671 		skb = skb_peek_next(skb, &ctx->rx_list);
1672 	}
1673 
1674 	while (len && skb) {
1675 		struct sk_buff *next_skb;
1676 		struct strp_msg *rxm = strp_msg(skb);
1677 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1678 
1679 		tlm = tls_msg(skb);
1680 
1681 		/* Cannot process a record of different type */
1682 		if (ctrl != tlm->control)
1683 			return 0;
1684 
1685 		/* Set record type if not already done. For a non-data record,
1686 		 * do not proceed if record type could not be copied.
1687 		 */
1688 		if (!msgc) {
1689 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1690 					    sizeof(ctrl), &ctrl);
1691 			msgc = true;
1692 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1693 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1694 					return -EIO;
1695 
1696 				*cmsg = msgc;
1697 			}
1698 		}
1699 
1700 		if (!zc || (rxm->full_len - skip) > len) {
1701 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1702 						    msg, chunk);
1703 			if (err < 0)
1704 				return err;
1705 		}
1706 
1707 		len = len - chunk;
1708 		copied = copied + chunk;
1709 
1710 		/* Consume the data from record if it is non-peek case*/
1711 		if (!is_peek) {
1712 			rxm->offset = rxm->offset + chunk;
1713 			rxm->full_len = rxm->full_len - chunk;
1714 
1715 			/* Return if there is unconsumed data in the record */
1716 			if (rxm->full_len - skip)
1717 				break;
1718 		}
1719 
1720 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1721 		 * So from the 2nd record, 'skip' should be 0.
1722 		 */
1723 		skip = 0;
1724 
1725 		if (msg)
1726 			msg->msg_flags |= MSG_EOR;
1727 
1728 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1729 
1730 		if (!is_peek) {
1731 			skb_unlink(skb, &ctx->rx_list);
1732 			consume_skb(skb);
1733 		}
1734 
1735 		skb = next_skb;
1736 	}
1737 
1738 	*control = ctrl;
1739 	return copied;
1740 }
1741 
1742 int tls_sw_recvmsg(struct sock *sk,
1743 		   struct msghdr *msg,
1744 		   size_t len,
1745 		   int nonblock,
1746 		   int flags,
1747 		   int *addr_len)
1748 {
1749 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1750 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1751 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1752 	struct sk_psock *psock;
1753 	unsigned char control = 0;
1754 	ssize_t decrypted = 0;
1755 	struct strp_msg *rxm;
1756 	struct tls_msg *tlm;
1757 	struct sk_buff *skb;
1758 	ssize_t copied = 0;
1759 	bool cmsg = false;
1760 	int target, err = 0;
1761 	long timeo;
1762 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1763 	bool is_peek = flags & MSG_PEEK;
1764 	bool bpf_strp_enabled;
1765 	int num_async = 0;
1766 	int pending;
1767 
1768 	flags |= nonblock;
1769 
1770 	if (unlikely(flags & MSG_ERRQUEUE))
1771 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1772 
1773 	psock = sk_psock_get(sk);
1774 	lock_sock(sk);
1775 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1776 
1777 	/* Process pending decrypted records. It must be non-zero-copy */
1778 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1779 			      is_peek);
1780 	if (err < 0) {
1781 		tls_err_abort(sk, err);
1782 		goto end;
1783 	} else {
1784 		copied = err;
1785 	}
1786 
1787 	if (len <= copied)
1788 		goto recv_end;
1789 
1790 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1791 	len = len - copied;
1792 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1793 
1794 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1795 		bool retain_skb = false;
1796 		bool zc = false;
1797 		int to_decrypt;
1798 		int chunk = 0;
1799 		bool async_capable;
1800 		bool async = false;
1801 
1802 		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1803 		if (!skb) {
1804 			if (psock) {
1805 				int ret = sk_msg_recvmsg(sk, psock, msg, len,
1806 							 flags);
1807 
1808 				if (ret > 0) {
1809 					decrypted += ret;
1810 					len -= ret;
1811 					continue;
1812 				}
1813 			}
1814 			goto recv_end;
1815 		} else {
1816 			tlm = tls_msg(skb);
1817 			if (prot->version == TLS_1_3_VERSION)
1818 				tlm->control = 0;
1819 			else
1820 				tlm->control = ctx->control;
1821 		}
1822 
1823 		rxm = strp_msg(skb);
1824 
1825 		to_decrypt = rxm->full_len - prot->overhead_size;
1826 
1827 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1828 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1829 		    prot->version != TLS_1_3_VERSION &&
1830 		    !bpf_strp_enabled)
1831 			zc = true;
1832 
1833 		/* Do not use async mode if record is non-data */
1834 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1835 			async_capable = ctx->async_capable;
1836 		else
1837 			async_capable = false;
1838 
1839 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1840 					 &chunk, &zc, async_capable);
1841 		if (err < 0 && err != -EINPROGRESS) {
1842 			tls_err_abort(sk, EBADMSG);
1843 			goto recv_end;
1844 		}
1845 
1846 		if (err == -EINPROGRESS) {
1847 			async = true;
1848 			num_async++;
1849 		} else if (prot->version == TLS_1_3_VERSION) {
1850 			tlm->control = ctx->control;
1851 		}
1852 
1853 		/* If the type of records being processed is not known yet,
1854 		 * set it to record type just dequeued. If it is already known,
1855 		 * but does not match the record type just dequeued, go to end.
1856 		 * We always get record type here since for tls1.2, record type
1857 		 * is known just after record is dequeued from stream parser.
1858 		 * For tls1.3, we disable async.
1859 		 */
1860 
1861 		if (!control)
1862 			control = tlm->control;
1863 		else if (control != tlm->control)
1864 			goto recv_end;
1865 
1866 		if (!cmsg) {
1867 			int cerr;
1868 
1869 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1870 					sizeof(control), &control);
1871 			cmsg = true;
1872 			if (control != TLS_RECORD_TYPE_DATA) {
1873 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1874 					err = -EIO;
1875 					goto recv_end;
1876 				}
1877 			}
1878 		}
1879 
1880 		if (async)
1881 			goto pick_next_record;
1882 
1883 		if (!zc) {
1884 			if (bpf_strp_enabled) {
1885 				err = sk_psock_tls_strp_read(psock, skb);
1886 				if (err != __SK_PASS) {
1887 					rxm->offset = rxm->offset + rxm->full_len;
1888 					rxm->full_len = 0;
1889 					if (err == __SK_DROP)
1890 						consume_skb(skb);
1891 					ctx->recv_pkt = NULL;
1892 					__strp_unpause(&ctx->strp);
1893 					continue;
1894 				}
1895 			}
1896 
1897 			if (rxm->full_len > len) {
1898 				retain_skb = true;
1899 				chunk = len;
1900 			} else {
1901 				chunk = rxm->full_len;
1902 			}
1903 
1904 			err = skb_copy_datagram_msg(skb, rxm->offset,
1905 						    msg, chunk);
1906 			if (err < 0)
1907 				goto recv_end;
1908 
1909 			if (!is_peek) {
1910 				rxm->offset = rxm->offset + chunk;
1911 				rxm->full_len = rxm->full_len - chunk;
1912 			}
1913 		}
1914 
1915 pick_next_record:
1916 		if (chunk > len)
1917 			chunk = len;
1918 
1919 		decrypted += chunk;
1920 		len -= chunk;
1921 
1922 		/* For async or peek case, queue the current skb */
1923 		if (async || is_peek || retain_skb) {
1924 			skb_queue_tail(&ctx->rx_list, skb);
1925 			skb = NULL;
1926 		}
1927 
1928 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1929 			/* Return full control message to
1930 			 * userspace before trying to parse
1931 			 * another message type
1932 			 */
1933 			msg->msg_flags |= MSG_EOR;
1934 			if (control != TLS_RECORD_TYPE_DATA)
1935 				goto recv_end;
1936 		} else {
1937 			break;
1938 		}
1939 	}
1940 
1941 recv_end:
1942 	if (num_async) {
1943 		/* Wait for all previously submitted records to be decrypted */
1944 		spin_lock_bh(&ctx->decrypt_compl_lock);
1945 		ctx->async_notify = true;
1946 		pending = atomic_read(&ctx->decrypt_pending);
1947 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1948 		if (pending) {
1949 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1950 			if (err) {
1951 				/* one of async decrypt failed */
1952 				tls_err_abort(sk, err);
1953 				copied = 0;
1954 				decrypted = 0;
1955 				goto end;
1956 			}
1957 		} else {
1958 			reinit_completion(&ctx->async_wait.completion);
1959 		}
1960 
1961 		/* There can be no concurrent accesses, since we have no
1962 		 * pending decrypt operations
1963 		 */
1964 		WRITE_ONCE(ctx->async_notify, false);
1965 
1966 		/* Drain records from the rx_list & copy if required */
1967 		if (is_peek || is_kvec)
1968 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1969 					      decrypted, false, is_peek);
1970 		else
1971 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1972 					      decrypted, true, is_peek);
1973 		if (err < 0) {
1974 			tls_err_abort(sk, err);
1975 			copied = 0;
1976 			goto end;
1977 		}
1978 	}
1979 
1980 	copied += decrypted;
1981 
1982 end:
1983 	release_sock(sk);
1984 	if (psock)
1985 		sk_psock_put(sk, psock);
1986 	return copied ? : err;
1987 }
1988 
1989 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1990 			   struct pipe_inode_info *pipe,
1991 			   size_t len, unsigned int flags)
1992 {
1993 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1994 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1995 	struct strp_msg *rxm = NULL;
1996 	struct sock *sk = sock->sk;
1997 	struct sk_buff *skb;
1998 	ssize_t copied = 0;
1999 	int err = 0;
2000 	long timeo;
2001 	int chunk;
2002 	bool zc = false;
2003 
2004 	lock_sock(sk);
2005 
2006 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2007 
2008 	skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2009 	if (!skb)
2010 		goto splice_read_end;
2011 
2012 	if (!ctx->decrypted) {
2013 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2014 
2015 		/* splice does not support reading control messages */
2016 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
2017 			err = -EINVAL;
2018 			goto splice_read_end;
2019 		}
2020 
2021 		if (err < 0) {
2022 			tls_err_abort(sk, EBADMSG);
2023 			goto splice_read_end;
2024 		}
2025 		ctx->decrypted = 1;
2026 	}
2027 	rxm = strp_msg(skb);
2028 
2029 	chunk = min_t(unsigned int, rxm->full_len, len);
2030 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2031 	if (copied < 0)
2032 		goto splice_read_end;
2033 
2034 	tls_sw_advance_skb(sk, skb, copied);
2035 
2036 splice_read_end:
2037 	release_sock(sk);
2038 	return copied ? : err;
2039 }
2040 
2041 bool tls_sw_stream_read(const struct sock *sk)
2042 {
2043 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2044 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045 	bool ingress_empty = true;
2046 	struct sk_psock *psock;
2047 
2048 	rcu_read_lock();
2049 	psock = sk_psock(sk);
2050 	if (psock)
2051 		ingress_empty = list_empty(&psock->ingress_msg);
2052 	rcu_read_unlock();
2053 
2054 	return !ingress_empty || ctx->recv_pkt ||
2055 		!skb_queue_empty(&ctx->rx_list);
2056 }
2057 
2058 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2059 {
2060 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2061 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2062 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2063 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2064 	struct strp_msg *rxm = strp_msg(skb);
2065 	size_t cipher_overhead;
2066 	size_t data_len = 0;
2067 	int ret;
2068 
2069 	/* Verify that we have a full TLS header, or wait for more data */
2070 	if (rxm->offset + prot->prepend_size > skb->len)
2071 		return 0;
2072 
2073 	/* Sanity-check size of on-stack buffer. */
2074 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2075 		ret = -EINVAL;
2076 		goto read_failure;
2077 	}
2078 
2079 	/* Linearize header to local buffer */
2080 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2081 
2082 	if (ret < 0)
2083 		goto read_failure;
2084 
2085 	ctx->control = header[0];
2086 
2087 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2088 
2089 	cipher_overhead = prot->tag_size;
2090 	if (prot->version != TLS_1_3_VERSION &&
2091 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2092 		cipher_overhead += prot->iv_size;
2093 
2094 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2095 	    prot->tail_size) {
2096 		ret = -EMSGSIZE;
2097 		goto read_failure;
2098 	}
2099 	if (data_len < cipher_overhead) {
2100 		ret = -EBADMSG;
2101 		goto read_failure;
2102 	}
2103 
2104 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2105 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2106 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2107 		ret = -EINVAL;
2108 		goto read_failure;
2109 	}
2110 
2111 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2112 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2113 	return data_len + TLS_HEADER_SIZE;
2114 
2115 read_failure:
2116 	tls_err_abort(strp->sk, ret);
2117 
2118 	return ret;
2119 }
2120 
2121 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2122 {
2123 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2124 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2125 
2126 	ctx->decrypted = 0;
2127 
2128 	ctx->recv_pkt = skb;
2129 	strp_pause(strp);
2130 
2131 	ctx->saved_data_ready(strp->sk);
2132 }
2133 
2134 static void tls_data_ready(struct sock *sk)
2135 {
2136 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2137 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2138 	struct sk_psock *psock;
2139 
2140 	strp_data_ready(&ctx->strp);
2141 
2142 	psock = sk_psock_get(sk);
2143 	if (psock) {
2144 		if (!list_empty(&psock->ingress_msg))
2145 			ctx->saved_data_ready(sk);
2146 		sk_psock_put(sk, psock);
2147 	}
2148 }
2149 
2150 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2151 {
2152 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2153 
2154 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2155 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2156 	cancel_delayed_work_sync(&ctx->tx_work.work);
2157 }
2158 
2159 void tls_sw_release_resources_tx(struct sock *sk)
2160 {
2161 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2162 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2163 	struct tls_rec *rec, *tmp;
2164 	int pending;
2165 
2166 	/* Wait for any pending async encryptions to complete */
2167 	spin_lock_bh(&ctx->encrypt_compl_lock);
2168 	ctx->async_notify = true;
2169 	pending = atomic_read(&ctx->encrypt_pending);
2170 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2171 
2172 	if (pending)
2173 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2174 
2175 	tls_tx_records(sk, -1);
2176 
2177 	/* Free up un-sent records in tx_list. First, free
2178 	 * the partially sent record if any at head of tx_list.
2179 	 */
2180 	if (tls_ctx->partially_sent_record) {
2181 		tls_free_partial_record(sk, tls_ctx);
2182 		rec = list_first_entry(&ctx->tx_list,
2183 				       struct tls_rec, list);
2184 		list_del(&rec->list);
2185 		sk_msg_free(sk, &rec->msg_plaintext);
2186 		kfree(rec);
2187 	}
2188 
2189 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2190 		list_del(&rec->list);
2191 		sk_msg_free(sk, &rec->msg_encrypted);
2192 		sk_msg_free(sk, &rec->msg_plaintext);
2193 		kfree(rec);
2194 	}
2195 
2196 	crypto_free_aead(ctx->aead_send);
2197 	tls_free_open_rec(sk);
2198 }
2199 
2200 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2201 {
2202 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2203 
2204 	kfree(ctx);
2205 }
2206 
2207 void tls_sw_release_resources_rx(struct sock *sk)
2208 {
2209 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2210 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2211 
2212 	kfree(tls_ctx->rx.rec_seq);
2213 	kfree(tls_ctx->rx.iv);
2214 
2215 	if (ctx->aead_recv) {
2216 		kfree_skb(ctx->recv_pkt);
2217 		ctx->recv_pkt = NULL;
2218 		skb_queue_purge(&ctx->rx_list);
2219 		crypto_free_aead(ctx->aead_recv);
2220 		strp_stop(&ctx->strp);
2221 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2222 		 * we still want to strp_stop(), but sk->sk_data_ready was
2223 		 * never swapped.
2224 		 */
2225 		if (ctx->saved_data_ready) {
2226 			write_lock_bh(&sk->sk_callback_lock);
2227 			sk->sk_data_ready = ctx->saved_data_ready;
2228 			write_unlock_bh(&sk->sk_callback_lock);
2229 		}
2230 	}
2231 }
2232 
2233 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2234 {
2235 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2236 
2237 	strp_done(&ctx->strp);
2238 }
2239 
2240 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2241 {
2242 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2243 
2244 	kfree(ctx);
2245 }
2246 
2247 void tls_sw_free_resources_rx(struct sock *sk)
2248 {
2249 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2250 
2251 	tls_sw_release_resources_rx(sk);
2252 	tls_sw_free_ctx_rx(tls_ctx);
2253 }
2254 
2255 /* The work handler to transmitt the encrypted records in tx_list */
2256 static void tx_work_handler(struct work_struct *work)
2257 {
2258 	struct delayed_work *delayed_work = to_delayed_work(work);
2259 	struct tx_work *tx_work = container_of(delayed_work,
2260 					       struct tx_work, work);
2261 	struct sock *sk = tx_work->sk;
2262 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2263 	struct tls_sw_context_tx *ctx;
2264 
2265 	if (unlikely(!tls_ctx))
2266 		return;
2267 
2268 	ctx = tls_sw_ctx_tx(tls_ctx);
2269 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2270 		return;
2271 
2272 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2273 		return;
2274 	mutex_lock(&tls_ctx->tx_lock);
2275 	lock_sock(sk);
2276 	tls_tx_records(sk, -1);
2277 	release_sock(sk);
2278 	mutex_unlock(&tls_ctx->tx_lock);
2279 }
2280 
2281 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2282 {
2283 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2284 
2285 	/* Schedule the transmission if tx list is ready */
2286 	if (is_tx_ready(tx_ctx) &&
2287 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2288 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2289 }
2290 
2291 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2292 {
2293 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2294 
2295 	write_lock_bh(&sk->sk_callback_lock);
2296 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2297 	sk->sk_data_ready = tls_data_ready;
2298 	write_unlock_bh(&sk->sk_callback_lock);
2299 
2300 	strp_check_rcv(&rx_ctx->strp);
2301 }
2302 
2303 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2304 {
2305 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2306 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2307 	struct tls_crypto_info *crypto_info;
2308 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2309 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2310 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2311 	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2312 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2313 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2314 	struct cipher_context *cctx;
2315 	struct crypto_aead **aead;
2316 	struct strp_callbacks cb;
2317 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2318 	struct crypto_tfm *tfm;
2319 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2320 	size_t keysize;
2321 	int rc = 0;
2322 
2323 	if (!ctx) {
2324 		rc = -EINVAL;
2325 		goto out;
2326 	}
2327 
2328 	if (tx) {
2329 		if (!ctx->priv_ctx_tx) {
2330 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2331 			if (!sw_ctx_tx) {
2332 				rc = -ENOMEM;
2333 				goto out;
2334 			}
2335 			ctx->priv_ctx_tx = sw_ctx_tx;
2336 		} else {
2337 			sw_ctx_tx =
2338 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2339 		}
2340 	} else {
2341 		if (!ctx->priv_ctx_rx) {
2342 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2343 			if (!sw_ctx_rx) {
2344 				rc = -ENOMEM;
2345 				goto out;
2346 			}
2347 			ctx->priv_ctx_rx = sw_ctx_rx;
2348 		} else {
2349 			sw_ctx_rx =
2350 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2351 		}
2352 	}
2353 
2354 	if (tx) {
2355 		crypto_init_wait(&sw_ctx_tx->async_wait);
2356 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2357 		crypto_info = &ctx->crypto_send.info;
2358 		cctx = &ctx->tx;
2359 		aead = &sw_ctx_tx->aead_send;
2360 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2361 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2362 		sw_ctx_tx->tx_work.sk = sk;
2363 	} else {
2364 		crypto_init_wait(&sw_ctx_rx->async_wait);
2365 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2366 		crypto_info = &ctx->crypto_recv.info;
2367 		cctx = &ctx->rx;
2368 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2369 		aead = &sw_ctx_rx->aead_recv;
2370 	}
2371 
2372 	switch (crypto_info->cipher_type) {
2373 	case TLS_CIPHER_AES_GCM_128: {
2374 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2375 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2376 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2377 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2378 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2379 		rec_seq =
2380 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2381 		gcm_128_info =
2382 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2383 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2384 		key = gcm_128_info->key;
2385 		salt = gcm_128_info->salt;
2386 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2387 		cipher_name = "gcm(aes)";
2388 		break;
2389 	}
2390 	case TLS_CIPHER_AES_GCM_256: {
2391 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2392 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2393 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2394 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2395 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2396 		rec_seq =
2397 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2398 		gcm_256_info =
2399 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2400 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2401 		key = gcm_256_info->key;
2402 		salt = gcm_256_info->salt;
2403 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2404 		cipher_name = "gcm(aes)";
2405 		break;
2406 	}
2407 	case TLS_CIPHER_AES_CCM_128: {
2408 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2409 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2410 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2411 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2412 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2413 		rec_seq =
2414 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2415 		ccm_128_info =
2416 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2417 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2418 		key = ccm_128_info->key;
2419 		salt = ccm_128_info->salt;
2420 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2421 		cipher_name = "ccm(aes)";
2422 		break;
2423 	}
2424 	case TLS_CIPHER_CHACHA20_POLY1305: {
2425 		chacha20_poly1305_info = (void *)crypto_info;
2426 		nonce_size = 0;
2427 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2428 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2429 		iv = chacha20_poly1305_info->iv;
2430 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2431 		rec_seq = chacha20_poly1305_info->rec_seq;
2432 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2433 		key = chacha20_poly1305_info->key;
2434 		salt = chacha20_poly1305_info->salt;
2435 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2436 		cipher_name = "rfc7539(chacha20,poly1305)";
2437 		break;
2438 	}
2439 	case TLS_CIPHER_SM4_GCM: {
2440 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2441 
2442 		sm4_gcm_info = (void *)crypto_info;
2443 		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2444 		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2445 		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2446 		iv = sm4_gcm_info->iv;
2447 		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2448 		rec_seq = sm4_gcm_info->rec_seq;
2449 		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2450 		key = sm4_gcm_info->key;
2451 		salt = sm4_gcm_info->salt;
2452 		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2453 		cipher_name = "gcm(sm4)";
2454 		break;
2455 	}
2456 	case TLS_CIPHER_SM4_CCM: {
2457 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2458 
2459 		sm4_ccm_info = (void *)crypto_info;
2460 		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2461 		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2462 		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2463 		iv = sm4_ccm_info->iv;
2464 		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2465 		rec_seq = sm4_ccm_info->rec_seq;
2466 		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2467 		key = sm4_ccm_info->key;
2468 		salt = sm4_ccm_info->salt;
2469 		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2470 		cipher_name = "ccm(sm4)";
2471 		break;
2472 	}
2473 	default:
2474 		rc = -EINVAL;
2475 		goto free_priv;
2476 	}
2477 
2478 	/* Sanity-check the sizes for stack allocations. */
2479 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2480 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2481 		rc = -EINVAL;
2482 		goto free_priv;
2483 	}
2484 
2485 	if (crypto_info->version == TLS_1_3_VERSION) {
2486 		nonce_size = 0;
2487 		prot->aad_size = TLS_HEADER_SIZE;
2488 		prot->tail_size = 1;
2489 	} else {
2490 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2491 		prot->tail_size = 0;
2492 	}
2493 
2494 	prot->version = crypto_info->version;
2495 	prot->cipher_type = crypto_info->cipher_type;
2496 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2497 	prot->tag_size = tag_size;
2498 	prot->overhead_size = prot->prepend_size +
2499 			      prot->tag_size + prot->tail_size;
2500 	prot->iv_size = iv_size;
2501 	prot->salt_size = salt_size;
2502 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2503 	if (!cctx->iv) {
2504 		rc = -ENOMEM;
2505 		goto free_priv;
2506 	}
2507 	/* Note: 128 & 256 bit salt are the same size */
2508 	prot->rec_seq_size = rec_seq_size;
2509 	memcpy(cctx->iv, salt, salt_size);
2510 	memcpy(cctx->iv + salt_size, iv, iv_size);
2511 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2512 	if (!cctx->rec_seq) {
2513 		rc = -ENOMEM;
2514 		goto free_iv;
2515 	}
2516 
2517 	if (!*aead) {
2518 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2519 		if (IS_ERR(*aead)) {
2520 			rc = PTR_ERR(*aead);
2521 			*aead = NULL;
2522 			goto free_rec_seq;
2523 		}
2524 	}
2525 
2526 	ctx->push_pending_record = tls_sw_push_pending_record;
2527 
2528 	rc = crypto_aead_setkey(*aead, key, keysize);
2529 
2530 	if (rc)
2531 		goto free_aead;
2532 
2533 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2534 	if (rc)
2535 		goto free_aead;
2536 
2537 	if (sw_ctx_rx) {
2538 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2539 
2540 		if (crypto_info->version == TLS_1_3_VERSION)
2541 			sw_ctx_rx->async_capable = 0;
2542 		else
2543 			sw_ctx_rx->async_capable =
2544 				!!(tfm->__crt_alg->cra_flags &
2545 				   CRYPTO_ALG_ASYNC);
2546 
2547 		/* Set up strparser */
2548 		memset(&cb, 0, sizeof(cb));
2549 		cb.rcv_msg = tls_queue;
2550 		cb.parse_msg = tls_read_size;
2551 
2552 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2553 	}
2554 
2555 	goto out;
2556 
2557 free_aead:
2558 	crypto_free_aead(*aead);
2559 	*aead = NULL;
2560 free_rec_seq:
2561 	kfree(cctx->rec_seq);
2562 	cctx->rec_seq = NULL;
2563 free_iv:
2564 	kfree(cctx->iv);
2565 	cctx->iv = NULL;
2566 free_priv:
2567 	if (tx) {
2568 		kfree(ctx->priv_ctx_tx);
2569 		ctx->priv_ctx_tx = NULL;
2570 	} else {
2571 		kfree(ctx->priv_ctx_rx);
2572 		ctx->priv_ctx_rx = NULL;
2573 	}
2574 out:
2575 	return rc;
2576 }
2577