1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <linux/splice.h> 41 #include <crypto/aead.h> 42 43 #include <net/strparser.h> 44 #include <net/tls.h> 45 46 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 47 unsigned int recursion_level) 48 { 49 int start = skb_headlen(skb); 50 int i, chunk = start - offset; 51 struct sk_buff *frag_iter; 52 int elt = 0; 53 54 if (unlikely(recursion_level >= 24)) 55 return -EMSGSIZE; 56 57 if (chunk > 0) { 58 if (chunk > len) 59 chunk = len; 60 elt++; 61 len -= chunk; 62 if (len == 0) 63 return elt; 64 offset += chunk; 65 } 66 67 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 68 int end; 69 70 WARN_ON(start > offset + len); 71 72 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 73 chunk = end - offset; 74 if (chunk > 0) { 75 if (chunk > len) 76 chunk = len; 77 elt++; 78 len -= chunk; 79 if (len == 0) 80 return elt; 81 offset += chunk; 82 } 83 start = end; 84 } 85 86 if (unlikely(skb_has_frag_list(skb))) { 87 skb_walk_frags(skb, frag_iter) { 88 int end, ret; 89 90 WARN_ON(start > offset + len); 91 92 end = start + frag_iter->len; 93 chunk = end - offset; 94 if (chunk > 0) { 95 if (chunk > len) 96 chunk = len; 97 ret = __skb_nsg(frag_iter, offset - start, chunk, 98 recursion_level + 1); 99 if (unlikely(ret < 0)) 100 return ret; 101 elt += ret; 102 len -= chunk; 103 if (len == 0) 104 return elt; 105 offset += chunk; 106 } 107 start = end; 108 } 109 } 110 BUG_ON(len); 111 return elt; 112 } 113 114 /* Return the number of scatterlist elements required to completely map the 115 * skb, or -EMSGSIZE if the recursion depth is exceeded. 116 */ 117 static int skb_nsg(struct sk_buff *skb, int offset, int len) 118 { 119 return __skb_nsg(skb, offset, len, 0); 120 } 121 122 static int padding_length(struct tls_sw_context_rx *ctx, 123 struct tls_prot_info *prot, struct sk_buff *skb) 124 { 125 struct strp_msg *rxm = strp_msg(skb); 126 int sub = 0; 127 128 /* Determine zero-padding length */ 129 if (prot->version == TLS_1_3_VERSION) { 130 char content_type = 0; 131 int err; 132 int back = 17; 133 134 while (content_type == 0) { 135 if (back > rxm->full_len - prot->prepend_size) 136 return -EBADMSG; 137 err = skb_copy_bits(skb, 138 rxm->offset + rxm->full_len - back, 139 &content_type, 1); 140 if (err) 141 return err; 142 if (content_type) 143 break; 144 sub++; 145 back++; 146 } 147 ctx->control = content_type; 148 } 149 return sub; 150 } 151 152 static void tls_decrypt_done(struct crypto_async_request *req, int err) 153 { 154 struct aead_request *aead_req = (struct aead_request *)req; 155 struct scatterlist *sgout = aead_req->dst; 156 struct scatterlist *sgin = aead_req->src; 157 struct tls_sw_context_rx *ctx; 158 struct tls_context *tls_ctx; 159 struct tls_prot_info *prot; 160 struct scatterlist *sg; 161 struct sk_buff *skb; 162 unsigned int pages; 163 int pending; 164 165 skb = (struct sk_buff *)req->data; 166 tls_ctx = tls_get_ctx(skb->sk); 167 ctx = tls_sw_ctx_rx(tls_ctx); 168 prot = &tls_ctx->prot_info; 169 170 /* Propagate if there was an err */ 171 if (err) { 172 if (err == -EBADMSG) 173 TLS_INC_STATS(sock_net(skb->sk), 174 LINUX_MIB_TLSDECRYPTERROR); 175 ctx->async_wait.err = err; 176 tls_err_abort(skb->sk, err); 177 } else { 178 struct strp_msg *rxm = strp_msg(skb); 179 int pad; 180 181 pad = padding_length(ctx, prot, skb); 182 if (pad < 0) { 183 ctx->async_wait.err = pad; 184 tls_err_abort(skb->sk, pad); 185 } else { 186 rxm->full_len -= pad; 187 rxm->offset += prot->prepend_size; 188 rxm->full_len -= prot->overhead_size; 189 } 190 } 191 192 /* After using skb->sk to propagate sk through crypto async callback 193 * we need to NULL it again. 194 */ 195 skb->sk = NULL; 196 197 198 /* Free the destination pages if skb was not decrypted inplace */ 199 if (sgout != sgin) { 200 /* Skip the first S/G entry as it points to AAD */ 201 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 202 if (!sg) 203 break; 204 put_page(sg_page(sg)); 205 } 206 } 207 208 kfree(aead_req); 209 210 spin_lock_bh(&ctx->decrypt_compl_lock); 211 pending = atomic_dec_return(&ctx->decrypt_pending); 212 213 if (!pending && ctx->async_notify) 214 complete(&ctx->async_wait.completion); 215 spin_unlock_bh(&ctx->decrypt_compl_lock); 216 } 217 218 static int tls_do_decryption(struct sock *sk, 219 struct sk_buff *skb, 220 struct scatterlist *sgin, 221 struct scatterlist *sgout, 222 char *iv_recv, 223 size_t data_len, 224 struct aead_request *aead_req, 225 bool async) 226 { 227 struct tls_context *tls_ctx = tls_get_ctx(sk); 228 struct tls_prot_info *prot = &tls_ctx->prot_info; 229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 230 int ret; 231 232 aead_request_set_tfm(aead_req, ctx->aead_recv); 233 aead_request_set_ad(aead_req, prot->aad_size); 234 aead_request_set_crypt(aead_req, sgin, sgout, 235 data_len + prot->tag_size, 236 (u8 *)iv_recv); 237 238 if (async) { 239 /* Using skb->sk to push sk through to crypto async callback 240 * handler. This allows propagating errors up to the socket 241 * if needed. It _must_ be cleared in the async handler 242 * before consume_skb is called. We _know_ skb->sk is NULL 243 * because it is a clone from strparser. 244 */ 245 skb->sk = sk; 246 aead_request_set_callback(aead_req, 247 CRYPTO_TFM_REQ_MAY_BACKLOG, 248 tls_decrypt_done, skb); 249 atomic_inc(&ctx->decrypt_pending); 250 } else { 251 aead_request_set_callback(aead_req, 252 CRYPTO_TFM_REQ_MAY_BACKLOG, 253 crypto_req_done, &ctx->async_wait); 254 } 255 256 ret = crypto_aead_decrypt(aead_req); 257 if (ret == -EINPROGRESS) { 258 if (async) 259 return ret; 260 261 ret = crypto_wait_req(ret, &ctx->async_wait); 262 } 263 264 if (async) 265 atomic_dec(&ctx->decrypt_pending); 266 267 return ret; 268 } 269 270 static void tls_trim_both_msgs(struct sock *sk, int target_size) 271 { 272 struct tls_context *tls_ctx = tls_get_ctx(sk); 273 struct tls_prot_info *prot = &tls_ctx->prot_info; 274 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 275 struct tls_rec *rec = ctx->open_rec; 276 277 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 278 if (target_size > 0) 279 target_size += prot->overhead_size; 280 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 281 } 282 283 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 284 { 285 struct tls_context *tls_ctx = tls_get_ctx(sk); 286 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 287 struct tls_rec *rec = ctx->open_rec; 288 struct sk_msg *msg_en = &rec->msg_encrypted; 289 290 return sk_msg_alloc(sk, msg_en, len, 0); 291 } 292 293 static int tls_clone_plaintext_msg(struct sock *sk, int required) 294 { 295 struct tls_context *tls_ctx = tls_get_ctx(sk); 296 struct tls_prot_info *prot = &tls_ctx->prot_info; 297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 298 struct tls_rec *rec = ctx->open_rec; 299 struct sk_msg *msg_pl = &rec->msg_plaintext; 300 struct sk_msg *msg_en = &rec->msg_encrypted; 301 int skip, len; 302 303 /* We add page references worth len bytes from encrypted sg 304 * at the end of plaintext sg. It is guaranteed that msg_en 305 * has enough required room (ensured by caller). 306 */ 307 len = required - msg_pl->sg.size; 308 309 /* Skip initial bytes in msg_en's data to be able to use 310 * same offset of both plain and encrypted data. 311 */ 312 skip = prot->prepend_size + msg_pl->sg.size; 313 314 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 315 } 316 317 static struct tls_rec *tls_get_rec(struct sock *sk) 318 { 319 struct tls_context *tls_ctx = tls_get_ctx(sk); 320 struct tls_prot_info *prot = &tls_ctx->prot_info; 321 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 322 struct sk_msg *msg_pl, *msg_en; 323 struct tls_rec *rec; 324 int mem_size; 325 326 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 327 328 rec = kzalloc(mem_size, sk->sk_allocation); 329 if (!rec) 330 return NULL; 331 332 msg_pl = &rec->msg_plaintext; 333 msg_en = &rec->msg_encrypted; 334 335 sk_msg_init(msg_pl); 336 sk_msg_init(msg_en); 337 338 sg_init_table(rec->sg_aead_in, 2); 339 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 340 sg_unmark_end(&rec->sg_aead_in[1]); 341 342 sg_init_table(rec->sg_aead_out, 2); 343 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 344 sg_unmark_end(&rec->sg_aead_out[1]); 345 346 return rec; 347 } 348 349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 350 { 351 sk_msg_free(sk, &rec->msg_encrypted); 352 sk_msg_free(sk, &rec->msg_plaintext); 353 kfree(rec); 354 } 355 356 static void tls_free_open_rec(struct sock *sk) 357 { 358 struct tls_context *tls_ctx = tls_get_ctx(sk); 359 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 360 struct tls_rec *rec = ctx->open_rec; 361 362 if (rec) { 363 tls_free_rec(sk, rec); 364 ctx->open_rec = NULL; 365 } 366 } 367 368 int tls_tx_records(struct sock *sk, int flags) 369 { 370 struct tls_context *tls_ctx = tls_get_ctx(sk); 371 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 372 struct tls_rec *rec, *tmp; 373 struct sk_msg *msg_en; 374 int tx_flags, rc = 0; 375 376 if (tls_is_partially_sent_record(tls_ctx)) { 377 rec = list_first_entry(&ctx->tx_list, 378 struct tls_rec, list); 379 380 if (flags == -1) 381 tx_flags = rec->tx_flags; 382 else 383 tx_flags = flags; 384 385 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 386 if (rc) 387 goto tx_err; 388 389 /* Full record has been transmitted. 390 * Remove the head of tx_list 391 */ 392 list_del(&rec->list); 393 sk_msg_free(sk, &rec->msg_plaintext); 394 kfree(rec); 395 } 396 397 /* Tx all ready records */ 398 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 399 if (READ_ONCE(rec->tx_ready)) { 400 if (flags == -1) 401 tx_flags = rec->tx_flags; 402 else 403 tx_flags = flags; 404 405 msg_en = &rec->msg_encrypted; 406 rc = tls_push_sg(sk, tls_ctx, 407 &msg_en->sg.data[msg_en->sg.curr], 408 0, tx_flags); 409 if (rc) 410 goto tx_err; 411 412 list_del(&rec->list); 413 sk_msg_free(sk, &rec->msg_plaintext); 414 kfree(rec); 415 } else { 416 break; 417 } 418 } 419 420 tx_err: 421 if (rc < 0 && rc != -EAGAIN) 422 tls_err_abort(sk, EBADMSG); 423 424 return rc; 425 } 426 427 static void tls_encrypt_done(struct crypto_async_request *req, int err) 428 { 429 struct aead_request *aead_req = (struct aead_request *)req; 430 struct sock *sk = req->data; 431 struct tls_context *tls_ctx = tls_get_ctx(sk); 432 struct tls_prot_info *prot = &tls_ctx->prot_info; 433 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 434 struct scatterlist *sge; 435 struct sk_msg *msg_en; 436 struct tls_rec *rec; 437 bool ready = false; 438 int pending; 439 440 rec = container_of(aead_req, struct tls_rec, aead_req); 441 msg_en = &rec->msg_encrypted; 442 443 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 444 sge->offset -= prot->prepend_size; 445 sge->length += prot->prepend_size; 446 447 /* Check if error is previously set on socket */ 448 if (err || sk->sk_err) { 449 rec = NULL; 450 451 /* If err is already set on socket, return the same code */ 452 if (sk->sk_err) { 453 ctx->async_wait.err = sk->sk_err; 454 } else { 455 ctx->async_wait.err = err; 456 tls_err_abort(sk, err); 457 } 458 } 459 460 if (rec) { 461 struct tls_rec *first_rec; 462 463 /* Mark the record as ready for transmission */ 464 smp_store_mb(rec->tx_ready, true); 465 466 /* If received record is at head of tx_list, schedule tx */ 467 first_rec = list_first_entry(&ctx->tx_list, 468 struct tls_rec, list); 469 if (rec == first_rec) 470 ready = true; 471 } 472 473 spin_lock_bh(&ctx->encrypt_compl_lock); 474 pending = atomic_dec_return(&ctx->encrypt_pending); 475 476 if (!pending && ctx->async_notify) 477 complete(&ctx->async_wait.completion); 478 spin_unlock_bh(&ctx->encrypt_compl_lock); 479 480 if (!ready) 481 return; 482 483 /* Schedule the transmission */ 484 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 485 schedule_delayed_work(&ctx->tx_work.work, 1); 486 } 487 488 static int tls_do_encryption(struct sock *sk, 489 struct tls_context *tls_ctx, 490 struct tls_sw_context_tx *ctx, 491 struct aead_request *aead_req, 492 size_t data_len, u32 start) 493 { 494 struct tls_prot_info *prot = &tls_ctx->prot_info; 495 struct tls_rec *rec = ctx->open_rec; 496 struct sk_msg *msg_en = &rec->msg_encrypted; 497 struct scatterlist *sge = sk_msg_elem(msg_en, start); 498 int rc, iv_offset = 0; 499 500 /* For CCM based ciphers, first byte of IV is a constant */ 501 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 502 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 503 iv_offset = 1; 504 } 505 506 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 507 prot->iv_size + prot->salt_size); 508 509 xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq); 510 511 sge->offset += prot->prepend_size; 512 sge->length -= prot->prepend_size; 513 514 msg_en->sg.curr = start; 515 516 aead_request_set_tfm(aead_req, ctx->aead_send); 517 aead_request_set_ad(aead_req, prot->aad_size); 518 aead_request_set_crypt(aead_req, rec->sg_aead_in, 519 rec->sg_aead_out, 520 data_len, rec->iv_data); 521 522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 523 tls_encrypt_done, sk); 524 525 /* Add the record in tx_list */ 526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 527 atomic_inc(&ctx->encrypt_pending); 528 529 rc = crypto_aead_encrypt(aead_req); 530 if (!rc || rc != -EINPROGRESS) { 531 atomic_dec(&ctx->encrypt_pending); 532 sge->offset -= prot->prepend_size; 533 sge->length += prot->prepend_size; 534 } 535 536 if (!rc) { 537 WRITE_ONCE(rec->tx_ready, true); 538 } else if (rc != -EINPROGRESS) { 539 list_del(&rec->list); 540 return rc; 541 } 542 543 /* Unhook the record from context if encryption is not failure */ 544 ctx->open_rec = NULL; 545 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 546 return rc; 547 } 548 549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 550 struct tls_rec **to, struct sk_msg *msg_opl, 551 struct sk_msg *msg_oen, u32 split_point, 552 u32 tx_overhead_size, u32 *orig_end) 553 { 554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 555 struct scatterlist *sge, *osge, *nsge; 556 u32 orig_size = msg_opl->sg.size; 557 struct scatterlist tmp = { }; 558 struct sk_msg *msg_npl; 559 struct tls_rec *new; 560 int ret; 561 562 new = tls_get_rec(sk); 563 if (!new) 564 return -ENOMEM; 565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 566 tx_overhead_size, 0); 567 if (ret < 0) { 568 tls_free_rec(sk, new); 569 return ret; 570 } 571 572 *orig_end = msg_opl->sg.end; 573 i = msg_opl->sg.start; 574 sge = sk_msg_elem(msg_opl, i); 575 while (apply && sge->length) { 576 if (sge->length > apply) { 577 u32 len = sge->length - apply; 578 579 get_page(sg_page(sge)); 580 sg_set_page(&tmp, sg_page(sge), len, 581 sge->offset + apply); 582 sge->length = apply; 583 bytes += apply; 584 apply = 0; 585 } else { 586 apply -= sge->length; 587 bytes += sge->length; 588 } 589 590 sk_msg_iter_var_next(i); 591 if (i == msg_opl->sg.end) 592 break; 593 sge = sk_msg_elem(msg_opl, i); 594 } 595 596 msg_opl->sg.end = i; 597 msg_opl->sg.curr = i; 598 msg_opl->sg.copybreak = 0; 599 msg_opl->apply_bytes = 0; 600 msg_opl->sg.size = bytes; 601 602 msg_npl = &new->msg_plaintext; 603 msg_npl->apply_bytes = apply; 604 msg_npl->sg.size = orig_size - bytes; 605 606 j = msg_npl->sg.start; 607 nsge = sk_msg_elem(msg_npl, j); 608 if (tmp.length) { 609 memcpy(nsge, &tmp, sizeof(*nsge)); 610 sk_msg_iter_var_next(j); 611 nsge = sk_msg_elem(msg_npl, j); 612 } 613 614 osge = sk_msg_elem(msg_opl, i); 615 while (osge->length) { 616 memcpy(nsge, osge, sizeof(*nsge)); 617 sg_unmark_end(nsge); 618 sk_msg_iter_var_next(i); 619 sk_msg_iter_var_next(j); 620 if (i == *orig_end) 621 break; 622 osge = sk_msg_elem(msg_opl, i); 623 nsge = sk_msg_elem(msg_npl, j); 624 } 625 626 msg_npl->sg.end = j; 627 msg_npl->sg.curr = j; 628 msg_npl->sg.copybreak = 0; 629 630 *to = new; 631 return 0; 632 } 633 634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 635 struct tls_rec *from, u32 orig_end) 636 { 637 struct sk_msg *msg_npl = &from->msg_plaintext; 638 struct sk_msg *msg_opl = &to->msg_plaintext; 639 struct scatterlist *osge, *nsge; 640 u32 i, j; 641 642 i = msg_opl->sg.end; 643 sk_msg_iter_var_prev(i); 644 j = msg_npl->sg.start; 645 646 osge = sk_msg_elem(msg_opl, i); 647 nsge = sk_msg_elem(msg_npl, j); 648 649 if (sg_page(osge) == sg_page(nsge) && 650 osge->offset + osge->length == nsge->offset) { 651 osge->length += nsge->length; 652 put_page(sg_page(nsge)); 653 } 654 655 msg_opl->sg.end = orig_end; 656 msg_opl->sg.curr = orig_end; 657 msg_opl->sg.copybreak = 0; 658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 659 msg_opl->sg.size += msg_npl->sg.size; 660 661 sk_msg_free(sk, &to->msg_encrypted); 662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 663 664 kfree(from); 665 } 666 667 static int tls_push_record(struct sock *sk, int flags, 668 unsigned char record_type) 669 { 670 struct tls_context *tls_ctx = tls_get_ctx(sk); 671 struct tls_prot_info *prot = &tls_ctx->prot_info; 672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 674 u32 i, split_point, orig_end; 675 struct sk_msg *msg_pl, *msg_en; 676 struct aead_request *req; 677 bool split; 678 int rc; 679 680 if (!rec) 681 return 0; 682 683 msg_pl = &rec->msg_plaintext; 684 msg_en = &rec->msg_encrypted; 685 686 split_point = msg_pl->apply_bytes; 687 split = split_point && split_point < msg_pl->sg.size; 688 if (unlikely((!split && 689 msg_pl->sg.size + 690 prot->overhead_size > msg_en->sg.size) || 691 (split && 692 split_point + 693 prot->overhead_size > msg_en->sg.size))) { 694 split = true; 695 split_point = msg_en->sg.size; 696 } 697 if (split) { 698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 699 split_point, prot->overhead_size, 700 &orig_end); 701 if (rc < 0) 702 return rc; 703 /* This can happen if above tls_split_open_record allocates 704 * a single large encryption buffer instead of two smaller 705 * ones. In this case adjust pointers and continue without 706 * split. 707 */ 708 if (!msg_pl->sg.size) { 709 tls_merge_open_record(sk, rec, tmp, orig_end); 710 msg_pl = &rec->msg_plaintext; 711 msg_en = &rec->msg_encrypted; 712 split = false; 713 } 714 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 715 prot->overhead_size); 716 } 717 718 rec->tx_flags = flags; 719 req = &rec->aead_req; 720 721 i = msg_pl->sg.end; 722 sk_msg_iter_var_prev(i); 723 724 rec->content_type = record_type; 725 if (prot->version == TLS_1_3_VERSION) { 726 /* Add content type to end of message. No padding added */ 727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 728 sg_mark_end(&rec->sg_content_type); 729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 730 &rec->sg_content_type); 731 } else { 732 sg_mark_end(sk_msg_elem(msg_pl, i)); 733 } 734 735 if (msg_pl->sg.end < msg_pl->sg.start) { 736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 737 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 738 msg_pl->sg.data); 739 } 740 741 i = msg_pl->sg.start; 742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 743 744 i = msg_en->sg.end; 745 sk_msg_iter_var_prev(i); 746 sg_mark_end(sk_msg_elem(msg_en, i)); 747 748 i = msg_en->sg.start; 749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 750 751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 752 tls_ctx->tx.rec_seq, record_type, prot); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 sk_redir = psock->sk_redir; 841 memcpy(&msg_redir, msg, sizeof(*msg)); 842 if (msg->apply_bytes < send) 843 msg->apply_bytes = 0; 844 else 845 msg->apply_bytes -= send; 846 sk_msg_return_zero(sk, msg, send); 847 msg->sg.size -= send; 848 release_sock(sk); 849 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 850 lock_sock(sk); 851 if (err < 0) { 852 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 853 msg->sg.size = 0; 854 } 855 if (msg->sg.size == 0) 856 tls_free_open_rec(sk); 857 break; 858 case __SK_DROP: 859 default: 860 sk_msg_free_partial(sk, msg, send); 861 if (msg->apply_bytes < send) 862 msg->apply_bytes = 0; 863 else 864 msg->apply_bytes -= send; 865 if (msg->sg.size == 0) 866 tls_free_open_rec(sk); 867 *copied -= (send + delta); 868 err = -EACCES; 869 } 870 871 if (likely(!err)) { 872 bool reset_eval = !ctx->open_rec; 873 874 rec = ctx->open_rec; 875 if (rec) { 876 msg = &rec->msg_plaintext; 877 if (!msg->apply_bytes) 878 reset_eval = true; 879 } 880 if (reset_eval) { 881 psock->eval = __SK_NONE; 882 if (psock->sk_redir) { 883 sock_put(psock->sk_redir); 884 psock->sk_redir = NULL; 885 } 886 } 887 if (rec) 888 goto more_data; 889 } 890 out_err: 891 sk_psock_put(sk, psock); 892 return err; 893 } 894 895 static int tls_sw_push_pending_record(struct sock *sk, int flags) 896 { 897 struct tls_context *tls_ctx = tls_get_ctx(sk); 898 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 899 struct tls_rec *rec = ctx->open_rec; 900 struct sk_msg *msg_pl; 901 size_t copied; 902 903 if (!rec) 904 return 0; 905 906 msg_pl = &rec->msg_plaintext; 907 copied = msg_pl->sg.size; 908 if (!copied) 909 return 0; 910 911 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 912 &copied, flags); 913 } 914 915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 916 { 917 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 918 struct tls_context *tls_ctx = tls_get_ctx(sk); 919 struct tls_prot_info *prot = &tls_ctx->prot_info; 920 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 921 bool async_capable = ctx->async_capable; 922 unsigned char record_type = TLS_RECORD_TYPE_DATA; 923 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 924 bool eor = !(msg->msg_flags & MSG_MORE); 925 size_t try_to_copy; 926 ssize_t copied = 0; 927 struct sk_msg *msg_pl, *msg_en; 928 struct tls_rec *rec; 929 int required_size; 930 int num_async = 0; 931 bool full_record; 932 int record_room; 933 int num_zc = 0; 934 int orig_size; 935 int ret = 0; 936 int pending; 937 938 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 939 MSG_CMSG_COMPAT)) 940 return -EOPNOTSUPP; 941 942 mutex_lock(&tls_ctx->tx_lock); 943 lock_sock(sk); 944 945 if (unlikely(msg->msg_controllen)) { 946 ret = tls_proccess_cmsg(sk, msg, &record_type); 947 if (ret) { 948 if (ret == -EINPROGRESS) 949 num_async++; 950 else if (ret != -EAGAIN) 951 goto send_end; 952 } 953 } 954 955 while (msg_data_left(msg)) { 956 if (sk->sk_err) { 957 ret = -sk->sk_err; 958 goto send_end; 959 } 960 961 if (ctx->open_rec) 962 rec = ctx->open_rec; 963 else 964 rec = ctx->open_rec = tls_get_rec(sk); 965 if (!rec) { 966 ret = -ENOMEM; 967 goto send_end; 968 } 969 970 msg_pl = &rec->msg_plaintext; 971 msg_en = &rec->msg_encrypted; 972 973 orig_size = msg_pl->sg.size; 974 full_record = false; 975 try_to_copy = msg_data_left(msg); 976 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 977 if (try_to_copy >= record_room) { 978 try_to_copy = record_room; 979 full_record = true; 980 } 981 982 required_size = msg_pl->sg.size + try_to_copy + 983 prot->overhead_size; 984 985 if (!sk_stream_memory_free(sk)) 986 goto wait_for_sndbuf; 987 988 alloc_encrypted: 989 ret = tls_alloc_encrypted_msg(sk, required_size); 990 if (ret) { 991 if (ret != -ENOSPC) 992 goto wait_for_memory; 993 994 /* Adjust try_to_copy according to the amount that was 995 * actually allocated. The difference is due 996 * to max sg elements limit 997 */ 998 try_to_copy -= required_size - msg_en->sg.size; 999 full_record = true; 1000 } 1001 1002 if (!is_kvec && (full_record || eor) && !async_capable) { 1003 u32 first = msg_pl->sg.end; 1004 1005 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1006 msg_pl, try_to_copy); 1007 if (ret) 1008 goto fallback_to_reg_send; 1009 1010 num_zc++; 1011 copied += try_to_copy; 1012 1013 sk_msg_sg_copy_set(msg_pl, first); 1014 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1015 record_type, &copied, 1016 msg->msg_flags); 1017 if (ret) { 1018 if (ret == -EINPROGRESS) 1019 num_async++; 1020 else if (ret == -ENOMEM) 1021 goto wait_for_memory; 1022 else if (ctx->open_rec && ret == -ENOSPC) 1023 goto rollback_iter; 1024 else if (ret != -EAGAIN) 1025 goto send_end; 1026 } 1027 continue; 1028 rollback_iter: 1029 copied -= try_to_copy; 1030 sk_msg_sg_copy_clear(msg_pl, first); 1031 iov_iter_revert(&msg->msg_iter, 1032 msg_pl->sg.size - orig_size); 1033 fallback_to_reg_send: 1034 sk_msg_trim(sk, msg_pl, orig_size); 1035 } 1036 1037 required_size = msg_pl->sg.size + try_to_copy; 1038 1039 ret = tls_clone_plaintext_msg(sk, required_size); 1040 if (ret) { 1041 if (ret != -ENOSPC) 1042 goto send_end; 1043 1044 /* Adjust try_to_copy according to the amount that was 1045 * actually allocated. The difference is due 1046 * to max sg elements limit 1047 */ 1048 try_to_copy -= required_size - msg_pl->sg.size; 1049 full_record = true; 1050 sk_msg_trim(sk, msg_en, 1051 msg_pl->sg.size + prot->overhead_size); 1052 } 1053 1054 if (try_to_copy) { 1055 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1056 msg_pl, try_to_copy); 1057 if (ret < 0) 1058 goto trim_sgl; 1059 } 1060 1061 /* Open records defined only if successfully copied, otherwise 1062 * we would trim the sg but not reset the open record frags. 1063 */ 1064 tls_ctx->pending_open_record_frags = true; 1065 copied += try_to_copy; 1066 if (full_record || eor) { 1067 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1068 record_type, &copied, 1069 msg->msg_flags); 1070 if (ret) { 1071 if (ret == -EINPROGRESS) 1072 num_async++; 1073 else if (ret == -ENOMEM) 1074 goto wait_for_memory; 1075 else if (ret != -EAGAIN) { 1076 if (ret == -ENOSPC) 1077 ret = 0; 1078 goto send_end; 1079 } 1080 } 1081 } 1082 1083 continue; 1084 1085 wait_for_sndbuf: 1086 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1087 wait_for_memory: 1088 ret = sk_stream_wait_memory(sk, &timeo); 1089 if (ret) { 1090 trim_sgl: 1091 if (ctx->open_rec) 1092 tls_trim_both_msgs(sk, orig_size); 1093 goto send_end; 1094 } 1095 1096 if (ctx->open_rec && msg_en->sg.size < required_size) 1097 goto alloc_encrypted; 1098 } 1099 1100 if (!num_async) { 1101 goto send_end; 1102 } else if (num_zc) { 1103 /* Wait for pending encryptions to get completed */ 1104 spin_lock_bh(&ctx->encrypt_compl_lock); 1105 ctx->async_notify = true; 1106 1107 pending = atomic_read(&ctx->encrypt_pending); 1108 spin_unlock_bh(&ctx->encrypt_compl_lock); 1109 if (pending) 1110 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1111 else 1112 reinit_completion(&ctx->async_wait.completion); 1113 1114 /* There can be no concurrent accesses, since we have no 1115 * pending encrypt operations 1116 */ 1117 WRITE_ONCE(ctx->async_notify, false); 1118 1119 if (ctx->async_wait.err) { 1120 ret = ctx->async_wait.err; 1121 copied = 0; 1122 } 1123 } 1124 1125 /* Transmit if any encryptions have completed */ 1126 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1127 cancel_delayed_work(&ctx->tx_work.work); 1128 tls_tx_records(sk, msg->msg_flags); 1129 } 1130 1131 send_end: 1132 ret = sk_stream_error(sk, msg->msg_flags, ret); 1133 1134 release_sock(sk); 1135 mutex_unlock(&tls_ctx->tx_lock); 1136 return copied > 0 ? copied : ret; 1137 } 1138 1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1140 int offset, size_t size, int flags) 1141 { 1142 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1143 struct tls_context *tls_ctx = tls_get_ctx(sk); 1144 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1145 struct tls_prot_info *prot = &tls_ctx->prot_info; 1146 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1147 struct sk_msg *msg_pl; 1148 struct tls_rec *rec; 1149 int num_async = 0; 1150 ssize_t copied = 0; 1151 bool full_record; 1152 int record_room; 1153 int ret = 0; 1154 bool eor; 1155 1156 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1158 1159 /* Call the sk_stream functions to manage the sndbuf mem. */ 1160 while (size > 0) { 1161 size_t copy, required_size; 1162 1163 if (sk->sk_err) { 1164 ret = -sk->sk_err; 1165 goto sendpage_end; 1166 } 1167 1168 if (ctx->open_rec) 1169 rec = ctx->open_rec; 1170 else 1171 rec = ctx->open_rec = tls_get_rec(sk); 1172 if (!rec) { 1173 ret = -ENOMEM; 1174 goto sendpage_end; 1175 } 1176 1177 msg_pl = &rec->msg_plaintext; 1178 1179 full_record = false; 1180 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1181 copy = size; 1182 if (copy >= record_room) { 1183 copy = record_room; 1184 full_record = true; 1185 } 1186 1187 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1188 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_sndbuf; 1191 alloc_payload: 1192 ret = tls_alloc_encrypted_msg(sk, required_size); 1193 if (ret) { 1194 if (ret != -ENOSPC) 1195 goto wait_for_memory; 1196 1197 /* Adjust copy according to the amount that was 1198 * actually allocated. The difference is due 1199 * to max sg elements limit 1200 */ 1201 copy -= required_size - msg_pl->sg.size; 1202 full_record = true; 1203 } 1204 1205 sk_msg_page_add(msg_pl, page, copy, offset); 1206 sk_mem_charge(sk, copy); 1207 1208 offset += copy; 1209 size -= copy; 1210 copied += copy; 1211 1212 tls_ctx->pending_open_record_frags = true; 1213 if (full_record || eor || sk_msg_full(msg_pl)) { 1214 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1215 record_type, &copied, flags); 1216 if (ret) { 1217 if (ret == -EINPROGRESS) 1218 num_async++; 1219 else if (ret == -ENOMEM) 1220 goto wait_for_memory; 1221 else if (ret != -EAGAIN) { 1222 if (ret == -ENOSPC) 1223 ret = 0; 1224 goto sendpage_end; 1225 } 1226 } 1227 } 1228 continue; 1229 wait_for_sndbuf: 1230 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1231 wait_for_memory: 1232 ret = sk_stream_wait_memory(sk, &timeo); 1233 if (ret) { 1234 if (ctx->open_rec) 1235 tls_trim_both_msgs(sk, msg_pl->sg.size); 1236 goto sendpage_end; 1237 } 1238 1239 if (ctx->open_rec) 1240 goto alloc_payload; 1241 } 1242 1243 if (num_async) { 1244 /* Transmit if any encryptions have completed */ 1245 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1246 cancel_delayed_work(&ctx->tx_work.work); 1247 tls_tx_records(sk, flags); 1248 } 1249 } 1250 sendpage_end: 1251 ret = sk_stream_error(sk, flags, ret); 1252 return copied > 0 ? copied : ret; 1253 } 1254 1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1256 int offset, size_t size, int flags) 1257 { 1258 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1259 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1260 MSG_NO_SHARED_FRAGS)) 1261 return -EOPNOTSUPP; 1262 1263 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1264 } 1265 1266 int tls_sw_sendpage(struct sock *sk, struct page *page, 1267 int offset, size_t size, int flags) 1268 { 1269 struct tls_context *tls_ctx = tls_get_ctx(sk); 1270 int ret; 1271 1272 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1273 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1274 return -EOPNOTSUPP; 1275 1276 mutex_lock(&tls_ctx->tx_lock); 1277 lock_sock(sk); 1278 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1279 release_sock(sk); 1280 mutex_unlock(&tls_ctx->tx_lock); 1281 return ret; 1282 } 1283 1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1285 bool nonblock, long timeo, int *err) 1286 { 1287 struct tls_context *tls_ctx = tls_get_ctx(sk); 1288 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1289 struct sk_buff *skb; 1290 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1291 1292 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1293 if (sk->sk_err) { 1294 *err = sock_error(sk); 1295 return NULL; 1296 } 1297 1298 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1299 __strp_unpause(&ctx->strp); 1300 if (ctx->recv_pkt) 1301 return ctx->recv_pkt; 1302 } 1303 1304 if (sk->sk_shutdown & RCV_SHUTDOWN) 1305 return NULL; 1306 1307 if (sock_flag(sk, SOCK_DONE)) 1308 return NULL; 1309 1310 if (nonblock || !timeo) { 1311 *err = -EAGAIN; 1312 return NULL; 1313 } 1314 1315 add_wait_queue(sk_sleep(sk), &wait); 1316 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1317 sk_wait_event(sk, &timeo, 1318 ctx->recv_pkt != skb || 1319 !sk_psock_queue_empty(psock), 1320 &wait); 1321 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1322 remove_wait_queue(sk_sleep(sk), &wait); 1323 1324 /* Handle signals */ 1325 if (signal_pending(current)) { 1326 *err = sock_intr_errno(timeo); 1327 return NULL; 1328 } 1329 } 1330 1331 return skb; 1332 } 1333 1334 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1335 int length, int *pages_used, 1336 unsigned int *size_used, 1337 struct scatterlist *to, 1338 int to_max_pages) 1339 { 1340 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1341 struct page *pages[MAX_SKB_FRAGS]; 1342 unsigned int size = *size_used; 1343 ssize_t copied, use; 1344 size_t offset; 1345 1346 while (length > 0) { 1347 i = 0; 1348 maxpages = to_max_pages - num_elem; 1349 if (maxpages == 0) { 1350 rc = -EFAULT; 1351 goto out; 1352 } 1353 copied = iov_iter_get_pages(from, pages, 1354 length, 1355 maxpages, &offset); 1356 if (copied <= 0) { 1357 rc = -EFAULT; 1358 goto out; 1359 } 1360 1361 iov_iter_advance(from, copied); 1362 1363 length -= copied; 1364 size += copied; 1365 while (copied) { 1366 use = min_t(int, copied, PAGE_SIZE - offset); 1367 1368 sg_set_page(&to[num_elem], 1369 pages[i], use, offset); 1370 sg_unmark_end(&to[num_elem]); 1371 /* We do not uncharge memory from this API */ 1372 1373 offset = 0; 1374 copied -= use; 1375 1376 i++; 1377 num_elem++; 1378 } 1379 } 1380 /* Mark the end in the last sg entry if newly added */ 1381 if (num_elem > *pages_used) 1382 sg_mark_end(&to[num_elem - 1]); 1383 out: 1384 if (rc) 1385 iov_iter_revert(from, size - *size_used); 1386 *size_used = size; 1387 *pages_used = num_elem; 1388 1389 return rc; 1390 } 1391 1392 /* This function decrypts the input skb into either out_iov or in out_sg 1393 * or in skb buffers itself. The input parameter 'zc' indicates if 1394 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1395 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1396 * NULL, then the decryption happens inside skb buffers itself, i.e. 1397 * zero-copy gets disabled and 'zc' is updated. 1398 */ 1399 1400 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1401 struct iov_iter *out_iov, 1402 struct scatterlist *out_sg, 1403 int *chunk, bool *zc, bool async) 1404 { 1405 struct tls_context *tls_ctx = tls_get_ctx(sk); 1406 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1407 struct tls_prot_info *prot = &tls_ctx->prot_info; 1408 struct strp_msg *rxm = strp_msg(skb); 1409 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1410 struct aead_request *aead_req; 1411 struct sk_buff *unused; 1412 u8 *aad, *iv, *mem = NULL; 1413 struct scatterlist *sgin = NULL; 1414 struct scatterlist *sgout = NULL; 1415 const int data_len = rxm->full_len - prot->overhead_size + 1416 prot->tail_size; 1417 int iv_offset = 0; 1418 1419 if (*zc && (out_iov || out_sg)) { 1420 if (out_iov) 1421 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1422 else 1423 n_sgout = sg_nents(out_sg); 1424 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1425 rxm->full_len - prot->prepend_size); 1426 } else { 1427 n_sgout = 0; 1428 *zc = false; 1429 n_sgin = skb_cow_data(skb, 0, &unused); 1430 } 1431 1432 if (n_sgin < 1) 1433 return -EBADMSG; 1434 1435 /* Increment to accommodate AAD */ 1436 n_sgin = n_sgin + 1; 1437 1438 nsg = n_sgin + n_sgout; 1439 1440 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1441 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1442 mem_size = mem_size + prot->aad_size; 1443 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1444 1445 /* Allocate a single block of memory which contains 1446 * aead_req || sgin[] || sgout[] || aad || iv. 1447 * This order achieves correct alignment for aead_req, sgin, sgout. 1448 */ 1449 mem = kmalloc(mem_size, sk->sk_allocation); 1450 if (!mem) 1451 return -ENOMEM; 1452 1453 /* Segment the allocated memory */ 1454 aead_req = (struct aead_request *)mem; 1455 sgin = (struct scatterlist *)(mem + aead_size); 1456 sgout = sgin + n_sgin; 1457 aad = (u8 *)(sgout + n_sgout); 1458 iv = aad + prot->aad_size; 1459 1460 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1461 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1462 iv[0] = 2; 1463 iv_offset = 1; 1464 } 1465 1466 /* Prepare IV */ 1467 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1468 iv + iv_offset + prot->salt_size, 1469 prot->iv_size); 1470 if (err < 0) { 1471 kfree(mem); 1472 return err; 1473 } 1474 if (prot->version == TLS_1_3_VERSION || 1475 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) 1476 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1477 crypto_aead_ivsize(ctx->aead_recv)); 1478 else 1479 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1480 1481 xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq); 1482 1483 /* Prepare AAD */ 1484 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1485 prot->tail_size, 1486 tls_ctx->rx.rec_seq, ctx->control, prot); 1487 1488 /* Prepare sgin */ 1489 sg_init_table(sgin, n_sgin); 1490 sg_set_buf(&sgin[0], aad, prot->aad_size); 1491 err = skb_to_sgvec(skb, &sgin[1], 1492 rxm->offset + prot->prepend_size, 1493 rxm->full_len - prot->prepend_size); 1494 if (err < 0) { 1495 kfree(mem); 1496 return err; 1497 } 1498 1499 if (n_sgout) { 1500 if (out_iov) { 1501 sg_init_table(sgout, n_sgout); 1502 sg_set_buf(&sgout[0], aad, prot->aad_size); 1503 1504 *chunk = 0; 1505 err = tls_setup_from_iter(sk, out_iov, data_len, 1506 &pages, chunk, &sgout[1], 1507 (n_sgout - 1)); 1508 if (err < 0) 1509 goto fallback_to_reg_recv; 1510 } else if (out_sg) { 1511 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1512 } else { 1513 goto fallback_to_reg_recv; 1514 } 1515 } else { 1516 fallback_to_reg_recv: 1517 sgout = sgin; 1518 pages = 0; 1519 *chunk = data_len; 1520 *zc = false; 1521 } 1522 1523 /* Prepare and submit AEAD request */ 1524 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1525 data_len, aead_req, async); 1526 if (err == -EINPROGRESS) 1527 return err; 1528 1529 /* Release the pages in case iov was mapped to pages */ 1530 for (; pages > 0; pages--) 1531 put_page(sg_page(&sgout[pages])); 1532 1533 kfree(mem); 1534 return err; 1535 } 1536 1537 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1538 struct iov_iter *dest, int *chunk, bool *zc, 1539 bool async) 1540 { 1541 struct tls_context *tls_ctx = tls_get_ctx(sk); 1542 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1543 struct tls_prot_info *prot = &tls_ctx->prot_info; 1544 struct strp_msg *rxm = strp_msg(skb); 1545 int pad, err = 0; 1546 1547 if (!ctx->decrypted) { 1548 if (tls_ctx->rx_conf == TLS_HW) { 1549 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1550 if (err < 0) 1551 return err; 1552 } 1553 1554 /* Still not decrypted after tls_device */ 1555 if (!ctx->decrypted) { 1556 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1557 async); 1558 if (err < 0) { 1559 if (err == -EINPROGRESS) 1560 tls_advance_record_sn(sk, prot, 1561 &tls_ctx->rx); 1562 else if (err == -EBADMSG) 1563 TLS_INC_STATS(sock_net(sk), 1564 LINUX_MIB_TLSDECRYPTERROR); 1565 return err; 1566 } 1567 } else { 1568 *zc = false; 1569 } 1570 1571 pad = padding_length(ctx, prot, skb); 1572 if (pad < 0) 1573 return pad; 1574 1575 rxm->full_len -= pad; 1576 rxm->offset += prot->prepend_size; 1577 rxm->full_len -= prot->overhead_size; 1578 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1579 ctx->decrypted = 1; 1580 ctx->saved_data_ready(sk); 1581 } else { 1582 *zc = false; 1583 } 1584 1585 return err; 1586 } 1587 1588 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1589 struct scatterlist *sgout) 1590 { 1591 bool zc = true; 1592 int chunk; 1593 1594 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1595 } 1596 1597 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1598 unsigned int len) 1599 { 1600 struct tls_context *tls_ctx = tls_get_ctx(sk); 1601 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1602 1603 if (skb) { 1604 struct strp_msg *rxm = strp_msg(skb); 1605 1606 if (len < rxm->full_len) { 1607 rxm->offset += len; 1608 rxm->full_len -= len; 1609 return false; 1610 } 1611 consume_skb(skb); 1612 } 1613 1614 /* Finished with message */ 1615 ctx->recv_pkt = NULL; 1616 __strp_unpause(&ctx->strp); 1617 1618 return true; 1619 } 1620 1621 /* This function traverses the rx_list in tls receive context to copies the 1622 * decrypted records into the buffer provided by caller zero copy is not 1623 * true. Further, the records are removed from the rx_list if it is not a peek 1624 * case and the record has been consumed completely. 1625 */ 1626 static int process_rx_list(struct tls_sw_context_rx *ctx, 1627 struct msghdr *msg, 1628 u8 *control, 1629 bool *cmsg, 1630 size_t skip, 1631 size_t len, 1632 bool zc, 1633 bool is_peek) 1634 { 1635 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1636 u8 ctrl = *control; 1637 u8 msgc = *cmsg; 1638 struct tls_msg *tlm; 1639 ssize_t copied = 0; 1640 1641 /* Set the record type in 'control' if caller didn't pass it */ 1642 if (!ctrl && skb) { 1643 tlm = tls_msg(skb); 1644 ctrl = tlm->control; 1645 } 1646 1647 while (skip && skb) { 1648 struct strp_msg *rxm = strp_msg(skb); 1649 tlm = tls_msg(skb); 1650 1651 /* Cannot process a record of different type */ 1652 if (ctrl != tlm->control) 1653 return 0; 1654 1655 if (skip < rxm->full_len) 1656 break; 1657 1658 skip = skip - rxm->full_len; 1659 skb = skb_peek_next(skb, &ctx->rx_list); 1660 } 1661 1662 while (len && skb) { 1663 struct sk_buff *next_skb; 1664 struct strp_msg *rxm = strp_msg(skb); 1665 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1666 1667 tlm = tls_msg(skb); 1668 1669 /* Cannot process a record of different type */ 1670 if (ctrl != tlm->control) 1671 return 0; 1672 1673 /* Set record type if not already done. For a non-data record, 1674 * do not proceed if record type could not be copied. 1675 */ 1676 if (!msgc) { 1677 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1678 sizeof(ctrl), &ctrl); 1679 msgc = true; 1680 if (ctrl != TLS_RECORD_TYPE_DATA) { 1681 if (cerr || msg->msg_flags & MSG_CTRUNC) 1682 return -EIO; 1683 1684 *cmsg = msgc; 1685 } 1686 } 1687 1688 if (!zc || (rxm->full_len - skip) > len) { 1689 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1690 msg, chunk); 1691 if (err < 0) 1692 return err; 1693 } 1694 1695 len = len - chunk; 1696 copied = copied + chunk; 1697 1698 /* Consume the data from record if it is non-peek case*/ 1699 if (!is_peek) { 1700 rxm->offset = rxm->offset + chunk; 1701 rxm->full_len = rxm->full_len - chunk; 1702 1703 /* Return if there is unconsumed data in the record */ 1704 if (rxm->full_len - skip) 1705 break; 1706 } 1707 1708 /* The remaining skip-bytes must lie in 1st record in rx_list. 1709 * So from the 2nd record, 'skip' should be 0. 1710 */ 1711 skip = 0; 1712 1713 if (msg) 1714 msg->msg_flags |= MSG_EOR; 1715 1716 next_skb = skb_peek_next(skb, &ctx->rx_list); 1717 1718 if (!is_peek) { 1719 skb_unlink(skb, &ctx->rx_list); 1720 consume_skb(skb); 1721 } 1722 1723 skb = next_skb; 1724 } 1725 1726 *control = ctrl; 1727 return copied; 1728 } 1729 1730 int tls_sw_recvmsg(struct sock *sk, 1731 struct msghdr *msg, 1732 size_t len, 1733 int nonblock, 1734 int flags, 1735 int *addr_len) 1736 { 1737 struct tls_context *tls_ctx = tls_get_ctx(sk); 1738 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1739 struct tls_prot_info *prot = &tls_ctx->prot_info; 1740 struct sk_psock *psock; 1741 unsigned char control = 0; 1742 ssize_t decrypted = 0; 1743 struct strp_msg *rxm; 1744 struct tls_msg *tlm; 1745 struct sk_buff *skb; 1746 ssize_t copied = 0; 1747 bool cmsg = false; 1748 int target, err = 0; 1749 long timeo; 1750 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1751 bool is_peek = flags & MSG_PEEK; 1752 bool bpf_strp_enabled; 1753 int num_async = 0; 1754 int pending; 1755 1756 flags |= nonblock; 1757 1758 if (unlikely(flags & MSG_ERRQUEUE)) 1759 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1760 1761 psock = sk_psock_get(sk); 1762 lock_sock(sk); 1763 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1764 1765 /* Process pending decrypted records. It must be non-zero-copy */ 1766 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1767 is_peek); 1768 if (err < 0) { 1769 tls_err_abort(sk, err); 1770 goto end; 1771 } else { 1772 copied = err; 1773 } 1774 1775 if (len <= copied) 1776 goto recv_end; 1777 1778 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1779 len = len - copied; 1780 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1781 1782 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1783 bool retain_skb = false; 1784 bool zc = false; 1785 int to_decrypt; 1786 int chunk = 0; 1787 bool async_capable; 1788 bool async = false; 1789 1790 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err); 1791 if (!skb) { 1792 if (psock) { 1793 int ret = sk_msg_recvmsg(sk, psock, msg, len, 1794 flags); 1795 1796 if (ret > 0) { 1797 decrypted += ret; 1798 len -= ret; 1799 continue; 1800 } 1801 } 1802 goto recv_end; 1803 } else { 1804 tlm = tls_msg(skb); 1805 if (prot->version == TLS_1_3_VERSION) 1806 tlm->control = 0; 1807 else 1808 tlm->control = ctx->control; 1809 } 1810 1811 rxm = strp_msg(skb); 1812 1813 to_decrypt = rxm->full_len - prot->overhead_size; 1814 1815 if (to_decrypt <= len && !is_kvec && !is_peek && 1816 ctx->control == TLS_RECORD_TYPE_DATA && 1817 prot->version != TLS_1_3_VERSION && 1818 !bpf_strp_enabled) 1819 zc = true; 1820 1821 /* Do not use async mode if record is non-data */ 1822 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1823 async_capable = ctx->async_capable; 1824 else 1825 async_capable = false; 1826 1827 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1828 &chunk, &zc, async_capable); 1829 if (err < 0 && err != -EINPROGRESS) { 1830 tls_err_abort(sk, EBADMSG); 1831 goto recv_end; 1832 } 1833 1834 if (err == -EINPROGRESS) { 1835 async = true; 1836 num_async++; 1837 } else if (prot->version == TLS_1_3_VERSION) { 1838 tlm->control = ctx->control; 1839 } 1840 1841 /* If the type of records being processed is not known yet, 1842 * set it to record type just dequeued. If it is already known, 1843 * but does not match the record type just dequeued, go to end. 1844 * We always get record type here since for tls1.2, record type 1845 * is known just after record is dequeued from stream parser. 1846 * For tls1.3, we disable async. 1847 */ 1848 1849 if (!control) 1850 control = tlm->control; 1851 else if (control != tlm->control) 1852 goto recv_end; 1853 1854 if (!cmsg) { 1855 int cerr; 1856 1857 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1858 sizeof(control), &control); 1859 cmsg = true; 1860 if (control != TLS_RECORD_TYPE_DATA) { 1861 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1862 err = -EIO; 1863 goto recv_end; 1864 } 1865 } 1866 } 1867 1868 if (async) 1869 goto pick_next_record; 1870 1871 if (!zc) { 1872 if (bpf_strp_enabled) { 1873 err = sk_psock_tls_strp_read(psock, skb); 1874 if (err != __SK_PASS) { 1875 rxm->offset = rxm->offset + rxm->full_len; 1876 rxm->full_len = 0; 1877 if (err == __SK_DROP) 1878 consume_skb(skb); 1879 ctx->recv_pkt = NULL; 1880 __strp_unpause(&ctx->strp); 1881 continue; 1882 } 1883 } 1884 1885 if (rxm->full_len > len) { 1886 retain_skb = true; 1887 chunk = len; 1888 } else { 1889 chunk = rxm->full_len; 1890 } 1891 1892 err = skb_copy_datagram_msg(skb, rxm->offset, 1893 msg, chunk); 1894 if (err < 0) 1895 goto recv_end; 1896 1897 if (!is_peek) { 1898 rxm->offset = rxm->offset + chunk; 1899 rxm->full_len = rxm->full_len - chunk; 1900 } 1901 } 1902 1903 pick_next_record: 1904 if (chunk > len) 1905 chunk = len; 1906 1907 decrypted += chunk; 1908 len -= chunk; 1909 1910 /* For async or peek case, queue the current skb */ 1911 if (async || is_peek || retain_skb) { 1912 skb_queue_tail(&ctx->rx_list, skb); 1913 skb = NULL; 1914 } 1915 1916 if (tls_sw_advance_skb(sk, skb, chunk)) { 1917 /* Return full control message to 1918 * userspace before trying to parse 1919 * another message type 1920 */ 1921 msg->msg_flags |= MSG_EOR; 1922 if (control != TLS_RECORD_TYPE_DATA) 1923 goto recv_end; 1924 } else { 1925 break; 1926 } 1927 } 1928 1929 recv_end: 1930 if (num_async) { 1931 /* Wait for all previously submitted records to be decrypted */ 1932 spin_lock_bh(&ctx->decrypt_compl_lock); 1933 ctx->async_notify = true; 1934 pending = atomic_read(&ctx->decrypt_pending); 1935 spin_unlock_bh(&ctx->decrypt_compl_lock); 1936 if (pending) { 1937 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1938 if (err) { 1939 /* one of async decrypt failed */ 1940 tls_err_abort(sk, err); 1941 copied = 0; 1942 decrypted = 0; 1943 goto end; 1944 } 1945 } else { 1946 reinit_completion(&ctx->async_wait.completion); 1947 } 1948 1949 /* There can be no concurrent accesses, since we have no 1950 * pending decrypt operations 1951 */ 1952 WRITE_ONCE(ctx->async_notify, false); 1953 1954 /* Drain records from the rx_list & copy if required */ 1955 if (is_peek || is_kvec) 1956 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1957 decrypted, false, is_peek); 1958 else 1959 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1960 decrypted, true, is_peek); 1961 if (err < 0) { 1962 tls_err_abort(sk, err); 1963 copied = 0; 1964 goto end; 1965 } 1966 } 1967 1968 copied += decrypted; 1969 1970 end: 1971 release_sock(sk); 1972 if (psock) 1973 sk_psock_put(sk, psock); 1974 return copied ? : err; 1975 } 1976 1977 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1978 struct pipe_inode_info *pipe, 1979 size_t len, unsigned int flags) 1980 { 1981 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1982 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1983 struct strp_msg *rxm = NULL; 1984 struct sock *sk = sock->sk; 1985 struct sk_buff *skb; 1986 ssize_t copied = 0; 1987 int err = 0; 1988 long timeo; 1989 int chunk; 1990 bool zc = false; 1991 1992 lock_sock(sk); 1993 1994 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); 1995 1996 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err); 1997 if (!skb) 1998 goto splice_read_end; 1999 2000 if (!ctx->decrypted) { 2001 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 2002 2003 /* splice does not support reading control messages */ 2004 if (ctx->control != TLS_RECORD_TYPE_DATA) { 2005 err = -EINVAL; 2006 goto splice_read_end; 2007 } 2008 2009 if (err < 0) { 2010 tls_err_abort(sk, EBADMSG); 2011 goto splice_read_end; 2012 } 2013 ctx->decrypted = 1; 2014 } 2015 rxm = strp_msg(skb); 2016 2017 chunk = min_t(unsigned int, rxm->full_len, len); 2018 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2019 if (copied < 0) 2020 goto splice_read_end; 2021 2022 if (likely(!(flags & MSG_PEEK))) 2023 tls_sw_advance_skb(sk, skb, copied); 2024 2025 splice_read_end: 2026 release_sock(sk); 2027 return copied ? : err; 2028 } 2029 2030 bool tls_sw_stream_read(const struct sock *sk) 2031 { 2032 struct tls_context *tls_ctx = tls_get_ctx(sk); 2033 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2034 bool ingress_empty = true; 2035 struct sk_psock *psock; 2036 2037 rcu_read_lock(); 2038 psock = sk_psock(sk); 2039 if (psock) 2040 ingress_empty = list_empty(&psock->ingress_msg); 2041 rcu_read_unlock(); 2042 2043 return !ingress_empty || ctx->recv_pkt || 2044 !skb_queue_empty(&ctx->rx_list); 2045 } 2046 2047 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2048 { 2049 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2050 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2051 struct tls_prot_info *prot = &tls_ctx->prot_info; 2052 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2053 struct strp_msg *rxm = strp_msg(skb); 2054 size_t cipher_overhead; 2055 size_t data_len = 0; 2056 int ret; 2057 2058 /* Verify that we have a full TLS header, or wait for more data */ 2059 if (rxm->offset + prot->prepend_size > skb->len) 2060 return 0; 2061 2062 /* Sanity-check size of on-stack buffer. */ 2063 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2064 ret = -EINVAL; 2065 goto read_failure; 2066 } 2067 2068 /* Linearize header to local buffer */ 2069 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2070 2071 if (ret < 0) 2072 goto read_failure; 2073 2074 ctx->control = header[0]; 2075 2076 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2077 2078 cipher_overhead = prot->tag_size; 2079 if (prot->version != TLS_1_3_VERSION && 2080 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2081 cipher_overhead += prot->iv_size; 2082 2083 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2084 prot->tail_size) { 2085 ret = -EMSGSIZE; 2086 goto read_failure; 2087 } 2088 if (data_len < cipher_overhead) { 2089 ret = -EBADMSG; 2090 goto read_failure; 2091 } 2092 2093 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2094 if (header[1] != TLS_1_2_VERSION_MINOR || 2095 header[2] != TLS_1_2_VERSION_MAJOR) { 2096 ret = -EINVAL; 2097 goto read_failure; 2098 } 2099 2100 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2101 TCP_SKB_CB(skb)->seq + rxm->offset); 2102 return data_len + TLS_HEADER_SIZE; 2103 2104 read_failure: 2105 tls_err_abort(strp->sk, ret); 2106 2107 return ret; 2108 } 2109 2110 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2111 { 2112 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2113 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2114 2115 ctx->decrypted = 0; 2116 2117 ctx->recv_pkt = skb; 2118 strp_pause(strp); 2119 2120 ctx->saved_data_ready(strp->sk); 2121 } 2122 2123 static void tls_data_ready(struct sock *sk) 2124 { 2125 struct tls_context *tls_ctx = tls_get_ctx(sk); 2126 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2127 struct sk_psock *psock; 2128 2129 strp_data_ready(&ctx->strp); 2130 2131 psock = sk_psock_get(sk); 2132 if (psock) { 2133 if (!list_empty(&psock->ingress_msg)) 2134 ctx->saved_data_ready(sk); 2135 sk_psock_put(sk, psock); 2136 } 2137 } 2138 2139 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2140 { 2141 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2142 2143 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2144 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2145 cancel_delayed_work_sync(&ctx->tx_work.work); 2146 } 2147 2148 void tls_sw_release_resources_tx(struct sock *sk) 2149 { 2150 struct tls_context *tls_ctx = tls_get_ctx(sk); 2151 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2152 struct tls_rec *rec, *tmp; 2153 int pending; 2154 2155 /* Wait for any pending async encryptions to complete */ 2156 spin_lock_bh(&ctx->encrypt_compl_lock); 2157 ctx->async_notify = true; 2158 pending = atomic_read(&ctx->encrypt_pending); 2159 spin_unlock_bh(&ctx->encrypt_compl_lock); 2160 2161 if (pending) 2162 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2163 2164 tls_tx_records(sk, -1); 2165 2166 /* Free up un-sent records in tx_list. First, free 2167 * the partially sent record if any at head of tx_list. 2168 */ 2169 if (tls_ctx->partially_sent_record) { 2170 tls_free_partial_record(sk, tls_ctx); 2171 rec = list_first_entry(&ctx->tx_list, 2172 struct tls_rec, list); 2173 list_del(&rec->list); 2174 sk_msg_free(sk, &rec->msg_plaintext); 2175 kfree(rec); 2176 } 2177 2178 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2179 list_del(&rec->list); 2180 sk_msg_free(sk, &rec->msg_encrypted); 2181 sk_msg_free(sk, &rec->msg_plaintext); 2182 kfree(rec); 2183 } 2184 2185 crypto_free_aead(ctx->aead_send); 2186 tls_free_open_rec(sk); 2187 } 2188 2189 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2190 { 2191 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2192 2193 kfree(ctx); 2194 } 2195 2196 void tls_sw_release_resources_rx(struct sock *sk) 2197 { 2198 struct tls_context *tls_ctx = tls_get_ctx(sk); 2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2200 2201 kfree(tls_ctx->rx.rec_seq); 2202 kfree(tls_ctx->rx.iv); 2203 2204 if (ctx->aead_recv) { 2205 kfree_skb(ctx->recv_pkt); 2206 ctx->recv_pkt = NULL; 2207 skb_queue_purge(&ctx->rx_list); 2208 crypto_free_aead(ctx->aead_recv); 2209 strp_stop(&ctx->strp); 2210 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2211 * we still want to strp_stop(), but sk->sk_data_ready was 2212 * never swapped. 2213 */ 2214 if (ctx->saved_data_ready) { 2215 write_lock_bh(&sk->sk_callback_lock); 2216 sk->sk_data_ready = ctx->saved_data_ready; 2217 write_unlock_bh(&sk->sk_callback_lock); 2218 } 2219 } 2220 } 2221 2222 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2223 { 2224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2225 2226 strp_done(&ctx->strp); 2227 } 2228 2229 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2230 { 2231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2232 2233 kfree(ctx); 2234 } 2235 2236 void tls_sw_free_resources_rx(struct sock *sk) 2237 { 2238 struct tls_context *tls_ctx = tls_get_ctx(sk); 2239 2240 tls_sw_release_resources_rx(sk); 2241 tls_sw_free_ctx_rx(tls_ctx); 2242 } 2243 2244 /* The work handler to transmitt the encrypted records in tx_list */ 2245 static void tx_work_handler(struct work_struct *work) 2246 { 2247 struct delayed_work *delayed_work = to_delayed_work(work); 2248 struct tx_work *tx_work = container_of(delayed_work, 2249 struct tx_work, work); 2250 struct sock *sk = tx_work->sk; 2251 struct tls_context *tls_ctx = tls_get_ctx(sk); 2252 struct tls_sw_context_tx *ctx; 2253 2254 if (unlikely(!tls_ctx)) 2255 return; 2256 2257 ctx = tls_sw_ctx_tx(tls_ctx); 2258 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2259 return; 2260 2261 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2262 return; 2263 mutex_lock(&tls_ctx->tx_lock); 2264 lock_sock(sk); 2265 tls_tx_records(sk, -1); 2266 release_sock(sk); 2267 mutex_unlock(&tls_ctx->tx_lock); 2268 } 2269 2270 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2271 { 2272 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2273 2274 /* Schedule the transmission if tx list is ready */ 2275 if (is_tx_ready(tx_ctx) && 2276 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2277 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2278 } 2279 2280 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2281 { 2282 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2283 2284 write_lock_bh(&sk->sk_callback_lock); 2285 rx_ctx->saved_data_ready = sk->sk_data_ready; 2286 sk->sk_data_ready = tls_data_ready; 2287 write_unlock_bh(&sk->sk_callback_lock); 2288 2289 strp_check_rcv(&rx_ctx->strp); 2290 } 2291 2292 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2293 { 2294 struct tls_context *tls_ctx = tls_get_ctx(sk); 2295 struct tls_prot_info *prot = &tls_ctx->prot_info; 2296 struct tls_crypto_info *crypto_info; 2297 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2298 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2299 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2300 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2301 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2302 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2303 struct cipher_context *cctx; 2304 struct crypto_aead **aead; 2305 struct strp_callbacks cb; 2306 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2307 struct crypto_tfm *tfm; 2308 char *iv, *rec_seq, *key, *salt, *cipher_name; 2309 size_t keysize; 2310 int rc = 0; 2311 2312 if (!ctx) { 2313 rc = -EINVAL; 2314 goto out; 2315 } 2316 2317 if (tx) { 2318 if (!ctx->priv_ctx_tx) { 2319 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2320 if (!sw_ctx_tx) { 2321 rc = -ENOMEM; 2322 goto out; 2323 } 2324 ctx->priv_ctx_tx = sw_ctx_tx; 2325 } else { 2326 sw_ctx_tx = 2327 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2328 } 2329 } else { 2330 if (!ctx->priv_ctx_rx) { 2331 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2332 if (!sw_ctx_rx) { 2333 rc = -ENOMEM; 2334 goto out; 2335 } 2336 ctx->priv_ctx_rx = sw_ctx_rx; 2337 } else { 2338 sw_ctx_rx = 2339 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2340 } 2341 } 2342 2343 if (tx) { 2344 crypto_init_wait(&sw_ctx_tx->async_wait); 2345 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2346 crypto_info = &ctx->crypto_send.info; 2347 cctx = &ctx->tx; 2348 aead = &sw_ctx_tx->aead_send; 2349 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2350 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2351 sw_ctx_tx->tx_work.sk = sk; 2352 } else { 2353 crypto_init_wait(&sw_ctx_rx->async_wait); 2354 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2355 crypto_info = &ctx->crypto_recv.info; 2356 cctx = &ctx->rx; 2357 skb_queue_head_init(&sw_ctx_rx->rx_list); 2358 aead = &sw_ctx_rx->aead_recv; 2359 } 2360 2361 switch (crypto_info->cipher_type) { 2362 case TLS_CIPHER_AES_GCM_128: { 2363 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2364 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2365 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2366 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2367 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2368 rec_seq = 2369 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2370 gcm_128_info = 2371 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2372 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2373 key = gcm_128_info->key; 2374 salt = gcm_128_info->salt; 2375 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2376 cipher_name = "gcm(aes)"; 2377 break; 2378 } 2379 case TLS_CIPHER_AES_GCM_256: { 2380 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2381 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2382 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2383 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2384 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2385 rec_seq = 2386 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2387 gcm_256_info = 2388 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2389 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2390 key = gcm_256_info->key; 2391 salt = gcm_256_info->salt; 2392 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2393 cipher_name = "gcm(aes)"; 2394 break; 2395 } 2396 case TLS_CIPHER_AES_CCM_128: { 2397 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2398 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2399 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2400 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2401 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2402 rec_seq = 2403 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2404 ccm_128_info = 2405 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2406 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2407 key = ccm_128_info->key; 2408 salt = ccm_128_info->salt; 2409 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2410 cipher_name = "ccm(aes)"; 2411 break; 2412 } 2413 case TLS_CIPHER_CHACHA20_POLY1305: { 2414 chacha20_poly1305_info = (void *)crypto_info; 2415 nonce_size = 0; 2416 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2417 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2418 iv = chacha20_poly1305_info->iv; 2419 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2420 rec_seq = chacha20_poly1305_info->rec_seq; 2421 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2422 key = chacha20_poly1305_info->key; 2423 salt = chacha20_poly1305_info->salt; 2424 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2425 cipher_name = "rfc7539(chacha20,poly1305)"; 2426 break; 2427 } 2428 default: 2429 rc = -EINVAL; 2430 goto free_priv; 2431 } 2432 2433 /* Sanity-check the sizes for stack allocations. */ 2434 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2435 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2436 rc = -EINVAL; 2437 goto free_priv; 2438 } 2439 2440 if (crypto_info->version == TLS_1_3_VERSION) { 2441 nonce_size = 0; 2442 prot->aad_size = TLS_HEADER_SIZE; 2443 prot->tail_size = 1; 2444 } else { 2445 prot->aad_size = TLS_AAD_SPACE_SIZE; 2446 prot->tail_size = 0; 2447 } 2448 2449 prot->version = crypto_info->version; 2450 prot->cipher_type = crypto_info->cipher_type; 2451 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2452 prot->tag_size = tag_size; 2453 prot->overhead_size = prot->prepend_size + 2454 prot->tag_size + prot->tail_size; 2455 prot->iv_size = iv_size; 2456 prot->salt_size = salt_size; 2457 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2458 if (!cctx->iv) { 2459 rc = -ENOMEM; 2460 goto free_priv; 2461 } 2462 /* Note: 128 & 256 bit salt are the same size */ 2463 prot->rec_seq_size = rec_seq_size; 2464 memcpy(cctx->iv, salt, salt_size); 2465 memcpy(cctx->iv + salt_size, iv, iv_size); 2466 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2467 if (!cctx->rec_seq) { 2468 rc = -ENOMEM; 2469 goto free_iv; 2470 } 2471 2472 if (!*aead) { 2473 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2474 if (IS_ERR(*aead)) { 2475 rc = PTR_ERR(*aead); 2476 *aead = NULL; 2477 goto free_rec_seq; 2478 } 2479 } 2480 2481 ctx->push_pending_record = tls_sw_push_pending_record; 2482 2483 rc = crypto_aead_setkey(*aead, key, keysize); 2484 2485 if (rc) 2486 goto free_aead; 2487 2488 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2489 if (rc) 2490 goto free_aead; 2491 2492 if (sw_ctx_rx) { 2493 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2494 2495 if (crypto_info->version == TLS_1_3_VERSION) 2496 sw_ctx_rx->async_capable = 0; 2497 else 2498 sw_ctx_rx->async_capable = 2499 !!(tfm->__crt_alg->cra_flags & 2500 CRYPTO_ALG_ASYNC); 2501 2502 /* Set up strparser */ 2503 memset(&cb, 0, sizeof(cb)); 2504 cb.rcv_msg = tls_queue; 2505 cb.parse_msg = tls_read_size; 2506 2507 strp_init(&sw_ctx_rx->strp, sk, &cb); 2508 } 2509 2510 goto out; 2511 2512 free_aead: 2513 crypto_free_aead(*aead); 2514 *aead = NULL; 2515 free_rec_seq: 2516 kfree(cctx->rec_seq); 2517 cctx->rec_seq = NULL; 2518 free_iv: 2519 kfree(cctx->iv); 2520 cctx->iv = NULL; 2521 free_priv: 2522 if (tx) { 2523 kfree(ctx->priv_ctx_tx); 2524 ctx->priv_ctx_tx = NULL; 2525 } else { 2526 kfree(ctx->priv_ctx_rx); 2527 ctx->priv_ctx_rx = NULL; 2528 } 2529 out: 2530 return rc; 2531 } 2532