1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 spin_lock_bh(&ctx->decrypt_compl_lock); 210 pending = atomic_dec_return(&ctx->decrypt_pending); 211 212 if (!pending && ctx->async_notify) 213 complete(&ctx->async_wait.completion); 214 spin_unlock_bh(&ctx->decrypt_compl_lock); 215 } 216 217 static int tls_do_decryption(struct sock *sk, 218 struct sk_buff *skb, 219 struct scatterlist *sgin, 220 struct scatterlist *sgout, 221 char *iv_recv, 222 size_t data_len, 223 struct aead_request *aead_req, 224 bool async) 225 { 226 struct tls_context *tls_ctx = tls_get_ctx(sk); 227 struct tls_prot_info *prot = &tls_ctx->prot_info; 228 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 229 int ret; 230 231 aead_request_set_tfm(aead_req, ctx->aead_recv); 232 aead_request_set_ad(aead_req, prot->aad_size); 233 aead_request_set_crypt(aead_req, sgin, sgout, 234 data_len + prot->tag_size, 235 (u8 *)iv_recv); 236 237 if (async) { 238 /* Using skb->sk to push sk through to crypto async callback 239 * handler. This allows propagating errors up to the socket 240 * if needed. It _must_ be cleared in the async handler 241 * before consume_skb is called. We _know_ skb->sk is NULL 242 * because it is a clone from strparser. 243 */ 244 skb->sk = sk; 245 aead_request_set_callback(aead_req, 246 CRYPTO_TFM_REQ_MAY_BACKLOG, 247 tls_decrypt_done, skb); 248 atomic_inc(&ctx->decrypt_pending); 249 } else { 250 aead_request_set_callback(aead_req, 251 CRYPTO_TFM_REQ_MAY_BACKLOG, 252 crypto_req_done, &ctx->async_wait); 253 } 254 255 ret = crypto_aead_decrypt(aead_req); 256 if (ret == -EINPROGRESS) { 257 if (async) 258 return ret; 259 260 ret = crypto_wait_req(ret, &ctx->async_wait); 261 } 262 263 if (async) 264 atomic_dec(&ctx->decrypt_pending); 265 266 return ret; 267 } 268 269 static void tls_trim_both_msgs(struct sock *sk, int target_size) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_prot_info *prot = &tls_ctx->prot_info; 273 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 274 struct tls_rec *rec = ctx->open_rec; 275 276 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 277 if (target_size > 0) 278 target_size += prot->overhead_size; 279 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 280 } 281 282 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 283 { 284 struct tls_context *tls_ctx = tls_get_ctx(sk); 285 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 286 struct tls_rec *rec = ctx->open_rec; 287 struct sk_msg *msg_en = &rec->msg_encrypted; 288 289 return sk_msg_alloc(sk, msg_en, len, 0); 290 } 291 292 static int tls_clone_plaintext_msg(struct sock *sk, int required) 293 { 294 struct tls_context *tls_ctx = tls_get_ctx(sk); 295 struct tls_prot_info *prot = &tls_ctx->prot_info; 296 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 297 struct tls_rec *rec = ctx->open_rec; 298 struct sk_msg *msg_pl = &rec->msg_plaintext; 299 struct sk_msg *msg_en = &rec->msg_encrypted; 300 int skip, len; 301 302 /* We add page references worth len bytes from encrypted sg 303 * at the end of plaintext sg. It is guaranteed that msg_en 304 * has enough required room (ensured by caller). 305 */ 306 len = required - msg_pl->sg.size; 307 308 /* Skip initial bytes in msg_en's data to be able to use 309 * same offset of both plain and encrypted data. 310 */ 311 skip = prot->prepend_size + msg_pl->sg.size; 312 313 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 314 } 315 316 static struct tls_rec *tls_get_rec(struct sock *sk) 317 { 318 struct tls_context *tls_ctx = tls_get_ctx(sk); 319 struct tls_prot_info *prot = &tls_ctx->prot_info; 320 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 321 struct sk_msg *msg_pl, *msg_en; 322 struct tls_rec *rec; 323 int mem_size; 324 325 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 326 327 rec = kzalloc(mem_size, sk->sk_allocation); 328 if (!rec) 329 return NULL; 330 331 msg_pl = &rec->msg_plaintext; 332 msg_en = &rec->msg_encrypted; 333 334 sk_msg_init(msg_pl); 335 sk_msg_init(msg_en); 336 337 sg_init_table(rec->sg_aead_in, 2); 338 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 339 sg_unmark_end(&rec->sg_aead_in[1]); 340 341 sg_init_table(rec->sg_aead_out, 2); 342 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_out[1]); 344 345 return rec; 346 } 347 348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 349 { 350 sk_msg_free(sk, &rec->msg_encrypted); 351 sk_msg_free(sk, &rec->msg_plaintext); 352 kfree(rec); 353 } 354 355 static void tls_free_open_rec(struct sock *sk) 356 { 357 struct tls_context *tls_ctx = tls_get_ctx(sk); 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct tls_rec *rec = ctx->open_rec; 360 361 if (rec) { 362 tls_free_rec(sk, rec); 363 ctx->open_rec = NULL; 364 } 365 } 366 367 int tls_tx_records(struct sock *sk, int flags) 368 { 369 struct tls_context *tls_ctx = tls_get_ctx(sk); 370 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 371 struct tls_rec *rec, *tmp; 372 struct sk_msg *msg_en; 373 int tx_flags, rc = 0; 374 375 if (tls_is_partially_sent_record(tls_ctx)) { 376 rec = list_first_entry(&ctx->tx_list, 377 struct tls_rec, list); 378 379 if (flags == -1) 380 tx_flags = rec->tx_flags; 381 else 382 tx_flags = flags; 383 384 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 385 if (rc) 386 goto tx_err; 387 388 /* Full record has been transmitted. 389 * Remove the head of tx_list 390 */ 391 list_del(&rec->list); 392 sk_msg_free(sk, &rec->msg_plaintext); 393 kfree(rec); 394 } 395 396 /* Tx all ready records */ 397 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 398 if (READ_ONCE(rec->tx_ready)) { 399 if (flags == -1) 400 tx_flags = rec->tx_flags; 401 else 402 tx_flags = flags; 403 404 msg_en = &rec->msg_encrypted; 405 rc = tls_push_sg(sk, tls_ctx, 406 &msg_en->sg.data[msg_en->sg.curr], 407 0, tx_flags); 408 if (rc) 409 goto tx_err; 410 411 list_del(&rec->list); 412 sk_msg_free(sk, &rec->msg_plaintext); 413 kfree(rec); 414 } else { 415 break; 416 } 417 } 418 419 tx_err: 420 if (rc < 0 && rc != -EAGAIN) 421 tls_err_abort(sk, EBADMSG); 422 423 return rc; 424 } 425 426 static void tls_encrypt_done(struct crypto_async_request *req, int err) 427 { 428 struct aead_request *aead_req = (struct aead_request *)req; 429 struct sock *sk = req->data; 430 struct tls_context *tls_ctx = tls_get_ctx(sk); 431 struct tls_prot_info *prot = &tls_ctx->prot_info; 432 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 433 struct scatterlist *sge; 434 struct sk_msg *msg_en; 435 struct tls_rec *rec; 436 bool ready = false; 437 int pending; 438 439 rec = container_of(aead_req, struct tls_rec, aead_req); 440 msg_en = &rec->msg_encrypted; 441 442 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 443 sge->offset -= prot->prepend_size; 444 sge->length += prot->prepend_size; 445 446 /* Check if error is previously set on socket */ 447 if (err || sk->sk_err) { 448 rec = NULL; 449 450 /* If err is already set on socket, return the same code */ 451 if (sk->sk_err) { 452 ctx->async_wait.err = sk->sk_err; 453 } else { 454 ctx->async_wait.err = err; 455 tls_err_abort(sk, err); 456 } 457 } 458 459 if (rec) { 460 struct tls_rec *first_rec; 461 462 /* Mark the record as ready for transmission */ 463 smp_store_mb(rec->tx_ready, true); 464 465 /* If received record is at head of tx_list, schedule tx */ 466 first_rec = list_first_entry(&ctx->tx_list, 467 struct tls_rec, list); 468 if (rec == first_rec) 469 ready = true; 470 } 471 472 spin_lock_bh(&ctx->encrypt_compl_lock); 473 pending = atomic_dec_return(&ctx->encrypt_pending); 474 475 if (!pending && ctx->async_notify) 476 complete(&ctx->async_wait.completion); 477 spin_unlock_bh(&ctx->encrypt_compl_lock); 478 479 if (!ready) 480 return; 481 482 /* Schedule the transmission */ 483 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 484 schedule_delayed_work(&ctx->tx_work.work, 1); 485 } 486 487 static int tls_do_encryption(struct sock *sk, 488 struct tls_context *tls_ctx, 489 struct tls_sw_context_tx *ctx, 490 struct aead_request *aead_req, 491 size_t data_len, u32 start) 492 { 493 struct tls_prot_info *prot = &tls_ctx->prot_info; 494 struct tls_rec *rec = ctx->open_rec; 495 struct sk_msg *msg_en = &rec->msg_encrypted; 496 struct scatterlist *sge = sk_msg_elem(msg_en, start); 497 int rc, iv_offset = 0; 498 499 /* For CCM based ciphers, first byte of IV is a constant */ 500 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 501 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 502 iv_offset = 1; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq); 509 510 sge->offset += prot->prepend_size; 511 sge->length -= prot->prepend_size; 512 513 msg_en->sg.curr = start; 514 515 aead_request_set_tfm(aead_req, ctx->aead_send); 516 aead_request_set_ad(aead_req, prot->aad_size); 517 aead_request_set_crypt(aead_req, rec->sg_aead_in, 518 rec->sg_aead_out, 519 data_len, rec->iv_data); 520 521 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 522 tls_encrypt_done, sk); 523 524 /* Add the record in tx_list */ 525 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 526 atomic_inc(&ctx->encrypt_pending); 527 528 rc = crypto_aead_encrypt(aead_req); 529 if (!rc || rc != -EINPROGRESS) { 530 atomic_dec(&ctx->encrypt_pending); 531 sge->offset -= prot->prepend_size; 532 sge->length += prot->prepend_size; 533 } 534 535 if (!rc) { 536 WRITE_ONCE(rec->tx_ready, true); 537 } else if (rc != -EINPROGRESS) { 538 list_del(&rec->list); 539 return rc; 540 } 541 542 /* Unhook the record from context if encryption is not failure */ 543 ctx->open_rec = NULL; 544 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 545 return rc; 546 } 547 548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 549 struct tls_rec **to, struct sk_msg *msg_opl, 550 struct sk_msg *msg_oen, u32 split_point, 551 u32 tx_overhead_size, u32 *orig_end) 552 { 553 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 554 struct scatterlist *sge, *osge, *nsge; 555 u32 orig_size = msg_opl->sg.size; 556 struct scatterlist tmp = { }; 557 struct sk_msg *msg_npl; 558 struct tls_rec *new; 559 int ret; 560 561 new = tls_get_rec(sk); 562 if (!new) 563 return -ENOMEM; 564 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 565 tx_overhead_size, 0); 566 if (ret < 0) { 567 tls_free_rec(sk, new); 568 return ret; 569 } 570 571 *orig_end = msg_opl->sg.end; 572 i = msg_opl->sg.start; 573 sge = sk_msg_elem(msg_opl, i); 574 while (apply && sge->length) { 575 if (sge->length > apply) { 576 u32 len = sge->length - apply; 577 578 get_page(sg_page(sge)); 579 sg_set_page(&tmp, sg_page(sge), len, 580 sge->offset + apply); 581 sge->length = apply; 582 bytes += apply; 583 apply = 0; 584 } else { 585 apply -= sge->length; 586 bytes += sge->length; 587 } 588 589 sk_msg_iter_var_next(i); 590 if (i == msg_opl->sg.end) 591 break; 592 sge = sk_msg_elem(msg_opl, i); 593 } 594 595 msg_opl->sg.end = i; 596 msg_opl->sg.curr = i; 597 msg_opl->sg.copybreak = 0; 598 msg_opl->apply_bytes = 0; 599 msg_opl->sg.size = bytes; 600 601 msg_npl = &new->msg_plaintext; 602 msg_npl->apply_bytes = apply; 603 msg_npl->sg.size = orig_size - bytes; 604 605 j = msg_npl->sg.start; 606 nsge = sk_msg_elem(msg_npl, j); 607 if (tmp.length) { 608 memcpy(nsge, &tmp, sizeof(*nsge)); 609 sk_msg_iter_var_next(j); 610 nsge = sk_msg_elem(msg_npl, j); 611 } 612 613 osge = sk_msg_elem(msg_opl, i); 614 while (osge->length) { 615 memcpy(nsge, osge, sizeof(*nsge)); 616 sg_unmark_end(nsge); 617 sk_msg_iter_var_next(i); 618 sk_msg_iter_var_next(j); 619 if (i == *orig_end) 620 break; 621 osge = sk_msg_elem(msg_opl, i); 622 nsge = sk_msg_elem(msg_npl, j); 623 } 624 625 msg_npl->sg.end = j; 626 msg_npl->sg.curr = j; 627 msg_npl->sg.copybreak = 0; 628 629 *to = new; 630 return 0; 631 } 632 633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 634 struct tls_rec *from, u32 orig_end) 635 { 636 struct sk_msg *msg_npl = &from->msg_plaintext; 637 struct sk_msg *msg_opl = &to->msg_plaintext; 638 struct scatterlist *osge, *nsge; 639 u32 i, j; 640 641 i = msg_opl->sg.end; 642 sk_msg_iter_var_prev(i); 643 j = msg_npl->sg.start; 644 645 osge = sk_msg_elem(msg_opl, i); 646 nsge = sk_msg_elem(msg_npl, j); 647 648 if (sg_page(osge) == sg_page(nsge) && 649 osge->offset + osge->length == nsge->offset) { 650 osge->length += nsge->length; 651 put_page(sg_page(nsge)); 652 } 653 654 msg_opl->sg.end = orig_end; 655 msg_opl->sg.curr = orig_end; 656 msg_opl->sg.copybreak = 0; 657 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 658 msg_opl->sg.size += msg_npl->sg.size; 659 660 sk_msg_free(sk, &to->msg_encrypted); 661 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 662 663 kfree(from); 664 } 665 666 static int tls_push_record(struct sock *sk, int flags, 667 unsigned char record_type) 668 { 669 struct tls_context *tls_ctx = tls_get_ctx(sk); 670 struct tls_prot_info *prot = &tls_ctx->prot_info; 671 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 672 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 673 u32 i, split_point, orig_end; 674 struct sk_msg *msg_pl, *msg_en; 675 struct aead_request *req; 676 bool split; 677 int rc; 678 679 if (!rec) 680 return 0; 681 682 msg_pl = &rec->msg_plaintext; 683 msg_en = &rec->msg_encrypted; 684 685 split_point = msg_pl->apply_bytes; 686 split = split_point && split_point < msg_pl->sg.size; 687 if (unlikely((!split && 688 msg_pl->sg.size + 689 prot->overhead_size > msg_en->sg.size) || 690 (split && 691 split_point + 692 prot->overhead_size > msg_en->sg.size))) { 693 split = true; 694 split_point = msg_en->sg.size; 695 } 696 if (split) { 697 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 698 split_point, prot->overhead_size, 699 &orig_end); 700 if (rc < 0) 701 return rc; 702 /* This can happen if above tls_split_open_record allocates 703 * a single large encryption buffer instead of two smaller 704 * ones. In this case adjust pointers and continue without 705 * split. 706 */ 707 if (!msg_pl->sg.size) { 708 tls_merge_open_record(sk, rec, tmp, orig_end); 709 msg_pl = &rec->msg_plaintext; 710 msg_en = &rec->msg_encrypted; 711 split = false; 712 } 713 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 714 prot->overhead_size); 715 } 716 717 rec->tx_flags = flags; 718 req = &rec->aead_req; 719 720 i = msg_pl->sg.end; 721 sk_msg_iter_var_prev(i); 722 723 rec->content_type = record_type; 724 if (prot->version == TLS_1_3_VERSION) { 725 /* Add content type to end of message. No padding added */ 726 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 727 sg_mark_end(&rec->sg_content_type); 728 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 729 &rec->sg_content_type); 730 } else { 731 sg_mark_end(sk_msg_elem(msg_pl, i)); 732 } 733 734 if (msg_pl->sg.end < msg_pl->sg.start) { 735 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 736 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 737 msg_pl->sg.data); 738 } 739 740 i = msg_pl->sg.start; 741 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 742 743 i = msg_en->sg.end; 744 sk_msg_iter_var_prev(i); 745 sg_mark_end(sk_msg_elem(msg_en, i)); 746 747 i = msg_en->sg.start; 748 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 749 750 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 751 tls_ctx->tx.rec_seq, record_type, prot); 752 753 tls_fill_prepend(tls_ctx, 754 page_address(sg_page(&msg_en->sg.data[i])) + 755 msg_en->sg.data[i].offset, 756 msg_pl->sg.size + prot->tail_size, 757 record_type); 758 759 tls_ctx->pending_open_record_frags = false; 760 761 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 762 msg_pl->sg.size + prot->tail_size, i); 763 if (rc < 0) { 764 if (rc != -EINPROGRESS) { 765 tls_err_abort(sk, EBADMSG); 766 if (split) { 767 tls_ctx->pending_open_record_frags = true; 768 tls_merge_open_record(sk, rec, tmp, orig_end); 769 } 770 } 771 ctx->async_capable = 1; 772 return rc; 773 } else if (split) { 774 msg_pl = &tmp->msg_plaintext; 775 msg_en = &tmp->msg_encrypted; 776 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 777 tls_ctx->pending_open_record_frags = true; 778 ctx->open_rec = tmp; 779 } 780 781 return tls_tx_records(sk, flags); 782 } 783 784 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 785 bool full_record, u8 record_type, 786 ssize_t *copied, int flags) 787 { 788 struct tls_context *tls_ctx = tls_get_ctx(sk); 789 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 790 struct sk_msg msg_redir = { }; 791 struct sk_psock *psock; 792 struct sock *sk_redir; 793 struct tls_rec *rec; 794 bool enospc, policy; 795 int err = 0, send; 796 u32 delta = 0; 797 798 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 799 psock = sk_psock_get(sk); 800 if (!psock || !policy) { 801 err = tls_push_record(sk, flags, record_type); 802 if (err && sk->sk_err == EBADMSG) { 803 *copied -= sk_msg_free(sk, msg); 804 tls_free_open_rec(sk); 805 err = -sk->sk_err; 806 } 807 if (psock) 808 sk_psock_put(sk, psock); 809 return err; 810 } 811 more_data: 812 enospc = sk_msg_full(msg); 813 if (psock->eval == __SK_NONE) { 814 delta = msg->sg.size; 815 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 816 delta -= msg->sg.size; 817 } 818 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 819 !enospc && !full_record) { 820 err = -ENOSPC; 821 goto out_err; 822 } 823 msg->cork_bytes = 0; 824 send = msg->sg.size; 825 if (msg->apply_bytes && msg->apply_bytes < send) 826 send = msg->apply_bytes; 827 828 switch (psock->eval) { 829 case __SK_PASS: 830 err = tls_push_record(sk, flags, record_type); 831 if (err && sk->sk_err == EBADMSG) { 832 *copied -= sk_msg_free(sk, msg); 833 tls_free_open_rec(sk); 834 err = -sk->sk_err; 835 goto out_err; 836 } 837 break; 838 case __SK_REDIRECT: 839 sk_redir = psock->sk_redir; 840 memcpy(&msg_redir, msg, sizeof(*msg)); 841 if (msg->apply_bytes < send) 842 msg->apply_bytes = 0; 843 else 844 msg->apply_bytes -= send; 845 sk_msg_return_zero(sk, msg, send); 846 msg->sg.size -= send; 847 release_sock(sk); 848 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 849 lock_sock(sk); 850 if (err < 0) { 851 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 852 msg->sg.size = 0; 853 } 854 if (msg->sg.size == 0) 855 tls_free_open_rec(sk); 856 break; 857 case __SK_DROP: 858 default: 859 sk_msg_free_partial(sk, msg, send); 860 if (msg->apply_bytes < send) 861 msg->apply_bytes = 0; 862 else 863 msg->apply_bytes -= send; 864 if (msg->sg.size == 0) 865 tls_free_open_rec(sk); 866 *copied -= (send + delta); 867 err = -EACCES; 868 } 869 870 if (likely(!err)) { 871 bool reset_eval = !ctx->open_rec; 872 873 rec = ctx->open_rec; 874 if (rec) { 875 msg = &rec->msg_plaintext; 876 if (!msg->apply_bytes) 877 reset_eval = true; 878 } 879 if (reset_eval) { 880 psock->eval = __SK_NONE; 881 if (psock->sk_redir) { 882 sock_put(psock->sk_redir); 883 psock->sk_redir = NULL; 884 } 885 } 886 if (rec) 887 goto more_data; 888 } 889 out_err: 890 sk_psock_put(sk, psock); 891 return err; 892 } 893 894 static int tls_sw_push_pending_record(struct sock *sk, int flags) 895 { 896 struct tls_context *tls_ctx = tls_get_ctx(sk); 897 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 898 struct tls_rec *rec = ctx->open_rec; 899 struct sk_msg *msg_pl; 900 size_t copied; 901 902 if (!rec) 903 return 0; 904 905 msg_pl = &rec->msg_plaintext; 906 copied = msg_pl->sg.size; 907 if (!copied) 908 return 0; 909 910 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 911 &copied, flags); 912 } 913 914 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 915 { 916 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 917 struct tls_context *tls_ctx = tls_get_ctx(sk); 918 struct tls_prot_info *prot = &tls_ctx->prot_info; 919 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 920 bool async_capable = ctx->async_capable; 921 unsigned char record_type = TLS_RECORD_TYPE_DATA; 922 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 923 bool eor = !(msg->msg_flags & MSG_MORE); 924 size_t try_to_copy; 925 ssize_t copied = 0; 926 struct sk_msg *msg_pl, *msg_en; 927 struct tls_rec *rec; 928 int required_size; 929 int num_async = 0; 930 bool full_record; 931 int record_room; 932 int num_zc = 0; 933 int orig_size; 934 int ret = 0; 935 int pending; 936 937 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 938 MSG_CMSG_COMPAT)) 939 return -EOPNOTSUPP; 940 941 mutex_lock(&tls_ctx->tx_lock); 942 lock_sock(sk); 943 944 if (unlikely(msg->msg_controllen)) { 945 ret = tls_proccess_cmsg(sk, msg, &record_type); 946 if (ret) { 947 if (ret == -EINPROGRESS) 948 num_async++; 949 else if (ret != -EAGAIN) 950 goto send_end; 951 } 952 } 953 954 while (msg_data_left(msg)) { 955 if (sk->sk_err) { 956 ret = -sk->sk_err; 957 goto send_end; 958 } 959 960 if (ctx->open_rec) 961 rec = ctx->open_rec; 962 else 963 rec = ctx->open_rec = tls_get_rec(sk); 964 if (!rec) { 965 ret = -ENOMEM; 966 goto send_end; 967 } 968 969 msg_pl = &rec->msg_plaintext; 970 msg_en = &rec->msg_encrypted; 971 972 orig_size = msg_pl->sg.size; 973 full_record = false; 974 try_to_copy = msg_data_left(msg); 975 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 976 if (try_to_copy >= record_room) { 977 try_to_copy = record_room; 978 full_record = true; 979 } 980 981 required_size = msg_pl->sg.size + try_to_copy + 982 prot->overhead_size; 983 984 if (!sk_stream_memory_free(sk)) 985 goto wait_for_sndbuf; 986 987 alloc_encrypted: 988 ret = tls_alloc_encrypted_msg(sk, required_size); 989 if (ret) { 990 if (ret != -ENOSPC) 991 goto wait_for_memory; 992 993 /* Adjust try_to_copy according to the amount that was 994 * actually allocated. The difference is due 995 * to max sg elements limit 996 */ 997 try_to_copy -= required_size - msg_en->sg.size; 998 full_record = true; 999 } 1000 1001 if (!is_kvec && (full_record || eor) && !async_capable) { 1002 u32 first = msg_pl->sg.end; 1003 1004 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1005 msg_pl, try_to_copy); 1006 if (ret) 1007 goto fallback_to_reg_send; 1008 1009 num_zc++; 1010 copied += try_to_copy; 1011 1012 sk_msg_sg_copy_set(msg_pl, first); 1013 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1014 record_type, &copied, 1015 msg->msg_flags); 1016 if (ret) { 1017 if (ret == -EINPROGRESS) 1018 num_async++; 1019 else if (ret == -ENOMEM) 1020 goto wait_for_memory; 1021 else if (ctx->open_rec && ret == -ENOSPC) 1022 goto rollback_iter; 1023 else if (ret != -EAGAIN) 1024 goto send_end; 1025 } 1026 continue; 1027 rollback_iter: 1028 copied -= try_to_copy; 1029 sk_msg_sg_copy_clear(msg_pl, first); 1030 iov_iter_revert(&msg->msg_iter, 1031 msg_pl->sg.size - orig_size); 1032 fallback_to_reg_send: 1033 sk_msg_trim(sk, msg_pl, orig_size); 1034 } 1035 1036 required_size = msg_pl->sg.size + try_to_copy; 1037 1038 ret = tls_clone_plaintext_msg(sk, required_size); 1039 if (ret) { 1040 if (ret != -ENOSPC) 1041 goto send_end; 1042 1043 /* Adjust try_to_copy according to the amount that was 1044 * actually allocated. The difference is due 1045 * to max sg elements limit 1046 */ 1047 try_to_copy -= required_size - msg_pl->sg.size; 1048 full_record = true; 1049 sk_msg_trim(sk, msg_en, 1050 msg_pl->sg.size + prot->overhead_size); 1051 } 1052 1053 if (try_to_copy) { 1054 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1055 msg_pl, try_to_copy); 1056 if (ret < 0) 1057 goto trim_sgl; 1058 } 1059 1060 /* Open records defined only if successfully copied, otherwise 1061 * we would trim the sg but not reset the open record frags. 1062 */ 1063 tls_ctx->pending_open_record_frags = true; 1064 copied += try_to_copy; 1065 if (full_record || eor) { 1066 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1067 record_type, &copied, 1068 msg->msg_flags); 1069 if (ret) { 1070 if (ret == -EINPROGRESS) 1071 num_async++; 1072 else if (ret == -ENOMEM) 1073 goto wait_for_memory; 1074 else if (ret != -EAGAIN) { 1075 if (ret == -ENOSPC) 1076 ret = 0; 1077 goto send_end; 1078 } 1079 } 1080 } 1081 1082 continue; 1083 1084 wait_for_sndbuf: 1085 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1086 wait_for_memory: 1087 ret = sk_stream_wait_memory(sk, &timeo); 1088 if (ret) { 1089 trim_sgl: 1090 if (ctx->open_rec) 1091 tls_trim_both_msgs(sk, orig_size); 1092 goto send_end; 1093 } 1094 1095 if (ctx->open_rec && msg_en->sg.size < required_size) 1096 goto alloc_encrypted; 1097 } 1098 1099 if (!num_async) { 1100 goto send_end; 1101 } else if (num_zc) { 1102 /* Wait for pending encryptions to get completed */ 1103 spin_lock_bh(&ctx->encrypt_compl_lock); 1104 ctx->async_notify = true; 1105 1106 pending = atomic_read(&ctx->encrypt_pending); 1107 spin_unlock_bh(&ctx->encrypt_compl_lock); 1108 if (pending) 1109 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1110 else 1111 reinit_completion(&ctx->async_wait.completion); 1112 1113 /* There can be no concurrent accesses, since we have no 1114 * pending encrypt operations 1115 */ 1116 WRITE_ONCE(ctx->async_notify, false); 1117 1118 if (ctx->async_wait.err) { 1119 ret = ctx->async_wait.err; 1120 copied = 0; 1121 } 1122 } 1123 1124 /* Transmit if any encryptions have completed */ 1125 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1126 cancel_delayed_work(&ctx->tx_work.work); 1127 tls_tx_records(sk, msg->msg_flags); 1128 } 1129 1130 send_end: 1131 ret = sk_stream_error(sk, msg->msg_flags, ret); 1132 1133 release_sock(sk); 1134 mutex_unlock(&tls_ctx->tx_lock); 1135 return copied > 0 ? copied : ret; 1136 } 1137 1138 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1139 int offset, size_t size, int flags) 1140 { 1141 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1142 struct tls_context *tls_ctx = tls_get_ctx(sk); 1143 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1144 struct tls_prot_info *prot = &tls_ctx->prot_info; 1145 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1146 struct sk_msg *msg_pl; 1147 struct tls_rec *rec; 1148 int num_async = 0; 1149 ssize_t copied = 0; 1150 bool full_record; 1151 int record_room; 1152 int ret = 0; 1153 bool eor; 1154 1155 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1156 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1157 1158 /* Call the sk_stream functions to manage the sndbuf mem. */ 1159 while (size > 0) { 1160 size_t copy, required_size; 1161 1162 if (sk->sk_err) { 1163 ret = -sk->sk_err; 1164 goto sendpage_end; 1165 } 1166 1167 if (ctx->open_rec) 1168 rec = ctx->open_rec; 1169 else 1170 rec = ctx->open_rec = tls_get_rec(sk); 1171 if (!rec) { 1172 ret = -ENOMEM; 1173 goto sendpage_end; 1174 } 1175 1176 msg_pl = &rec->msg_plaintext; 1177 1178 full_record = false; 1179 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1180 copy = size; 1181 if (copy >= record_room) { 1182 copy = record_room; 1183 full_record = true; 1184 } 1185 1186 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1187 1188 if (!sk_stream_memory_free(sk)) 1189 goto wait_for_sndbuf; 1190 alloc_payload: 1191 ret = tls_alloc_encrypted_msg(sk, required_size); 1192 if (ret) { 1193 if (ret != -ENOSPC) 1194 goto wait_for_memory; 1195 1196 /* Adjust copy according to the amount that was 1197 * actually allocated. The difference is due 1198 * to max sg elements limit 1199 */ 1200 copy -= required_size - msg_pl->sg.size; 1201 full_record = true; 1202 } 1203 1204 sk_msg_page_add(msg_pl, page, copy, offset); 1205 sk_mem_charge(sk, copy); 1206 1207 offset += copy; 1208 size -= copy; 1209 copied += copy; 1210 1211 tls_ctx->pending_open_record_frags = true; 1212 if (full_record || eor || sk_msg_full(msg_pl)) { 1213 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1214 record_type, &copied, flags); 1215 if (ret) { 1216 if (ret == -EINPROGRESS) 1217 num_async++; 1218 else if (ret == -ENOMEM) 1219 goto wait_for_memory; 1220 else if (ret != -EAGAIN) { 1221 if (ret == -ENOSPC) 1222 ret = 0; 1223 goto sendpage_end; 1224 } 1225 } 1226 } 1227 continue; 1228 wait_for_sndbuf: 1229 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1230 wait_for_memory: 1231 ret = sk_stream_wait_memory(sk, &timeo); 1232 if (ret) { 1233 if (ctx->open_rec) 1234 tls_trim_both_msgs(sk, msg_pl->sg.size); 1235 goto sendpage_end; 1236 } 1237 1238 if (ctx->open_rec) 1239 goto alloc_payload; 1240 } 1241 1242 if (num_async) { 1243 /* Transmit if any encryptions have completed */ 1244 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1245 cancel_delayed_work(&ctx->tx_work.work); 1246 tls_tx_records(sk, flags); 1247 } 1248 } 1249 sendpage_end: 1250 ret = sk_stream_error(sk, flags, ret); 1251 return copied > 0 ? copied : ret; 1252 } 1253 1254 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1255 int offset, size_t size, int flags) 1256 { 1257 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1258 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1259 MSG_NO_SHARED_FRAGS)) 1260 return -EOPNOTSUPP; 1261 1262 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1263 } 1264 1265 int tls_sw_sendpage(struct sock *sk, struct page *page, 1266 int offset, size_t size, int flags) 1267 { 1268 struct tls_context *tls_ctx = tls_get_ctx(sk); 1269 int ret; 1270 1271 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1272 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1273 return -EOPNOTSUPP; 1274 1275 mutex_lock(&tls_ctx->tx_lock); 1276 lock_sock(sk); 1277 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1278 release_sock(sk); 1279 mutex_unlock(&tls_ctx->tx_lock); 1280 return ret; 1281 } 1282 1283 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1284 int flags, long timeo, int *err) 1285 { 1286 struct tls_context *tls_ctx = tls_get_ctx(sk); 1287 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1288 struct sk_buff *skb; 1289 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1290 1291 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1292 if (sk->sk_err) { 1293 *err = sock_error(sk); 1294 return NULL; 1295 } 1296 1297 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1298 __strp_unpause(&ctx->strp); 1299 if (ctx->recv_pkt) 1300 return ctx->recv_pkt; 1301 } 1302 1303 if (sk->sk_shutdown & RCV_SHUTDOWN) 1304 return NULL; 1305 1306 if (sock_flag(sk, SOCK_DONE)) 1307 return NULL; 1308 1309 if ((flags & MSG_DONTWAIT) || !timeo) { 1310 *err = -EAGAIN; 1311 return NULL; 1312 } 1313 1314 add_wait_queue(sk_sleep(sk), &wait); 1315 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1316 sk_wait_event(sk, &timeo, 1317 ctx->recv_pkt != skb || 1318 !sk_psock_queue_empty(psock), 1319 &wait); 1320 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1321 remove_wait_queue(sk_sleep(sk), &wait); 1322 1323 /* Handle signals */ 1324 if (signal_pending(current)) { 1325 *err = sock_intr_errno(timeo); 1326 return NULL; 1327 } 1328 } 1329 1330 return skb; 1331 } 1332 1333 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1334 int length, int *pages_used, 1335 unsigned int *size_used, 1336 struct scatterlist *to, 1337 int to_max_pages) 1338 { 1339 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1340 struct page *pages[MAX_SKB_FRAGS]; 1341 unsigned int size = *size_used; 1342 ssize_t copied, use; 1343 size_t offset; 1344 1345 while (length > 0) { 1346 i = 0; 1347 maxpages = to_max_pages - num_elem; 1348 if (maxpages == 0) { 1349 rc = -EFAULT; 1350 goto out; 1351 } 1352 copied = iov_iter_get_pages(from, pages, 1353 length, 1354 maxpages, &offset); 1355 if (copied <= 0) { 1356 rc = -EFAULT; 1357 goto out; 1358 } 1359 1360 iov_iter_advance(from, copied); 1361 1362 length -= copied; 1363 size += copied; 1364 while (copied) { 1365 use = min_t(int, copied, PAGE_SIZE - offset); 1366 1367 sg_set_page(&to[num_elem], 1368 pages[i], use, offset); 1369 sg_unmark_end(&to[num_elem]); 1370 /* We do not uncharge memory from this API */ 1371 1372 offset = 0; 1373 copied -= use; 1374 1375 i++; 1376 num_elem++; 1377 } 1378 } 1379 /* Mark the end in the last sg entry if newly added */ 1380 if (num_elem > *pages_used) 1381 sg_mark_end(&to[num_elem - 1]); 1382 out: 1383 if (rc) 1384 iov_iter_revert(from, size - *size_used); 1385 *size_used = size; 1386 *pages_used = num_elem; 1387 1388 return rc; 1389 } 1390 1391 /* This function decrypts the input skb into either out_iov or in out_sg 1392 * or in skb buffers itself. The input parameter 'zc' indicates if 1393 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1394 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1395 * NULL, then the decryption happens inside skb buffers itself, i.e. 1396 * zero-copy gets disabled and 'zc' is updated. 1397 */ 1398 1399 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1400 struct iov_iter *out_iov, 1401 struct scatterlist *out_sg, 1402 int *chunk, bool *zc, bool async) 1403 { 1404 struct tls_context *tls_ctx = tls_get_ctx(sk); 1405 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1406 struct tls_prot_info *prot = &tls_ctx->prot_info; 1407 struct strp_msg *rxm = strp_msg(skb); 1408 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1409 struct aead_request *aead_req; 1410 struct sk_buff *unused; 1411 u8 *aad, *iv, *mem = NULL; 1412 struct scatterlist *sgin = NULL; 1413 struct scatterlist *sgout = NULL; 1414 const int data_len = rxm->full_len - prot->overhead_size + 1415 prot->tail_size; 1416 int iv_offset = 0; 1417 1418 if (*zc && (out_iov || out_sg)) { 1419 if (out_iov) 1420 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1421 else 1422 n_sgout = sg_nents(out_sg); 1423 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1424 rxm->full_len - prot->prepend_size); 1425 } else { 1426 n_sgout = 0; 1427 *zc = false; 1428 n_sgin = skb_cow_data(skb, 0, &unused); 1429 } 1430 1431 if (n_sgin < 1) 1432 return -EBADMSG; 1433 1434 /* Increment to accommodate AAD */ 1435 n_sgin = n_sgin + 1; 1436 1437 nsg = n_sgin + n_sgout; 1438 1439 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1440 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1441 mem_size = mem_size + prot->aad_size; 1442 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1443 1444 /* Allocate a single block of memory which contains 1445 * aead_req || sgin[] || sgout[] || aad || iv. 1446 * This order achieves correct alignment for aead_req, sgin, sgout. 1447 */ 1448 mem = kmalloc(mem_size, sk->sk_allocation); 1449 if (!mem) 1450 return -ENOMEM; 1451 1452 /* Segment the allocated memory */ 1453 aead_req = (struct aead_request *)mem; 1454 sgin = (struct scatterlist *)(mem + aead_size); 1455 sgout = sgin + n_sgin; 1456 aad = (u8 *)(sgout + n_sgout); 1457 iv = aad + prot->aad_size; 1458 1459 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1460 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1461 iv[0] = 2; 1462 iv_offset = 1; 1463 } 1464 1465 /* Prepare IV */ 1466 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1467 iv + iv_offset + prot->salt_size, 1468 prot->iv_size); 1469 if (err < 0) { 1470 kfree(mem); 1471 return err; 1472 } 1473 if (prot->version == TLS_1_3_VERSION || 1474 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) 1475 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1476 crypto_aead_ivsize(ctx->aead_recv)); 1477 else 1478 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1479 1480 xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq); 1481 1482 /* Prepare AAD */ 1483 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1484 prot->tail_size, 1485 tls_ctx->rx.rec_seq, ctx->control, prot); 1486 1487 /* Prepare sgin */ 1488 sg_init_table(sgin, n_sgin); 1489 sg_set_buf(&sgin[0], aad, prot->aad_size); 1490 err = skb_to_sgvec(skb, &sgin[1], 1491 rxm->offset + prot->prepend_size, 1492 rxm->full_len - prot->prepend_size); 1493 if (err < 0) { 1494 kfree(mem); 1495 return err; 1496 } 1497 1498 if (n_sgout) { 1499 if (out_iov) { 1500 sg_init_table(sgout, n_sgout); 1501 sg_set_buf(&sgout[0], aad, prot->aad_size); 1502 1503 *chunk = 0; 1504 err = tls_setup_from_iter(sk, out_iov, data_len, 1505 &pages, chunk, &sgout[1], 1506 (n_sgout - 1)); 1507 if (err < 0) 1508 goto fallback_to_reg_recv; 1509 } else if (out_sg) { 1510 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1511 } else { 1512 goto fallback_to_reg_recv; 1513 } 1514 } else { 1515 fallback_to_reg_recv: 1516 sgout = sgin; 1517 pages = 0; 1518 *chunk = data_len; 1519 *zc = false; 1520 } 1521 1522 /* Prepare and submit AEAD request */ 1523 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1524 data_len, aead_req, async); 1525 if (err == -EINPROGRESS) 1526 return err; 1527 1528 /* Release the pages in case iov was mapped to pages */ 1529 for (; pages > 0; pages--) 1530 put_page(sg_page(&sgout[pages])); 1531 1532 kfree(mem); 1533 return err; 1534 } 1535 1536 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1537 struct iov_iter *dest, int *chunk, bool *zc, 1538 bool async) 1539 { 1540 struct tls_context *tls_ctx = tls_get_ctx(sk); 1541 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1542 struct tls_prot_info *prot = &tls_ctx->prot_info; 1543 struct strp_msg *rxm = strp_msg(skb); 1544 int pad, err = 0; 1545 1546 if (!ctx->decrypted) { 1547 if (tls_ctx->rx_conf == TLS_HW) { 1548 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1549 if (err < 0) 1550 return err; 1551 } 1552 1553 /* Still not decrypted after tls_device */ 1554 if (!ctx->decrypted) { 1555 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1556 async); 1557 if (err < 0) { 1558 if (err == -EINPROGRESS) 1559 tls_advance_record_sn(sk, prot, 1560 &tls_ctx->rx); 1561 else if (err == -EBADMSG) 1562 TLS_INC_STATS(sock_net(sk), 1563 LINUX_MIB_TLSDECRYPTERROR); 1564 return err; 1565 } 1566 } else { 1567 *zc = false; 1568 } 1569 1570 pad = padding_length(ctx, prot, skb); 1571 if (pad < 0) 1572 return pad; 1573 1574 rxm->full_len -= pad; 1575 rxm->offset += prot->prepend_size; 1576 rxm->full_len -= prot->overhead_size; 1577 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1578 ctx->decrypted = 1; 1579 ctx->saved_data_ready(sk); 1580 } else { 1581 *zc = false; 1582 } 1583 1584 return err; 1585 } 1586 1587 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1588 struct scatterlist *sgout) 1589 { 1590 bool zc = true; 1591 int chunk; 1592 1593 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1594 } 1595 1596 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1597 unsigned int len) 1598 { 1599 struct tls_context *tls_ctx = tls_get_ctx(sk); 1600 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1601 1602 if (skb) { 1603 struct strp_msg *rxm = strp_msg(skb); 1604 1605 if (len < rxm->full_len) { 1606 rxm->offset += len; 1607 rxm->full_len -= len; 1608 return false; 1609 } 1610 consume_skb(skb); 1611 } 1612 1613 /* Finished with message */ 1614 ctx->recv_pkt = NULL; 1615 __strp_unpause(&ctx->strp); 1616 1617 return true; 1618 } 1619 1620 /* This function traverses the rx_list in tls receive context to copies the 1621 * decrypted records into the buffer provided by caller zero copy is not 1622 * true. Further, the records are removed from the rx_list if it is not a peek 1623 * case and the record has been consumed completely. 1624 */ 1625 static int process_rx_list(struct tls_sw_context_rx *ctx, 1626 struct msghdr *msg, 1627 u8 *control, 1628 bool *cmsg, 1629 size_t skip, 1630 size_t len, 1631 bool zc, 1632 bool is_peek) 1633 { 1634 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1635 u8 ctrl = *control; 1636 u8 msgc = *cmsg; 1637 struct tls_msg *tlm; 1638 ssize_t copied = 0; 1639 1640 /* Set the record type in 'control' if caller didn't pass it */ 1641 if (!ctrl && skb) { 1642 tlm = tls_msg(skb); 1643 ctrl = tlm->control; 1644 } 1645 1646 while (skip && skb) { 1647 struct strp_msg *rxm = strp_msg(skb); 1648 tlm = tls_msg(skb); 1649 1650 /* Cannot process a record of different type */ 1651 if (ctrl != tlm->control) 1652 return 0; 1653 1654 if (skip < rxm->full_len) 1655 break; 1656 1657 skip = skip - rxm->full_len; 1658 skb = skb_peek_next(skb, &ctx->rx_list); 1659 } 1660 1661 while (len && skb) { 1662 struct sk_buff *next_skb; 1663 struct strp_msg *rxm = strp_msg(skb); 1664 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1665 1666 tlm = tls_msg(skb); 1667 1668 /* Cannot process a record of different type */ 1669 if (ctrl != tlm->control) 1670 return 0; 1671 1672 /* Set record type if not already done. For a non-data record, 1673 * do not proceed if record type could not be copied. 1674 */ 1675 if (!msgc) { 1676 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1677 sizeof(ctrl), &ctrl); 1678 msgc = true; 1679 if (ctrl != TLS_RECORD_TYPE_DATA) { 1680 if (cerr || msg->msg_flags & MSG_CTRUNC) 1681 return -EIO; 1682 1683 *cmsg = msgc; 1684 } 1685 } 1686 1687 if (!zc || (rxm->full_len - skip) > len) { 1688 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1689 msg, chunk); 1690 if (err < 0) 1691 return err; 1692 } 1693 1694 len = len - chunk; 1695 copied = copied + chunk; 1696 1697 /* Consume the data from record if it is non-peek case*/ 1698 if (!is_peek) { 1699 rxm->offset = rxm->offset + chunk; 1700 rxm->full_len = rxm->full_len - chunk; 1701 1702 /* Return if there is unconsumed data in the record */ 1703 if (rxm->full_len - skip) 1704 break; 1705 } 1706 1707 /* The remaining skip-bytes must lie in 1st record in rx_list. 1708 * So from the 2nd record, 'skip' should be 0. 1709 */ 1710 skip = 0; 1711 1712 if (msg) 1713 msg->msg_flags |= MSG_EOR; 1714 1715 next_skb = skb_peek_next(skb, &ctx->rx_list); 1716 1717 if (!is_peek) { 1718 skb_unlink(skb, &ctx->rx_list); 1719 consume_skb(skb); 1720 } 1721 1722 skb = next_skb; 1723 } 1724 1725 *control = ctrl; 1726 return copied; 1727 } 1728 1729 int tls_sw_recvmsg(struct sock *sk, 1730 struct msghdr *msg, 1731 size_t len, 1732 int nonblock, 1733 int flags, 1734 int *addr_len) 1735 { 1736 struct tls_context *tls_ctx = tls_get_ctx(sk); 1737 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1738 struct tls_prot_info *prot = &tls_ctx->prot_info; 1739 struct sk_psock *psock; 1740 unsigned char control = 0; 1741 ssize_t decrypted = 0; 1742 struct strp_msg *rxm; 1743 struct tls_msg *tlm; 1744 struct sk_buff *skb; 1745 ssize_t copied = 0; 1746 bool cmsg = false; 1747 int target, err = 0; 1748 long timeo; 1749 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1750 bool is_peek = flags & MSG_PEEK; 1751 bool bpf_strp_enabled; 1752 int num_async = 0; 1753 int pending; 1754 1755 flags |= nonblock; 1756 1757 if (unlikely(flags & MSG_ERRQUEUE)) 1758 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1759 1760 psock = sk_psock_get(sk); 1761 lock_sock(sk); 1762 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1763 1764 /* Process pending decrypted records. It must be non-zero-copy */ 1765 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1766 is_peek); 1767 if (err < 0) { 1768 tls_err_abort(sk, err); 1769 goto end; 1770 } else { 1771 copied = err; 1772 } 1773 1774 if (len <= copied) 1775 goto recv_end; 1776 1777 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1778 len = len - copied; 1779 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1780 1781 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1782 bool retain_skb = false; 1783 bool zc = false; 1784 int to_decrypt; 1785 int chunk = 0; 1786 bool async_capable; 1787 bool async = false; 1788 1789 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1790 if (!skb) { 1791 if (psock) { 1792 int ret = sk_msg_recvmsg(sk, psock, msg, len, 1793 flags); 1794 1795 if (ret > 0) { 1796 decrypted += ret; 1797 len -= ret; 1798 continue; 1799 } 1800 } 1801 goto recv_end; 1802 } else { 1803 tlm = tls_msg(skb); 1804 if (prot->version == TLS_1_3_VERSION) 1805 tlm->control = 0; 1806 else 1807 tlm->control = ctx->control; 1808 } 1809 1810 rxm = strp_msg(skb); 1811 1812 to_decrypt = rxm->full_len - prot->overhead_size; 1813 1814 if (to_decrypt <= len && !is_kvec && !is_peek && 1815 ctx->control == TLS_RECORD_TYPE_DATA && 1816 prot->version != TLS_1_3_VERSION && 1817 !bpf_strp_enabled) 1818 zc = true; 1819 1820 /* Do not use async mode if record is non-data */ 1821 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1822 async_capable = ctx->async_capable; 1823 else 1824 async_capable = false; 1825 1826 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1827 &chunk, &zc, async_capable); 1828 if (err < 0 && err != -EINPROGRESS) { 1829 tls_err_abort(sk, EBADMSG); 1830 goto recv_end; 1831 } 1832 1833 if (err == -EINPROGRESS) { 1834 async = true; 1835 num_async++; 1836 } else if (prot->version == TLS_1_3_VERSION) { 1837 tlm->control = ctx->control; 1838 } 1839 1840 /* If the type of records being processed is not known yet, 1841 * set it to record type just dequeued. If it is already known, 1842 * but does not match the record type just dequeued, go to end. 1843 * We always get record type here since for tls1.2, record type 1844 * is known just after record is dequeued from stream parser. 1845 * For tls1.3, we disable async. 1846 */ 1847 1848 if (!control) 1849 control = tlm->control; 1850 else if (control != tlm->control) 1851 goto recv_end; 1852 1853 if (!cmsg) { 1854 int cerr; 1855 1856 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1857 sizeof(control), &control); 1858 cmsg = true; 1859 if (control != TLS_RECORD_TYPE_DATA) { 1860 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1861 err = -EIO; 1862 goto recv_end; 1863 } 1864 } 1865 } 1866 1867 if (async) 1868 goto pick_next_record; 1869 1870 if (!zc) { 1871 if (bpf_strp_enabled) { 1872 err = sk_psock_tls_strp_read(psock, skb); 1873 if (err != __SK_PASS) { 1874 rxm->offset = rxm->offset + rxm->full_len; 1875 rxm->full_len = 0; 1876 if (err == __SK_DROP) 1877 consume_skb(skb); 1878 ctx->recv_pkt = NULL; 1879 __strp_unpause(&ctx->strp); 1880 continue; 1881 } 1882 } 1883 1884 if (rxm->full_len > len) { 1885 retain_skb = true; 1886 chunk = len; 1887 } else { 1888 chunk = rxm->full_len; 1889 } 1890 1891 err = skb_copy_datagram_msg(skb, rxm->offset, 1892 msg, chunk); 1893 if (err < 0) 1894 goto recv_end; 1895 1896 if (!is_peek) { 1897 rxm->offset = rxm->offset + chunk; 1898 rxm->full_len = rxm->full_len - chunk; 1899 } 1900 } 1901 1902 pick_next_record: 1903 if (chunk > len) 1904 chunk = len; 1905 1906 decrypted += chunk; 1907 len -= chunk; 1908 1909 /* For async or peek case, queue the current skb */ 1910 if (async || is_peek || retain_skb) { 1911 skb_queue_tail(&ctx->rx_list, skb); 1912 skb = NULL; 1913 } 1914 1915 if (tls_sw_advance_skb(sk, skb, chunk)) { 1916 /* Return full control message to 1917 * userspace before trying to parse 1918 * another message type 1919 */ 1920 msg->msg_flags |= MSG_EOR; 1921 if (control != TLS_RECORD_TYPE_DATA) 1922 goto recv_end; 1923 } else { 1924 break; 1925 } 1926 } 1927 1928 recv_end: 1929 if (num_async) { 1930 /* Wait for all previously submitted records to be decrypted */ 1931 spin_lock_bh(&ctx->decrypt_compl_lock); 1932 ctx->async_notify = true; 1933 pending = atomic_read(&ctx->decrypt_pending); 1934 spin_unlock_bh(&ctx->decrypt_compl_lock); 1935 if (pending) { 1936 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1937 if (err) { 1938 /* one of async decrypt failed */ 1939 tls_err_abort(sk, err); 1940 copied = 0; 1941 decrypted = 0; 1942 goto end; 1943 } 1944 } else { 1945 reinit_completion(&ctx->async_wait.completion); 1946 } 1947 1948 /* There can be no concurrent accesses, since we have no 1949 * pending decrypt operations 1950 */ 1951 WRITE_ONCE(ctx->async_notify, false); 1952 1953 /* Drain records from the rx_list & copy if required */ 1954 if (is_peek || is_kvec) 1955 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1956 decrypted, false, is_peek); 1957 else 1958 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1959 decrypted, true, is_peek); 1960 if (err < 0) { 1961 tls_err_abort(sk, err); 1962 copied = 0; 1963 goto end; 1964 } 1965 } 1966 1967 copied += decrypted; 1968 1969 end: 1970 release_sock(sk); 1971 if (psock) 1972 sk_psock_put(sk, psock); 1973 return copied ? : err; 1974 } 1975 1976 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1977 struct pipe_inode_info *pipe, 1978 size_t len, unsigned int flags) 1979 { 1980 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1981 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1982 struct strp_msg *rxm = NULL; 1983 struct sock *sk = sock->sk; 1984 struct sk_buff *skb; 1985 ssize_t copied = 0; 1986 int err = 0; 1987 long timeo; 1988 int chunk; 1989 bool zc = false; 1990 1991 lock_sock(sk); 1992 1993 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1994 1995 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1996 if (!skb) 1997 goto splice_read_end; 1998 1999 if (!ctx->decrypted) { 2000 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 2001 2002 /* splice does not support reading control messages */ 2003 if (ctx->control != TLS_RECORD_TYPE_DATA) { 2004 err = -EINVAL; 2005 goto splice_read_end; 2006 } 2007 2008 if (err < 0) { 2009 tls_err_abort(sk, EBADMSG); 2010 goto splice_read_end; 2011 } 2012 ctx->decrypted = 1; 2013 } 2014 rxm = strp_msg(skb); 2015 2016 chunk = min_t(unsigned int, rxm->full_len, len); 2017 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2018 if (copied < 0) 2019 goto splice_read_end; 2020 2021 tls_sw_advance_skb(sk, skb, copied); 2022 2023 splice_read_end: 2024 release_sock(sk); 2025 return copied ? : err; 2026 } 2027 2028 bool tls_sw_stream_read(const struct sock *sk) 2029 { 2030 struct tls_context *tls_ctx = tls_get_ctx(sk); 2031 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2032 bool ingress_empty = true; 2033 struct sk_psock *psock; 2034 2035 rcu_read_lock(); 2036 psock = sk_psock(sk); 2037 if (psock) 2038 ingress_empty = list_empty(&psock->ingress_msg); 2039 rcu_read_unlock(); 2040 2041 return !ingress_empty || ctx->recv_pkt || 2042 !skb_queue_empty(&ctx->rx_list); 2043 } 2044 2045 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2046 { 2047 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2048 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2049 struct tls_prot_info *prot = &tls_ctx->prot_info; 2050 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2051 struct strp_msg *rxm = strp_msg(skb); 2052 size_t cipher_overhead; 2053 size_t data_len = 0; 2054 int ret; 2055 2056 /* Verify that we have a full TLS header, or wait for more data */ 2057 if (rxm->offset + prot->prepend_size > skb->len) 2058 return 0; 2059 2060 /* Sanity-check size of on-stack buffer. */ 2061 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2062 ret = -EINVAL; 2063 goto read_failure; 2064 } 2065 2066 /* Linearize header to local buffer */ 2067 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2068 2069 if (ret < 0) 2070 goto read_failure; 2071 2072 ctx->control = header[0]; 2073 2074 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2075 2076 cipher_overhead = prot->tag_size; 2077 if (prot->version != TLS_1_3_VERSION && 2078 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2079 cipher_overhead += prot->iv_size; 2080 2081 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2082 prot->tail_size) { 2083 ret = -EMSGSIZE; 2084 goto read_failure; 2085 } 2086 if (data_len < cipher_overhead) { 2087 ret = -EBADMSG; 2088 goto read_failure; 2089 } 2090 2091 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2092 if (header[1] != TLS_1_2_VERSION_MINOR || 2093 header[2] != TLS_1_2_VERSION_MAJOR) { 2094 ret = -EINVAL; 2095 goto read_failure; 2096 } 2097 2098 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2099 TCP_SKB_CB(skb)->seq + rxm->offset); 2100 return data_len + TLS_HEADER_SIZE; 2101 2102 read_failure: 2103 tls_err_abort(strp->sk, ret); 2104 2105 return ret; 2106 } 2107 2108 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2109 { 2110 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2111 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2112 2113 ctx->decrypted = 0; 2114 2115 ctx->recv_pkt = skb; 2116 strp_pause(strp); 2117 2118 ctx->saved_data_ready(strp->sk); 2119 } 2120 2121 static void tls_data_ready(struct sock *sk) 2122 { 2123 struct tls_context *tls_ctx = tls_get_ctx(sk); 2124 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2125 struct sk_psock *psock; 2126 2127 strp_data_ready(&ctx->strp); 2128 2129 psock = sk_psock_get(sk); 2130 if (psock) { 2131 if (!list_empty(&psock->ingress_msg)) 2132 ctx->saved_data_ready(sk); 2133 sk_psock_put(sk, psock); 2134 } 2135 } 2136 2137 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2138 { 2139 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2140 2141 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2142 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2143 cancel_delayed_work_sync(&ctx->tx_work.work); 2144 } 2145 2146 void tls_sw_release_resources_tx(struct sock *sk) 2147 { 2148 struct tls_context *tls_ctx = tls_get_ctx(sk); 2149 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2150 struct tls_rec *rec, *tmp; 2151 int pending; 2152 2153 /* Wait for any pending async encryptions to complete */ 2154 spin_lock_bh(&ctx->encrypt_compl_lock); 2155 ctx->async_notify = true; 2156 pending = atomic_read(&ctx->encrypt_pending); 2157 spin_unlock_bh(&ctx->encrypt_compl_lock); 2158 2159 if (pending) 2160 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2161 2162 tls_tx_records(sk, -1); 2163 2164 /* Free up un-sent records in tx_list. First, free 2165 * the partially sent record if any at head of tx_list. 2166 */ 2167 if (tls_ctx->partially_sent_record) { 2168 tls_free_partial_record(sk, tls_ctx); 2169 rec = list_first_entry(&ctx->tx_list, 2170 struct tls_rec, list); 2171 list_del(&rec->list); 2172 sk_msg_free(sk, &rec->msg_plaintext); 2173 kfree(rec); 2174 } 2175 2176 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2177 list_del(&rec->list); 2178 sk_msg_free(sk, &rec->msg_encrypted); 2179 sk_msg_free(sk, &rec->msg_plaintext); 2180 kfree(rec); 2181 } 2182 2183 crypto_free_aead(ctx->aead_send); 2184 tls_free_open_rec(sk); 2185 } 2186 2187 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2188 { 2189 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2190 2191 kfree(ctx); 2192 } 2193 2194 void tls_sw_release_resources_rx(struct sock *sk) 2195 { 2196 struct tls_context *tls_ctx = tls_get_ctx(sk); 2197 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2198 2199 kfree(tls_ctx->rx.rec_seq); 2200 kfree(tls_ctx->rx.iv); 2201 2202 if (ctx->aead_recv) { 2203 kfree_skb(ctx->recv_pkt); 2204 ctx->recv_pkt = NULL; 2205 skb_queue_purge(&ctx->rx_list); 2206 crypto_free_aead(ctx->aead_recv); 2207 strp_stop(&ctx->strp); 2208 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2209 * we still want to strp_stop(), but sk->sk_data_ready was 2210 * never swapped. 2211 */ 2212 if (ctx->saved_data_ready) { 2213 write_lock_bh(&sk->sk_callback_lock); 2214 sk->sk_data_ready = ctx->saved_data_ready; 2215 write_unlock_bh(&sk->sk_callback_lock); 2216 } 2217 } 2218 } 2219 2220 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2221 { 2222 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2223 2224 strp_done(&ctx->strp); 2225 } 2226 2227 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2228 { 2229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2230 2231 kfree(ctx); 2232 } 2233 2234 void tls_sw_free_resources_rx(struct sock *sk) 2235 { 2236 struct tls_context *tls_ctx = tls_get_ctx(sk); 2237 2238 tls_sw_release_resources_rx(sk); 2239 tls_sw_free_ctx_rx(tls_ctx); 2240 } 2241 2242 /* The work handler to transmitt the encrypted records in tx_list */ 2243 static void tx_work_handler(struct work_struct *work) 2244 { 2245 struct delayed_work *delayed_work = to_delayed_work(work); 2246 struct tx_work *tx_work = container_of(delayed_work, 2247 struct tx_work, work); 2248 struct sock *sk = tx_work->sk; 2249 struct tls_context *tls_ctx = tls_get_ctx(sk); 2250 struct tls_sw_context_tx *ctx; 2251 2252 if (unlikely(!tls_ctx)) 2253 return; 2254 2255 ctx = tls_sw_ctx_tx(tls_ctx); 2256 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2257 return; 2258 2259 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2260 return; 2261 mutex_lock(&tls_ctx->tx_lock); 2262 lock_sock(sk); 2263 tls_tx_records(sk, -1); 2264 release_sock(sk); 2265 mutex_unlock(&tls_ctx->tx_lock); 2266 } 2267 2268 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2269 { 2270 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2271 2272 /* Schedule the transmission if tx list is ready */ 2273 if (is_tx_ready(tx_ctx) && 2274 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2275 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2276 } 2277 2278 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2279 { 2280 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2281 2282 write_lock_bh(&sk->sk_callback_lock); 2283 rx_ctx->saved_data_ready = sk->sk_data_ready; 2284 sk->sk_data_ready = tls_data_ready; 2285 write_unlock_bh(&sk->sk_callback_lock); 2286 2287 strp_check_rcv(&rx_ctx->strp); 2288 } 2289 2290 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2291 { 2292 struct tls_context *tls_ctx = tls_get_ctx(sk); 2293 struct tls_prot_info *prot = &tls_ctx->prot_info; 2294 struct tls_crypto_info *crypto_info; 2295 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2296 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2297 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2298 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2299 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2300 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2301 struct cipher_context *cctx; 2302 struct crypto_aead **aead; 2303 struct strp_callbacks cb; 2304 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2305 struct crypto_tfm *tfm; 2306 char *iv, *rec_seq, *key, *salt, *cipher_name; 2307 size_t keysize; 2308 int rc = 0; 2309 2310 if (!ctx) { 2311 rc = -EINVAL; 2312 goto out; 2313 } 2314 2315 if (tx) { 2316 if (!ctx->priv_ctx_tx) { 2317 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2318 if (!sw_ctx_tx) { 2319 rc = -ENOMEM; 2320 goto out; 2321 } 2322 ctx->priv_ctx_tx = sw_ctx_tx; 2323 } else { 2324 sw_ctx_tx = 2325 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2326 } 2327 } else { 2328 if (!ctx->priv_ctx_rx) { 2329 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2330 if (!sw_ctx_rx) { 2331 rc = -ENOMEM; 2332 goto out; 2333 } 2334 ctx->priv_ctx_rx = sw_ctx_rx; 2335 } else { 2336 sw_ctx_rx = 2337 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2338 } 2339 } 2340 2341 if (tx) { 2342 crypto_init_wait(&sw_ctx_tx->async_wait); 2343 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2344 crypto_info = &ctx->crypto_send.info; 2345 cctx = &ctx->tx; 2346 aead = &sw_ctx_tx->aead_send; 2347 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2348 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2349 sw_ctx_tx->tx_work.sk = sk; 2350 } else { 2351 crypto_init_wait(&sw_ctx_rx->async_wait); 2352 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2353 crypto_info = &ctx->crypto_recv.info; 2354 cctx = &ctx->rx; 2355 skb_queue_head_init(&sw_ctx_rx->rx_list); 2356 aead = &sw_ctx_rx->aead_recv; 2357 } 2358 2359 switch (crypto_info->cipher_type) { 2360 case TLS_CIPHER_AES_GCM_128: { 2361 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2362 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2363 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2364 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2365 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2366 rec_seq = 2367 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2368 gcm_128_info = 2369 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2370 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2371 key = gcm_128_info->key; 2372 salt = gcm_128_info->salt; 2373 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2374 cipher_name = "gcm(aes)"; 2375 break; 2376 } 2377 case TLS_CIPHER_AES_GCM_256: { 2378 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2379 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2380 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2381 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2382 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2383 rec_seq = 2384 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2385 gcm_256_info = 2386 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2387 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2388 key = gcm_256_info->key; 2389 salt = gcm_256_info->salt; 2390 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2391 cipher_name = "gcm(aes)"; 2392 break; 2393 } 2394 case TLS_CIPHER_AES_CCM_128: { 2395 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2396 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2397 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2398 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2399 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2400 rec_seq = 2401 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2402 ccm_128_info = 2403 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2404 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2405 key = ccm_128_info->key; 2406 salt = ccm_128_info->salt; 2407 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2408 cipher_name = "ccm(aes)"; 2409 break; 2410 } 2411 case TLS_CIPHER_CHACHA20_POLY1305: { 2412 chacha20_poly1305_info = (void *)crypto_info; 2413 nonce_size = 0; 2414 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2415 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2416 iv = chacha20_poly1305_info->iv; 2417 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2418 rec_seq = chacha20_poly1305_info->rec_seq; 2419 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2420 key = chacha20_poly1305_info->key; 2421 salt = chacha20_poly1305_info->salt; 2422 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2423 cipher_name = "rfc7539(chacha20,poly1305)"; 2424 break; 2425 } 2426 default: 2427 rc = -EINVAL; 2428 goto free_priv; 2429 } 2430 2431 /* Sanity-check the sizes for stack allocations. */ 2432 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2433 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2434 rc = -EINVAL; 2435 goto free_priv; 2436 } 2437 2438 if (crypto_info->version == TLS_1_3_VERSION) { 2439 nonce_size = 0; 2440 prot->aad_size = TLS_HEADER_SIZE; 2441 prot->tail_size = 1; 2442 } else { 2443 prot->aad_size = TLS_AAD_SPACE_SIZE; 2444 prot->tail_size = 0; 2445 } 2446 2447 prot->version = crypto_info->version; 2448 prot->cipher_type = crypto_info->cipher_type; 2449 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2450 prot->tag_size = tag_size; 2451 prot->overhead_size = prot->prepend_size + 2452 prot->tag_size + prot->tail_size; 2453 prot->iv_size = iv_size; 2454 prot->salt_size = salt_size; 2455 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2456 if (!cctx->iv) { 2457 rc = -ENOMEM; 2458 goto free_priv; 2459 } 2460 /* Note: 128 & 256 bit salt are the same size */ 2461 prot->rec_seq_size = rec_seq_size; 2462 memcpy(cctx->iv, salt, salt_size); 2463 memcpy(cctx->iv + salt_size, iv, iv_size); 2464 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2465 if (!cctx->rec_seq) { 2466 rc = -ENOMEM; 2467 goto free_iv; 2468 } 2469 2470 if (!*aead) { 2471 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2472 if (IS_ERR(*aead)) { 2473 rc = PTR_ERR(*aead); 2474 *aead = NULL; 2475 goto free_rec_seq; 2476 } 2477 } 2478 2479 ctx->push_pending_record = tls_sw_push_pending_record; 2480 2481 rc = crypto_aead_setkey(*aead, key, keysize); 2482 2483 if (rc) 2484 goto free_aead; 2485 2486 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2487 if (rc) 2488 goto free_aead; 2489 2490 if (sw_ctx_rx) { 2491 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2492 2493 if (crypto_info->version == TLS_1_3_VERSION) 2494 sw_ctx_rx->async_capable = 0; 2495 else 2496 sw_ctx_rx->async_capable = 2497 !!(tfm->__crt_alg->cra_flags & 2498 CRYPTO_ALG_ASYNC); 2499 2500 /* Set up strparser */ 2501 memset(&cb, 0, sizeof(cb)); 2502 cb.rcv_msg = tls_queue; 2503 cb.parse_msg = tls_read_size; 2504 2505 strp_init(&sw_ctx_rx->strp, sk, &cb); 2506 } 2507 2508 goto out; 2509 2510 free_aead: 2511 crypto_free_aead(*aead); 2512 *aead = NULL; 2513 free_rec_seq: 2514 kfree(cctx->rec_seq); 2515 cctx->rec_seq = NULL; 2516 free_iv: 2517 kfree(cctx->iv); 2518 cctx->iv = NULL; 2519 free_priv: 2520 if (tx) { 2521 kfree(ctx->priv_ctx_tx); 2522 ctx->priv_ctx_tx = NULL; 2523 } else { 2524 kfree(ctx->priv_ctx_rx); 2525 ctx->priv_ctx_rx = NULL; 2526 } 2527 out: 2528 return rc; 2529 } 2530