xref: /openbmc/linux/net/tls/tls_sw.c (revision bef7a78d)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52 
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55 
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65 
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68 
69                 WARN_ON(start > offset + len);
70 
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84 
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88 
89                         WARN_ON(start > offset + len);
90 
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112 
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120 
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 			  struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 	struct strp_msg *rxm = strp_msg(skb);
125 	int sub = 0;
126 
127 	/* Determine zero-padding length */
128 	if (prot->version == TLS_1_3_VERSION) {
129 		char content_type = 0;
130 		int err;
131 		int back = 17;
132 
133 		while (content_type == 0) {
134 			if (back > rxm->full_len - prot->prepend_size)
135 				return -EBADMSG;
136 			err = skb_copy_bits(skb,
137 					    rxm->offset + rxm->full_len - back,
138 					    &content_type, 1);
139 			if (err)
140 				return err;
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		if (err == -EBADMSG)
172 			TLS_INC_STATS(sock_net(skb->sk),
173 				      LINUX_MIB_TLSDECRYPTERROR);
174 		ctx->async_wait.err = err;
175 		tls_err_abort(skb->sk, err);
176 	} else {
177 		struct strp_msg *rxm = strp_msg(skb);
178 		int pad;
179 
180 		pad = padding_length(ctx, prot, skb);
181 		if (pad < 0) {
182 			ctx->async_wait.err = pad;
183 			tls_err_abort(skb->sk, pad);
184 		} else {
185 			rxm->full_len -= pad;
186 			rxm->offset += prot->prepend_size;
187 			rxm->full_len -= prot->overhead_size;
188 		}
189 	}
190 
191 	/* After using skb->sk to propagate sk through crypto async callback
192 	 * we need to NULL it again.
193 	 */
194 	skb->sk = NULL;
195 
196 
197 	/* Free the destination pages if skb was not decrypted inplace */
198 	if (sgout != sgin) {
199 		/* Skip the first S/G entry as it points to AAD */
200 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 			if (!sg)
202 				break;
203 			put_page(sg_page(sg));
204 		}
205 	}
206 
207 	kfree(aead_req);
208 
209 	spin_lock_bh(&ctx->decrypt_compl_lock);
210 	pending = atomic_dec_return(&ctx->decrypt_pending);
211 
212 	if (!pending && ctx->async_notify)
213 		complete(&ctx->async_wait.completion);
214 	spin_unlock_bh(&ctx->decrypt_compl_lock);
215 }
216 
217 static int tls_do_decryption(struct sock *sk,
218 			     struct sk_buff *skb,
219 			     struct scatterlist *sgin,
220 			     struct scatterlist *sgout,
221 			     char *iv_recv,
222 			     size_t data_len,
223 			     struct aead_request *aead_req,
224 			     bool async)
225 {
226 	struct tls_context *tls_ctx = tls_get_ctx(sk);
227 	struct tls_prot_info *prot = &tls_ctx->prot_info;
228 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
229 	int ret;
230 
231 	aead_request_set_tfm(aead_req, ctx->aead_recv);
232 	aead_request_set_ad(aead_req, prot->aad_size);
233 	aead_request_set_crypt(aead_req, sgin, sgout,
234 			       data_len + prot->tag_size,
235 			       (u8 *)iv_recv);
236 
237 	if (async) {
238 		/* Using skb->sk to push sk through to crypto async callback
239 		 * handler. This allows propagating errors up to the socket
240 		 * if needed. It _must_ be cleared in the async handler
241 		 * before consume_skb is called. We _know_ skb->sk is NULL
242 		 * because it is a clone from strparser.
243 		 */
244 		skb->sk = sk;
245 		aead_request_set_callback(aead_req,
246 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
247 					  tls_decrypt_done, skb);
248 		atomic_inc(&ctx->decrypt_pending);
249 	} else {
250 		aead_request_set_callback(aead_req,
251 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
252 					  crypto_req_done, &ctx->async_wait);
253 	}
254 
255 	ret = crypto_aead_decrypt(aead_req);
256 	if (ret == -EINPROGRESS) {
257 		if (async)
258 			return ret;
259 
260 		ret = crypto_wait_req(ret, &ctx->async_wait);
261 	}
262 
263 	if (async)
264 		atomic_dec(&ctx->decrypt_pending);
265 
266 	return ret;
267 }
268 
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271 	struct tls_context *tls_ctx = tls_get_ctx(sk);
272 	struct tls_prot_info *prot = &tls_ctx->prot_info;
273 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274 	struct tls_rec *rec = ctx->open_rec;
275 
276 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277 	if (target_size > 0)
278 		target_size += prot->overhead_size;
279 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281 
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284 	struct tls_context *tls_ctx = tls_get_ctx(sk);
285 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286 	struct tls_rec *rec = ctx->open_rec;
287 	struct sk_msg *msg_en = &rec->msg_encrypted;
288 
289 	return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291 
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
295 	struct tls_prot_info *prot = &tls_ctx->prot_info;
296 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297 	struct tls_rec *rec = ctx->open_rec;
298 	struct sk_msg *msg_pl = &rec->msg_plaintext;
299 	struct sk_msg *msg_en = &rec->msg_encrypted;
300 	int skip, len;
301 
302 	/* We add page references worth len bytes from encrypted sg
303 	 * at the end of plaintext sg. It is guaranteed that msg_en
304 	 * has enough required room (ensured by caller).
305 	 */
306 	len = required - msg_pl->sg.size;
307 
308 	/* Skip initial bytes in msg_en's data to be able to use
309 	 * same offset of both plain and encrypted data.
310 	 */
311 	skip = prot->prepend_size + msg_pl->sg.size;
312 
313 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315 
316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318 	struct tls_context *tls_ctx = tls_get_ctx(sk);
319 	struct tls_prot_info *prot = &tls_ctx->prot_info;
320 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321 	struct sk_msg *msg_pl, *msg_en;
322 	struct tls_rec *rec;
323 	int mem_size;
324 
325 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326 
327 	rec = kzalloc(mem_size, sk->sk_allocation);
328 	if (!rec)
329 		return NULL;
330 
331 	msg_pl = &rec->msg_plaintext;
332 	msg_en = &rec->msg_encrypted;
333 
334 	sk_msg_init(msg_pl);
335 	sk_msg_init(msg_en);
336 
337 	sg_init_table(rec->sg_aead_in, 2);
338 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339 	sg_unmark_end(&rec->sg_aead_in[1]);
340 
341 	sg_init_table(rec->sg_aead_out, 2);
342 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343 	sg_unmark_end(&rec->sg_aead_out[1]);
344 
345 	return rec;
346 }
347 
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350 	sk_msg_free(sk, &rec->msg_encrypted);
351 	sk_msg_free(sk, &rec->msg_plaintext);
352 	kfree(rec);
353 }
354 
355 static void tls_free_open_rec(struct sock *sk)
356 {
357 	struct tls_context *tls_ctx = tls_get_ctx(sk);
358 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 	struct tls_rec *rec = ctx->open_rec;
360 
361 	if (rec) {
362 		tls_free_rec(sk, rec);
363 		ctx->open_rec = NULL;
364 	}
365 }
366 
367 int tls_tx_records(struct sock *sk, int flags)
368 {
369 	struct tls_context *tls_ctx = tls_get_ctx(sk);
370 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 	struct tls_rec *rec, *tmp;
372 	struct sk_msg *msg_en;
373 	int tx_flags, rc = 0;
374 
375 	if (tls_is_partially_sent_record(tls_ctx)) {
376 		rec = list_first_entry(&ctx->tx_list,
377 				       struct tls_rec, list);
378 
379 		if (flags == -1)
380 			tx_flags = rec->tx_flags;
381 		else
382 			tx_flags = flags;
383 
384 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385 		if (rc)
386 			goto tx_err;
387 
388 		/* Full record has been transmitted.
389 		 * Remove the head of tx_list
390 		 */
391 		list_del(&rec->list);
392 		sk_msg_free(sk, &rec->msg_plaintext);
393 		kfree(rec);
394 	}
395 
396 	/* Tx all ready records */
397 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398 		if (READ_ONCE(rec->tx_ready)) {
399 			if (flags == -1)
400 				tx_flags = rec->tx_flags;
401 			else
402 				tx_flags = flags;
403 
404 			msg_en = &rec->msg_encrypted;
405 			rc = tls_push_sg(sk, tls_ctx,
406 					 &msg_en->sg.data[msg_en->sg.curr],
407 					 0, tx_flags);
408 			if (rc)
409 				goto tx_err;
410 
411 			list_del(&rec->list);
412 			sk_msg_free(sk, &rec->msg_plaintext);
413 			kfree(rec);
414 		} else {
415 			break;
416 		}
417 	}
418 
419 tx_err:
420 	if (rc < 0 && rc != -EAGAIN)
421 		tls_err_abort(sk, EBADMSG);
422 
423 	return rc;
424 }
425 
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428 	struct aead_request *aead_req = (struct aead_request *)req;
429 	struct sock *sk = req->data;
430 	struct tls_context *tls_ctx = tls_get_ctx(sk);
431 	struct tls_prot_info *prot = &tls_ctx->prot_info;
432 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433 	struct scatterlist *sge;
434 	struct sk_msg *msg_en;
435 	struct tls_rec *rec;
436 	bool ready = false;
437 	int pending;
438 
439 	rec = container_of(aead_req, struct tls_rec, aead_req);
440 	msg_en = &rec->msg_encrypted;
441 
442 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443 	sge->offset -= prot->prepend_size;
444 	sge->length += prot->prepend_size;
445 
446 	/* Check if error is previously set on socket */
447 	if (err || sk->sk_err) {
448 		rec = NULL;
449 
450 		/* If err is already set on socket, return the same code */
451 		if (sk->sk_err) {
452 			ctx->async_wait.err = sk->sk_err;
453 		} else {
454 			ctx->async_wait.err = err;
455 			tls_err_abort(sk, err);
456 		}
457 	}
458 
459 	if (rec) {
460 		struct tls_rec *first_rec;
461 
462 		/* Mark the record as ready for transmission */
463 		smp_store_mb(rec->tx_ready, true);
464 
465 		/* If received record is at head of tx_list, schedule tx */
466 		first_rec = list_first_entry(&ctx->tx_list,
467 					     struct tls_rec, list);
468 		if (rec == first_rec)
469 			ready = true;
470 	}
471 
472 	spin_lock_bh(&ctx->encrypt_compl_lock);
473 	pending = atomic_dec_return(&ctx->encrypt_pending);
474 
475 	if (!pending && ctx->async_notify)
476 		complete(&ctx->async_wait.completion);
477 	spin_unlock_bh(&ctx->encrypt_compl_lock);
478 
479 	if (!ready)
480 		return;
481 
482 	/* Schedule the transmission */
483 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484 		schedule_delayed_work(&ctx->tx_work.work, 1);
485 }
486 
487 static int tls_do_encryption(struct sock *sk,
488 			     struct tls_context *tls_ctx,
489 			     struct tls_sw_context_tx *ctx,
490 			     struct aead_request *aead_req,
491 			     size_t data_len, u32 start)
492 {
493 	struct tls_prot_info *prot = &tls_ctx->prot_info;
494 	struct tls_rec *rec = ctx->open_rec;
495 	struct sk_msg *msg_en = &rec->msg_encrypted;
496 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
497 	int rc, iv_offset = 0;
498 
499 	/* For CCM based ciphers, first byte of IV is a constant */
500 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
502 		iv_offset = 1;
503 	}
504 
505 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 	       prot->iv_size + prot->salt_size);
507 
508 	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
509 
510 	sge->offset += prot->prepend_size;
511 	sge->length -= prot->prepend_size;
512 
513 	msg_en->sg.curr = start;
514 
515 	aead_request_set_tfm(aead_req, ctx->aead_send);
516 	aead_request_set_ad(aead_req, prot->aad_size);
517 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
518 			       rec->sg_aead_out,
519 			       data_len, rec->iv_data);
520 
521 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522 				  tls_encrypt_done, sk);
523 
524 	/* Add the record in tx_list */
525 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526 	atomic_inc(&ctx->encrypt_pending);
527 
528 	rc = crypto_aead_encrypt(aead_req);
529 	if (!rc || rc != -EINPROGRESS) {
530 		atomic_dec(&ctx->encrypt_pending);
531 		sge->offset -= prot->prepend_size;
532 		sge->length += prot->prepend_size;
533 	}
534 
535 	if (!rc) {
536 		WRITE_ONCE(rec->tx_ready, true);
537 	} else if (rc != -EINPROGRESS) {
538 		list_del(&rec->list);
539 		return rc;
540 	}
541 
542 	/* Unhook the record from context if encryption is not failure */
543 	ctx->open_rec = NULL;
544 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
545 	return rc;
546 }
547 
548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549 				 struct tls_rec **to, struct sk_msg *msg_opl,
550 				 struct sk_msg *msg_oen, u32 split_point,
551 				 u32 tx_overhead_size, u32 *orig_end)
552 {
553 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554 	struct scatterlist *sge, *osge, *nsge;
555 	u32 orig_size = msg_opl->sg.size;
556 	struct scatterlist tmp = { };
557 	struct sk_msg *msg_npl;
558 	struct tls_rec *new;
559 	int ret;
560 
561 	new = tls_get_rec(sk);
562 	if (!new)
563 		return -ENOMEM;
564 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565 			   tx_overhead_size, 0);
566 	if (ret < 0) {
567 		tls_free_rec(sk, new);
568 		return ret;
569 	}
570 
571 	*orig_end = msg_opl->sg.end;
572 	i = msg_opl->sg.start;
573 	sge = sk_msg_elem(msg_opl, i);
574 	while (apply && sge->length) {
575 		if (sge->length > apply) {
576 			u32 len = sge->length - apply;
577 
578 			get_page(sg_page(sge));
579 			sg_set_page(&tmp, sg_page(sge), len,
580 				    sge->offset + apply);
581 			sge->length = apply;
582 			bytes += apply;
583 			apply = 0;
584 		} else {
585 			apply -= sge->length;
586 			bytes += sge->length;
587 		}
588 
589 		sk_msg_iter_var_next(i);
590 		if (i == msg_opl->sg.end)
591 			break;
592 		sge = sk_msg_elem(msg_opl, i);
593 	}
594 
595 	msg_opl->sg.end = i;
596 	msg_opl->sg.curr = i;
597 	msg_opl->sg.copybreak = 0;
598 	msg_opl->apply_bytes = 0;
599 	msg_opl->sg.size = bytes;
600 
601 	msg_npl = &new->msg_plaintext;
602 	msg_npl->apply_bytes = apply;
603 	msg_npl->sg.size = orig_size - bytes;
604 
605 	j = msg_npl->sg.start;
606 	nsge = sk_msg_elem(msg_npl, j);
607 	if (tmp.length) {
608 		memcpy(nsge, &tmp, sizeof(*nsge));
609 		sk_msg_iter_var_next(j);
610 		nsge = sk_msg_elem(msg_npl, j);
611 	}
612 
613 	osge = sk_msg_elem(msg_opl, i);
614 	while (osge->length) {
615 		memcpy(nsge, osge, sizeof(*nsge));
616 		sg_unmark_end(nsge);
617 		sk_msg_iter_var_next(i);
618 		sk_msg_iter_var_next(j);
619 		if (i == *orig_end)
620 			break;
621 		osge = sk_msg_elem(msg_opl, i);
622 		nsge = sk_msg_elem(msg_npl, j);
623 	}
624 
625 	msg_npl->sg.end = j;
626 	msg_npl->sg.curr = j;
627 	msg_npl->sg.copybreak = 0;
628 
629 	*to = new;
630 	return 0;
631 }
632 
633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634 				  struct tls_rec *from, u32 orig_end)
635 {
636 	struct sk_msg *msg_npl = &from->msg_plaintext;
637 	struct sk_msg *msg_opl = &to->msg_plaintext;
638 	struct scatterlist *osge, *nsge;
639 	u32 i, j;
640 
641 	i = msg_opl->sg.end;
642 	sk_msg_iter_var_prev(i);
643 	j = msg_npl->sg.start;
644 
645 	osge = sk_msg_elem(msg_opl, i);
646 	nsge = sk_msg_elem(msg_npl, j);
647 
648 	if (sg_page(osge) == sg_page(nsge) &&
649 	    osge->offset + osge->length == nsge->offset) {
650 		osge->length += nsge->length;
651 		put_page(sg_page(nsge));
652 	}
653 
654 	msg_opl->sg.end = orig_end;
655 	msg_opl->sg.curr = orig_end;
656 	msg_opl->sg.copybreak = 0;
657 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658 	msg_opl->sg.size += msg_npl->sg.size;
659 
660 	sk_msg_free(sk, &to->msg_encrypted);
661 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
662 
663 	kfree(from);
664 }
665 
666 static int tls_push_record(struct sock *sk, int flags,
667 			   unsigned char record_type)
668 {
669 	struct tls_context *tls_ctx = tls_get_ctx(sk);
670 	struct tls_prot_info *prot = &tls_ctx->prot_info;
671 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673 	u32 i, split_point, orig_end;
674 	struct sk_msg *msg_pl, *msg_en;
675 	struct aead_request *req;
676 	bool split;
677 	int rc;
678 
679 	if (!rec)
680 		return 0;
681 
682 	msg_pl = &rec->msg_plaintext;
683 	msg_en = &rec->msg_encrypted;
684 
685 	split_point = msg_pl->apply_bytes;
686 	split = split_point && split_point < msg_pl->sg.size;
687 	if (unlikely((!split &&
688 		      msg_pl->sg.size +
689 		      prot->overhead_size > msg_en->sg.size) ||
690 		     (split &&
691 		      split_point +
692 		      prot->overhead_size > msg_en->sg.size))) {
693 		split = true;
694 		split_point = msg_en->sg.size;
695 	}
696 	if (split) {
697 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698 					   split_point, prot->overhead_size,
699 					   &orig_end);
700 		if (rc < 0)
701 			return rc;
702 		/* This can happen if above tls_split_open_record allocates
703 		 * a single large encryption buffer instead of two smaller
704 		 * ones. In this case adjust pointers and continue without
705 		 * split.
706 		 */
707 		if (!msg_pl->sg.size) {
708 			tls_merge_open_record(sk, rec, tmp, orig_end);
709 			msg_pl = &rec->msg_plaintext;
710 			msg_en = &rec->msg_encrypted;
711 			split = false;
712 		}
713 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714 			    prot->overhead_size);
715 	}
716 
717 	rec->tx_flags = flags;
718 	req = &rec->aead_req;
719 
720 	i = msg_pl->sg.end;
721 	sk_msg_iter_var_prev(i);
722 
723 	rec->content_type = record_type;
724 	if (prot->version == TLS_1_3_VERSION) {
725 		/* Add content type to end of message.  No padding added */
726 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727 		sg_mark_end(&rec->sg_content_type);
728 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729 			 &rec->sg_content_type);
730 	} else {
731 		sg_mark_end(sk_msg_elem(msg_pl, i));
732 	}
733 
734 	if (msg_pl->sg.end < msg_pl->sg.start) {
735 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
737 			 msg_pl->sg.data);
738 	}
739 
740 	i = msg_pl->sg.start;
741 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
742 
743 	i = msg_en->sg.end;
744 	sk_msg_iter_var_prev(i);
745 	sg_mark_end(sk_msg_elem(msg_en, i));
746 
747 	i = msg_en->sg.start;
748 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
749 
750 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751 		     tls_ctx->tx.rec_seq, record_type, prot);
752 
753 	tls_fill_prepend(tls_ctx,
754 			 page_address(sg_page(&msg_en->sg.data[i])) +
755 			 msg_en->sg.data[i].offset,
756 			 msg_pl->sg.size + prot->tail_size,
757 			 record_type);
758 
759 	tls_ctx->pending_open_record_frags = false;
760 
761 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
762 			       msg_pl->sg.size + prot->tail_size, i);
763 	if (rc < 0) {
764 		if (rc != -EINPROGRESS) {
765 			tls_err_abort(sk, EBADMSG);
766 			if (split) {
767 				tls_ctx->pending_open_record_frags = true;
768 				tls_merge_open_record(sk, rec, tmp, orig_end);
769 			}
770 		}
771 		ctx->async_capable = 1;
772 		return rc;
773 	} else if (split) {
774 		msg_pl = &tmp->msg_plaintext;
775 		msg_en = &tmp->msg_encrypted;
776 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
777 		tls_ctx->pending_open_record_frags = true;
778 		ctx->open_rec = tmp;
779 	}
780 
781 	return tls_tx_records(sk, flags);
782 }
783 
784 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
785 			       bool full_record, u8 record_type,
786 			       ssize_t *copied, int flags)
787 {
788 	struct tls_context *tls_ctx = tls_get_ctx(sk);
789 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
790 	struct sk_msg msg_redir = { };
791 	struct sk_psock *psock;
792 	struct sock *sk_redir;
793 	struct tls_rec *rec;
794 	bool enospc, policy;
795 	int err = 0, send;
796 	u32 delta = 0;
797 
798 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
799 	psock = sk_psock_get(sk);
800 	if (!psock || !policy) {
801 		err = tls_push_record(sk, flags, record_type);
802 		if (err && sk->sk_err == EBADMSG) {
803 			*copied -= sk_msg_free(sk, msg);
804 			tls_free_open_rec(sk);
805 			err = -sk->sk_err;
806 		}
807 		if (psock)
808 			sk_psock_put(sk, psock);
809 		return err;
810 	}
811 more_data:
812 	enospc = sk_msg_full(msg);
813 	if (psock->eval == __SK_NONE) {
814 		delta = msg->sg.size;
815 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
816 		delta -= msg->sg.size;
817 	}
818 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
819 	    !enospc && !full_record) {
820 		err = -ENOSPC;
821 		goto out_err;
822 	}
823 	msg->cork_bytes = 0;
824 	send = msg->sg.size;
825 	if (msg->apply_bytes && msg->apply_bytes < send)
826 		send = msg->apply_bytes;
827 
828 	switch (psock->eval) {
829 	case __SK_PASS:
830 		err = tls_push_record(sk, flags, record_type);
831 		if (err && sk->sk_err == EBADMSG) {
832 			*copied -= sk_msg_free(sk, msg);
833 			tls_free_open_rec(sk);
834 			err = -sk->sk_err;
835 			goto out_err;
836 		}
837 		break;
838 	case __SK_REDIRECT:
839 		sk_redir = psock->sk_redir;
840 		memcpy(&msg_redir, msg, sizeof(*msg));
841 		if (msg->apply_bytes < send)
842 			msg->apply_bytes = 0;
843 		else
844 			msg->apply_bytes -= send;
845 		sk_msg_return_zero(sk, msg, send);
846 		msg->sg.size -= send;
847 		release_sock(sk);
848 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
849 		lock_sock(sk);
850 		if (err < 0) {
851 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
852 			msg->sg.size = 0;
853 		}
854 		if (msg->sg.size == 0)
855 			tls_free_open_rec(sk);
856 		break;
857 	case __SK_DROP:
858 	default:
859 		sk_msg_free_partial(sk, msg, send);
860 		if (msg->apply_bytes < send)
861 			msg->apply_bytes = 0;
862 		else
863 			msg->apply_bytes -= send;
864 		if (msg->sg.size == 0)
865 			tls_free_open_rec(sk);
866 		*copied -= (send + delta);
867 		err = -EACCES;
868 	}
869 
870 	if (likely(!err)) {
871 		bool reset_eval = !ctx->open_rec;
872 
873 		rec = ctx->open_rec;
874 		if (rec) {
875 			msg = &rec->msg_plaintext;
876 			if (!msg->apply_bytes)
877 				reset_eval = true;
878 		}
879 		if (reset_eval) {
880 			psock->eval = __SK_NONE;
881 			if (psock->sk_redir) {
882 				sock_put(psock->sk_redir);
883 				psock->sk_redir = NULL;
884 			}
885 		}
886 		if (rec)
887 			goto more_data;
888 	}
889  out_err:
890 	sk_psock_put(sk, psock);
891 	return err;
892 }
893 
894 static int tls_sw_push_pending_record(struct sock *sk, int flags)
895 {
896 	struct tls_context *tls_ctx = tls_get_ctx(sk);
897 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
898 	struct tls_rec *rec = ctx->open_rec;
899 	struct sk_msg *msg_pl;
900 	size_t copied;
901 
902 	if (!rec)
903 		return 0;
904 
905 	msg_pl = &rec->msg_plaintext;
906 	copied = msg_pl->sg.size;
907 	if (!copied)
908 		return 0;
909 
910 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
911 				   &copied, flags);
912 }
913 
914 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
915 {
916 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
917 	struct tls_context *tls_ctx = tls_get_ctx(sk);
918 	struct tls_prot_info *prot = &tls_ctx->prot_info;
919 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
920 	bool async_capable = ctx->async_capable;
921 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
922 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
923 	bool eor = !(msg->msg_flags & MSG_MORE);
924 	size_t try_to_copy;
925 	ssize_t copied = 0;
926 	struct sk_msg *msg_pl, *msg_en;
927 	struct tls_rec *rec;
928 	int required_size;
929 	int num_async = 0;
930 	bool full_record;
931 	int record_room;
932 	int num_zc = 0;
933 	int orig_size;
934 	int ret = 0;
935 	int pending;
936 
937 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
938 			       MSG_CMSG_COMPAT))
939 		return -EOPNOTSUPP;
940 
941 	mutex_lock(&tls_ctx->tx_lock);
942 	lock_sock(sk);
943 
944 	if (unlikely(msg->msg_controllen)) {
945 		ret = tls_proccess_cmsg(sk, msg, &record_type);
946 		if (ret) {
947 			if (ret == -EINPROGRESS)
948 				num_async++;
949 			else if (ret != -EAGAIN)
950 				goto send_end;
951 		}
952 	}
953 
954 	while (msg_data_left(msg)) {
955 		if (sk->sk_err) {
956 			ret = -sk->sk_err;
957 			goto send_end;
958 		}
959 
960 		if (ctx->open_rec)
961 			rec = ctx->open_rec;
962 		else
963 			rec = ctx->open_rec = tls_get_rec(sk);
964 		if (!rec) {
965 			ret = -ENOMEM;
966 			goto send_end;
967 		}
968 
969 		msg_pl = &rec->msg_plaintext;
970 		msg_en = &rec->msg_encrypted;
971 
972 		orig_size = msg_pl->sg.size;
973 		full_record = false;
974 		try_to_copy = msg_data_left(msg);
975 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
976 		if (try_to_copy >= record_room) {
977 			try_to_copy = record_room;
978 			full_record = true;
979 		}
980 
981 		required_size = msg_pl->sg.size + try_to_copy +
982 				prot->overhead_size;
983 
984 		if (!sk_stream_memory_free(sk))
985 			goto wait_for_sndbuf;
986 
987 alloc_encrypted:
988 		ret = tls_alloc_encrypted_msg(sk, required_size);
989 		if (ret) {
990 			if (ret != -ENOSPC)
991 				goto wait_for_memory;
992 
993 			/* Adjust try_to_copy according to the amount that was
994 			 * actually allocated. The difference is due
995 			 * to max sg elements limit
996 			 */
997 			try_to_copy -= required_size - msg_en->sg.size;
998 			full_record = true;
999 		}
1000 
1001 		if (!is_kvec && (full_record || eor) && !async_capable) {
1002 			u32 first = msg_pl->sg.end;
1003 
1004 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1005 							msg_pl, try_to_copy);
1006 			if (ret)
1007 				goto fallback_to_reg_send;
1008 
1009 			num_zc++;
1010 			copied += try_to_copy;
1011 
1012 			sk_msg_sg_copy_set(msg_pl, first);
1013 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1014 						  record_type, &copied,
1015 						  msg->msg_flags);
1016 			if (ret) {
1017 				if (ret == -EINPROGRESS)
1018 					num_async++;
1019 				else if (ret == -ENOMEM)
1020 					goto wait_for_memory;
1021 				else if (ctx->open_rec && ret == -ENOSPC)
1022 					goto rollback_iter;
1023 				else if (ret != -EAGAIN)
1024 					goto send_end;
1025 			}
1026 			continue;
1027 rollback_iter:
1028 			copied -= try_to_copy;
1029 			sk_msg_sg_copy_clear(msg_pl, first);
1030 			iov_iter_revert(&msg->msg_iter,
1031 					msg_pl->sg.size - orig_size);
1032 fallback_to_reg_send:
1033 			sk_msg_trim(sk, msg_pl, orig_size);
1034 		}
1035 
1036 		required_size = msg_pl->sg.size + try_to_copy;
1037 
1038 		ret = tls_clone_plaintext_msg(sk, required_size);
1039 		if (ret) {
1040 			if (ret != -ENOSPC)
1041 				goto send_end;
1042 
1043 			/* Adjust try_to_copy according to the amount that was
1044 			 * actually allocated. The difference is due
1045 			 * to max sg elements limit
1046 			 */
1047 			try_to_copy -= required_size - msg_pl->sg.size;
1048 			full_record = true;
1049 			sk_msg_trim(sk, msg_en,
1050 				    msg_pl->sg.size + prot->overhead_size);
1051 		}
1052 
1053 		if (try_to_copy) {
1054 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1055 						       msg_pl, try_to_copy);
1056 			if (ret < 0)
1057 				goto trim_sgl;
1058 		}
1059 
1060 		/* Open records defined only if successfully copied, otherwise
1061 		 * we would trim the sg but not reset the open record frags.
1062 		 */
1063 		tls_ctx->pending_open_record_frags = true;
1064 		copied += try_to_copy;
1065 		if (full_record || eor) {
1066 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1067 						  record_type, &copied,
1068 						  msg->msg_flags);
1069 			if (ret) {
1070 				if (ret == -EINPROGRESS)
1071 					num_async++;
1072 				else if (ret == -ENOMEM)
1073 					goto wait_for_memory;
1074 				else if (ret != -EAGAIN) {
1075 					if (ret == -ENOSPC)
1076 						ret = 0;
1077 					goto send_end;
1078 				}
1079 			}
1080 		}
1081 
1082 		continue;
1083 
1084 wait_for_sndbuf:
1085 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086 wait_for_memory:
1087 		ret = sk_stream_wait_memory(sk, &timeo);
1088 		if (ret) {
1089 trim_sgl:
1090 			if (ctx->open_rec)
1091 				tls_trim_both_msgs(sk, orig_size);
1092 			goto send_end;
1093 		}
1094 
1095 		if (ctx->open_rec && msg_en->sg.size < required_size)
1096 			goto alloc_encrypted;
1097 	}
1098 
1099 	if (!num_async) {
1100 		goto send_end;
1101 	} else if (num_zc) {
1102 		/* Wait for pending encryptions to get completed */
1103 		spin_lock_bh(&ctx->encrypt_compl_lock);
1104 		ctx->async_notify = true;
1105 
1106 		pending = atomic_read(&ctx->encrypt_pending);
1107 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1108 		if (pending)
1109 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1110 		else
1111 			reinit_completion(&ctx->async_wait.completion);
1112 
1113 		/* There can be no concurrent accesses, since we have no
1114 		 * pending encrypt operations
1115 		 */
1116 		WRITE_ONCE(ctx->async_notify, false);
1117 
1118 		if (ctx->async_wait.err) {
1119 			ret = ctx->async_wait.err;
1120 			copied = 0;
1121 		}
1122 	}
1123 
1124 	/* Transmit if any encryptions have completed */
1125 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1126 		cancel_delayed_work(&ctx->tx_work.work);
1127 		tls_tx_records(sk, msg->msg_flags);
1128 	}
1129 
1130 send_end:
1131 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1132 
1133 	release_sock(sk);
1134 	mutex_unlock(&tls_ctx->tx_lock);
1135 	return copied > 0 ? copied : ret;
1136 }
1137 
1138 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1139 			      int offset, size_t size, int flags)
1140 {
1141 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1142 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1143 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1144 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1145 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1146 	struct sk_msg *msg_pl;
1147 	struct tls_rec *rec;
1148 	int num_async = 0;
1149 	ssize_t copied = 0;
1150 	bool full_record;
1151 	int record_room;
1152 	int ret = 0;
1153 	bool eor;
1154 
1155 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1156 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1157 
1158 	/* Call the sk_stream functions to manage the sndbuf mem. */
1159 	while (size > 0) {
1160 		size_t copy, required_size;
1161 
1162 		if (sk->sk_err) {
1163 			ret = -sk->sk_err;
1164 			goto sendpage_end;
1165 		}
1166 
1167 		if (ctx->open_rec)
1168 			rec = ctx->open_rec;
1169 		else
1170 			rec = ctx->open_rec = tls_get_rec(sk);
1171 		if (!rec) {
1172 			ret = -ENOMEM;
1173 			goto sendpage_end;
1174 		}
1175 
1176 		msg_pl = &rec->msg_plaintext;
1177 
1178 		full_record = false;
1179 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1180 		copy = size;
1181 		if (copy >= record_room) {
1182 			copy = record_room;
1183 			full_record = true;
1184 		}
1185 
1186 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1187 
1188 		if (!sk_stream_memory_free(sk))
1189 			goto wait_for_sndbuf;
1190 alloc_payload:
1191 		ret = tls_alloc_encrypted_msg(sk, required_size);
1192 		if (ret) {
1193 			if (ret != -ENOSPC)
1194 				goto wait_for_memory;
1195 
1196 			/* Adjust copy according to the amount that was
1197 			 * actually allocated. The difference is due
1198 			 * to max sg elements limit
1199 			 */
1200 			copy -= required_size - msg_pl->sg.size;
1201 			full_record = true;
1202 		}
1203 
1204 		sk_msg_page_add(msg_pl, page, copy, offset);
1205 		sk_mem_charge(sk, copy);
1206 
1207 		offset += copy;
1208 		size -= copy;
1209 		copied += copy;
1210 
1211 		tls_ctx->pending_open_record_frags = true;
1212 		if (full_record || eor || sk_msg_full(msg_pl)) {
1213 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1214 						  record_type, &copied, flags);
1215 			if (ret) {
1216 				if (ret == -EINPROGRESS)
1217 					num_async++;
1218 				else if (ret == -ENOMEM)
1219 					goto wait_for_memory;
1220 				else if (ret != -EAGAIN) {
1221 					if (ret == -ENOSPC)
1222 						ret = 0;
1223 					goto sendpage_end;
1224 				}
1225 			}
1226 		}
1227 		continue;
1228 wait_for_sndbuf:
1229 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1230 wait_for_memory:
1231 		ret = sk_stream_wait_memory(sk, &timeo);
1232 		if (ret) {
1233 			if (ctx->open_rec)
1234 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1235 			goto sendpage_end;
1236 		}
1237 
1238 		if (ctx->open_rec)
1239 			goto alloc_payload;
1240 	}
1241 
1242 	if (num_async) {
1243 		/* Transmit if any encryptions have completed */
1244 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1245 			cancel_delayed_work(&ctx->tx_work.work);
1246 			tls_tx_records(sk, flags);
1247 		}
1248 	}
1249 sendpage_end:
1250 	ret = sk_stream_error(sk, flags, ret);
1251 	return copied > 0 ? copied : ret;
1252 }
1253 
1254 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1255 			   int offset, size_t size, int flags)
1256 {
1257 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1258 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1259 		      MSG_NO_SHARED_FRAGS))
1260 		return -EOPNOTSUPP;
1261 
1262 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1263 }
1264 
1265 int tls_sw_sendpage(struct sock *sk, struct page *page,
1266 		    int offset, size_t size, int flags)
1267 {
1268 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1269 	int ret;
1270 
1271 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1272 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1273 		return -EOPNOTSUPP;
1274 
1275 	mutex_lock(&tls_ctx->tx_lock);
1276 	lock_sock(sk);
1277 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1278 	release_sock(sk);
1279 	mutex_unlock(&tls_ctx->tx_lock);
1280 	return ret;
1281 }
1282 
1283 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1284 				     int flags, long timeo, int *err)
1285 {
1286 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1287 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1288 	struct sk_buff *skb;
1289 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1290 
1291 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1292 		if (sk->sk_err) {
1293 			*err = sock_error(sk);
1294 			return NULL;
1295 		}
1296 
1297 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1298 			__strp_unpause(&ctx->strp);
1299 			if (ctx->recv_pkt)
1300 				return ctx->recv_pkt;
1301 		}
1302 
1303 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1304 			return NULL;
1305 
1306 		if (sock_flag(sk, SOCK_DONE))
1307 			return NULL;
1308 
1309 		if ((flags & MSG_DONTWAIT) || !timeo) {
1310 			*err = -EAGAIN;
1311 			return NULL;
1312 		}
1313 
1314 		add_wait_queue(sk_sleep(sk), &wait);
1315 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316 		sk_wait_event(sk, &timeo,
1317 			      ctx->recv_pkt != skb ||
1318 			      !sk_psock_queue_empty(psock),
1319 			      &wait);
1320 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1321 		remove_wait_queue(sk_sleep(sk), &wait);
1322 
1323 		/* Handle signals */
1324 		if (signal_pending(current)) {
1325 			*err = sock_intr_errno(timeo);
1326 			return NULL;
1327 		}
1328 	}
1329 
1330 	return skb;
1331 }
1332 
1333 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1334 			       int length, int *pages_used,
1335 			       unsigned int *size_used,
1336 			       struct scatterlist *to,
1337 			       int to_max_pages)
1338 {
1339 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1340 	struct page *pages[MAX_SKB_FRAGS];
1341 	unsigned int size = *size_used;
1342 	ssize_t copied, use;
1343 	size_t offset;
1344 
1345 	while (length > 0) {
1346 		i = 0;
1347 		maxpages = to_max_pages - num_elem;
1348 		if (maxpages == 0) {
1349 			rc = -EFAULT;
1350 			goto out;
1351 		}
1352 		copied = iov_iter_get_pages(from, pages,
1353 					    length,
1354 					    maxpages, &offset);
1355 		if (copied <= 0) {
1356 			rc = -EFAULT;
1357 			goto out;
1358 		}
1359 
1360 		iov_iter_advance(from, copied);
1361 
1362 		length -= copied;
1363 		size += copied;
1364 		while (copied) {
1365 			use = min_t(int, copied, PAGE_SIZE - offset);
1366 
1367 			sg_set_page(&to[num_elem],
1368 				    pages[i], use, offset);
1369 			sg_unmark_end(&to[num_elem]);
1370 			/* We do not uncharge memory from this API */
1371 
1372 			offset = 0;
1373 			copied -= use;
1374 
1375 			i++;
1376 			num_elem++;
1377 		}
1378 	}
1379 	/* Mark the end in the last sg entry if newly added */
1380 	if (num_elem > *pages_used)
1381 		sg_mark_end(&to[num_elem - 1]);
1382 out:
1383 	if (rc)
1384 		iov_iter_revert(from, size - *size_used);
1385 	*size_used = size;
1386 	*pages_used = num_elem;
1387 
1388 	return rc;
1389 }
1390 
1391 /* This function decrypts the input skb into either out_iov or in out_sg
1392  * or in skb buffers itself. The input parameter 'zc' indicates if
1393  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1394  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1395  * NULL, then the decryption happens inside skb buffers itself, i.e.
1396  * zero-copy gets disabled and 'zc' is updated.
1397  */
1398 
1399 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1400 			    struct iov_iter *out_iov,
1401 			    struct scatterlist *out_sg,
1402 			    int *chunk, bool *zc, bool async)
1403 {
1404 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1405 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1406 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1407 	struct strp_msg *rxm = strp_msg(skb);
1408 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1409 	struct aead_request *aead_req;
1410 	struct sk_buff *unused;
1411 	u8 *aad, *iv, *mem = NULL;
1412 	struct scatterlist *sgin = NULL;
1413 	struct scatterlist *sgout = NULL;
1414 	const int data_len = rxm->full_len - prot->overhead_size +
1415 			     prot->tail_size;
1416 	int iv_offset = 0;
1417 
1418 	if (*zc && (out_iov || out_sg)) {
1419 		if (out_iov)
1420 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1421 		else
1422 			n_sgout = sg_nents(out_sg);
1423 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1424 				 rxm->full_len - prot->prepend_size);
1425 	} else {
1426 		n_sgout = 0;
1427 		*zc = false;
1428 		n_sgin = skb_cow_data(skb, 0, &unused);
1429 	}
1430 
1431 	if (n_sgin < 1)
1432 		return -EBADMSG;
1433 
1434 	/* Increment to accommodate AAD */
1435 	n_sgin = n_sgin + 1;
1436 
1437 	nsg = n_sgin + n_sgout;
1438 
1439 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1440 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1441 	mem_size = mem_size + prot->aad_size;
1442 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1443 
1444 	/* Allocate a single block of memory which contains
1445 	 * aead_req || sgin[] || sgout[] || aad || iv.
1446 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1447 	 */
1448 	mem = kmalloc(mem_size, sk->sk_allocation);
1449 	if (!mem)
1450 		return -ENOMEM;
1451 
1452 	/* Segment the allocated memory */
1453 	aead_req = (struct aead_request *)mem;
1454 	sgin = (struct scatterlist *)(mem + aead_size);
1455 	sgout = sgin + n_sgin;
1456 	aad = (u8 *)(sgout + n_sgout);
1457 	iv = aad + prot->aad_size;
1458 
1459 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1460 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1461 		iv[0] = 2;
1462 		iv_offset = 1;
1463 	}
1464 
1465 	/* Prepare IV */
1466 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1467 			    iv + iv_offset + prot->salt_size,
1468 			    prot->iv_size);
1469 	if (err < 0) {
1470 		kfree(mem);
1471 		return err;
1472 	}
1473 	if (prot->version == TLS_1_3_VERSION ||
1474 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1475 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1476 		       crypto_aead_ivsize(ctx->aead_recv));
1477 	else
1478 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1479 
1480 	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1481 
1482 	/* Prepare AAD */
1483 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1484 		     prot->tail_size,
1485 		     tls_ctx->rx.rec_seq, ctx->control, prot);
1486 
1487 	/* Prepare sgin */
1488 	sg_init_table(sgin, n_sgin);
1489 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1490 	err = skb_to_sgvec(skb, &sgin[1],
1491 			   rxm->offset + prot->prepend_size,
1492 			   rxm->full_len - prot->prepend_size);
1493 	if (err < 0) {
1494 		kfree(mem);
1495 		return err;
1496 	}
1497 
1498 	if (n_sgout) {
1499 		if (out_iov) {
1500 			sg_init_table(sgout, n_sgout);
1501 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1502 
1503 			*chunk = 0;
1504 			err = tls_setup_from_iter(sk, out_iov, data_len,
1505 						  &pages, chunk, &sgout[1],
1506 						  (n_sgout - 1));
1507 			if (err < 0)
1508 				goto fallback_to_reg_recv;
1509 		} else if (out_sg) {
1510 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1511 		} else {
1512 			goto fallback_to_reg_recv;
1513 		}
1514 	} else {
1515 fallback_to_reg_recv:
1516 		sgout = sgin;
1517 		pages = 0;
1518 		*chunk = data_len;
1519 		*zc = false;
1520 	}
1521 
1522 	/* Prepare and submit AEAD request */
1523 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1524 				data_len, aead_req, async);
1525 	if (err == -EINPROGRESS)
1526 		return err;
1527 
1528 	/* Release the pages in case iov was mapped to pages */
1529 	for (; pages > 0; pages--)
1530 		put_page(sg_page(&sgout[pages]));
1531 
1532 	kfree(mem);
1533 	return err;
1534 }
1535 
1536 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1537 			      struct iov_iter *dest, int *chunk, bool *zc,
1538 			      bool async)
1539 {
1540 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1541 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1542 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1543 	struct strp_msg *rxm = strp_msg(skb);
1544 	int pad, err = 0;
1545 
1546 	if (!ctx->decrypted) {
1547 		if (tls_ctx->rx_conf == TLS_HW) {
1548 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1549 			if (err < 0)
1550 				return err;
1551 		}
1552 
1553 		/* Still not decrypted after tls_device */
1554 		if (!ctx->decrypted) {
1555 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1556 					       async);
1557 			if (err < 0) {
1558 				if (err == -EINPROGRESS)
1559 					tls_advance_record_sn(sk, prot,
1560 							      &tls_ctx->rx);
1561 				else if (err == -EBADMSG)
1562 					TLS_INC_STATS(sock_net(sk),
1563 						      LINUX_MIB_TLSDECRYPTERROR);
1564 				return err;
1565 			}
1566 		} else {
1567 			*zc = false;
1568 		}
1569 
1570 		pad = padding_length(ctx, prot, skb);
1571 		if (pad < 0)
1572 			return pad;
1573 
1574 		rxm->full_len -= pad;
1575 		rxm->offset += prot->prepend_size;
1576 		rxm->full_len -= prot->overhead_size;
1577 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1578 		ctx->decrypted = 1;
1579 		ctx->saved_data_ready(sk);
1580 	} else {
1581 		*zc = false;
1582 	}
1583 
1584 	return err;
1585 }
1586 
1587 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1588 		struct scatterlist *sgout)
1589 {
1590 	bool zc = true;
1591 	int chunk;
1592 
1593 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1594 }
1595 
1596 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1597 			       unsigned int len)
1598 {
1599 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1600 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1601 
1602 	if (skb) {
1603 		struct strp_msg *rxm = strp_msg(skb);
1604 
1605 		if (len < rxm->full_len) {
1606 			rxm->offset += len;
1607 			rxm->full_len -= len;
1608 			return false;
1609 		}
1610 		consume_skb(skb);
1611 	}
1612 
1613 	/* Finished with message */
1614 	ctx->recv_pkt = NULL;
1615 	__strp_unpause(&ctx->strp);
1616 
1617 	return true;
1618 }
1619 
1620 /* This function traverses the rx_list in tls receive context to copies the
1621  * decrypted records into the buffer provided by caller zero copy is not
1622  * true. Further, the records are removed from the rx_list if it is not a peek
1623  * case and the record has been consumed completely.
1624  */
1625 static int process_rx_list(struct tls_sw_context_rx *ctx,
1626 			   struct msghdr *msg,
1627 			   u8 *control,
1628 			   bool *cmsg,
1629 			   size_t skip,
1630 			   size_t len,
1631 			   bool zc,
1632 			   bool is_peek)
1633 {
1634 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1635 	u8 ctrl = *control;
1636 	u8 msgc = *cmsg;
1637 	struct tls_msg *tlm;
1638 	ssize_t copied = 0;
1639 
1640 	/* Set the record type in 'control' if caller didn't pass it */
1641 	if (!ctrl && skb) {
1642 		tlm = tls_msg(skb);
1643 		ctrl = tlm->control;
1644 	}
1645 
1646 	while (skip && skb) {
1647 		struct strp_msg *rxm = strp_msg(skb);
1648 		tlm = tls_msg(skb);
1649 
1650 		/* Cannot process a record of different type */
1651 		if (ctrl != tlm->control)
1652 			return 0;
1653 
1654 		if (skip < rxm->full_len)
1655 			break;
1656 
1657 		skip = skip - rxm->full_len;
1658 		skb = skb_peek_next(skb, &ctx->rx_list);
1659 	}
1660 
1661 	while (len && skb) {
1662 		struct sk_buff *next_skb;
1663 		struct strp_msg *rxm = strp_msg(skb);
1664 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1665 
1666 		tlm = tls_msg(skb);
1667 
1668 		/* Cannot process a record of different type */
1669 		if (ctrl != tlm->control)
1670 			return 0;
1671 
1672 		/* Set record type if not already done. For a non-data record,
1673 		 * do not proceed if record type could not be copied.
1674 		 */
1675 		if (!msgc) {
1676 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1677 					    sizeof(ctrl), &ctrl);
1678 			msgc = true;
1679 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1680 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1681 					return -EIO;
1682 
1683 				*cmsg = msgc;
1684 			}
1685 		}
1686 
1687 		if (!zc || (rxm->full_len - skip) > len) {
1688 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1689 						    msg, chunk);
1690 			if (err < 0)
1691 				return err;
1692 		}
1693 
1694 		len = len - chunk;
1695 		copied = copied + chunk;
1696 
1697 		/* Consume the data from record if it is non-peek case*/
1698 		if (!is_peek) {
1699 			rxm->offset = rxm->offset + chunk;
1700 			rxm->full_len = rxm->full_len - chunk;
1701 
1702 			/* Return if there is unconsumed data in the record */
1703 			if (rxm->full_len - skip)
1704 				break;
1705 		}
1706 
1707 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1708 		 * So from the 2nd record, 'skip' should be 0.
1709 		 */
1710 		skip = 0;
1711 
1712 		if (msg)
1713 			msg->msg_flags |= MSG_EOR;
1714 
1715 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1716 
1717 		if (!is_peek) {
1718 			skb_unlink(skb, &ctx->rx_list);
1719 			consume_skb(skb);
1720 		}
1721 
1722 		skb = next_skb;
1723 	}
1724 
1725 	*control = ctrl;
1726 	return copied;
1727 }
1728 
1729 int tls_sw_recvmsg(struct sock *sk,
1730 		   struct msghdr *msg,
1731 		   size_t len,
1732 		   int nonblock,
1733 		   int flags,
1734 		   int *addr_len)
1735 {
1736 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1737 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1738 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1739 	struct sk_psock *psock;
1740 	unsigned char control = 0;
1741 	ssize_t decrypted = 0;
1742 	struct strp_msg *rxm;
1743 	struct tls_msg *tlm;
1744 	struct sk_buff *skb;
1745 	ssize_t copied = 0;
1746 	bool cmsg = false;
1747 	int target, err = 0;
1748 	long timeo;
1749 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1750 	bool is_peek = flags & MSG_PEEK;
1751 	bool bpf_strp_enabled;
1752 	int num_async = 0;
1753 	int pending;
1754 
1755 	flags |= nonblock;
1756 
1757 	if (unlikely(flags & MSG_ERRQUEUE))
1758 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1759 
1760 	psock = sk_psock_get(sk);
1761 	lock_sock(sk);
1762 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1763 
1764 	/* Process pending decrypted records. It must be non-zero-copy */
1765 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1766 			      is_peek);
1767 	if (err < 0) {
1768 		tls_err_abort(sk, err);
1769 		goto end;
1770 	} else {
1771 		copied = err;
1772 	}
1773 
1774 	if (len <= copied)
1775 		goto recv_end;
1776 
1777 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1778 	len = len - copied;
1779 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1780 
1781 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1782 		bool retain_skb = false;
1783 		bool zc = false;
1784 		int to_decrypt;
1785 		int chunk = 0;
1786 		bool async_capable;
1787 		bool async = false;
1788 
1789 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1790 		if (!skb) {
1791 			if (psock) {
1792 				int ret = __tcp_bpf_recvmsg(sk, psock,
1793 							    msg, len, flags);
1794 
1795 				if (ret > 0) {
1796 					decrypted += ret;
1797 					len -= ret;
1798 					continue;
1799 				}
1800 			}
1801 			goto recv_end;
1802 		} else {
1803 			tlm = tls_msg(skb);
1804 			if (prot->version == TLS_1_3_VERSION)
1805 				tlm->control = 0;
1806 			else
1807 				tlm->control = ctx->control;
1808 		}
1809 
1810 		rxm = strp_msg(skb);
1811 
1812 		to_decrypt = rxm->full_len - prot->overhead_size;
1813 
1814 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1815 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1816 		    prot->version != TLS_1_3_VERSION &&
1817 		    !bpf_strp_enabled)
1818 			zc = true;
1819 
1820 		/* Do not use async mode if record is non-data */
1821 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1822 			async_capable = ctx->async_capable;
1823 		else
1824 			async_capable = false;
1825 
1826 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1827 					 &chunk, &zc, async_capable);
1828 		if (err < 0 && err != -EINPROGRESS) {
1829 			tls_err_abort(sk, EBADMSG);
1830 			goto recv_end;
1831 		}
1832 
1833 		if (err == -EINPROGRESS) {
1834 			async = true;
1835 			num_async++;
1836 		} else if (prot->version == TLS_1_3_VERSION) {
1837 			tlm->control = ctx->control;
1838 		}
1839 
1840 		/* If the type of records being processed is not known yet,
1841 		 * set it to record type just dequeued. If it is already known,
1842 		 * but does not match the record type just dequeued, go to end.
1843 		 * We always get record type here since for tls1.2, record type
1844 		 * is known just after record is dequeued from stream parser.
1845 		 * For tls1.3, we disable async.
1846 		 */
1847 
1848 		if (!control)
1849 			control = tlm->control;
1850 		else if (control != tlm->control)
1851 			goto recv_end;
1852 
1853 		if (!cmsg) {
1854 			int cerr;
1855 
1856 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1857 					sizeof(control), &control);
1858 			cmsg = true;
1859 			if (control != TLS_RECORD_TYPE_DATA) {
1860 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1861 					err = -EIO;
1862 					goto recv_end;
1863 				}
1864 			}
1865 		}
1866 
1867 		if (async)
1868 			goto pick_next_record;
1869 
1870 		if (!zc) {
1871 			if (bpf_strp_enabled) {
1872 				err = sk_psock_tls_strp_read(psock, skb);
1873 				if (err != __SK_PASS) {
1874 					rxm->offset = rxm->offset + rxm->full_len;
1875 					rxm->full_len = 0;
1876 					if (err == __SK_DROP)
1877 						consume_skb(skb);
1878 					ctx->recv_pkt = NULL;
1879 					__strp_unpause(&ctx->strp);
1880 					continue;
1881 				}
1882 			}
1883 
1884 			if (rxm->full_len > len) {
1885 				retain_skb = true;
1886 				chunk = len;
1887 			} else {
1888 				chunk = rxm->full_len;
1889 			}
1890 
1891 			err = skb_copy_datagram_msg(skb, rxm->offset,
1892 						    msg, chunk);
1893 			if (err < 0)
1894 				goto recv_end;
1895 
1896 			if (!is_peek) {
1897 				rxm->offset = rxm->offset + chunk;
1898 				rxm->full_len = rxm->full_len - chunk;
1899 			}
1900 		}
1901 
1902 pick_next_record:
1903 		if (chunk > len)
1904 			chunk = len;
1905 
1906 		decrypted += chunk;
1907 		len -= chunk;
1908 
1909 		/* For async or peek case, queue the current skb */
1910 		if (async || is_peek || retain_skb) {
1911 			skb_queue_tail(&ctx->rx_list, skb);
1912 			skb = NULL;
1913 		}
1914 
1915 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1916 			/* Return full control message to
1917 			 * userspace before trying to parse
1918 			 * another message type
1919 			 */
1920 			msg->msg_flags |= MSG_EOR;
1921 			if (control != TLS_RECORD_TYPE_DATA)
1922 				goto recv_end;
1923 		} else {
1924 			break;
1925 		}
1926 	}
1927 
1928 recv_end:
1929 	if (num_async) {
1930 		/* Wait for all previously submitted records to be decrypted */
1931 		spin_lock_bh(&ctx->decrypt_compl_lock);
1932 		ctx->async_notify = true;
1933 		pending = atomic_read(&ctx->decrypt_pending);
1934 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1935 		if (pending) {
1936 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1937 			if (err) {
1938 				/* one of async decrypt failed */
1939 				tls_err_abort(sk, err);
1940 				copied = 0;
1941 				decrypted = 0;
1942 				goto end;
1943 			}
1944 		} else {
1945 			reinit_completion(&ctx->async_wait.completion);
1946 		}
1947 
1948 		/* There can be no concurrent accesses, since we have no
1949 		 * pending decrypt operations
1950 		 */
1951 		WRITE_ONCE(ctx->async_notify, false);
1952 
1953 		/* Drain records from the rx_list & copy if required */
1954 		if (is_peek || is_kvec)
1955 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1956 					      decrypted, false, is_peek);
1957 		else
1958 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1959 					      decrypted, true, is_peek);
1960 		if (err < 0) {
1961 			tls_err_abort(sk, err);
1962 			copied = 0;
1963 			goto end;
1964 		}
1965 	}
1966 
1967 	copied += decrypted;
1968 
1969 end:
1970 	release_sock(sk);
1971 	if (psock)
1972 		sk_psock_put(sk, psock);
1973 	return copied ? : err;
1974 }
1975 
1976 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1977 			   struct pipe_inode_info *pipe,
1978 			   size_t len, unsigned int flags)
1979 {
1980 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1981 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1982 	struct strp_msg *rxm = NULL;
1983 	struct sock *sk = sock->sk;
1984 	struct sk_buff *skb;
1985 	ssize_t copied = 0;
1986 	int err = 0;
1987 	long timeo;
1988 	int chunk;
1989 	bool zc = false;
1990 
1991 	lock_sock(sk);
1992 
1993 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1994 
1995 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1996 	if (!skb)
1997 		goto splice_read_end;
1998 
1999 	if (!ctx->decrypted) {
2000 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2001 
2002 		/* splice does not support reading control messages */
2003 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
2004 			err = -EINVAL;
2005 			goto splice_read_end;
2006 		}
2007 
2008 		if (err < 0) {
2009 			tls_err_abort(sk, EBADMSG);
2010 			goto splice_read_end;
2011 		}
2012 		ctx->decrypted = 1;
2013 	}
2014 	rxm = strp_msg(skb);
2015 
2016 	chunk = min_t(unsigned int, rxm->full_len, len);
2017 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2018 	if (copied < 0)
2019 		goto splice_read_end;
2020 
2021 	if (likely(!(flags & MSG_PEEK)))
2022 		tls_sw_advance_skb(sk, skb, copied);
2023 
2024 splice_read_end:
2025 	release_sock(sk);
2026 	return copied ? : err;
2027 }
2028 
2029 bool tls_sw_stream_read(const struct sock *sk)
2030 {
2031 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2032 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033 	bool ingress_empty = true;
2034 	struct sk_psock *psock;
2035 
2036 	rcu_read_lock();
2037 	psock = sk_psock(sk);
2038 	if (psock)
2039 		ingress_empty = list_empty(&psock->ingress_msg);
2040 	rcu_read_unlock();
2041 
2042 	return !ingress_empty || ctx->recv_pkt ||
2043 		!skb_queue_empty(&ctx->rx_list);
2044 }
2045 
2046 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2047 {
2048 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2049 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2051 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2052 	struct strp_msg *rxm = strp_msg(skb);
2053 	size_t cipher_overhead;
2054 	size_t data_len = 0;
2055 	int ret;
2056 
2057 	/* Verify that we have a full TLS header, or wait for more data */
2058 	if (rxm->offset + prot->prepend_size > skb->len)
2059 		return 0;
2060 
2061 	/* Sanity-check size of on-stack buffer. */
2062 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2063 		ret = -EINVAL;
2064 		goto read_failure;
2065 	}
2066 
2067 	/* Linearize header to local buffer */
2068 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2069 
2070 	if (ret < 0)
2071 		goto read_failure;
2072 
2073 	ctx->control = header[0];
2074 
2075 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2076 
2077 	cipher_overhead = prot->tag_size;
2078 	if (prot->version != TLS_1_3_VERSION &&
2079 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2080 		cipher_overhead += prot->iv_size;
2081 
2082 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083 	    prot->tail_size) {
2084 		ret = -EMSGSIZE;
2085 		goto read_failure;
2086 	}
2087 	if (data_len < cipher_overhead) {
2088 		ret = -EBADMSG;
2089 		goto read_failure;
2090 	}
2091 
2092 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2094 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2095 		ret = -EINVAL;
2096 		goto read_failure;
2097 	}
2098 
2099 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2101 	return data_len + TLS_HEADER_SIZE;
2102 
2103 read_failure:
2104 	tls_err_abort(strp->sk, ret);
2105 
2106 	return ret;
2107 }
2108 
2109 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110 {
2111 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113 
2114 	ctx->decrypted = 0;
2115 
2116 	ctx->recv_pkt = skb;
2117 	strp_pause(strp);
2118 
2119 	ctx->saved_data_ready(strp->sk);
2120 }
2121 
2122 static void tls_data_ready(struct sock *sk)
2123 {
2124 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2125 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126 	struct sk_psock *psock;
2127 
2128 	strp_data_ready(&ctx->strp);
2129 
2130 	psock = sk_psock_get(sk);
2131 	if (psock) {
2132 		if (!list_empty(&psock->ingress_msg))
2133 			ctx->saved_data_ready(sk);
2134 		sk_psock_put(sk, psock);
2135 	}
2136 }
2137 
2138 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139 {
2140 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141 
2142 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144 	cancel_delayed_work_sync(&ctx->tx_work.work);
2145 }
2146 
2147 void tls_sw_release_resources_tx(struct sock *sk)
2148 {
2149 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2150 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151 	struct tls_rec *rec, *tmp;
2152 	int pending;
2153 
2154 	/* Wait for any pending async encryptions to complete */
2155 	spin_lock_bh(&ctx->encrypt_compl_lock);
2156 	ctx->async_notify = true;
2157 	pending = atomic_read(&ctx->encrypt_pending);
2158 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2159 
2160 	if (pending)
2161 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162 
2163 	tls_tx_records(sk, -1);
2164 
2165 	/* Free up un-sent records in tx_list. First, free
2166 	 * the partially sent record if any at head of tx_list.
2167 	 */
2168 	if (tls_ctx->partially_sent_record) {
2169 		tls_free_partial_record(sk, tls_ctx);
2170 		rec = list_first_entry(&ctx->tx_list,
2171 				       struct tls_rec, list);
2172 		list_del(&rec->list);
2173 		sk_msg_free(sk, &rec->msg_plaintext);
2174 		kfree(rec);
2175 	}
2176 
2177 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178 		list_del(&rec->list);
2179 		sk_msg_free(sk, &rec->msg_encrypted);
2180 		sk_msg_free(sk, &rec->msg_plaintext);
2181 		kfree(rec);
2182 	}
2183 
2184 	crypto_free_aead(ctx->aead_send);
2185 	tls_free_open_rec(sk);
2186 }
2187 
2188 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189 {
2190 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191 
2192 	kfree(ctx);
2193 }
2194 
2195 void tls_sw_release_resources_rx(struct sock *sk)
2196 {
2197 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2198 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199 
2200 	kfree(tls_ctx->rx.rec_seq);
2201 	kfree(tls_ctx->rx.iv);
2202 
2203 	if (ctx->aead_recv) {
2204 		kfree_skb(ctx->recv_pkt);
2205 		ctx->recv_pkt = NULL;
2206 		skb_queue_purge(&ctx->rx_list);
2207 		crypto_free_aead(ctx->aead_recv);
2208 		strp_stop(&ctx->strp);
2209 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2210 		 * we still want to strp_stop(), but sk->sk_data_ready was
2211 		 * never swapped.
2212 		 */
2213 		if (ctx->saved_data_ready) {
2214 			write_lock_bh(&sk->sk_callback_lock);
2215 			sk->sk_data_ready = ctx->saved_data_ready;
2216 			write_unlock_bh(&sk->sk_callback_lock);
2217 		}
2218 	}
2219 }
2220 
2221 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222 {
2223 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224 
2225 	strp_done(&ctx->strp);
2226 }
2227 
2228 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229 {
2230 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231 
2232 	kfree(ctx);
2233 }
2234 
2235 void tls_sw_free_resources_rx(struct sock *sk)
2236 {
2237 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2238 
2239 	tls_sw_release_resources_rx(sk);
2240 	tls_sw_free_ctx_rx(tls_ctx);
2241 }
2242 
2243 /* The work handler to transmitt the encrypted records in tx_list */
2244 static void tx_work_handler(struct work_struct *work)
2245 {
2246 	struct delayed_work *delayed_work = to_delayed_work(work);
2247 	struct tx_work *tx_work = container_of(delayed_work,
2248 					       struct tx_work, work);
2249 	struct sock *sk = tx_work->sk;
2250 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2251 	struct tls_sw_context_tx *ctx;
2252 
2253 	if (unlikely(!tls_ctx))
2254 		return;
2255 
2256 	ctx = tls_sw_ctx_tx(tls_ctx);
2257 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258 		return;
2259 
2260 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261 		return;
2262 	mutex_lock(&tls_ctx->tx_lock);
2263 	lock_sock(sk);
2264 	tls_tx_records(sk, -1);
2265 	release_sock(sk);
2266 	mutex_unlock(&tls_ctx->tx_lock);
2267 }
2268 
2269 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270 {
2271 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272 
2273 	/* Schedule the transmission if tx list is ready */
2274 	if (is_tx_ready(tx_ctx) &&
2275 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277 }
2278 
2279 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280 {
2281 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282 
2283 	write_lock_bh(&sk->sk_callback_lock);
2284 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2285 	sk->sk_data_ready = tls_data_ready;
2286 	write_unlock_bh(&sk->sk_callback_lock);
2287 
2288 	strp_check_rcv(&rx_ctx->strp);
2289 }
2290 
2291 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292 {
2293 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2294 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2295 	struct tls_crypto_info *crypto_info;
2296 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299 	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2300 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2301 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2302 	struct cipher_context *cctx;
2303 	struct crypto_aead **aead;
2304 	struct strp_callbacks cb;
2305 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2306 	struct crypto_tfm *tfm;
2307 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2308 	size_t keysize;
2309 	int rc = 0;
2310 
2311 	if (!ctx) {
2312 		rc = -EINVAL;
2313 		goto out;
2314 	}
2315 
2316 	if (tx) {
2317 		if (!ctx->priv_ctx_tx) {
2318 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2319 			if (!sw_ctx_tx) {
2320 				rc = -ENOMEM;
2321 				goto out;
2322 			}
2323 			ctx->priv_ctx_tx = sw_ctx_tx;
2324 		} else {
2325 			sw_ctx_tx =
2326 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2327 		}
2328 	} else {
2329 		if (!ctx->priv_ctx_rx) {
2330 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2331 			if (!sw_ctx_rx) {
2332 				rc = -ENOMEM;
2333 				goto out;
2334 			}
2335 			ctx->priv_ctx_rx = sw_ctx_rx;
2336 		} else {
2337 			sw_ctx_rx =
2338 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2339 		}
2340 	}
2341 
2342 	if (tx) {
2343 		crypto_init_wait(&sw_ctx_tx->async_wait);
2344 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2345 		crypto_info = &ctx->crypto_send.info;
2346 		cctx = &ctx->tx;
2347 		aead = &sw_ctx_tx->aead_send;
2348 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2349 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2350 		sw_ctx_tx->tx_work.sk = sk;
2351 	} else {
2352 		crypto_init_wait(&sw_ctx_rx->async_wait);
2353 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2354 		crypto_info = &ctx->crypto_recv.info;
2355 		cctx = &ctx->rx;
2356 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2357 		aead = &sw_ctx_rx->aead_recv;
2358 	}
2359 
2360 	switch (crypto_info->cipher_type) {
2361 	case TLS_CIPHER_AES_GCM_128: {
2362 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2363 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2364 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2365 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2366 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2367 		rec_seq =
2368 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2369 		gcm_128_info =
2370 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2371 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2372 		key = gcm_128_info->key;
2373 		salt = gcm_128_info->salt;
2374 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2375 		cipher_name = "gcm(aes)";
2376 		break;
2377 	}
2378 	case TLS_CIPHER_AES_GCM_256: {
2379 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2380 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2381 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2382 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2383 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2384 		rec_seq =
2385 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2386 		gcm_256_info =
2387 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2388 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2389 		key = gcm_256_info->key;
2390 		salt = gcm_256_info->salt;
2391 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2392 		cipher_name = "gcm(aes)";
2393 		break;
2394 	}
2395 	case TLS_CIPHER_AES_CCM_128: {
2396 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2397 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2398 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2399 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2400 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2401 		rec_seq =
2402 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2403 		ccm_128_info =
2404 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2405 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2406 		key = ccm_128_info->key;
2407 		salt = ccm_128_info->salt;
2408 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2409 		cipher_name = "ccm(aes)";
2410 		break;
2411 	}
2412 	case TLS_CIPHER_CHACHA20_POLY1305: {
2413 		chacha20_poly1305_info = (void *)crypto_info;
2414 		nonce_size = 0;
2415 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2416 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2417 		iv = chacha20_poly1305_info->iv;
2418 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2419 		rec_seq = chacha20_poly1305_info->rec_seq;
2420 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2421 		key = chacha20_poly1305_info->key;
2422 		salt = chacha20_poly1305_info->salt;
2423 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2424 		cipher_name = "rfc7539(chacha20,poly1305)";
2425 		break;
2426 	}
2427 	default:
2428 		rc = -EINVAL;
2429 		goto free_priv;
2430 	}
2431 
2432 	/* Sanity-check the sizes for stack allocations. */
2433 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2434 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2435 		rc = -EINVAL;
2436 		goto free_priv;
2437 	}
2438 
2439 	if (crypto_info->version == TLS_1_3_VERSION) {
2440 		nonce_size = 0;
2441 		prot->aad_size = TLS_HEADER_SIZE;
2442 		prot->tail_size = 1;
2443 	} else {
2444 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2445 		prot->tail_size = 0;
2446 	}
2447 
2448 	prot->version = crypto_info->version;
2449 	prot->cipher_type = crypto_info->cipher_type;
2450 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2451 	prot->tag_size = tag_size;
2452 	prot->overhead_size = prot->prepend_size +
2453 			      prot->tag_size + prot->tail_size;
2454 	prot->iv_size = iv_size;
2455 	prot->salt_size = salt_size;
2456 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2457 	if (!cctx->iv) {
2458 		rc = -ENOMEM;
2459 		goto free_priv;
2460 	}
2461 	/* Note: 128 & 256 bit salt are the same size */
2462 	prot->rec_seq_size = rec_seq_size;
2463 	memcpy(cctx->iv, salt, salt_size);
2464 	memcpy(cctx->iv + salt_size, iv, iv_size);
2465 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2466 	if (!cctx->rec_seq) {
2467 		rc = -ENOMEM;
2468 		goto free_iv;
2469 	}
2470 
2471 	if (!*aead) {
2472 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2473 		if (IS_ERR(*aead)) {
2474 			rc = PTR_ERR(*aead);
2475 			*aead = NULL;
2476 			goto free_rec_seq;
2477 		}
2478 	}
2479 
2480 	ctx->push_pending_record = tls_sw_push_pending_record;
2481 
2482 	rc = crypto_aead_setkey(*aead, key, keysize);
2483 
2484 	if (rc)
2485 		goto free_aead;
2486 
2487 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2488 	if (rc)
2489 		goto free_aead;
2490 
2491 	if (sw_ctx_rx) {
2492 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2493 
2494 		if (crypto_info->version == TLS_1_3_VERSION)
2495 			sw_ctx_rx->async_capable = 0;
2496 		else
2497 			sw_ctx_rx->async_capable =
2498 				!!(tfm->__crt_alg->cra_flags &
2499 				   CRYPTO_ALG_ASYNC);
2500 
2501 		/* Set up strparser */
2502 		memset(&cb, 0, sizeof(cb));
2503 		cb.rcv_msg = tls_queue;
2504 		cb.parse_msg = tls_read_size;
2505 
2506 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2507 	}
2508 
2509 	goto out;
2510 
2511 free_aead:
2512 	crypto_free_aead(*aead);
2513 	*aead = NULL;
2514 free_rec_seq:
2515 	kfree(cctx->rec_seq);
2516 	cctx->rec_seq = NULL;
2517 free_iv:
2518 	kfree(cctx->iv);
2519 	cctx->iv = NULL;
2520 free_priv:
2521 	if (tx) {
2522 		kfree(ctx->priv_ctx_tx);
2523 		ctx->priv_ctx_tx = NULL;
2524 	} else {
2525 		kfree(ctx->priv_ctx_rx);
2526 		ctx->priv_ctx_rx = NULL;
2527 	}
2528 out:
2529 	return rc;
2530 }
2531