xref: /openbmc/linux/net/tls/tls_sw.c (revision c1e0230e)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44 
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48 
49 #include "tls.h"
50 
51 struct tls_decrypt_arg {
52 	struct_group(inargs,
53 	bool zc;
54 	bool async;
55 	u8 tail;
56 	);
57 
58 	struct sk_buff *skb;
59 };
60 
61 struct tls_decrypt_ctx {
62 	struct sock *sk;
63 	u8 iv[MAX_IV_SIZE];
64 	u8 aad[TLS_MAX_AAD_SIZE];
65 	u8 tail;
66 	struct scatterlist sg[];
67 };
68 
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 	WARN_ON_ONCE(err >= 0);
72 	/* sk->sk_err should contain a positive error code. */
73 	WRITE_ONCE(sk->sk_err, -err);
74 	/* Paired with smp_rmb() in tcp_poll() */
75 	smp_wmb();
76 	sk_error_report(sk);
77 }
78 
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80                      unsigned int recursion_level)
81 {
82         int start = skb_headlen(skb);
83         int i, chunk = start - offset;
84         struct sk_buff *frag_iter;
85         int elt = 0;
86 
87         if (unlikely(recursion_level >= 24))
88                 return -EMSGSIZE;
89 
90         if (chunk > 0) {
91                 if (chunk > len)
92                         chunk = len;
93                 elt++;
94                 len -= chunk;
95                 if (len == 0)
96                         return elt;
97                 offset += chunk;
98         }
99 
100         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101                 int end;
102 
103                 WARN_ON(start > offset + len);
104 
105                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106                 chunk = end - offset;
107                 if (chunk > 0) {
108                         if (chunk > len)
109                                 chunk = len;
110                         elt++;
111                         len -= chunk;
112                         if (len == 0)
113                                 return elt;
114                         offset += chunk;
115                 }
116                 start = end;
117         }
118 
119         if (unlikely(skb_has_frag_list(skb))) {
120                 skb_walk_frags(skb, frag_iter) {
121                         int end, ret;
122 
123                         WARN_ON(start > offset + len);
124 
125                         end = start + frag_iter->len;
126                         chunk = end - offset;
127                         if (chunk > 0) {
128                                 if (chunk > len)
129                                         chunk = len;
130                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
131                                                 recursion_level + 1);
132                                 if (unlikely(ret < 0))
133                                         return ret;
134                                 elt += ret;
135                                 len -= chunk;
136                                 if (len == 0)
137                                         return elt;
138                                 offset += chunk;
139                         }
140                         start = end;
141                 }
142         }
143         BUG_ON(len);
144         return elt;
145 }
146 
147 /* Return the number of scatterlist elements required to completely map the
148  * skb, or -EMSGSIZE if the recursion depth is exceeded.
149  */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152         return __skb_nsg(skb, offset, len, 0);
153 }
154 
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 			      struct tls_decrypt_arg *darg)
157 {
158 	struct strp_msg *rxm = strp_msg(skb);
159 	struct tls_msg *tlm = tls_msg(skb);
160 	int sub = 0;
161 
162 	/* Determine zero-padding length */
163 	if (prot->version == TLS_1_3_VERSION) {
164 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 		char content_type = darg->zc ? darg->tail : 0;
166 		int err;
167 
168 		while (content_type == 0) {
169 			if (offset < prot->prepend_size)
170 				return -EBADMSG;
171 			err = skb_copy_bits(skb, rxm->offset + offset,
172 					    &content_type, 1);
173 			if (err)
174 				return err;
175 			if (content_type)
176 				break;
177 			sub++;
178 			offset--;
179 		}
180 		tlm->control = content_type;
181 	}
182 	return sub;
183 }
184 
185 static void tls_decrypt_done(void *data, int err)
186 {
187 	struct aead_request *aead_req = data;
188 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 	struct scatterlist *sgout = aead_req->dst;
190 	struct scatterlist *sgin = aead_req->src;
191 	struct tls_sw_context_rx *ctx;
192 	struct tls_decrypt_ctx *dctx;
193 	struct tls_context *tls_ctx;
194 	struct scatterlist *sg;
195 	unsigned int pages;
196 	struct sock *sk;
197 	int aead_size;
198 
199 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 	dctx = (void *)((u8 *)aead_req + aead_size);
202 
203 	sk = dctx->sk;
204 	tls_ctx = tls_get_ctx(sk);
205 	ctx = tls_sw_ctx_rx(tls_ctx);
206 
207 	/* Propagate if there was an err */
208 	if (err) {
209 		if (err == -EBADMSG)
210 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 		ctx->async_wait.err = err;
212 		tls_err_abort(sk, err);
213 	}
214 
215 	/* Free the destination pages if skb was not decrypted inplace */
216 	if (sgout != sgin) {
217 		/* Skip the first S/G entry as it points to AAD */
218 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 			if (!sg)
220 				break;
221 			put_page(sg_page(sg));
222 		}
223 	}
224 
225 	kfree(aead_req);
226 
227 	spin_lock_bh(&ctx->decrypt_compl_lock);
228 	if (!atomic_dec_return(&ctx->decrypt_pending))
229 		complete(&ctx->async_wait.completion);
230 	spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232 
233 static int tls_do_decryption(struct sock *sk,
234 			     struct scatterlist *sgin,
235 			     struct scatterlist *sgout,
236 			     char *iv_recv,
237 			     size_t data_len,
238 			     struct aead_request *aead_req,
239 			     struct tls_decrypt_arg *darg)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_prot_info *prot = &tls_ctx->prot_info;
243 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244 	int ret;
245 
246 	aead_request_set_tfm(aead_req, ctx->aead_recv);
247 	aead_request_set_ad(aead_req, prot->aad_size);
248 	aead_request_set_crypt(aead_req, sgin, sgout,
249 			       data_len + prot->tag_size,
250 			       (u8 *)iv_recv);
251 
252 	if (darg->async) {
253 		aead_request_set_callback(aead_req,
254 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
255 					  tls_decrypt_done, aead_req);
256 		atomic_inc(&ctx->decrypt_pending);
257 	} else {
258 		aead_request_set_callback(aead_req,
259 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
260 					  crypto_req_done, &ctx->async_wait);
261 	}
262 
263 	ret = crypto_aead_decrypt(aead_req);
264 	if (ret == -EINPROGRESS) {
265 		if (darg->async)
266 			return 0;
267 
268 		ret = crypto_wait_req(ret, &ctx->async_wait);
269 	}
270 	darg->async = false;
271 
272 	return ret;
273 }
274 
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277 	struct tls_context *tls_ctx = tls_get_ctx(sk);
278 	struct tls_prot_info *prot = &tls_ctx->prot_info;
279 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 	struct tls_rec *rec = ctx->open_rec;
281 
282 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 	if (target_size > 0)
284 		target_size += prot->overhead_size;
285 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287 
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290 	struct tls_context *tls_ctx = tls_get_ctx(sk);
291 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 	struct tls_rec *rec = ctx->open_rec;
293 	struct sk_msg *msg_en = &rec->msg_encrypted;
294 
295 	return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297 
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
301 	struct tls_prot_info *prot = &tls_ctx->prot_info;
302 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 	struct tls_rec *rec = ctx->open_rec;
304 	struct sk_msg *msg_pl = &rec->msg_plaintext;
305 	struct sk_msg *msg_en = &rec->msg_encrypted;
306 	int skip, len;
307 
308 	/* We add page references worth len bytes from encrypted sg
309 	 * at the end of plaintext sg. It is guaranteed that msg_en
310 	 * has enough required room (ensured by caller).
311 	 */
312 	len = required - msg_pl->sg.size;
313 
314 	/* Skip initial bytes in msg_en's data to be able to use
315 	 * same offset of both plain and encrypted data.
316 	 */
317 	skip = prot->prepend_size + msg_pl->sg.size;
318 
319 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321 
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324 	struct tls_context *tls_ctx = tls_get_ctx(sk);
325 	struct tls_prot_info *prot = &tls_ctx->prot_info;
326 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 	struct sk_msg *msg_pl, *msg_en;
328 	struct tls_rec *rec;
329 	int mem_size;
330 
331 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332 
333 	rec = kzalloc(mem_size, sk->sk_allocation);
334 	if (!rec)
335 		return NULL;
336 
337 	msg_pl = &rec->msg_plaintext;
338 	msg_en = &rec->msg_encrypted;
339 
340 	sk_msg_init(msg_pl);
341 	sk_msg_init(msg_en);
342 
343 	sg_init_table(rec->sg_aead_in, 2);
344 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 	sg_unmark_end(&rec->sg_aead_in[1]);
346 
347 	sg_init_table(rec->sg_aead_out, 2);
348 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 	sg_unmark_end(&rec->sg_aead_out[1]);
350 
351 	rec->sk = sk;
352 
353 	return rec;
354 }
355 
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358 	sk_msg_free(sk, &rec->msg_encrypted);
359 	sk_msg_free(sk, &rec->msg_plaintext);
360 	kfree(rec);
361 }
362 
363 static void tls_free_open_rec(struct sock *sk)
364 {
365 	struct tls_context *tls_ctx = tls_get_ctx(sk);
366 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 	struct tls_rec *rec = ctx->open_rec;
368 
369 	if (rec) {
370 		tls_free_rec(sk, rec);
371 		ctx->open_rec = NULL;
372 	}
373 }
374 
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct tls_rec *rec, *tmp;
380 	struct sk_msg *msg_en;
381 	int tx_flags, rc = 0;
382 
383 	if (tls_is_partially_sent_record(tls_ctx)) {
384 		rec = list_first_entry(&ctx->tx_list,
385 				       struct tls_rec, list);
386 
387 		if (flags == -1)
388 			tx_flags = rec->tx_flags;
389 		else
390 			tx_flags = flags;
391 
392 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 		if (rc)
394 			goto tx_err;
395 
396 		/* Full record has been transmitted.
397 		 * Remove the head of tx_list
398 		 */
399 		list_del(&rec->list);
400 		sk_msg_free(sk, &rec->msg_plaintext);
401 		kfree(rec);
402 	}
403 
404 	/* Tx all ready records */
405 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 		if (READ_ONCE(rec->tx_ready)) {
407 			if (flags == -1)
408 				tx_flags = rec->tx_flags;
409 			else
410 				tx_flags = flags;
411 
412 			msg_en = &rec->msg_encrypted;
413 			rc = tls_push_sg(sk, tls_ctx,
414 					 &msg_en->sg.data[msg_en->sg.curr],
415 					 0, tx_flags);
416 			if (rc)
417 				goto tx_err;
418 
419 			list_del(&rec->list);
420 			sk_msg_free(sk, &rec->msg_plaintext);
421 			kfree(rec);
422 		} else {
423 			break;
424 		}
425 	}
426 
427 tx_err:
428 	if (rc < 0 && rc != -EAGAIN)
429 		tls_err_abort(sk, -EBADMSG);
430 
431 	return rc;
432 }
433 
434 static void tls_encrypt_done(void *data, int err)
435 {
436 	struct tls_sw_context_tx *ctx;
437 	struct tls_context *tls_ctx;
438 	struct tls_prot_info *prot;
439 	struct tls_rec *rec = data;
440 	struct scatterlist *sge;
441 	struct sk_msg *msg_en;
442 	bool ready = false;
443 	struct sock *sk;
444 	int pending;
445 
446 	msg_en = &rec->msg_encrypted;
447 
448 	sk = rec->sk;
449 	tls_ctx = tls_get_ctx(sk);
450 	prot = &tls_ctx->prot_info;
451 	ctx = tls_sw_ctx_tx(tls_ctx);
452 
453 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 	sge->offset -= prot->prepend_size;
455 	sge->length += prot->prepend_size;
456 
457 	/* Check if error is previously set on socket */
458 	if (err || sk->sk_err) {
459 		rec = NULL;
460 
461 		/* If err is already set on socket, return the same code */
462 		if (sk->sk_err) {
463 			ctx->async_wait.err = -sk->sk_err;
464 		} else {
465 			ctx->async_wait.err = err;
466 			tls_err_abort(sk, err);
467 		}
468 	}
469 
470 	if (rec) {
471 		struct tls_rec *first_rec;
472 
473 		/* Mark the record as ready for transmission */
474 		smp_store_mb(rec->tx_ready, true);
475 
476 		/* If received record is at head of tx_list, schedule tx */
477 		first_rec = list_first_entry(&ctx->tx_list,
478 					     struct tls_rec, list);
479 		if (rec == first_rec)
480 			ready = true;
481 	}
482 
483 	spin_lock_bh(&ctx->encrypt_compl_lock);
484 	pending = atomic_dec_return(&ctx->encrypt_pending);
485 
486 	if (!pending && ctx->async_notify)
487 		complete(&ctx->async_wait.completion);
488 	spin_unlock_bh(&ctx->encrypt_compl_lock);
489 
490 	if (!ready)
491 		return;
492 
493 	/* Schedule the transmission */
494 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 		schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497 
498 static int tls_do_encryption(struct sock *sk,
499 			     struct tls_context *tls_ctx,
500 			     struct tls_sw_context_tx *ctx,
501 			     struct aead_request *aead_req,
502 			     size_t data_len, u32 start)
503 {
504 	struct tls_prot_info *prot = &tls_ctx->prot_info;
505 	struct tls_rec *rec = ctx->open_rec;
506 	struct sk_msg *msg_en = &rec->msg_encrypted;
507 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 	int rc, iv_offset = 0;
509 
510 	/* For CCM based ciphers, first byte of IV is a constant */
511 	switch (prot->cipher_type) {
512 	case TLS_CIPHER_AES_CCM_128:
513 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 		iv_offset = 1;
515 		break;
516 	case TLS_CIPHER_SM4_CCM:
517 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 		iv_offset = 1;
519 		break;
520 	}
521 
522 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 	       prot->iv_size + prot->salt_size);
524 
525 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 			    tls_ctx->tx.rec_seq);
527 
528 	sge->offset += prot->prepend_size;
529 	sge->length -= prot->prepend_size;
530 
531 	msg_en->sg.curr = start;
532 
533 	aead_request_set_tfm(aead_req, ctx->aead_send);
534 	aead_request_set_ad(aead_req, prot->aad_size);
535 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 			       rec->sg_aead_out,
537 			       data_len, rec->iv_data);
538 
539 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 				  tls_encrypt_done, rec);
541 
542 	/* Add the record in tx_list */
543 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 	atomic_inc(&ctx->encrypt_pending);
545 
546 	rc = crypto_aead_encrypt(aead_req);
547 	if (!rc || rc != -EINPROGRESS) {
548 		atomic_dec(&ctx->encrypt_pending);
549 		sge->offset -= prot->prepend_size;
550 		sge->length += prot->prepend_size;
551 	}
552 
553 	if (!rc) {
554 		WRITE_ONCE(rec->tx_ready, true);
555 	} else if (rc != -EINPROGRESS) {
556 		list_del(&rec->list);
557 		return rc;
558 	}
559 
560 	/* Unhook the record from context if encryption is not failure */
561 	ctx->open_rec = NULL;
562 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563 	return rc;
564 }
565 
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 				 struct tls_rec **to, struct sk_msg *msg_opl,
568 				 struct sk_msg *msg_oen, u32 split_point,
569 				 u32 tx_overhead_size, u32 *orig_end)
570 {
571 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 	struct scatterlist *sge, *osge, *nsge;
573 	u32 orig_size = msg_opl->sg.size;
574 	struct scatterlist tmp = { };
575 	struct sk_msg *msg_npl;
576 	struct tls_rec *new;
577 	int ret;
578 
579 	new = tls_get_rec(sk);
580 	if (!new)
581 		return -ENOMEM;
582 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 			   tx_overhead_size, 0);
584 	if (ret < 0) {
585 		tls_free_rec(sk, new);
586 		return ret;
587 	}
588 
589 	*orig_end = msg_opl->sg.end;
590 	i = msg_opl->sg.start;
591 	sge = sk_msg_elem(msg_opl, i);
592 	while (apply && sge->length) {
593 		if (sge->length > apply) {
594 			u32 len = sge->length - apply;
595 
596 			get_page(sg_page(sge));
597 			sg_set_page(&tmp, sg_page(sge), len,
598 				    sge->offset + apply);
599 			sge->length = apply;
600 			bytes += apply;
601 			apply = 0;
602 		} else {
603 			apply -= sge->length;
604 			bytes += sge->length;
605 		}
606 
607 		sk_msg_iter_var_next(i);
608 		if (i == msg_opl->sg.end)
609 			break;
610 		sge = sk_msg_elem(msg_opl, i);
611 	}
612 
613 	msg_opl->sg.end = i;
614 	msg_opl->sg.curr = i;
615 	msg_opl->sg.copybreak = 0;
616 	msg_opl->apply_bytes = 0;
617 	msg_opl->sg.size = bytes;
618 
619 	msg_npl = &new->msg_plaintext;
620 	msg_npl->apply_bytes = apply;
621 	msg_npl->sg.size = orig_size - bytes;
622 
623 	j = msg_npl->sg.start;
624 	nsge = sk_msg_elem(msg_npl, j);
625 	if (tmp.length) {
626 		memcpy(nsge, &tmp, sizeof(*nsge));
627 		sk_msg_iter_var_next(j);
628 		nsge = sk_msg_elem(msg_npl, j);
629 	}
630 
631 	osge = sk_msg_elem(msg_opl, i);
632 	while (osge->length) {
633 		memcpy(nsge, osge, sizeof(*nsge));
634 		sg_unmark_end(nsge);
635 		sk_msg_iter_var_next(i);
636 		sk_msg_iter_var_next(j);
637 		if (i == *orig_end)
638 			break;
639 		osge = sk_msg_elem(msg_opl, i);
640 		nsge = sk_msg_elem(msg_npl, j);
641 	}
642 
643 	msg_npl->sg.end = j;
644 	msg_npl->sg.curr = j;
645 	msg_npl->sg.copybreak = 0;
646 
647 	*to = new;
648 	return 0;
649 }
650 
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 				  struct tls_rec *from, u32 orig_end)
653 {
654 	struct sk_msg *msg_npl = &from->msg_plaintext;
655 	struct sk_msg *msg_opl = &to->msg_plaintext;
656 	struct scatterlist *osge, *nsge;
657 	u32 i, j;
658 
659 	i = msg_opl->sg.end;
660 	sk_msg_iter_var_prev(i);
661 	j = msg_npl->sg.start;
662 
663 	osge = sk_msg_elem(msg_opl, i);
664 	nsge = sk_msg_elem(msg_npl, j);
665 
666 	if (sg_page(osge) == sg_page(nsge) &&
667 	    osge->offset + osge->length == nsge->offset) {
668 		osge->length += nsge->length;
669 		put_page(sg_page(nsge));
670 	}
671 
672 	msg_opl->sg.end = orig_end;
673 	msg_opl->sg.curr = orig_end;
674 	msg_opl->sg.copybreak = 0;
675 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 	msg_opl->sg.size += msg_npl->sg.size;
677 
678 	sk_msg_free(sk, &to->msg_encrypted);
679 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680 
681 	kfree(from);
682 }
683 
684 static int tls_push_record(struct sock *sk, int flags,
685 			   unsigned char record_type)
686 {
687 	struct tls_context *tls_ctx = tls_get_ctx(sk);
688 	struct tls_prot_info *prot = &tls_ctx->prot_info;
689 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 	u32 i, split_point, orig_end;
692 	struct sk_msg *msg_pl, *msg_en;
693 	struct aead_request *req;
694 	bool split;
695 	int rc;
696 
697 	if (!rec)
698 		return 0;
699 
700 	msg_pl = &rec->msg_plaintext;
701 	msg_en = &rec->msg_encrypted;
702 
703 	split_point = msg_pl->apply_bytes;
704 	split = split_point && split_point < msg_pl->sg.size;
705 	if (unlikely((!split &&
706 		      msg_pl->sg.size +
707 		      prot->overhead_size > msg_en->sg.size) ||
708 		     (split &&
709 		      split_point +
710 		      prot->overhead_size > msg_en->sg.size))) {
711 		split = true;
712 		split_point = msg_en->sg.size;
713 	}
714 	if (split) {
715 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 					   split_point, prot->overhead_size,
717 					   &orig_end);
718 		if (rc < 0)
719 			return rc;
720 		/* This can happen if above tls_split_open_record allocates
721 		 * a single large encryption buffer instead of two smaller
722 		 * ones. In this case adjust pointers and continue without
723 		 * split.
724 		 */
725 		if (!msg_pl->sg.size) {
726 			tls_merge_open_record(sk, rec, tmp, orig_end);
727 			msg_pl = &rec->msg_plaintext;
728 			msg_en = &rec->msg_encrypted;
729 			split = false;
730 		}
731 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 			    prot->overhead_size);
733 	}
734 
735 	rec->tx_flags = flags;
736 	req = &rec->aead_req;
737 
738 	i = msg_pl->sg.end;
739 	sk_msg_iter_var_prev(i);
740 
741 	rec->content_type = record_type;
742 	if (prot->version == TLS_1_3_VERSION) {
743 		/* Add content type to end of message.  No padding added */
744 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 		sg_mark_end(&rec->sg_content_type);
746 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 			 &rec->sg_content_type);
748 	} else {
749 		sg_mark_end(sk_msg_elem(msg_pl, i));
750 	}
751 
752 	if (msg_pl->sg.end < msg_pl->sg.start) {
753 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 			 msg_pl->sg.data);
756 	}
757 
758 	i = msg_pl->sg.start;
759 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760 
761 	i = msg_en->sg.end;
762 	sk_msg_iter_var_prev(i);
763 	sg_mark_end(sk_msg_elem(msg_en, i));
764 
765 	i = msg_en->sg.start;
766 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767 
768 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 		     tls_ctx->tx.rec_seq, record_type, prot);
770 
771 	tls_fill_prepend(tls_ctx,
772 			 page_address(sg_page(&msg_en->sg.data[i])) +
773 			 msg_en->sg.data[i].offset,
774 			 msg_pl->sg.size + prot->tail_size,
775 			 record_type);
776 
777 	tls_ctx->pending_open_record_frags = false;
778 
779 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 			       msg_pl->sg.size + prot->tail_size, i);
781 	if (rc < 0) {
782 		if (rc != -EINPROGRESS) {
783 			tls_err_abort(sk, -EBADMSG);
784 			if (split) {
785 				tls_ctx->pending_open_record_frags = true;
786 				tls_merge_open_record(sk, rec, tmp, orig_end);
787 			}
788 		}
789 		ctx->async_capable = 1;
790 		return rc;
791 	} else if (split) {
792 		msg_pl = &tmp->msg_plaintext;
793 		msg_en = &tmp->msg_encrypted;
794 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 		tls_ctx->pending_open_record_frags = true;
796 		ctx->open_rec = tmp;
797 	}
798 
799 	return tls_tx_records(sk, flags);
800 }
801 
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 			       bool full_record, u8 record_type,
804 			       ssize_t *copied, int flags)
805 {
806 	struct tls_context *tls_ctx = tls_get_ctx(sk);
807 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 	struct sk_msg msg_redir = { };
809 	struct sk_psock *psock;
810 	struct sock *sk_redir;
811 	struct tls_rec *rec;
812 	bool enospc, policy, redir_ingress;
813 	int err = 0, send;
814 	u32 delta = 0;
815 
816 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 	psock = sk_psock_get(sk);
818 	if (!psock || !policy) {
819 		err = tls_push_record(sk, flags, record_type);
820 		if (err && sk->sk_err == EBADMSG) {
821 			*copied -= sk_msg_free(sk, msg);
822 			tls_free_open_rec(sk);
823 			err = -sk->sk_err;
824 		}
825 		if (psock)
826 			sk_psock_put(sk, psock);
827 		return err;
828 	}
829 more_data:
830 	enospc = sk_msg_full(msg);
831 	if (psock->eval == __SK_NONE) {
832 		delta = msg->sg.size;
833 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 		delta -= msg->sg.size;
835 	}
836 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 	    !enospc && !full_record) {
838 		err = -ENOSPC;
839 		goto out_err;
840 	}
841 	msg->cork_bytes = 0;
842 	send = msg->sg.size;
843 	if (msg->apply_bytes && msg->apply_bytes < send)
844 		send = msg->apply_bytes;
845 
846 	switch (psock->eval) {
847 	case __SK_PASS:
848 		err = tls_push_record(sk, flags, record_type);
849 		if (err && sk->sk_err == EBADMSG) {
850 			*copied -= sk_msg_free(sk, msg);
851 			tls_free_open_rec(sk);
852 			err = -sk->sk_err;
853 			goto out_err;
854 		}
855 		break;
856 	case __SK_REDIRECT:
857 		redir_ingress = psock->redir_ingress;
858 		sk_redir = psock->sk_redir;
859 		memcpy(&msg_redir, msg, sizeof(*msg));
860 		if (msg->apply_bytes < send)
861 			msg->apply_bytes = 0;
862 		else
863 			msg->apply_bytes -= send;
864 		sk_msg_return_zero(sk, msg, send);
865 		msg->sg.size -= send;
866 		release_sock(sk);
867 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 					    &msg_redir, send, flags);
869 		lock_sock(sk);
870 		if (err < 0) {
871 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 			msg->sg.size = 0;
873 		}
874 		if (msg->sg.size == 0)
875 			tls_free_open_rec(sk);
876 		break;
877 	case __SK_DROP:
878 	default:
879 		sk_msg_free_partial(sk, msg, send);
880 		if (msg->apply_bytes < send)
881 			msg->apply_bytes = 0;
882 		else
883 			msg->apply_bytes -= send;
884 		if (msg->sg.size == 0)
885 			tls_free_open_rec(sk);
886 		*copied -= (send + delta);
887 		err = -EACCES;
888 	}
889 
890 	if (likely(!err)) {
891 		bool reset_eval = !ctx->open_rec;
892 
893 		rec = ctx->open_rec;
894 		if (rec) {
895 			msg = &rec->msg_plaintext;
896 			if (!msg->apply_bytes)
897 				reset_eval = true;
898 		}
899 		if (reset_eval) {
900 			psock->eval = __SK_NONE;
901 			if (psock->sk_redir) {
902 				sock_put(psock->sk_redir);
903 				psock->sk_redir = NULL;
904 			}
905 		}
906 		if (rec)
907 			goto more_data;
908 	}
909  out_err:
910 	sk_psock_put(sk, psock);
911 	return err;
912 }
913 
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916 	struct tls_context *tls_ctx = tls_get_ctx(sk);
917 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 	struct tls_rec *rec = ctx->open_rec;
919 	struct sk_msg *msg_pl;
920 	size_t copied;
921 
922 	if (!rec)
923 		return 0;
924 
925 	msg_pl = &rec->msg_plaintext;
926 	copied = msg_pl->sg.size;
927 	if (!copied)
928 		return 0;
929 
930 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 				   &copied, flags);
932 }
933 
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 				 struct sk_msg *msg_pl, size_t try_to_copy,
936 				 ssize_t *copied)
937 {
938 	struct page *page = NULL, **pages = &page;
939 
940 	do {
941 		ssize_t part;
942 		size_t off;
943 
944 		part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 					      try_to_copy, 1, 0, &off);
946 		if (part <= 0)
947 			return part ?: -EIO;
948 
949 		if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 			iov_iter_revert(&msg->msg_iter, part);
951 			return -EIO;
952 		}
953 
954 		sk_msg_page_add(msg_pl, page, part, off);
955 		sk_mem_charge(sk, part);
956 		*copied += part;
957 		try_to_copy -= part;
958 	} while (try_to_copy && !sk_msg_full(msg_pl));
959 
960 	return 0;
961 }
962 
963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
964 				 size_t size)
965 {
966 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
967 	struct tls_context *tls_ctx = tls_get_ctx(sk);
968 	struct tls_prot_info *prot = &tls_ctx->prot_info;
969 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
970 	bool async_capable = ctx->async_capable;
971 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
972 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
973 	bool eor = !(msg->msg_flags & MSG_MORE);
974 	size_t try_to_copy;
975 	ssize_t copied = 0;
976 	struct sk_msg *msg_pl, *msg_en;
977 	struct tls_rec *rec;
978 	int required_size;
979 	int num_async = 0;
980 	bool full_record;
981 	int record_room;
982 	int num_zc = 0;
983 	int orig_size;
984 	int ret = 0;
985 	int pending;
986 
987 	if (!eor && (msg->msg_flags & MSG_EOR))
988 		return -EINVAL;
989 
990 	if (unlikely(msg->msg_controllen)) {
991 		ret = tls_process_cmsg(sk, msg, &record_type);
992 		if (ret) {
993 			if (ret == -EINPROGRESS)
994 				num_async++;
995 			else if (ret != -EAGAIN)
996 				goto send_end;
997 		}
998 	}
999 
1000 	while (msg_data_left(msg)) {
1001 		if (sk->sk_err) {
1002 			ret = -sk->sk_err;
1003 			goto send_end;
1004 		}
1005 
1006 		if (ctx->open_rec)
1007 			rec = ctx->open_rec;
1008 		else
1009 			rec = ctx->open_rec = tls_get_rec(sk);
1010 		if (!rec) {
1011 			ret = -ENOMEM;
1012 			goto send_end;
1013 		}
1014 
1015 		msg_pl = &rec->msg_plaintext;
1016 		msg_en = &rec->msg_encrypted;
1017 
1018 		orig_size = msg_pl->sg.size;
1019 		full_record = false;
1020 		try_to_copy = msg_data_left(msg);
1021 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1022 		if (try_to_copy >= record_room) {
1023 			try_to_copy = record_room;
1024 			full_record = true;
1025 		}
1026 
1027 		required_size = msg_pl->sg.size + try_to_copy +
1028 				prot->overhead_size;
1029 
1030 		if (!sk_stream_memory_free(sk))
1031 			goto wait_for_sndbuf;
1032 
1033 alloc_encrypted:
1034 		ret = tls_alloc_encrypted_msg(sk, required_size);
1035 		if (ret) {
1036 			if (ret != -ENOSPC)
1037 				goto wait_for_memory;
1038 
1039 			/* Adjust try_to_copy according to the amount that was
1040 			 * actually allocated. The difference is due
1041 			 * to max sg elements limit
1042 			 */
1043 			try_to_copy -= required_size - msg_en->sg.size;
1044 			full_record = true;
1045 		}
1046 
1047 		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1048 			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1049 						    try_to_copy, &copied);
1050 			if (ret < 0)
1051 				goto send_end;
1052 			tls_ctx->pending_open_record_frags = true;
1053 			if (full_record || eor || sk_msg_full(msg_pl))
1054 				goto copied;
1055 			continue;
1056 		}
1057 
1058 		if (!is_kvec && (full_record || eor) && !async_capable) {
1059 			u32 first = msg_pl->sg.end;
1060 
1061 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1062 							msg_pl, try_to_copy);
1063 			if (ret)
1064 				goto fallback_to_reg_send;
1065 
1066 			num_zc++;
1067 			copied += try_to_copy;
1068 
1069 			sk_msg_sg_copy_set(msg_pl, first);
1070 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071 						  record_type, &copied,
1072 						  msg->msg_flags);
1073 			if (ret) {
1074 				if (ret == -EINPROGRESS)
1075 					num_async++;
1076 				else if (ret == -ENOMEM)
1077 					goto wait_for_memory;
1078 				else if (ctx->open_rec && ret == -ENOSPC)
1079 					goto rollback_iter;
1080 				else if (ret != -EAGAIN)
1081 					goto send_end;
1082 			}
1083 			continue;
1084 rollback_iter:
1085 			copied -= try_to_copy;
1086 			sk_msg_sg_copy_clear(msg_pl, first);
1087 			iov_iter_revert(&msg->msg_iter,
1088 					msg_pl->sg.size - orig_size);
1089 fallback_to_reg_send:
1090 			sk_msg_trim(sk, msg_pl, orig_size);
1091 		}
1092 
1093 		required_size = msg_pl->sg.size + try_to_copy;
1094 
1095 		ret = tls_clone_plaintext_msg(sk, required_size);
1096 		if (ret) {
1097 			if (ret != -ENOSPC)
1098 				goto send_end;
1099 
1100 			/* Adjust try_to_copy according to the amount that was
1101 			 * actually allocated. The difference is due
1102 			 * to max sg elements limit
1103 			 */
1104 			try_to_copy -= required_size - msg_pl->sg.size;
1105 			full_record = true;
1106 			sk_msg_trim(sk, msg_en,
1107 				    msg_pl->sg.size + prot->overhead_size);
1108 		}
1109 
1110 		if (try_to_copy) {
1111 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1112 						       msg_pl, try_to_copy);
1113 			if (ret < 0)
1114 				goto trim_sgl;
1115 		}
1116 
1117 		/* Open records defined only if successfully copied, otherwise
1118 		 * we would trim the sg but not reset the open record frags.
1119 		 */
1120 		tls_ctx->pending_open_record_frags = true;
1121 		copied += try_to_copy;
1122 copied:
1123 		if (full_record || eor) {
1124 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1125 						  record_type, &copied,
1126 						  msg->msg_flags);
1127 			if (ret) {
1128 				if (ret == -EINPROGRESS)
1129 					num_async++;
1130 				else if (ret == -ENOMEM)
1131 					goto wait_for_memory;
1132 				else if (ret != -EAGAIN) {
1133 					if (ret == -ENOSPC)
1134 						ret = 0;
1135 					goto send_end;
1136 				}
1137 			}
1138 		}
1139 
1140 		continue;
1141 
1142 wait_for_sndbuf:
1143 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1144 wait_for_memory:
1145 		ret = sk_stream_wait_memory(sk, &timeo);
1146 		if (ret) {
1147 trim_sgl:
1148 			if (ctx->open_rec)
1149 				tls_trim_both_msgs(sk, orig_size);
1150 			goto send_end;
1151 		}
1152 
1153 		if (ctx->open_rec && msg_en->sg.size < required_size)
1154 			goto alloc_encrypted;
1155 	}
1156 
1157 	if (!num_async) {
1158 		goto send_end;
1159 	} else if (num_zc) {
1160 		/* Wait for pending encryptions to get completed */
1161 		spin_lock_bh(&ctx->encrypt_compl_lock);
1162 		ctx->async_notify = true;
1163 
1164 		pending = atomic_read(&ctx->encrypt_pending);
1165 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1166 		if (pending)
1167 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1168 		else
1169 			reinit_completion(&ctx->async_wait.completion);
1170 
1171 		/* There can be no concurrent accesses, since we have no
1172 		 * pending encrypt operations
1173 		 */
1174 		WRITE_ONCE(ctx->async_notify, false);
1175 
1176 		if (ctx->async_wait.err) {
1177 			ret = ctx->async_wait.err;
1178 			copied = 0;
1179 		}
1180 	}
1181 
1182 	/* Transmit if any encryptions have completed */
1183 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1184 		cancel_delayed_work(&ctx->tx_work.work);
1185 		tls_tx_records(sk, msg->msg_flags);
1186 	}
1187 
1188 send_end:
1189 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1190 	return copied > 0 ? copied : ret;
1191 }
1192 
1193 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1194 {
1195 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1196 	int ret;
1197 
1198 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1199 			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1200 			       MSG_SENDPAGE_NOPOLICY))
1201 		return -EOPNOTSUPP;
1202 
1203 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1204 	if (ret)
1205 		return ret;
1206 	lock_sock(sk);
1207 	ret = tls_sw_sendmsg_locked(sk, msg, size);
1208 	release_sock(sk);
1209 	mutex_unlock(&tls_ctx->tx_lock);
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1215  */
1216 void tls_sw_splice_eof(struct socket *sock)
1217 {
1218 	struct sock *sk = sock->sk;
1219 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1220 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1221 	struct tls_rec *rec;
1222 	struct sk_msg *msg_pl;
1223 	ssize_t copied = 0;
1224 	bool retrying = false;
1225 	int ret = 0;
1226 	int pending;
1227 
1228 	if (!ctx->open_rec)
1229 		return;
1230 
1231 	mutex_lock(&tls_ctx->tx_lock);
1232 	lock_sock(sk);
1233 
1234 retry:
1235 	rec = ctx->open_rec;
1236 	if (!rec)
1237 		goto unlock;
1238 
1239 	msg_pl = &rec->msg_plaintext;
1240 
1241 	/* Check the BPF advisor and perform transmission. */
1242 	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1243 				  &copied, 0);
1244 	switch (ret) {
1245 	case 0:
1246 	case -EAGAIN:
1247 		if (retrying)
1248 			goto unlock;
1249 		retrying = true;
1250 		goto retry;
1251 	case -EINPROGRESS:
1252 		break;
1253 	default:
1254 		goto unlock;
1255 	}
1256 
1257 	/* Wait for pending encryptions to get completed */
1258 	spin_lock_bh(&ctx->encrypt_compl_lock);
1259 	ctx->async_notify = true;
1260 
1261 	pending = atomic_read(&ctx->encrypt_pending);
1262 	spin_unlock_bh(&ctx->encrypt_compl_lock);
1263 	if (pending)
1264 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1265 	else
1266 		reinit_completion(&ctx->async_wait.completion);
1267 
1268 	/* There can be no concurrent accesses, since we have no pending
1269 	 * encrypt operations
1270 	 */
1271 	WRITE_ONCE(ctx->async_notify, false);
1272 
1273 	if (ctx->async_wait.err)
1274 		goto unlock;
1275 
1276 	/* Transmit if any encryptions have completed */
1277 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1278 		cancel_delayed_work(&ctx->tx_work.work);
1279 		tls_tx_records(sk, 0);
1280 	}
1281 
1282 unlock:
1283 	release_sock(sk);
1284 	mutex_unlock(&tls_ctx->tx_lock);
1285 }
1286 
1287 static int
1288 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1289 		bool released)
1290 {
1291 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1292 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1293 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1294 	long timeo;
1295 
1296 	timeo = sock_rcvtimeo(sk, nonblock);
1297 
1298 	while (!tls_strp_msg_ready(ctx)) {
1299 		if (!sk_psock_queue_empty(psock))
1300 			return 0;
1301 
1302 		if (sk->sk_err)
1303 			return sock_error(sk);
1304 
1305 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1306 			tls_strp_check_rcv(&ctx->strp);
1307 			if (tls_strp_msg_ready(ctx))
1308 				break;
1309 		}
1310 
1311 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1312 			return 0;
1313 
1314 		if (sock_flag(sk, SOCK_DONE))
1315 			return 0;
1316 
1317 		if (!timeo)
1318 			return -EAGAIN;
1319 
1320 		released = true;
1321 		add_wait_queue(sk_sleep(sk), &wait);
1322 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1323 		sk_wait_event(sk, &timeo,
1324 			      tls_strp_msg_ready(ctx) ||
1325 			      !sk_psock_queue_empty(psock),
1326 			      &wait);
1327 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328 		remove_wait_queue(sk_sleep(sk), &wait);
1329 
1330 		/* Handle signals */
1331 		if (signal_pending(current))
1332 			return sock_intr_errno(timeo);
1333 	}
1334 
1335 	tls_strp_msg_load(&ctx->strp, released);
1336 
1337 	return 1;
1338 }
1339 
1340 static int tls_setup_from_iter(struct iov_iter *from,
1341 			       int length, int *pages_used,
1342 			       struct scatterlist *to,
1343 			       int to_max_pages)
1344 {
1345 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1346 	struct page *pages[MAX_SKB_FRAGS];
1347 	unsigned int size = 0;
1348 	ssize_t copied, use;
1349 	size_t offset;
1350 
1351 	while (length > 0) {
1352 		i = 0;
1353 		maxpages = to_max_pages - num_elem;
1354 		if (maxpages == 0) {
1355 			rc = -EFAULT;
1356 			goto out;
1357 		}
1358 		copied = iov_iter_get_pages2(from, pages,
1359 					    length,
1360 					    maxpages, &offset);
1361 		if (copied <= 0) {
1362 			rc = -EFAULT;
1363 			goto out;
1364 		}
1365 
1366 		length -= copied;
1367 		size += copied;
1368 		while (copied) {
1369 			use = min_t(int, copied, PAGE_SIZE - offset);
1370 
1371 			sg_set_page(&to[num_elem],
1372 				    pages[i], use, offset);
1373 			sg_unmark_end(&to[num_elem]);
1374 			/* We do not uncharge memory from this API */
1375 
1376 			offset = 0;
1377 			copied -= use;
1378 
1379 			i++;
1380 			num_elem++;
1381 		}
1382 	}
1383 	/* Mark the end in the last sg entry if newly added */
1384 	if (num_elem > *pages_used)
1385 		sg_mark_end(&to[num_elem - 1]);
1386 out:
1387 	if (rc)
1388 		iov_iter_revert(from, size);
1389 	*pages_used = num_elem;
1390 
1391 	return rc;
1392 }
1393 
1394 static struct sk_buff *
1395 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1396 		     unsigned int full_len)
1397 {
1398 	struct strp_msg *clr_rxm;
1399 	struct sk_buff *clr_skb;
1400 	int err;
1401 
1402 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1403 				       &err, sk->sk_allocation);
1404 	if (!clr_skb)
1405 		return NULL;
1406 
1407 	skb_copy_header(clr_skb, skb);
1408 	clr_skb->len = full_len;
1409 	clr_skb->data_len = full_len;
1410 
1411 	clr_rxm = strp_msg(clr_skb);
1412 	clr_rxm->offset = 0;
1413 
1414 	return clr_skb;
1415 }
1416 
1417 /* Decrypt handlers
1418  *
1419  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1420  * They must transform the darg in/out argument are as follows:
1421  *       |          Input            |         Output
1422  * -------------------------------------------------------------------
1423  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1424  * async | Async decrypt allowed     | Async crypto used / in progress
1425  *   skb |            *              | Output skb
1426  *
1427  * If ZC decryption was performed darg.skb will point to the input skb.
1428  */
1429 
1430 /* This function decrypts the input skb into either out_iov or in out_sg
1431  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1432  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1433  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1434  * NULL, then the decryption happens inside skb buffers itself, i.e.
1435  * zero-copy gets disabled and 'darg->zc' is updated.
1436  */
1437 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1438 			  struct scatterlist *out_sg,
1439 			  struct tls_decrypt_arg *darg)
1440 {
1441 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1442 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1443 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1444 	int n_sgin, n_sgout, aead_size, err, pages = 0;
1445 	struct sk_buff *skb = tls_strp_msg(ctx);
1446 	const struct strp_msg *rxm = strp_msg(skb);
1447 	const struct tls_msg *tlm = tls_msg(skb);
1448 	struct aead_request *aead_req;
1449 	struct scatterlist *sgin = NULL;
1450 	struct scatterlist *sgout = NULL;
1451 	const int data_len = rxm->full_len - prot->overhead_size;
1452 	int tail_pages = !!prot->tail_size;
1453 	struct tls_decrypt_ctx *dctx;
1454 	struct sk_buff *clear_skb;
1455 	int iv_offset = 0;
1456 	u8 *mem;
1457 
1458 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1459 			 rxm->full_len - prot->prepend_size);
1460 	if (n_sgin < 1)
1461 		return n_sgin ?: -EBADMSG;
1462 
1463 	if (darg->zc && (out_iov || out_sg)) {
1464 		clear_skb = NULL;
1465 
1466 		if (out_iov)
1467 			n_sgout = 1 + tail_pages +
1468 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1469 		else
1470 			n_sgout = sg_nents(out_sg);
1471 	} else {
1472 		darg->zc = false;
1473 
1474 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1475 		if (!clear_skb)
1476 			return -ENOMEM;
1477 
1478 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1479 	}
1480 
1481 	/* Increment to accommodate AAD */
1482 	n_sgin = n_sgin + 1;
1483 
1484 	/* Allocate a single block of memory which contains
1485 	 *   aead_req || tls_decrypt_ctx.
1486 	 * Both structs are variable length.
1487 	 */
1488 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1489 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1490 	mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1491 		      sk->sk_allocation);
1492 	if (!mem) {
1493 		err = -ENOMEM;
1494 		goto exit_free_skb;
1495 	}
1496 
1497 	/* Segment the allocated memory */
1498 	aead_req = (struct aead_request *)mem;
1499 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1500 	dctx->sk = sk;
1501 	sgin = &dctx->sg[0];
1502 	sgout = &dctx->sg[n_sgin];
1503 
1504 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1505 	switch (prot->cipher_type) {
1506 	case TLS_CIPHER_AES_CCM_128:
1507 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1508 		iv_offset = 1;
1509 		break;
1510 	case TLS_CIPHER_SM4_CCM:
1511 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1512 		iv_offset = 1;
1513 		break;
1514 	}
1515 
1516 	/* Prepare IV */
1517 	if (prot->version == TLS_1_3_VERSION ||
1518 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1519 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1520 		       prot->iv_size + prot->salt_size);
1521 	} else {
1522 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1523 				    &dctx->iv[iv_offset] + prot->salt_size,
1524 				    prot->iv_size);
1525 		if (err < 0)
1526 			goto exit_free;
1527 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1528 	}
1529 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1530 
1531 	/* Prepare AAD */
1532 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1533 		     prot->tail_size,
1534 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1535 
1536 	/* Prepare sgin */
1537 	sg_init_table(sgin, n_sgin);
1538 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1539 	err = skb_to_sgvec(skb, &sgin[1],
1540 			   rxm->offset + prot->prepend_size,
1541 			   rxm->full_len - prot->prepend_size);
1542 	if (err < 0)
1543 		goto exit_free;
1544 
1545 	if (clear_skb) {
1546 		sg_init_table(sgout, n_sgout);
1547 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1548 
1549 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1550 				   data_len + prot->tail_size);
1551 		if (err < 0)
1552 			goto exit_free;
1553 	} else if (out_iov) {
1554 		sg_init_table(sgout, n_sgout);
1555 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1556 
1557 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1558 					  (n_sgout - 1 - tail_pages));
1559 		if (err < 0)
1560 			goto exit_free_pages;
1561 
1562 		if (prot->tail_size) {
1563 			sg_unmark_end(&sgout[pages]);
1564 			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1565 				   prot->tail_size);
1566 			sg_mark_end(&sgout[pages + 1]);
1567 		}
1568 	} else if (out_sg) {
1569 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1570 	}
1571 
1572 	/* Prepare and submit AEAD request */
1573 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1574 				data_len + prot->tail_size, aead_req, darg);
1575 	if (err)
1576 		goto exit_free_pages;
1577 
1578 	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1579 	clear_skb = NULL;
1580 
1581 	if (unlikely(darg->async)) {
1582 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1583 		if (err)
1584 			__skb_queue_tail(&ctx->async_hold, darg->skb);
1585 		return err;
1586 	}
1587 
1588 	if (prot->tail_size)
1589 		darg->tail = dctx->tail;
1590 
1591 exit_free_pages:
1592 	/* Release the pages in case iov was mapped to pages */
1593 	for (; pages > 0; pages--)
1594 		put_page(sg_page(&sgout[pages]));
1595 exit_free:
1596 	kfree(mem);
1597 exit_free_skb:
1598 	consume_skb(clear_skb);
1599 	return err;
1600 }
1601 
1602 static int
1603 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1604 	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1605 {
1606 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1607 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1608 	struct strp_msg *rxm;
1609 	int pad, err;
1610 
1611 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1612 	if (err < 0) {
1613 		if (err == -EBADMSG)
1614 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1615 		return err;
1616 	}
1617 	/* keep going even for ->async, the code below is TLS 1.3 */
1618 
1619 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1620 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1621 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1622 		darg->zc = false;
1623 		if (!darg->tail)
1624 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1625 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1626 		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1627 	}
1628 
1629 	pad = tls_padding_length(prot, darg->skb, darg);
1630 	if (pad < 0) {
1631 		if (darg->skb != tls_strp_msg(ctx))
1632 			consume_skb(darg->skb);
1633 		return pad;
1634 	}
1635 
1636 	rxm = strp_msg(darg->skb);
1637 	rxm->full_len -= pad;
1638 
1639 	return 0;
1640 }
1641 
1642 static int
1643 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1644 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1645 {
1646 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1647 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1648 	struct strp_msg *rxm;
1649 	int pad, err;
1650 
1651 	if (tls_ctx->rx_conf != TLS_HW)
1652 		return 0;
1653 
1654 	err = tls_device_decrypted(sk, tls_ctx);
1655 	if (err <= 0)
1656 		return err;
1657 
1658 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1659 	if (pad < 0)
1660 		return pad;
1661 
1662 	darg->async = false;
1663 	darg->skb = tls_strp_msg(ctx);
1664 	/* ->zc downgrade check, in case TLS 1.3 gets here */
1665 	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1666 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1667 
1668 	rxm = strp_msg(darg->skb);
1669 	rxm->full_len -= pad;
1670 
1671 	if (!darg->zc) {
1672 		/* Non-ZC case needs a real skb */
1673 		darg->skb = tls_strp_msg_detach(ctx);
1674 		if (!darg->skb)
1675 			return -ENOMEM;
1676 	} else {
1677 		unsigned int off, len;
1678 
1679 		/* In ZC case nobody cares about the output skb.
1680 		 * Just copy the data here. Note the skb is not fully trimmed.
1681 		 */
1682 		off = rxm->offset + prot->prepend_size;
1683 		len = rxm->full_len - prot->overhead_size;
1684 
1685 		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1686 		if (err)
1687 			return err;
1688 	}
1689 	return 1;
1690 }
1691 
1692 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1693 			     struct tls_decrypt_arg *darg)
1694 {
1695 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1696 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1697 	struct strp_msg *rxm;
1698 	int err;
1699 
1700 	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1701 	if (!err)
1702 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1703 	if (err < 0)
1704 		return err;
1705 
1706 	rxm = strp_msg(darg->skb);
1707 	rxm->offset += prot->prepend_size;
1708 	rxm->full_len -= prot->overhead_size;
1709 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1710 
1711 	return 0;
1712 }
1713 
1714 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1715 {
1716 	struct tls_decrypt_arg darg = { .zc = true, };
1717 
1718 	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1719 }
1720 
1721 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1722 				   u8 *control)
1723 {
1724 	int err;
1725 
1726 	if (!*control) {
1727 		*control = tlm->control;
1728 		if (!*control)
1729 			return -EBADMSG;
1730 
1731 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1732 			       sizeof(*control), control);
1733 		if (*control != TLS_RECORD_TYPE_DATA) {
1734 			if (err || msg->msg_flags & MSG_CTRUNC)
1735 				return -EIO;
1736 		}
1737 	} else if (*control != tlm->control) {
1738 		return 0;
1739 	}
1740 
1741 	return 1;
1742 }
1743 
1744 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1745 {
1746 	tls_strp_msg_done(&ctx->strp);
1747 }
1748 
1749 /* This function traverses the rx_list in tls receive context to copies the
1750  * decrypted records into the buffer provided by caller zero copy is not
1751  * true. Further, the records are removed from the rx_list if it is not a peek
1752  * case and the record has been consumed completely.
1753  */
1754 static int process_rx_list(struct tls_sw_context_rx *ctx,
1755 			   struct msghdr *msg,
1756 			   u8 *control,
1757 			   size_t skip,
1758 			   size_t len,
1759 			   bool is_peek)
1760 {
1761 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1762 	struct tls_msg *tlm;
1763 	ssize_t copied = 0;
1764 	int err;
1765 
1766 	while (skip && skb) {
1767 		struct strp_msg *rxm = strp_msg(skb);
1768 		tlm = tls_msg(skb);
1769 
1770 		err = tls_record_content_type(msg, tlm, control);
1771 		if (err <= 0)
1772 			goto out;
1773 
1774 		if (skip < rxm->full_len)
1775 			break;
1776 
1777 		skip = skip - rxm->full_len;
1778 		skb = skb_peek_next(skb, &ctx->rx_list);
1779 	}
1780 
1781 	while (len && skb) {
1782 		struct sk_buff *next_skb;
1783 		struct strp_msg *rxm = strp_msg(skb);
1784 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1785 
1786 		tlm = tls_msg(skb);
1787 
1788 		err = tls_record_content_type(msg, tlm, control);
1789 		if (err <= 0)
1790 			goto out;
1791 
1792 		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1793 					    msg, chunk);
1794 		if (err < 0)
1795 			goto out;
1796 
1797 		len = len - chunk;
1798 		copied = copied + chunk;
1799 
1800 		/* Consume the data from record if it is non-peek case*/
1801 		if (!is_peek) {
1802 			rxm->offset = rxm->offset + chunk;
1803 			rxm->full_len = rxm->full_len - chunk;
1804 
1805 			/* Return if there is unconsumed data in the record */
1806 			if (rxm->full_len - skip)
1807 				break;
1808 		}
1809 
1810 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1811 		 * So from the 2nd record, 'skip' should be 0.
1812 		 */
1813 		skip = 0;
1814 
1815 		if (msg)
1816 			msg->msg_flags |= MSG_EOR;
1817 
1818 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1819 
1820 		if (!is_peek) {
1821 			__skb_unlink(skb, &ctx->rx_list);
1822 			consume_skb(skb);
1823 		}
1824 
1825 		skb = next_skb;
1826 	}
1827 	err = 0;
1828 
1829 out:
1830 	return copied ? : err;
1831 }
1832 
1833 static bool
1834 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1835 		       size_t len_left, size_t decrypted, ssize_t done,
1836 		       size_t *flushed_at)
1837 {
1838 	size_t max_rec;
1839 
1840 	if (len_left <= decrypted)
1841 		return false;
1842 
1843 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1844 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1845 		return false;
1846 
1847 	*flushed_at = done;
1848 	return sk_flush_backlog(sk);
1849 }
1850 
1851 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1852 				 bool nonblock)
1853 {
1854 	long timeo;
1855 
1856 	timeo = sock_rcvtimeo(sk, nonblock);
1857 
1858 	while (unlikely(ctx->reader_present)) {
1859 		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1860 
1861 		ctx->reader_contended = 1;
1862 
1863 		add_wait_queue(&ctx->wq, &wait);
1864 		sk_wait_event(sk, &timeo,
1865 			      !READ_ONCE(ctx->reader_present), &wait);
1866 		remove_wait_queue(&ctx->wq, &wait);
1867 
1868 		if (timeo <= 0)
1869 			return -EAGAIN;
1870 		if (signal_pending(current))
1871 			return sock_intr_errno(timeo);
1872 	}
1873 
1874 	WRITE_ONCE(ctx->reader_present, 1);
1875 
1876 	return 0;
1877 }
1878 
1879 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1880 			      bool nonblock)
1881 {
1882 	int err;
1883 
1884 	lock_sock(sk);
1885 	err = tls_rx_reader_acquire(sk, ctx, nonblock);
1886 	if (err)
1887 		release_sock(sk);
1888 	return err;
1889 }
1890 
1891 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1892 {
1893 	if (unlikely(ctx->reader_contended)) {
1894 		if (wq_has_sleeper(&ctx->wq))
1895 			wake_up(&ctx->wq);
1896 		else
1897 			ctx->reader_contended = 0;
1898 
1899 		WARN_ON_ONCE(!ctx->reader_present);
1900 	}
1901 
1902 	WRITE_ONCE(ctx->reader_present, 0);
1903 }
1904 
1905 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1906 {
1907 	tls_rx_reader_release(sk, ctx);
1908 	release_sock(sk);
1909 }
1910 
1911 int tls_sw_recvmsg(struct sock *sk,
1912 		   struct msghdr *msg,
1913 		   size_t len,
1914 		   int flags,
1915 		   int *addr_len)
1916 {
1917 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1918 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1919 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1920 	ssize_t decrypted = 0, async_copy_bytes = 0;
1921 	struct sk_psock *psock;
1922 	unsigned char control = 0;
1923 	size_t flushed_at = 0;
1924 	struct strp_msg *rxm;
1925 	struct tls_msg *tlm;
1926 	ssize_t copied = 0;
1927 	bool async = false;
1928 	int target, err;
1929 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1930 	bool is_peek = flags & MSG_PEEK;
1931 	bool released = true;
1932 	bool bpf_strp_enabled;
1933 	bool zc_capable;
1934 
1935 	if (unlikely(flags & MSG_ERRQUEUE))
1936 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1937 
1938 	psock = sk_psock_get(sk);
1939 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1940 	if (err < 0)
1941 		return err;
1942 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1943 
1944 	/* If crypto failed the connection is broken */
1945 	err = ctx->async_wait.err;
1946 	if (err)
1947 		goto end;
1948 
1949 	/* Process pending decrypted records. It must be non-zero-copy */
1950 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1951 	if (err < 0)
1952 		goto end;
1953 
1954 	copied = err;
1955 	if (len <= copied)
1956 		goto end;
1957 
1958 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1959 	len = len - copied;
1960 
1961 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1962 		ctx->zc_capable;
1963 	decrypted = 0;
1964 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1965 		struct tls_decrypt_arg darg;
1966 		int to_decrypt, chunk;
1967 
1968 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1969 				      released);
1970 		if (err <= 0) {
1971 			if (psock) {
1972 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
1973 						       flags);
1974 				if (chunk > 0) {
1975 					decrypted += chunk;
1976 					len -= chunk;
1977 					continue;
1978 				}
1979 			}
1980 			goto recv_end;
1981 		}
1982 
1983 		memset(&darg.inargs, 0, sizeof(darg.inargs));
1984 
1985 		rxm = strp_msg(tls_strp_msg(ctx));
1986 		tlm = tls_msg(tls_strp_msg(ctx));
1987 
1988 		to_decrypt = rxm->full_len - prot->overhead_size;
1989 
1990 		if (zc_capable && to_decrypt <= len &&
1991 		    tlm->control == TLS_RECORD_TYPE_DATA)
1992 			darg.zc = true;
1993 
1994 		/* Do not use async mode if record is non-data */
1995 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1996 			darg.async = ctx->async_capable;
1997 		else
1998 			darg.async = false;
1999 
2000 		err = tls_rx_one_record(sk, msg, &darg);
2001 		if (err < 0) {
2002 			tls_err_abort(sk, -EBADMSG);
2003 			goto recv_end;
2004 		}
2005 
2006 		async |= darg.async;
2007 
2008 		/* If the type of records being processed is not known yet,
2009 		 * set it to record type just dequeued. If it is already known,
2010 		 * but does not match the record type just dequeued, go to end.
2011 		 * We always get record type here since for tls1.2, record type
2012 		 * is known just after record is dequeued from stream parser.
2013 		 * For tls1.3, we disable async.
2014 		 */
2015 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2016 		if (err <= 0) {
2017 			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2018 			tls_rx_rec_done(ctx);
2019 put_on_rx_list_err:
2020 			__skb_queue_tail(&ctx->rx_list, darg.skb);
2021 			goto recv_end;
2022 		}
2023 
2024 		/* periodically flush backlog, and feed strparser */
2025 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2026 						  decrypted + copied,
2027 						  &flushed_at);
2028 
2029 		/* TLS 1.3 may have updated the length by more than overhead */
2030 		rxm = strp_msg(darg.skb);
2031 		chunk = rxm->full_len;
2032 		tls_rx_rec_done(ctx);
2033 
2034 		if (!darg.zc) {
2035 			bool partially_consumed = chunk > len;
2036 			struct sk_buff *skb = darg.skb;
2037 
2038 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2039 
2040 			if (async) {
2041 				/* TLS 1.2-only, to_decrypt must be text len */
2042 				chunk = min_t(int, to_decrypt, len);
2043 				async_copy_bytes += chunk;
2044 put_on_rx_list:
2045 				decrypted += chunk;
2046 				len -= chunk;
2047 				__skb_queue_tail(&ctx->rx_list, skb);
2048 				continue;
2049 			}
2050 
2051 			if (bpf_strp_enabled) {
2052 				released = true;
2053 				err = sk_psock_tls_strp_read(psock, skb);
2054 				if (err != __SK_PASS) {
2055 					rxm->offset = rxm->offset + rxm->full_len;
2056 					rxm->full_len = 0;
2057 					if (err == __SK_DROP)
2058 						consume_skb(skb);
2059 					continue;
2060 				}
2061 			}
2062 
2063 			if (partially_consumed)
2064 				chunk = len;
2065 
2066 			err = skb_copy_datagram_msg(skb, rxm->offset,
2067 						    msg, chunk);
2068 			if (err < 0)
2069 				goto put_on_rx_list_err;
2070 
2071 			if (is_peek)
2072 				goto put_on_rx_list;
2073 
2074 			if (partially_consumed) {
2075 				rxm->offset += chunk;
2076 				rxm->full_len -= chunk;
2077 				goto put_on_rx_list;
2078 			}
2079 
2080 			consume_skb(skb);
2081 		}
2082 
2083 		decrypted += chunk;
2084 		len -= chunk;
2085 
2086 		/* Return full control message to userspace before trying
2087 		 * to parse another message type
2088 		 */
2089 		msg->msg_flags |= MSG_EOR;
2090 		if (control != TLS_RECORD_TYPE_DATA)
2091 			break;
2092 	}
2093 
2094 recv_end:
2095 	if (async) {
2096 		int ret, pending;
2097 
2098 		/* Wait for all previously submitted records to be decrypted */
2099 		spin_lock_bh(&ctx->decrypt_compl_lock);
2100 		reinit_completion(&ctx->async_wait.completion);
2101 		pending = atomic_read(&ctx->decrypt_pending);
2102 		spin_unlock_bh(&ctx->decrypt_compl_lock);
2103 		ret = 0;
2104 		if (pending)
2105 			ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2106 		__skb_queue_purge(&ctx->async_hold);
2107 
2108 		if (ret) {
2109 			if (err >= 0 || err == -EINPROGRESS)
2110 				err = ret;
2111 			decrypted = 0;
2112 			goto end;
2113 		}
2114 
2115 		/* Drain records from the rx_list & copy if required */
2116 		if (is_peek || is_kvec)
2117 			err = process_rx_list(ctx, msg, &control, copied,
2118 					      decrypted, is_peek);
2119 		else
2120 			err = process_rx_list(ctx, msg, &control, 0,
2121 					      async_copy_bytes, is_peek);
2122 		decrypted += max(err, 0);
2123 	}
2124 
2125 	copied += decrypted;
2126 
2127 end:
2128 	tls_rx_reader_unlock(sk, ctx);
2129 	if (psock)
2130 		sk_psock_put(sk, psock);
2131 	return copied ? : err;
2132 }
2133 
2134 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2135 			   struct pipe_inode_info *pipe,
2136 			   size_t len, unsigned int flags)
2137 {
2138 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2139 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2140 	struct strp_msg *rxm = NULL;
2141 	struct sock *sk = sock->sk;
2142 	struct tls_msg *tlm;
2143 	struct sk_buff *skb;
2144 	ssize_t copied = 0;
2145 	int chunk;
2146 	int err;
2147 
2148 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2149 	if (err < 0)
2150 		return err;
2151 
2152 	if (!skb_queue_empty(&ctx->rx_list)) {
2153 		skb = __skb_dequeue(&ctx->rx_list);
2154 	} else {
2155 		struct tls_decrypt_arg darg;
2156 
2157 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2158 				      true);
2159 		if (err <= 0)
2160 			goto splice_read_end;
2161 
2162 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2163 
2164 		err = tls_rx_one_record(sk, NULL, &darg);
2165 		if (err < 0) {
2166 			tls_err_abort(sk, -EBADMSG);
2167 			goto splice_read_end;
2168 		}
2169 
2170 		tls_rx_rec_done(ctx);
2171 		skb = darg.skb;
2172 	}
2173 
2174 	rxm = strp_msg(skb);
2175 	tlm = tls_msg(skb);
2176 
2177 	/* splice does not support reading control messages */
2178 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2179 		err = -EINVAL;
2180 		goto splice_requeue;
2181 	}
2182 
2183 	chunk = min_t(unsigned int, rxm->full_len, len);
2184 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2185 	if (copied < 0)
2186 		goto splice_requeue;
2187 
2188 	if (chunk < rxm->full_len) {
2189 		rxm->offset += len;
2190 		rxm->full_len -= len;
2191 		goto splice_requeue;
2192 	}
2193 
2194 	consume_skb(skb);
2195 
2196 splice_read_end:
2197 	tls_rx_reader_unlock(sk, ctx);
2198 	return copied ? : err;
2199 
2200 splice_requeue:
2201 	__skb_queue_head(&ctx->rx_list, skb);
2202 	goto splice_read_end;
2203 }
2204 
2205 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2206 		     sk_read_actor_t read_actor)
2207 {
2208 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2209 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2210 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2211 	struct strp_msg *rxm = NULL;
2212 	struct sk_buff *skb = NULL;
2213 	struct sk_psock *psock;
2214 	size_t flushed_at = 0;
2215 	bool released = true;
2216 	struct tls_msg *tlm;
2217 	ssize_t copied = 0;
2218 	ssize_t decrypted;
2219 	int err, used;
2220 
2221 	psock = sk_psock_get(sk);
2222 	if (psock) {
2223 		sk_psock_put(sk, psock);
2224 		return -EINVAL;
2225 	}
2226 	err = tls_rx_reader_acquire(sk, ctx, true);
2227 	if (err < 0)
2228 		return err;
2229 
2230 	/* If crypto failed the connection is broken */
2231 	err = ctx->async_wait.err;
2232 	if (err)
2233 		goto read_sock_end;
2234 
2235 	decrypted = 0;
2236 	do {
2237 		if (!skb_queue_empty(&ctx->rx_list)) {
2238 			skb = __skb_dequeue(&ctx->rx_list);
2239 			rxm = strp_msg(skb);
2240 			tlm = tls_msg(skb);
2241 		} else {
2242 			struct tls_decrypt_arg darg;
2243 
2244 			err = tls_rx_rec_wait(sk, NULL, true, released);
2245 			if (err <= 0)
2246 				goto read_sock_end;
2247 
2248 			memset(&darg.inargs, 0, sizeof(darg.inargs));
2249 
2250 			err = tls_rx_one_record(sk, NULL, &darg);
2251 			if (err < 0) {
2252 				tls_err_abort(sk, -EBADMSG);
2253 				goto read_sock_end;
2254 			}
2255 
2256 			released = tls_read_flush_backlog(sk, prot, INT_MAX,
2257 							  0, decrypted,
2258 							  &flushed_at);
2259 			skb = darg.skb;
2260 			rxm = strp_msg(skb);
2261 			tlm = tls_msg(skb);
2262 			decrypted += rxm->full_len;
2263 
2264 			tls_rx_rec_done(ctx);
2265 		}
2266 
2267 		/* read_sock does not support reading control messages */
2268 		if (tlm->control != TLS_RECORD_TYPE_DATA) {
2269 			err = -EINVAL;
2270 			goto read_sock_requeue;
2271 		}
2272 
2273 		used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2274 		if (used <= 0) {
2275 			if (!copied)
2276 				err = used;
2277 			goto read_sock_requeue;
2278 		}
2279 		copied += used;
2280 		if (used < rxm->full_len) {
2281 			rxm->offset += used;
2282 			rxm->full_len -= used;
2283 			if (!desc->count)
2284 				goto read_sock_requeue;
2285 		} else {
2286 			consume_skb(skb);
2287 			if (!desc->count)
2288 				skb = NULL;
2289 		}
2290 	} while (skb);
2291 
2292 read_sock_end:
2293 	tls_rx_reader_release(sk, ctx);
2294 	return copied ? : err;
2295 
2296 read_sock_requeue:
2297 	__skb_queue_head(&ctx->rx_list, skb);
2298 	goto read_sock_end;
2299 }
2300 
2301 bool tls_sw_sock_is_readable(struct sock *sk)
2302 {
2303 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2304 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2305 	bool ingress_empty = true;
2306 	struct sk_psock *psock;
2307 
2308 	rcu_read_lock();
2309 	psock = sk_psock(sk);
2310 	if (psock)
2311 		ingress_empty = list_empty(&psock->ingress_msg);
2312 	rcu_read_unlock();
2313 
2314 	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2315 		!skb_queue_empty(&ctx->rx_list);
2316 }
2317 
2318 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2319 {
2320 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2321 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2322 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2323 	size_t cipher_overhead;
2324 	size_t data_len = 0;
2325 	int ret;
2326 
2327 	/* Verify that we have a full TLS header, or wait for more data */
2328 	if (strp->stm.offset + prot->prepend_size > skb->len)
2329 		return 0;
2330 
2331 	/* Sanity-check size of on-stack buffer. */
2332 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2333 		ret = -EINVAL;
2334 		goto read_failure;
2335 	}
2336 
2337 	/* Linearize header to local buffer */
2338 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2339 	if (ret < 0)
2340 		goto read_failure;
2341 
2342 	strp->mark = header[0];
2343 
2344 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2345 
2346 	cipher_overhead = prot->tag_size;
2347 	if (prot->version != TLS_1_3_VERSION &&
2348 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2349 		cipher_overhead += prot->iv_size;
2350 
2351 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2352 	    prot->tail_size) {
2353 		ret = -EMSGSIZE;
2354 		goto read_failure;
2355 	}
2356 	if (data_len < cipher_overhead) {
2357 		ret = -EBADMSG;
2358 		goto read_failure;
2359 	}
2360 
2361 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2362 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2363 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2364 		ret = -EINVAL;
2365 		goto read_failure;
2366 	}
2367 
2368 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2369 				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2370 	return data_len + TLS_HEADER_SIZE;
2371 
2372 read_failure:
2373 	tls_err_abort(strp->sk, ret);
2374 
2375 	return ret;
2376 }
2377 
2378 void tls_rx_msg_ready(struct tls_strparser *strp)
2379 {
2380 	struct tls_sw_context_rx *ctx;
2381 
2382 	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2383 	ctx->saved_data_ready(strp->sk);
2384 }
2385 
2386 static void tls_data_ready(struct sock *sk)
2387 {
2388 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2389 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2390 	struct sk_psock *psock;
2391 	gfp_t alloc_save;
2392 
2393 	trace_sk_data_ready(sk);
2394 
2395 	alloc_save = sk->sk_allocation;
2396 	sk->sk_allocation = GFP_ATOMIC;
2397 	tls_strp_data_ready(&ctx->strp);
2398 	sk->sk_allocation = alloc_save;
2399 
2400 	psock = sk_psock_get(sk);
2401 	if (psock) {
2402 		if (!list_empty(&psock->ingress_msg))
2403 			ctx->saved_data_ready(sk);
2404 		sk_psock_put(sk, psock);
2405 	}
2406 }
2407 
2408 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2409 {
2410 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2411 
2412 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2413 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2414 	cancel_delayed_work_sync(&ctx->tx_work.work);
2415 }
2416 
2417 void tls_sw_release_resources_tx(struct sock *sk)
2418 {
2419 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2420 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2421 	struct tls_rec *rec, *tmp;
2422 	int pending;
2423 
2424 	/* Wait for any pending async encryptions to complete */
2425 	spin_lock_bh(&ctx->encrypt_compl_lock);
2426 	ctx->async_notify = true;
2427 	pending = atomic_read(&ctx->encrypt_pending);
2428 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2429 
2430 	if (pending)
2431 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2432 
2433 	tls_tx_records(sk, -1);
2434 
2435 	/* Free up un-sent records in tx_list. First, free
2436 	 * the partially sent record if any at head of tx_list.
2437 	 */
2438 	if (tls_ctx->partially_sent_record) {
2439 		tls_free_partial_record(sk, tls_ctx);
2440 		rec = list_first_entry(&ctx->tx_list,
2441 				       struct tls_rec, list);
2442 		list_del(&rec->list);
2443 		sk_msg_free(sk, &rec->msg_plaintext);
2444 		kfree(rec);
2445 	}
2446 
2447 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2448 		list_del(&rec->list);
2449 		sk_msg_free(sk, &rec->msg_encrypted);
2450 		sk_msg_free(sk, &rec->msg_plaintext);
2451 		kfree(rec);
2452 	}
2453 
2454 	crypto_free_aead(ctx->aead_send);
2455 	tls_free_open_rec(sk);
2456 }
2457 
2458 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2459 {
2460 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2461 
2462 	kfree(ctx);
2463 }
2464 
2465 void tls_sw_release_resources_rx(struct sock *sk)
2466 {
2467 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2468 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2469 
2470 	kfree(tls_ctx->rx.rec_seq);
2471 	kfree(tls_ctx->rx.iv);
2472 
2473 	if (ctx->aead_recv) {
2474 		__skb_queue_purge(&ctx->rx_list);
2475 		crypto_free_aead(ctx->aead_recv);
2476 		tls_strp_stop(&ctx->strp);
2477 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2478 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2479 		 * never swapped.
2480 		 */
2481 		if (ctx->saved_data_ready) {
2482 			write_lock_bh(&sk->sk_callback_lock);
2483 			sk->sk_data_ready = ctx->saved_data_ready;
2484 			write_unlock_bh(&sk->sk_callback_lock);
2485 		}
2486 	}
2487 }
2488 
2489 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2490 {
2491 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2492 
2493 	tls_strp_done(&ctx->strp);
2494 }
2495 
2496 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2497 {
2498 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2499 
2500 	kfree(ctx);
2501 }
2502 
2503 void tls_sw_free_resources_rx(struct sock *sk)
2504 {
2505 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2506 
2507 	tls_sw_release_resources_rx(sk);
2508 	tls_sw_free_ctx_rx(tls_ctx);
2509 }
2510 
2511 /* The work handler to transmitt the encrypted records in tx_list */
2512 static void tx_work_handler(struct work_struct *work)
2513 {
2514 	struct delayed_work *delayed_work = to_delayed_work(work);
2515 	struct tx_work *tx_work = container_of(delayed_work,
2516 					       struct tx_work, work);
2517 	struct sock *sk = tx_work->sk;
2518 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2519 	struct tls_sw_context_tx *ctx;
2520 
2521 	if (unlikely(!tls_ctx))
2522 		return;
2523 
2524 	ctx = tls_sw_ctx_tx(tls_ctx);
2525 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2526 		return;
2527 
2528 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2529 		return;
2530 
2531 	if (mutex_trylock(&tls_ctx->tx_lock)) {
2532 		lock_sock(sk);
2533 		tls_tx_records(sk, -1);
2534 		release_sock(sk);
2535 		mutex_unlock(&tls_ctx->tx_lock);
2536 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2537 		/* Someone is holding the tx_lock, they will likely run Tx
2538 		 * and cancel the work on their way out of the lock section.
2539 		 * Schedule a long delay just in case.
2540 		 */
2541 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2542 	}
2543 }
2544 
2545 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2546 {
2547 	struct tls_rec *rec;
2548 
2549 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2550 	if (!rec)
2551 		return false;
2552 
2553 	return READ_ONCE(rec->tx_ready);
2554 }
2555 
2556 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2557 {
2558 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2559 
2560 	/* Schedule the transmission if tx list is ready */
2561 	if (tls_is_tx_ready(tx_ctx) &&
2562 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2563 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2564 }
2565 
2566 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2567 {
2568 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2569 
2570 	write_lock_bh(&sk->sk_callback_lock);
2571 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2572 	sk->sk_data_ready = tls_data_ready;
2573 	write_unlock_bh(&sk->sk_callback_lock);
2574 }
2575 
2576 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2577 {
2578 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2579 
2580 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2581 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2582 }
2583 
2584 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2585 {
2586 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2587 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2588 	struct tls_crypto_info *crypto_info;
2589 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2590 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2591 	struct cipher_context *cctx;
2592 	struct crypto_aead **aead;
2593 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2594 	struct crypto_tfm *tfm;
2595 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2596 	size_t keysize;
2597 	int rc = 0;
2598 
2599 	if (!ctx) {
2600 		rc = -EINVAL;
2601 		goto out;
2602 	}
2603 
2604 	if (tx) {
2605 		if (!ctx->priv_ctx_tx) {
2606 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2607 			if (!sw_ctx_tx) {
2608 				rc = -ENOMEM;
2609 				goto out;
2610 			}
2611 			ctx->priv_ctx_tx = sw_ctx_tx;
2612 		} else {
2613 			sw_ctx_tx =
2614 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2615 		}
2616 	} else {
2617 		if (!ctx->priv_ctx_rx) {
2618 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2619 			if (!sw_ctx_rx) {
2620 				rc = -ENOMEM;
2621 				goto out;
2622 			}
2623 			ctx->priv_ctx_rx = sw_ctx_rx;
2624 		} else {
2625 			sw_ctx_rx =
2626 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2627 		}
2628 	}
2629 
2630 	if (tx) {
2631 		crypto_init_wait(&sw_ctx_tx->async_wait);
2632 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2633 		crypto_info = &ctx->crypto_send.info;
2634 		cctx = &ctx->tx;
2635 		aead = &sw_ctx_tx->aead_send;
2636 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2637 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2638 		sw_ctx_tx->tx_work.sk = sk;
2639 	} else {
2640 		crypto_init_wait(&sw_ctx_rx->async_wait);
2641 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2642 		init_waitqueue_head(&sw_ctx_rx->wq);
2643 		crypto_info = &ctx->crypto_recv.info;
2644 		cctx = &ctx->rx;
2645 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2646 		skb_queue_head_init(&sw_ctx_rx->async_hold);
2647 		aead = &sw_ctx_rx->aead_recv;
2648 	}
2649 
2650 	switch (crypto_info->cipher_type) {
2651 	case TLS_CIPHER_AES_GCM_128: {
2652 		struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2653 
2654 		gcm_128_info = (void *)crypto_info;
2655 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2656 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2657 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2658 		iv = gcm_128_info->iv;
2659 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2660 		rec_seq = gcm_128_info->rec_seq;
2661 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2662 		key = gcm_128_info->key;
2663 		salt = gcm_128_info->salt;
2664 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2665 		cipher_name = "gcm(aes)";
2666 		break;
2667 	}
2668 	case TLS_CIPHER_AES_GCM_256: {
2669 		struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2670 
2671 		gcm_256_info = (void *)crypto_info;
2672 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2673 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2674 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2675 		iv = gcm_256_info->iv;
2676 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2677 		rec_seq = gcm_256_info->rec_seq;
2678 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2679 		key = gcm_256_info->key;
2680 		salt = gcm_256_info->salt;
2681 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2682 		cipher_name = "gcm(aes)";
2683 		break;
2684 	}
2685 	case TLS_CIPHER_AES_CCM_128: {
2686 		struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2687 
2688 		ccm_128_info = (void *)crypto_info;
2689 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2690 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2691 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2692 		iv = ccm_128_info->iv;
2693 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2694 		rec_seq = ccm_128_info->rec_seq;
2695 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2696 		key = ccm_128_info->key;
2697 		salt = ccm_128_info->salt;
2698 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2699 		cipher_name = "ccm(aes)";
2700 		break;
2701 	}
2702 	case TLS_CIPHER_CHACHA20_POLY1305: {
2703 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2704 
2705 		chacha20_poly1305_info = (void *)crypto_info;
2706 		nonce_size = 0;
2707 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2708 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2709 		iv = chacha20_poly1305_info->iv;
2710 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2711 		rec_seq = chacha20_poly1305_info->rec_seq;
2712 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2713 		key = chacha20_poly1305_info->key;
2714 		salt = chacha20_poly1305_info->salt;
2715 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2716 		cipher_name = "rfc7539(chacha20,poly1305)";
2717 		break;
2718 	}
2719 	case TLS_CIPHER_SM4_GCM: {
2720 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2721 
2722 		sm4_gcm_info = (void *)crypto_info;
2723 		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2724 		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2725 		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2726 		iv = sm4_gcm_info->iv;
2727 		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2728 		rec_seq = sm4_gcm_info->rec_seq;
2729 		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2730 		key = sm4_gcm_info->key;
2731 		salt = sm4_gcm_info->salt;
2732 		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2733 		cipher_name = "gcm(sm4)";
2734 		break;
2735 	}
2736 	case TLS_CIPHER_SM4_CCM: {
2737 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2738 
2739 		sm4_ccm_info = (void *)crypto_info;
2740 		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2741 		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2742 		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2743 		iv = sm4_ccm_info->iv;
2744 		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2745 		rec_seq = sm4_ccm_info->rec_seq;
2746 		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2747 		key = sm4_ccm_info->key;
2748 		salt = sm4_ccm_info->salt;
2749 		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2750 		cipher_name = "ccm(sm4)";
2751 		break;
2752 	}
2753 	case TLS_CIPHER_ARIA_GCM_128: {
2754 		struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2755 
2756 		aria_gcm_128_info = (void *)crypto_info;
2757 		nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2758 		tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2759 		iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2760 		iv = aria_gcm_128_info->iv;
2761 		rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2762 		rec_seq = aria_gcm_128_info->rec_seq;
2763 		keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2764 		key = aria_gcm_128_info->key;
2765 		salt = aria_gcm_128_info->salt;
2766 		salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2767 		cipher_name = "gcm(aria)";
2768 		break;
2769 	}
2770 	case TLS_CIPHER_ARIA_GCM_256: {
2771 		struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2772 
2773 		gcm_256_info = (void *)crypto_info;
2774 		nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2775 		tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2776 		iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2777 		iv = gcm_256_info->iv;
2778 		rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2779 		rec_seq = gcm_256_info->rec_seq;
2780 		keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2781 		key = gcm_256_info->key;
2782 		salt = gcm_256_info->salt;
2783 		salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2784 		cipher_name = "gcm(aria)";
2785 		break;
2786 	}
2787 	default:
2788 		rc = -EINVAL;
2789 		goto free_priv;
2790 	}
2791 
2792 	if (crypto_info->version == TLS_1_3_VERSION) {
2793 		nonce_size = 0;
2794 		prot->aad_size = TLS_HEADER_SIZE;
2795 		prot->tail_size = 1;
2796 	} else {
2797 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2798 		prot->tail_size = 0;
2799 	}
2800 
2801 	/* Sanity-check the sizes for stack allocations. */
2802 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2803 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2804 	    prot->aad_size > TLS_MAX_AAD_SIZE) {
2805 		rc = -EINVAL;
2806 		goto free_priv;
2807 	}
2808 
2809 	prot->version = crypto_info->version;
2810 	prot->cipher_type = crypto_info->cipher_type;
2811 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2812 	prot->tag_size = tag_size;
2813 	prot->overhead_size = prot->prepend_size +
2814 			      prot->tag_size + prot->tail_size;
2815 	prot->iv_size = iv_size;
2816 	prot->salt_size = salt_size;
2817 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2818 	if (!cctx->iv) {
2819 		rc = -ENOMEM;
2820 		goto free_priv;
2821 	}
2822 	/* Note: 128 & 256 bit salt are the same size */
2823 	prot->rec_seq_size = rec_seq_size;
2824 	memcpy(cctx->iv, salt, salt_size);
2825 	memcpy(cctx->iv + salt_size, iv, iv_size);
2826 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2827 	if (!cctx->rec_seq) {
2828 		rc = -ENOMEM;
2829 		goto free_iv;
2830 	}
2831 
2832 	if (!*aead) {
2833 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2834 		if (IS_ERR(*aead)) {
2835 			rc = PTR_ERR(*aead);
2836 			*aead = NULL;
2837 			goto free_rec_seq;
2838 		}
2839 	}
2840 
2841 	ctx->push_pending_record = tls_sw_push_pending_record;
2842 
2843 	rc = crypto_aead_setkey(*aead, key, keysize);
2844 
2845 	if (rc)
2846 		goto free_aead;
2847 
2848 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2849 	if (rc)
2850 		goto free_aead;
2851 
2852 	if (sw_ctx_rx) {
2853 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2854 
2855 		tls_update_rx_zc_capable(ctx);
2856 		sw_ctx_rx->async_capable =
2857 			crypto_info->version != TLS_1_3_VERSION &&
2858 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2859 
2860 		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2861 		if (rc)
2862 			goto free_aead;
2863 	}
2864 
2865 	goto out;
2866 
2867 free_aead:
2868 	crypto_free_aead(*aead);
2869 	*aead = NULL;
2870 free_rec_seq:
2871 	kfree(cctx->rec_seq);
2872 	cctx->rec_seq = NULL;
2873 free_iv:
2874 	kfree(cctx->iv);
2875 	cctx->iv = NULL;
2876 free_priv:
2877 	if (tx) {
2878 		kfree(ctx->priv_ctx_tx);
2879 		ctx->priv_ctx_tx = NULL;
2880 	} else {
2881 		kfree(ctx->priv_ctx_rx);
2882 		ctx->priv_ctx_rx = NULL;
2883 	}
2884 out:
2885 	return rc;
2886 }
2887