1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } 260 261 if (async) 262 atomic_dec(&ctx->decrypt_pending); 263 264 return ret; 265 } 266 267 static void tls_trim_both_msgs(struct sock *sk, int target_size) 268 { 269 struct tls_context *tls_ctx = tls_get_ctx(sk); 270 struct tls_prot_info *prot = &tls_ctx->prot_info; 271 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 272 struct tls_rec *rec = ctx->open_rec; 273 274 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 275 if (target_size > 0) 276 target_size += prot->overhead_size; 277 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 278 } 279 280 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 281 { 282 struct tls_context *tls_ctx = tls_get_ctx(sk); 283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 284 struct tls_rec *rec = ctx->open_rec; 285 struct sk_msg *msg_en = &rec->msg_encrypted; 286 287 return sk_msg_alloc(sk, msg_en, len, 0); 288 } 289 290 static int tls_clone_plaintext_msg(struct sock *sk, int required) 291 { 292 struct tls_context *tls_ctx = tls_get_ctx(sk); 293 struct tls_prot_info *prot = &tls_ctx->prot_info; 294 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 295 struct tls_rec *rec = ctx->open_rec; 296 struct sk_msg *msg_pl = &rec->msg_plaintext; 297 struct sk_msg *msg_en = &rec->msg_encrypted; 298 int skip, len; 299 300 /* We add page references worth len bytes from encrypted sg 301 * at the end of plaintext sg. It is guaranteed that msg_en 302 * has enough required room (ensured by caller). 303 */ 304 len = required - msg_pl->sg.size; 305 306 /* Skip initial bytes in msg_en's data to be able to use 307 * same offset of both plain and encrypted data. 308 */ 309 skip = prot->prepend_size + msg_pl->sg.size; 310 311 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 312 } 313 314 static struct tls_rec *tls_get_rec(struct sock *sk) 315 { 316 struct tls_context *tls_ctx = tls_get_ctx(sk); 317 struct tls_prot_info *prot = &tls_ctx->prot_info; 318 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 319 struct sk_msg *msg_pl, *msg_en; 320 struct tls_rec *rec; 321 int mem_size; 322 323 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 324 325 rec = kzalloc(mem_size, sk->sk_allocation); 326 if (!rec) 327 return NULL; 328 329 msg_pl = &rec->msg_plaintext; 330 msg_en = &rec->msg_encrypted; 331 332 sk_msg_init(msg_pl); 333 sk_msg_init(msg_en); 334 335 sg_init_table(rec->sg_aead_in, 2); 336 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 337 sg_unmark_end(&rec->sg_aead_in[1]); 338 339 sg_init_table(rec->sg_aead_out, 2); 340 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 341 sg_unmark_end(&rec->sg_aead_out[1]); 342 343 return rec; 344 } 345 346 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 347 { 348 sk_msg_free(sk, &rec->msg_encrypted); 349 sk_msg_free(sk, &rec->msg_plaintext); 350 kfree(rec); 351 } 352 353 static void tls_free_open_rec(struct sock *sk) 354 { 355 struct tls_context *tls_ctx = tls_get_ctx(sk); 356 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 357 struct tls_rec *rec = ctx->open_rec; 358 359 if (rec) { 360 tls_free_rec(sk, rec); 361 ctx->open_rec = NULL; 362 } 363 } 364 365 int tls_tx_records(struct sock *sk, int flags) 366 { 367 struct tls_context *tls_ctx = tls_get_ctx(sk); 368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 369 struct tls_rec *rec, *tmp; 370 struct sk_msg *msg_en; 371 int tx_flags, rc = 0; 372 373 if (tls_is_partially_sent_record(tls_ctx)) { 374 rec = list_first_entry(&ctx->tx_list, 375 struct tls_rec, list); 376 377 if (flags == -1) 378 tx_flags = rec->tx_flags; 379 else 380 tx_flags = flags; 381 382 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 383 if (rc) 384 goto tx_err; 385 386 /* Full record has been transmitted. 387 * Remove the head of tx_list 388 */ 389 list_del(&rec->list); 390 sk_msg_free(sk, &rec->msg_plaintext); 391 kfree(rec); 392 } 393 394 /* Tx all ready records */ 395 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 396 if (READ_ONCE(rec->tx_ready)) { 397 if (flags == -1) 398 tx_flags = rec->tx_flags; 399 else 400 tx_flags = flags; 401 402 msg_en = &rec->msg_encrypted; 403 rc = tls_push_sg(sk, tls_ctx, 404 &msg_en->sg.data[msg_en->sg.curr], 405 0, tx_flags); 406 if (rc) 407 goto tx_err; 408 409 list_del(&rec->list); 410 sk_msg_free(sk, &rec->msg_plaintext); 411 kfree(rec); 412 } else { 413 break; 414 } 415 } 416 417 tx_err: 418 if (rc < 0 && rc != -EAGAIN) 419 tls_err_abort(sk, EBADMSG); 420 421 return rc; 422 } 423 424 static void tls_encrypt_done(struct crypto_async_request *req, int err) 425 { 426 struct aead_request *aead_req = (struct aead_request *)req; 427 struct sock *sk = req->data; 428 struct tls_context *tls_ctx = tls_get_ctx(sk); 429 struct tls_prot_info *prot = &tls_ctx->prot_info; 430 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 431 struct scatterlist *sge; 432 struct sk_msg *msg_en; 433 struct tls_rec *rec; 434 bool ready = false; 435 int pending; 436 437 rec = container_of(aead_req, struct tls_rec, aead_req); 438 msg_en = &rec->msg_encrypted; 439 440 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 441 sge->offset -= prot->prepend_size; 442 sge->length += prot->prepend_size; 443 444 /* Check if error is previously set on socket */ 445 if (err || sk->sk_err) { 446 rec = NULL; 447 448 /* If err is already set on socket, return the same code */ 449 if (sk->sk_err) { 450 ctx->async_wait.err = sk->sk_err; 451 } else { 452 ctx->async_wait.err = err; 453 tls_err_abort(sk, err); 454 } 455 } 456 457 if (rec) { 458 struct tls_rec *first_rec; 459 460 /* Mark the record as ready for transmission */ 461 smp_store_mb(rec->tx_ready, true); 462 463 /* If received record is at head of tx_list, schedule tx */ 464 first_rec = list_first_entry(&ctx->tx_list, 465 struct tls_rec, list); 466 if (rec == first_rec) 467 ready = true; 468 } 469 470 pending = atomic_dec_return(&ctx->encrypt_pending); 471 472 if (!pending && READ_ONCE(ctx->async_notify)) 473 complete(&ctx->async_wait.completion); 474 475 if (!ready) 476 return; 477 478 /* Schedule the transmission */ 479 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 480 schedule_delayed_work(&ctx->tx_work.work, 1); 481 } 482 483 static int tls_do_encryption(struct sock *sk, 484 struct tls_context *tls_ctx, 485 struct tls_sw_context_tx *ctx, 486 struct aead_request *aead_req, 487 size_t data_len, u32 start) 488 { 489 struct tls_prot_info *prot = &tls_ctx->prot_info; 490 struct tls_rec *rec = ctx->open_rec; 491 struct sk_msg *msg_en = &rec->msg_encrypted; 492 struct scatterlist *sge = sk_msg_elem(msg_en, start); 493 int rc, iv_offset = 0; 494 495 /* For CCM based ciphers, first byte of IV is a constant */ 496 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 497 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 498 iv_offset = 1; 499 } 500 501 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 502 prot->iv_size + prot->salt_size); 503 504 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 505 506 sge->offset += prot->prepend_size; 507 sge->length -= prot->prepend_size; 508 509 msg_en->sg.curr = start; 510 511 aead_request_set_tfm(aead_req, ctx->aead_send); 512 aead_request_set_ad(aead_req, prot->aad_size); 513 aead_request_set_crypt(aead_req, rec->sg_aead_in, 514 rec->sg_aead_out, 515 data_len, rec->iv_data); 516 517 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 518 tls_encrypt_done, sk); 519 520 /* Add the record in tx_list */ 521 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 522 atomic_inc(&ctx->encrypt_pending); 523 524 rc = crypto_aead_encrypt(aead_req); 525 if (!rc || rc != -EINPROGRESS) { 526 atomic_dec(&ctx->encrypt_pending); 527 sge->offset -= prot->prepend_size; 528 sge->length += prot->prepend_size; 529 } 530 531 if (!rc) { 532 WRITE_ONCE(rec->tx_ready, true); 533 } else if (rc != -EINPROGRESS) { 534 list_del(&rec->list); 535 return rc; 536 } 537 538 /* Unhook the record from context if encryption is not failure */ 539 ctx->open_rec = NULL; 540 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 541 return rc; 542 } 543 544 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 545 struct tls_rec **to, struct sk_msg *msg_opl, 546 struct sk_msg *msg_oen, u32 split_point, 547 u32 tx_overhead_size, u32 *orig_end) 548 { 549 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 550 struct scatterlist *sge, *osge, *nsge; 551 u32 orig_size = msg_opl->sg.size; 552 struct scatterlist tmp = { }; 553 struct sk_msg *msg_npl; 554 struct tls_rec *new; 555 int ret; 556 557 new = tls_get_rec(sk); 558 if (!new) 559 return -ENOMEM; 560 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 561 tx_overhead_size, 0); 562 if (ret < 0) { 563 tls_free_rec(sk, new); 564 return ret; 565 } 566 567 *orig_end = msg_opl->sg.end; 568 i = msg_opl->sg.start; 569 sge = sk_msg_elem(msg_opl, i); 570 while (apply && sge->length) { 571 if (sge->length > apply) { 572 u32 len = sge->length - apply; 573 574 get_page(sg_page(sge)); 575 sg_set_page(&tmp, sg_page(sge), len, 576 sge->offset + apply); 577 sge->length = apply; 578 bytes += apply; 579 apply = 0; 580 } else { 581 apply -= sge->length; 582 bytes += sge->length; 583 } 584 585 sk_msg_iter_var_next(i); 586 if (i == msg_opl->sg.end) 587 break; 588 sge = sk_msg_elem(msg_opl, i); 589 } 590 591 msg_opl->sg.end = i; 592 msg_opl->sg.curr = i; 593 msg_opl->sg.copybreak = 0; 594 msg_opl->apply_bytes = 0; 595 msg_opl->sg.size = bytes; 596 597 msg_npl = &new->msg_plaintext; 598 msg_npl->apply_bytes = apply; 599 msg_npl->sg.size = orig_size - bytes; 600 601 j = msg_npl->sg.start; 602 nsge = sk_msg_elem(msg_npl, j); 603 if (tmp.length) { 604 memcpy(nsge, &tmp, sizeof(*nsge)); 605 sk_msg_iter_var_next(j); 606 nsge = sk_msg_elem(msg_npl, j); 607 } 608 609 osge = sk_msg_elem(msg_opl, i); 610 while (osge->length) { 611 memcpy(nsge, osge, sizeof(*nsge)); 612 sg_unmark_end(nsge); 613 sk_msg_iter_var_next(i); 614 sk_msg_iter_var_next(j); 615 if (i == *orig_end) 616 break; 617 osge = sk_msg_elem(msg_opl, i); 618 nsge = sk_msg_elem(msg_npl, j); 619 } 620 621 msg_npl->sg.end = j; 622 msg_npl->sg.curr = j; 623 msg_npl->sg.copybreak = 0; 624 625 *to = new; 626 return 0; 627 } 628 629 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 630 struct tls_rec *from, u32 orig_end) 631 { 632 struct sk_msg *msg_npl = &from->msg_plaintext; 633 struct sk_msg *msg_opl = &to->msg_plaintext; 634 struct scatterlist *osge, *nsge; 635 u32 i, j; 636 637 i = msg_opl->sg.end; 638 sk_msg_iter_var_prev(i); 639 j = msg_npl->sg.start; 640 641 osge = sk_msg_elem(msg_opl, i); 642 nsge = sk_msg_elem(msg_npl, j); 643 644 if (sg_page(osge) == sg_page(nsge) && 645 osge->offset + osge->length == nsge->offset) { 646 osge->length += nsge->length; 647 put_page(sg_page(nsge)); 648 } 649 650 msg_opl->sg.end = orig_end; 651 msg_opl->sg.curr = orig_end; 652 msg_opl->sg.copybreak = 0; 653 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 654 msg_opl->sg.size += msg_npl->sg.size; 655 656 sk_msg_free(sk, &to->msg_encrypted); 657 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 658 659 kfree(from); 660 } 661 662 static int tls_push_record(struct sock *sk, int flags, 663 unsigned char record_type) 664 { 665 struct tls_context *tls_ctx = tls_get_ctx(sk); 666 struct tls_prot_info *prot = &tls_ctx->prot_info; 667 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 668 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 669 u32 i, split_point, uninitialized_var(orig_end); 670 struct sk_msg *msg_pl, *msg_en; 671 struct aead_request *req; 672 bool split; 673 int rc; 674 675 if (!rec) 676 return 0; 677 678 msg_pl = &rec->msg_plaintext; 679 msg_en = &rec->msg_encrypted; 680 681 split_point = msg_pl->apply_bytes; 682 split = split_point && split_point < msg_pl->sg.size; 683 if (unlikely((!split && 684 msg_pl->sg.size + 685 prot->overhead_size > msg_en->sg.size) || 686 (split && 687 split_point + 688 prot->overhead_size > msg_en->sg.size))) { 689 split = true; 690 split_point = msg_en->sg.size; 691 } 692 if (split) { 693 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 694 split_point, prot->overhead_size, 695 &orig_end); 696 if (rc < 0) 697 return rc; 698 /* This can happen if above tls_split_open_record allocates 699 * a single large encryption buffer instead of two smaller 700 * ones. In this case adjust pointers and continue without 701 * split. 702 */ 703 if (!msg_pl->sg.size) { 704 tls_merge_open_record(sk, rec, tmp, orig_end); 705 msg_pl = &rec->msg_plaintext; 706 msg_en = &rec->msg_encrypted; 707 split = false; 708 } 709 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 710 prot->overhead_size); 711 } 712 713 rec->tx_flags = flags; 714 req = &rec->aead_req; 715 716 i = msg_pl->sg.end; 717 sk_msg_iter_var_prev(i); 718 719 rec->content_type = record_type; 720 if (prot->version == TLS_1_3_VERSION) { 721 /* Add content type to end of message. No padding added */ 722 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 723 sg_mark_end(&rec->sg_content_type); 724 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 725 &rec->sg_content_type); 726 } else { 727 sg_mark_end(sk_msg_elem(msg_pl, i)); 728 } 729 730 if (msg_pl->sg.end < msg_pl->sg.start) { 731 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 732 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 733 msg_pl->sg.data); 734 } 735 736 i = msg_pl->sg.start; 737 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 738 739 i = msg_en->sg.end; 740 sk_msg_iter_var_prev(i); 741 sg_mark_end(sk_msg_elem(msg_en, i)); 742 743 i = msg_en->sg.start; 744 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 745 746 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 747 tls_ctx->tx.rec_seq, prot->rec_seq_size, 748 record_type, prot->version); 749 750 tls_fill_prepend(tls_ctx, 751 page_address(sg_page(&msg_en->sg.data[i])) + 752 msg_en->sg.data[i].offset, 753 msg_pl->sg.size + prot->tail_size, 754 record_type, prot->version); 755 756 tls_ctx->pending_open_record_frags = false; 757 758 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 759 msg_pl->sg.size + prot->tail_size, i); 760 if (rc < 0) { 761 if (rc != -EINPROGRESS) { 762 tls_err_abort(sk, EBADMSG); 763 if (split) { 764 tls_ctx->pending_open_record_frags = true; 765 tls_merge_open_record(sk, rec, tmp, orig_end); 766 } 767 } 768 ctx->async_capable = 1; 769 return rc; 770 } else if (split) { 771 msg_pl = &tmp->msg_plaintext; 772 msg_en = &tmp->msg_encrypted; 773 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 774 tls_ctx->pending_open_record_frags = true; 775 ctx->open_rec = tmp; 776 } 777 778 return tls_tx_records(sk, flags); 779 } 780 781 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 782 bool full_record, u8 record_type, 783 size_t *copied, int flags) 784 { 785 struct tls_context *tls_ctx = tls_get_ctx(sk); 786 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 787 struct sk_msg msg_redir = { }; 788 struct sk_psock *psock; 789 struct sock *sk_redir; 790 struct tls_rec *rec; 791 bool enospc, policy; 792 int err = 0, send; 793 u32 delta = 0; 794 795 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 796 psock = sk_psock_get(sk); 797 if (!psock || !policy) { 798 err = tls_push_record(sk, flags, record_type); 799 if (err && err != -EINPROGRESS) { 800 *copied -= sk_msg_free(sk, msg); 801 tls_free_open_rec(sk); 802 } 803 if (psock) 804 sk_psock_put(sk, psock); 805 return err; 806 } 807 more_data: 808 enospc = sk_msg_full(msg); 809 if (psock->eval == __SK_NONE) { 810 delta = msg->sg.size; 811 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 812 delta -= msg->sg.size; 813 } 814 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 815 !enospc && !full_record) { 816 err = -ENOSPC; 817 goto out_err; 818 } 819 msg->cork_bytes = 0; 820 send = msg->sg.size; 821 if (msg->apply_bytes && msg->apply_bytes < send) 822 send = msg->apply_bytes; 823 824 switch (psock->eval) { 825 case __SK_PASS: 826 err = tls_push_record(sk, flags, record_type); 827 if (err && err != -EINPROGRESS) { 828 *copied -= sk_msg_free(sk, msg); 829 tls_free_open_rec(sk); 830 goto out_err; 831 } 832 break; 833 case __SK_REDIRECT: 834 sk_redir = psock->sk_redir; 835 memcpy(&msg_redir, msg, sizeof(*msg)); 836 if (msg->apply_bytes < send) 837 msg->apply_bytes = 0; 838 else 839 msg->apply_bytes -= send; 840 sk_msg_return_zero(sk, msg, send); 841 msg->sg.size -= send; 842 release_sock(sk); 843 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 844 lock_sock(sk); 845 if (err < 0) { 846 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 847 msg->sg.size = 0; 848 } 849 if (msg->sg.size == 0) 850 tls_free_open_rec(sk); 851 break; 852 case __SK_DROP: 853 default: 854 sk_msg_free_partial(sk, msg, send); 855 if (msg->apply_bytes < send) 856 msg->apply_bytes = 0; 857 else 858 msg->apply_bytes -= send; 859 if (msg->sg.size == 0) 860 tls_free_open_rec(sk); 861 *copied -= (send + delta); 862 err = -EACCES; 863 } 864 865 if (likely(!err)) { 866 bool reset_eval = !ctx->open_rec; 867 868 rec = ctx->open_rec; 869 if (rec) { 870 msg = &rec->msg_plaintext; 871 if (!msg->apply_bytes) 872 reset_eval = true; 873 } 874 if (reset_eval) { 875 psock->eval = __SK_NONE; 876 if (psock->sk_redir) { 877 sock_put(psock->sk_redir); 878 psock->sk_redir = NULL; 879 } 880 } 881 if (rec) 882 goto more_data; 883 } 884 out_err: 885 sk_psock_put(sk, psock); 886 return err; 887 } 888 889 static int tls_sw_push_pending_record(struct sock *sk, int flags) 890 { 891 struct tls_context *tls_ctx = tls_get_ctx(sk); 892 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 893 struct tls_rec *rec = ctx->open_rec; 894 struct sk_msg *msg_pl; 895 size_t copied; 896 897 if (!rec) 898 return 0; 899 900 msg_pl = &rec->msg_plaintext; 901 copied = msg_pl->sg.size; 902 if (!copied) 903 return 0; 904 905 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 906 &copied, flags); 907 } 908 909 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 910 { 911 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 912 struct tls_context *tls_ctx = tls_get_ctx(sk); 913 struct tls_prot_info *prot = &tls_ctx->prot_info; 914 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 915 bool async_capable = ctx->async_capable; 916 unsigned char record_type = TLS_RECORD_TYPE_DATA; 917 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 918 bool eor = !(msg->msg_flags & MSG_MORE); 919 size_t try_to_copy, copied = 0; 920 struct sk_msg *msg_pl, *msg_en; 921 struct tls_rec *rec; 922 int required_size; 923 int num_async = 0; 924 bool full_record; 925 int record_room; 926 int num_zc = 0; 927 int orig_size; 928 int ret = 0; 929 930 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 931 return -EOPNOTSUPP; 932 933 mutex_lock(&tls_ctx->tx_lock); 934 lock_sock(sk); 935 936 if (unlikely(msg->msg_controllen)) { 937 ret = tls_proccess_cmsg(sk, msg, &record_type); 938 if (ret) { 939 if (ret == -EINPROGRESS) 940 num_async++; 941 else if (ret != -EAGAIN) 942 goto send_end; 943 } 944 } 945 946 while (msg_data_left(msg)) { 947 if (sk->sk_err) { 948 ret = -sk->sk_err; 949 goto send_end; 950 } 951 952 if (ctx->open_rec) 953 rec = ctx->open_rec; 954 else 955 rec = ctx->open_rec = tls_get_rec(sk); 956 if (!rec) { 957 ret = -ENOMEM; 958 goto send_end; 959 } 960 961 msg_pl = &rec->msg_plaintext; 962 msg_en = &rec->msg_encrypted; 963 964 orig_size = msg_pl->sg.size; 965 full_record = false; 966 try_to_copy = msg_data_left(msg); 967 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 968 if (try_to_copy >= record_room) { 969 try_to_copy = record_room; 970 full_record = true; 971 } 972 973 required_size = msg_pl->sg.size + try_to_copy + 974 prot->overhead_size; 975 976 if (!sk_stream_memory_free(sk)) 977 goto wait_for_sndbuf; 978 979 alloc_encrypted: 980 ret = tls_alloc_encrypted_msg(sk, required_size); 981 if (ret) { 982 if (ret != -ENOSPC) 983 goto wait_for_memory; 984 985 /* Adjust try_to_copy according to the amount that was 986 * actually allocated. The difference is due 987 * to max sg elements limit 988 */ 989 try_to_copy -= required_size - msg_en->sg.size; 990 full_record = true; 991 } 992 993 if (!is_kvec && (full_record || eor) && !async_capable) { 994 u32 first = msg_pl->sg.end; 995 996 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 997 msg_pl, try_to_copy); 998 if (ret) 999 goto fallback_to_reg_send; 1000 1001 num_zc++; 1002 copied += try_to_copy; 1003 1004 sk_msg_sg_copy_set(msg_pl, first); 1005 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1006 record_type, &copied, 1007 msg->msg_flags); 1008 if (ret) { 1009 if (ret == -EINPROGRESS) 1010 num_async++; 1011 else if (ret == -ENOMEM) 1012 goto wait_for_memory; 1013 else if (ctx->open_rec && ret == -ENOSPC) 1014 goto rollback_iter; 1015 else if (ret != -EAGAIN) 1016 goto send_end; 1017 } 1018 continue; 1019 rollback_iter: 1020 copied -= try_to_copy; 1021 sk_msg_sg_copy_clear(msg_pl, first); 1022 iov_iter_revert(&msg->msg_iter, 1023 msg_pl->sg.size - orig_size); 1024 fallback_to_reg_send: 1025 sk_msg_trim(sk, msg_pl, orig_size); 1026 } 1027 1028 required_size = msg_pl->sg.size + try_to_copy; 1029 1030 ret = tls_clone_plaintext_msg(sk, required_size); 1031 if (ret) { 1032 if (ret != -ENOSPC) 1033 goto send_end; 1034 1035 /* Adjust try_to_copy according to the amount that was 1036 * actually allocated. The difference is due 1037 * to max sg elements limit 1038 */ 1039 try_to_copy -= required_size - msg_pl->sg.size; 1040 full_record = true; 1041 sk_msg_trim(sk, msg_en, 1042 msg_pl->sg.size + prot->overhead_size); 1043 } 1044 1045 if (try_to_copy) { 1046 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1047 msg_pl, try_to_copy); 1048 if (ret < 0) 1049 goto trim_sgl; 1050 } 1051 1052 /* Open records defined only if successfully copied, otherwise 1053 * we would trim the sg but not reset the open record frags. 1054 */ 1055 tls_ctx->pending_open_record_frags = true; 1056 copied += try_to_copy; 1057 if (full_record || eor) { 1058 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1059 record_type, &copied, 1060 msg->msg_flags); 1061 if (ret) { 1062 if (ret == -EINPROGRESS) 1063 num_async++; 1064 else if (ret == -ENOMEM) 1065 goto wait_for_memory; 1066 else if (ret != -EAGAIN) { 1067 if (ret == -ENOSPC) 1068 ret = 0; 1069 goto send_end; 1070 } 1071 } 1072 } 1073 1074 continue; 1075 1076 wait_for_sndbuf: 1077 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1078 wait_for_memory: 1079 ret = sk_stream_wait_memory(sk, &timeo); 1080 if (ret) { 1081 trim_sgl: 1082 if (ctx->open_rec) 1083 tls_trim_both_msgs(sk, orig_size); 1084 goto send_end; 1085 } 1086 1087 if (ctx->open_rec && msg_en->sg.size < required_size) 1088 goto alloc_encrypted; 1089 } 1090 1091 if (!num_async) { 1092 goto send_end; 1093 } else if (num_zc) { 1094 /* Wait for pending encryptions to get completed */ 1095 smp_store_mb(ctx->async_notify, true); 1096 1097 if (atomic_read(&ctx->encrypt_pending)) 1098 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1099 else 1100 reinit_completion(&ctx->async_wait.completion); 1101 1102 WRITE_ONCE(ctx->async_notify, false); 1103 1104 if (ctx->async_wait.err) { 1105 ret = ctx->async_wait.err; 1106 copied = 0; 1107 } 1108 } 1109 1110 /* Transmit if any encryptions have completed */ 1111 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1112 cancel_delayed_work(&ctx->tx_work.work); 1113 tls_tx_records(sk, msg->msg_flags); 1114 } 1115 1116 send_end: 1117 ret = sk_stream_error(sk, msg->msg_flags, ret); 1118 1119 release_sock(sk); 1120 mutex_unlock(&tls_ctx->tx_lock); 1121 return copied ? copied : ret; 1122 } 1123 1124 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1125 int offset, size_t size, int flags) 1126 { 1127 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1128 struct tls_context *tls_ctx = tls_get_ctx(sk); 1129 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1130 struct tls_prot_info *prot = &tls_ctx->prot_info; 1131 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1132 struct sk_msg *msg_pl; 1133 struct tls_rec *rec; 1134 int num_async = 0; 1135 size_t copied = 0; 1136 bool full_record; 1137 int record_room; 1138 int ret = 0; 1139 bool eor; 1140 1141 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1142 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1143 1144 /* Call the sk_stream functions to manage the sndbuf mem. */ 1145 while (size > 0) { 1146 size_t copy, required_size; 1147 1148 if (sk->sk_err) { 1149 ret = -sk->sk_err; 1150 goto sendpage_end; 1151 } 1152 1153 if (ctx->open_rec) 1154 rec = ctx->open_rec; 1155 else 1156 rec = ctx->open_rec = tls_get_rec(sk); 1157 if (!rec) { 1158 ret = -ENOMEM; 1159 goto sendpage_end; 1160 } 1161 1162 msg_pl = &rec->msg_plaintext; 1163 1164 full_record = false; 1165 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1166 copy = size; 1167 if (copy >= record_room) { 1168 copy = record_room; 1169 full_record = true; 1170 } 1171 1172 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1173 1174 if (!sk_stream_memory_free(sk)) 1175 goto wait_for_sndbuf; 1176 alloc_payload: 1177 ret = tls_alloc_encrypted_msg(sk, required_size); 1178 if (ret) { 1179 if (ret != -ENOSPC) 1180 goto wait_for_memory; 1181 1182 /* Adjust copy according to the amount that was 1183 * actually allocated. The difference is due 1184 * to max sg elements limit 1185 */ 1186 copy -= required_size - msg_pl->sg.size; 1187 full_record = true; 1188 } 1189 1190 sk_msg_page_add(msg_pl, page, copy, offset); 1191 sk_mem_charge(sk, copy); 1192 1193 offset += copy; 1194 size -= copy; 1195 copied += copy; 1196 1197 tls_ctx->pending_open_record_frags = true; 1198 if (full_record || eor || sk_msg_full(msg_pl)) { 1199 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1200 record_type, &copied, flags); 1201 if (ret) { 1202 if (ret == -EINPROGRESS) 1203 num_async++; 1204 else if (ret == -ENOMEM) 1205 goto wait_for_memory; 1206 else if (ret != -EAGAIN) { 1207 if (ret == -ENOSPC) 1208 ret = 0; 1209 goto sendpage_end; 1210 } 1211 } 1212 } 1213 continue; 1214 wait_for_sndbuf: 1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1216 wait_for_memory: 1217 ret = sk_stream_wait_memory(sk, &timeo); 1218 if (ret) { 1219 if (ctx->open_rec) 1220 tls_trim_both_msgs(sk, msg_pl->sg.size); 1221 goto sendpage_end; 1222 } 1223 1224 if (ctx->open_rec) 1225 goto alloc_payload; 1226 } 1227 1228 if (num_async) { 1229 /* Transmit if any encryptions have completed */ 1230 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1231 cancel_delayed_work(&ctx->tx_work.work); 1232 tls_tx_records(sk, flags); 1233 } 1234 } 1235 sendpage_end: 1236 ret = sk_stream_error(sk, flags, ret); 1237 return copied ? copied : ret; 1238 } 1239 1240 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1241 int offset, size_t size, int flags) 1242 { 1243 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1244 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1245 MSG_NO_SHARED_FRAGS)) 1246 return -EOPNOTSUPP; 1247 1248 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1249 } 1250 1251 int tls_sw_sendpage(struct sock *sk, struct page *page, 1252 int offset, size_t size, int flags) 1253 { 1254 struct tls_context *tls_ctx = tls_get_ctx(sk); 1255 int ret; 1256 1257 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1258 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1259 return -EOPNOTSUPP; 1260 1261 mutex_lock(&tls_ctx->tx_lock); 1262 lock_sock(sk); 1263 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1264 release_sock(sk); 1265 mutex_unlock(&tls_ctx->tx_lock); 1266 return ret; 1267 } 1268 1269 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1270 int flags, long timeo, int *err) 1271 { 1272 struct tls_context *tls_ctx = tls_get_ctx(sk); 1273 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1274 struct sk_buff *skb; 1275 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1276 1277 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1278 if (sk->sk_err) { 1279 *err = sock_error(sk); 1280 return NULL; 1281 } 1282 1283 if (sk->sk_shutdown & RCV_SHUTDOWN) 1284 return NULL; 1285 1286 if (sock_flag(sk, SOCK_DONE)) 1287 return NULL; 1288 1289 if ((flags & MSG_DONTWAIT) || !timeo) { 1290 *err = -EAGAIN; 1291 return NULL; 1292 } 1293 1294 add_wait_queue(sk_sleep(sk), &wait); 1295 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1296 sk_wait_event(sk, &timeo, 1297 ctx->recv_pkt != skb || 1298 !sk_psock_queue_empty(psock), 1299 &wait); 1300 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1301 remove_wait_queue(sk_sleep(sk), &wait); 1302 1303 /* Handle signals */ 1304 if (signal_pending(current)) { 1305 *err = sock_intr_errno(timeo); 1306 return NULL; 1307 } 1308 } 1309 1310 return skb; 1311 } 1312 1313 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1314 int length, int *pages_used, 1315 unsigned int *size_used, 1316 struct scatterlist *to, 1317 int to_max_pages) 1318 { 1319 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1320 struct page *pages[MAX_SKB_FRAGS]; 1321 unsigned int size = *size_used; 1322 ssize_t copied, use; 1323 size_t offset; 1324 1325 while (length > 0) { 1326 i = 0; 1327 maxpages = to_max_pages - num_elem; 1328 if (maxpages == 0) { 1329 rc = -EFAULT; 1330 goto out; 1331 } 1332 copied = iov_iter_get_pages(from, pages, 1333 length, 1334 maxpages, &offset); 1335 if (copied <= 0) { 1336 rc = -EFAULT; 1337 goto out; 1338 } 1339 1340 iov_iter_advance(from, copied); 1341 1342 length -= copied; 1343 size += copied; 1344 while (copied) { 1345 use = min_t(int, copied, PAGE_SIZE - offset); 1346 1347 sg_set_page(&to[num_elem], 1348 pages[i], use, offset); 1349 sg_unmark_end(&to[num_elem]); 1350 /* We do not uncharge memory from this API */ 1351 1352 offset = 0; 1353 copied -= use; 1354 1355 i++; 1356 num_elem++; 1357 } 1358 } 1359 /* Mark the end in the last sg entry if newly added */ 1360 if (num_elem > *pages_used) 1361 sg_mark_end(&to[num_elem - 1]); 1362 out: 1363 if (rc) 1364 iov_iter_revert(from, size - *size_used); 1365 *size_used = size; 1366 *pages_used = num_elem; 1367 1368 return rc; 1369 } 1370 1371 /* This function decrypts the input skb into either out_iov or in out_sg 1372 * or in skb buffers itself. The input parameter 'zc' indicates if 1373 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1374 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1375 * NULL, then the decryption happens inside skb buffers itself, i.e. 1376 * zero-copy gets disabled and 'zc' is updated. 1377 */ 1378 1379 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1380 struct iov_iter *out_iov, 1381 struct scatterlist *out_sg, 1382 int *chunk, bool *zc, bool async) 1383 { 1384 struct tls_context *tls_ctx = tls_get_ctx(sk); 1385 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1386 struct tls_prot_info *prot = &tls_ctx->prot_info; 1387 struct strp_msg *rxm = strp_msg(skb); 1388 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1389 struct aead_request *aead_req; 1390 struct sk_buff *unused; 1391 u8 *aad, *iv, *mem = NULL; 1392 struct scatterlist *sgin = NULL; 1393 struct scatterlist *sgout = NULL; 1394 const int data_len = rxm->full_len - prot->overhead_size + 1395 prot->tail_size; 1396 int iv_offset = 0; 1397 1398 if (*zc && (out_iov || out_sg)) { 1399 if (out_iov) 1400 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1401 else 1402 n_sgout = sg_nents(out_sg); 1403 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1404 rxm->full_len - prot->prepend_size); 1405 } else { 1406 n_sgout = 0; 1407 *zc = false; 1408 n_sgin = skb_cow_data(skb, 0, &unused); 1409 } 1410 1411 if (n_sgin < 1) 1412 return -EBADMSG; 1413 1414 /* Increment to accommodate AAD */ 1415 n_sgin = n_sgin + 1; 1416 1417 nsg = n_sgin + n_sgout; 1418 1419 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1420 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1421 mem_size = mem_size + prot->aad_size; 1422 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1423 1424 /* Allocate a single block of memory which contains 1425 * aead_req || sgin[] || sgout[] || aad || iv. 1426 * This order achieves correct alignment for aead_req, sgin, sgout. 1427 */ 1428 mem = kmalloc(mem_size, sk->sk_allocation); 1429 if (!mem) 1430 return -ENOMEM; 1431 1432 /* Segment the allocated memory */ 1433 aead_req = (struct aead_request *)mem; 1434 sgin = (struct scatterlist *)(mem + aead_size); 1435 sgout = sgin + n_sgin; 1436 aad = (u8 *)(sgout + n_sgout); 1437 iv = aad + prot->aad_size; 1438 1439 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1440 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1441 iv[0] = 2; 1442 iv_offset = 1; 1443 } 1444 1445 /* Prepare IV */ 1446 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1447 iv + iv_offset + prot->salt_size, 1448 prot->iv_size); 1449 if (err < 0) { 1450 kfree(mem); 1451 return err; 1452 } 1453 if (prot->version == TLS_1_3_VERSION) 1454 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1455 crypto_aead_ivsize(ctx->aead_recv)); 1456 else 1457 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1458 1459 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1460 1461 /* Prepare AAD */ 1462 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1463 prot->tail_size, 1464 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1465 ctx->control, prot->version); 1466 1467 /* Prepare sgin */ 1468 sg_init_table(sgin, n_sgin); 1469 sg_set_buf(&sgin[0], aad, prot->aad_size); 1470 err = skb_to_sgvec(skb, &sgin[1], 1471 rxm->offset + prot->prepend_size, 1472 rxm->full_len - prot->prepend_size); 1473 if (err < 0) { 1474 kfree(mem); 1475 return err; 1476 } 1477 1478 if (n_sgout) { 1479 if (out_iov) { 1480 sg_init_table(sgout, n_sgout); 1481 sg_set_buf(&sgout[0], aad, prot->aad_size); 1482 1483 *chunk = 0; 1484 err = tls_setup_from_iter(sk, out_iov, data_len, 1485 &pages, chunk, &sgout[1], 1486 (n_sgout - 1)); 1487 if (err < 0) 1488 goto fallback_to_reg_recv; 1489 } else if (out_sg) { 1490 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1491 } else { 1492 goto fallback_to_reg_recv; 1493 } 1494 } else { 1495 fallback_to_reg_recv: 1496 sgout = sgin; 1497 pages = 0; 1498 *chunk = data_len; 1499 *zc = false; 1500 } 1501 1502 /* Prepare and submit AEAD request */ 1503 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1504 data_len, aead_req, async); 1505 if (err == -EINPROGRESS) 1506 return err; 1507 1508 /* Release the pages in case iov was mapped to pages */ 1509 for (; pages > 0; pages--) 1510 put_page(sg_page(&sgout[pages])); 1511 1512 kfree(mem); 1513 return err; 1514 } 1515 1516 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1517 struct iov_iter *dest, int *chunk, bool *zc, 1518 bool async) 1519 { 1520 struct tls_context *tls_ctx = tls_get_ctx(sk); 1521 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1522 struct tls_prot_info *prot = &tls_ctx->prot_info; 1523 struct strp_msg *rxm = strp_msg(skb); 1524 int pad, err = 0; 1525 1526 if (!ctx->decrypted) { 1527 if (tls_ctx->rx_conf == TLS_HW) { 1528 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1529 if (err < 0) 1530 return err; 1531 } 1532 1533 /* Still not decrypted after tls_device */ 1534 if (!ctx->decrypted) { 1535 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1536 async); 1537 if (err < 0) { 1538 if (err == -EINPROGRESS) 1539 tls_advance_record_sn(sk, prot, 1540 &tls_ctx->rx); 1541 else if (err == -EBADMSG) 1542 TLS_INC_STATS(sock_net(sk), 1543 LINUX_MIB_TLSDECRYPTERROR); 1544 return err; 1545 } 1546 } else { 1547 *zc = false; 1548 } 1549 1550 pad = padding_length(ctx, prot, skb); 1551 if (pad < 0) 1552 return pad; 1553 1554 rxm->full_len -= pad; 1555 rxm->offset += prot->prepend_size; 1556 rxm->full_len -= prot->overhead_size; 1557 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1558 ctx->decrypted = 1; 1559 ctx->saved_data_ready(sk); 1560 } else { 1561 *zc = false; 1562 } 1563 1564 return err; 1565 } 1566 1567 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1568 struct scatterlist *sgout) 1569 { 1570 bool zc = true; 1571 int chunk; 1572 1573 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1574 } 1575 1576 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1577 unsigned int len) 1578 { 1579 struct tls_context *tls_ctx = tls_get_ctx(sk); 1580 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1581 1582 if (skb) { 1583 struct strp_msg *rxm = strp_msg(skb); 1584 1585 if (len < rxm->full_len) { 1586 rxm->offset += len; 1587 rxm->full_len -= len; 1588 return false; 1589 } 1590 consume_skb(skb); 1591 } 1592 1593 /* Finished with message */ 1594 ctx->recv_pkt = NULL; 1595 __strp_unpause(&ctx->strp); 1596 1597 return true; 1598 } 1599 1600 /* This function traverses the rx_list in tls receive context to copies the 1601 * decrypted records into the buffer provided by caller zero copy is not 1602 * true. Further, the records are removed from the rx_list if it is not a peek 1603 * case and the record has been consumed completely. 1604 */ 1605 static int process_rx_list(struct tls_sw_context_rx *ctx, 1606 struct msghdr *msg, 1607 u8 *control, 1608 bool *cmsg, 1609 size_t skip, 1610 size_t len, 1611 bool zc, 1612 bool is_peek) 1613 { 1614 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1615 u8 ctrl = *control; 1616 u8 msgc = *cmsg; 1617 struct tls_msg *tlm; 1618 ssize_t copied = 0; 1619 1620 /* Set the record type in 'control' if caller didn't pass it */ 1621 if (!ctrl && skb) { 1622 tlm = tls_msg(skb); 1623 ctrl = tlm->control; 1624 } 1625 1626 while (skip && skb) { 1627 struct strp_msg *rxm = strp_msg(skb); 1628 tlm = tls_msg(skb); 1629 1630 /* Cannot process a record of different type */ 1631 if (ctrl != tlm->control) 1632 return 0; 1633 1634 if (skip < rxm->full_len) 1635 break; 1636 1637 skip = skip - rxm->full_len; 1638 skb = skb_peek_next(skb, &ctx->rx_list); 1639 } 1640 1641 while (len && skb) { 1642 struct sk_buff *next_skb; 1643 struct strp_msg *rxm = strp_msg(skb); 1644 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1645 1646 tlm = tls_msg(skb); 1647 1648 /* Cannot process a record of different type */ 1649 if (ctrl != tlm->control) 1650 return 0; 1651 1652 /* Set record type if not already done. For a non-data record, 1653 * do not proceed if record type could not be copied. 1654 */ 1655 if (!msgc) { 1656 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1657 sizeof(ctrl), &ctrl); 1658 msgc = true; 1659 if (ctrl != TLS_RECORD_TYPE_DATA) { 1660 if (cerr || msg->msg_flags & MSG_CTRUNC) 1661 return -EIO; 1662 1663 *cmsg = msgc; 1664 } 1665 } 1666 1667 if (!zc || (rxm->full_len - skip) > len) { 1668 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1669 msg, chunk); 1670 if (err < 0) 1671 return err; 1672 } 1673 1674 len = len - chunk; 1675 copied = copied + chunk; 1676 1677 /* Consume the data from record if it is non-peek case*/ 1678 if (!is_peek) { 1679 rxm->offset = rxm->offset + chunk; 1680 rxm->full_len = rxm->full_len - chunk; 1681 1682 /* Return if there is unconsumed data in the record */ 1683 if (rxm->full_len - skip) 1684 break; 1685 } 1686 1687 /* The remaining skip-bytes must lie in 1st record in rx_list. 1688 * So from the 2nd record, 'skip' should be 0. 1689 */ 1690 skip = 0; 1691 1692 if (msg) 1693 msg->msg_flags |= MSG_EOR; 1694 1695 next_skb = skb_peek_next(skb, &ctx->rx_list); 1696 1697 if (!is_peek) { 1698 skb_unlink(skb, &ctx->rx_list); 1699 consume_skb(skb); 1700 } 1701 1702 skb = next_skb; 1703 } 1704 1705 *control = ctrl; 1706 return copied; 1707 } 1708 1709 int tls_sw_recvmsg(struct sock *sk, 1710 struct msghdr *msg, 1711 size_t len, 1712 int nonblock, 1713 int flags, 1714 int *addr_len) 1715 { 1716 struct tls_context *tls_ctx = tls_get_ctx(sk); 1717 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1718 struct tls_prot_info *prot = &tls_ctx->prot_info; 1719 struct sk_psock *psock; 1720 unsigned char control = 0; 1721 ssize_t decrypted = 0; 1722 struct strp_msg *rxm; 1723 struct tls_msg *tlm; 1724 struct sk_buff *skb; 1725 ssize_t copied = 0; 1726 bool cmsg = false; 1727 int target, err = 0; 1728 long timeo; 1729 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1730 bool is_peek = flags & MSG_PEEK; 1731 int num_async = 0; 1732 1733 flags |= nonblock; 1734 1735 if (unlikely(flags & MSG_ERRQUEUE)) 1736 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1737 1738 psock = sk_psock_get(sk); 1739 lock_sock(sk); 1740 1741 /* Process pending decrypted records. It must be non-zero-copy */ 1742 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1743 is_peek); 1744 if (err < 0) { 1745 tls_err_abort(sk, err); 1746 goto end; 1747 } else { 1748 copied = err; 1749 } 1750 1751 if (len <= copied) 1752 goto recv_end; 1753 1754 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1755 len = len - copied; 1756 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1757 1758 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1759 bool retain_skb = false; 1760 bool zc = false; 1761 int to_decrypt; 1762 int chunk = 0; 1763 bool async_capable; 1764 bool async = false; 1765 1766 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1767 if (!skb) { 1768 if (psock) { 1769 int ret = __tcp_bpf_recvmsg(sk, psock, 1770 msg, len, flags); 1771 1772 if (ret > 0) { 1773 decrypted += ret; 1774 len -= ret; 1775 continue; 1776 } 1777 } 1778 goto recv_end; 1779 } else { 1780 tlm = tls_msg(skb); 1781 if (prot->version == TLS_1_3_VERSION) 1782 tlm->control = 0; 1783 else 1784 tlm->control = ctx->control; 1785 } 1786 1787 rxm = strp_msg(skb); 1788 1789 to_decrypt = rxm->full_len - prot->overhead_size; 1790 1791 if (to_decrypt <= len && !is_kvec && !is_peek && 1792 ctx->control == TLS_RECORD_TYPE_DATA && 1793 prot->version != TLS_1_3_VERSION) 1794 zc = true; 1795 1796 /* Do not use async mode if record is non-data */ 1797 if (ctx->control == TLS_RECORD_TYPE_DATA) 1798 async_capable = ctx->async_capable; 1799 else 1800 async_capable = false; 1801 1802 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1803 &chunk, &zc, async_capable); 1804 if (err < 0 && err != -EINPROGRESS) { 1805 tls_err_abort(sk, EBADMSG); 1806 goto recv_end; 1807 } 1808 1809 if (err == -EINPROGRESS) { 1810 async = true; 1811 num_async++; 1812 } else if (prot->version == TLS_1_3_VERSION) { 1813 tlm->control = ctx->control; 1814 } 1815 1816 /* If the type of records being processed is not known yet, 1817 * set it to record type just dequeued. If it is already known, 1818 * but does not match the record type just dequeued, go to end. 1819 * We always get record type here since for tls1.2, record type 1820 * is known just after record is dequeued from stream parser. 1821 * For tls1.3, we disable async. 1822 */ 1823 1824 if (!control) 1825 control = tlm->control; 1826 else if (control != tlm->control) 1827 goto recv_end; 1828 1829 if (!cmsg) { 1830 int cerr; 1831 1832 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1833 sizeof(control), &control); 1834 cmsg = true; 1835 if (control != TLS_RECORD_TYPE_DATA) { 1836 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1837 err = -EIO; 1838 goto recv_end; 1839 } 1840 } 1841 } 1842 1843 if (async) 1844 goto pick_next_record; 1845 1846 if (!zc) { 1847 if (rxm->full_len > len) { 1848 retain_skb = true; 1849 chunk = len; 1850 } else { 1851 chunk = rxm->full_len; 1852 } 1853 1854 err = skb_copy_datagram_msg(skb, rxm->offset, 1855 msg, chunk); 1856 if (err < 0) 1857 goto recv_end; 1858 1859 if (!is_peek) { 1860 rxm->offset = rxm->offset + chunk; 1861 rxm->full_len = rxm->full_len - chunk; 1862 } 1863 } 1864 1865 pick_next_record: 1866 if (chunk > len) 1867 chunk = len; 1868 1869 decrypted += chunk; 1870 len -= chunk; 1871 1872 /* For async or peek case, queue the current skb */ 1873 if (async || is_peek || retain_skb) { 1874 skb_queue_tail(&ctx->rx_list, skb); 1875 skb = NULL; 1876 } 1877 1878 if (tls_sw_advance_skb(sk, skb, chunk)) { 1879 /* Return full control message to 1880 * userspace before trying to parse 1881 * another message type 1882 */ 1883 msg->msg_flags |= MSG_EOR; 1884 if (ctx->control != TLS_RECORD_TYPE_DATA) 1885 goto recv_end; 1886 } else { 1887 break; 1888 } 1889 } 1890 1891 recv_end: 1892 if (num_async) { 1893 /* Wait for all previously submitted records to be decrypted */ 1894 smp_store_mb(ctx->async_notify, true); 1895 if (atomic_read(&ctx->decrypt_pending)) { 1896 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1897 if (err) { 1898 /* one of async decrypt failed */ 1899 tls_err_abort(sk, err); 1900 copied = 0; 1901 decrypted = 0; 1902 goto end; 1903 } 1904 } else { 1905 reinit_completion(&ctx->async_wait.completion); 1906 } 1907 WRITE_ONCE(ctx->async_notify, false); 1908 1909 /* Drain records from the rx_list & copy if required */ 1910 if (is_peek || is_kvec) 1911 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1912 decrypted, false, is_peek); 1913 else 1914 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1915 decrypted, true, is_peek); 1916 if (err < 0) { 1917 tls_err_abort(sk, err); 1918 copied = 0; 1919 goto end; 1920 } 1921 } 1922 1923 copied += decrypted; 1924 1925 end: 1926 release_sock(sk); 1927 if (psock) 1928 sk_psock_put(sk, psock); 1929 return copied ? : err; 1930 } 1931 1932 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1933 struct pipe_inode_info *pipe, 1934 size_t len, unsigned int flags) 1935 { 1936 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1937 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1938 struct strp_msg *rxm = NULL; 1939 struct sock *sk = sock->sk; 1940 struct sk_buff *skb; 1941 ssize_t copied = 0; 1942 int err = 0; 1943 long timeo; 1944 int chunk; 1945 bool zc = false; 1946 1947 lock_sock(sk); 1948 1949 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1950 1951 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1952 if (!skb) 1953 goto splice_read_end; 1954 1955 if (!ctx->decrypted) { 1956 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1957 1958 /* splice does not support reading control messages */ 1959 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1960 err = -EINVAL; 1961 goto splice_read_end; 1962 } 1963 1964 if (err < 0) { 1965 tls_err_abort(sk, EBADMSG); 1966 goto splice_read_end; 1967 } 1968 ctx->decrypted = 1; 1969 } 1970 rxm = strp_msg(skb); 1971 1972 chunk = min_t(unsigned int, rxm->full_len, len); 1973 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1974 if (copied < 0) 1975 goto splice_read_end; 1976 1977 if (likely(!(flags & MSG_PEEK))) 1978 tls_sw_advance_skb(sk, skb, copied); 1979 1980 splice_read_end: 1981 release_sock(sk); 1982 return copied ? : err; 1983 } 1984 1985 bool tls_sw_stream_read(const struct sock *sk) 1986 { 1987 struct tls_context *tls_ctx = tls_get_ctx(sk); 1988 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1989 bool ingress_empty = true; 1990 struct sk_psock *psock; 1991 1992 rcu_read_lock(); 1993 psock = sk_psock(sk); 1994 if (psock) 1995 ingress_empty = list_empty(&psock->ingress_msg); 1996 rcu_read_unlock(); 1997 1998 return !ingress_empty || ctx->recv_pkt || 1999 !skb_queue_empty(&ctx->rx_list); 2000 } 2001 2002 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2003 { 2004 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2005 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2006 struct tls_prot_info *prot = &tls_ctx->prot_info; 2007 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2008 struct strp_msg *rxm = strp_msg(skb); 2009 size_t cipher_overhead; 2010 size_t data_len = 0; 2011 int ret; 2012 2013 /* Verify that we have a full TLS header, or wait for more data */ 2014 if (rxm->offset + prot->prepend_size > skb->len) 2015 return 0; 2016 2017 /* Sanity-check size of on-stack buffer. */ 2018 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2019 ret = -EINVAL; 2020 goto read_failure; 2021 } 2022 2023 /* Linearize header to local buffer */ 2024 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2025 2026 if (ret < 0) 2027 goto read_failure; 2028 2029 ctx->control = header[0]; 2030 2031 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2032 2033 cipher_overhead = prot->tag_size; 2034 if (prot->version != TLS_1_3_VERSION) 2035 cipher_overhead += prot->iv_size; 2036 2037 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2038 prot->tail_size) { 2039 ret = -EMSGSIZE; 2040 goto read_failure; 2041 } 2042 if (data_len < cipher_overhead) { 2043 ret = -EBADMSG; 2044 goto read_failure; 2045 } 2046 2047 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2048 if (header[1] != TLS_1_2_VERSION_MINOR || 2049 header[2] != TLS_1_2_VERSION_MAJOR) { 2050 ret = -EINVAL; 2051 goto read_failure; 2052 } 2053 2054 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2055 TCP_SKB_CB(skb)->seq + rxm->offset); 2056 return data_len + TLS_HEADER_SIZE; 2057 2058 read_failure: 2059 tls_err_abort(strp->sk, ret); 2060 2061 return ret; 2062 } 2063 2064 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2065 { 2066 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2067 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2068 2069 ctx->decrypted = 0; 2070 2071 ctx->recv_pkt = skb; 2072 strp_pause(strp); 2073 2074 ctx->saved_data_ready(strp->sk); 2075 } 2076 2077 static void tls_data_ready(struct sock *sk) 2078 { 2079 struct tls_context *tls_ctx = tls_get_ctx(sk); 2080 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2081 struct sk_psock *psock; 2082 2083 strp_data_ready(&ctx->strp); 2084 2085 psock = sk_psock_get(sk); 2086 if (psock) { 2087 if (!list_empty(&psock->ingress_msg)) 2088 ctx->saved_data_ready(sk); 2089 sk_psock_put(sk, psock); 2090 } 2091 } 2092 2093 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2094 { 2095 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2096 2097 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2098 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2099 cancel_delayed_work_sync(&ctx->tx_work.work); 2100 } 2101 2102 void tls_sw_release_resources_tx(struct sock *sk) 2103 { 2104 struct tls_context *tls_ctx = tls_get_ctx(sk); 2105 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2106 struct tls_rec *rec, *tmp; 2107 2108 /* Wait for any pending async encryptions to complete */ 2109 smp_store_mb(ctx->async_notify, true); 2110 if (atomic_read(&ctx->encrypt_pending)) 2111 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2112 2113 tls_tx_records(sk, -1); 2114 2115 /* Free up un-sent records in tx_list. First, free 2116 * the partially sent record if any at head of tx_list. 2117 */ 2118 if (tls_ctx->partially_sent_record) { 2119 tls_free_partial_record(sk, tls_ctx); 2120 rec = list_first_entry(&ctx->tx_list, 2121 struct tls_rec, list); 2122 list_del(&rec->list); 2123 sk_msg_free(sk, &rec->msg_plaintext); 2124 kfree(rec); 2125 } 2126 2127 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2128 list_del(&rec->list); 2129 sk_msg_free(sk, &rec->msg_encrypted); 2130 sk_msg_free(sk, &rec->msg_plaintext); 2131 kfree(rec); 2132 } 2133 2134 crypto_free_aead(ctx->aead_send); 2135 tls_free_open_rec(sk); 2136 } 2137 2138 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2139 { 2140 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2141 2142 kfree(ctx); 2143 } 2144 2145 void tls_sw_release_resources_rx(struct sock *sk) 2146 { 2147 struct tls_context *tls_ctx = tls_get_ctx(sk); 2148 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2149 2150 kfree(tls_ctx->rx.rec_seq); 2151 kfree(tls_ctx->rx.iv); 2152 2153 if (ctx->aead_recv) { 2154 kfree_skb(ctx->recv_pkt); 2155 ctx->recv_pkt = NULL; 2156 skb_queue_purge(&ctx->rx_list); 2157 crypto_free_aead(ctx->aead_recv); 2158 strp_stop(&ctx->strp); 2159 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2160 * we still want to strp_stop(), but sk->sk_data_ready was 2161 * never swapped. 2162 */ 2163 if (ctx->saved_data_ready) { 2164 write_lock_bh(&sk->sk_callback_lock); 2165 sk->sk_data_ready = ctx->saved_data_ready; 2166 write_unlock_bh(&sk->sk_callback_lock); 2167 } 2168 } 2169 } 2170 2171 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2172 { 2173 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2174 2175 strp_done(&ctx->strp); 2176 } 2177 2178 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2179 { 2180 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2181 2182 kfree(ctx); 2183 } 2184 2185 void tls_sw_free_resources_rx(struct sock *sk) 2186 { 2187 struct tls_context *tls_ctx = tls_get_ctx(sk); 2188 2189 tls_sw_release_resources_rx(sk); 2190 tls_sw_free_ctx_rx(tls_ctx); 2191 } 2192 2193 /* The work handler to transmitt the encrypted records in tx_list */ 2194 static void tx_work_handler(struct work_struct *work) 2195 { 2196 struct delayed_work *delayed_work = to_delayed_work(work); 2197 struct tx_work *tx_work = container_of(delayed_work, 2198 struct tx_work, work); 2199 struct sock *sk = tx_work->sk; 2200 struct tls_context *tls_ctx = tls_get_ctx(sk); 2201 struct tls_sw_context_tx *ctx; 2202 2203 if (unlikely(!tls_ctx)) 2204 return; 2205 2206 ctx = tls_sw_ctx_tx(tls_ctx); 2207 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2208 return; 2209 2210 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2211 return; 2212 mutex_lock(&tls_ctx->tx_lock); 2213 lock_sock(sk); 2214 tls_tx_records(sk, -1); 2215 release_sock(sk); 2216 mutex_unlock(&tls_ctx->tx_lock); 2217 } 2218 2219 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2220 { 2221 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2222 2223 /* Schedule the transmission if tx list is ready */ 2224 if (is_tx_ready(tx_ctx) && 2225 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2226 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2227 } 2228 2229 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2230 { 2231 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2232 2233 write_lock_bh(&sk->sk_callback_lock); 2234 rx_ctx->saved_data_ready = sk->sk_data_ready; 2235 sk->sk_data_ready = tls_data_ready; 2236 write_unlock_bh(&sk->sk_callback_lock); 2237 2238 strp_check_rcv(&rx_ctx->strp); 2239 } 2240 2241 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2242 { 2243 struct tls_context *tls_ctx = tls_get_ctx(sk); 2244 struct tls_prot_info *prot = &tls_ctx->prot_info; 2245 struct tls_crypto_info *crypto_info; 2246 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2247 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2248 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2249 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2250 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2251 struct cipher_context *cctx; 2252 struct crypto_aead **aead; 2253 struct strp_callbacks cb; 2254 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2255 struct crypto_tfm *tfm; 2256 char *iv, *rec_seq, *key, *salt, *cipher_name; 2257 size_t keysize; 2258 int rc = 0; 2259 2260 if (!ctx) { 2261 rc = -EINVAL; 2262 goto out; 2263 } 2264 2265 if (tx) { 2266 if (!ctx->priv_ctx_tx) { 2267 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2268 if (!sw_ctx_tx) { 2269 rc = -ENOMEM; 2270 goto out; 2271 } 2272 ctx->priv_ctx_tx = sw_ctx_tx; 2273 } else { 2274 sw_ctx_tx = 2275 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2276 } 2277 } else { 2278 if (!ctx->priv_ctx_rx) { 2279 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2280 if (!sw_ctx_rx) { 2281 rc = -ENOMEM; 2282 goto out; 2283 } 2284 ctx->priv_ctx_rx = sw_ctx_rx; 2285 } else { 2286 sw_ctx_rx = 2287 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2288 } 2289 } 2290 2291 if (tx) { 2292 crypto_init_wait(&sw_ctx_tx->async_wait); 2293 crypto_info = &ctx->crypto_send.info; 2294 cctx = &ctx->tx; 2295 aead = &sw_ctx_tx->aead_send; 2296 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2297 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2298 sw_ctx_tx->tx_work.sk = sk; 2299 } else { 2300 crypto_init_wait(&sw_ctx_rx->async_wait); 2301 crypto_info = &ctx->crypto_recv.info; 2302 cctx = &ctx->rx; 2303 skb_queue_head_init(&sw_ctx_rx->rx_list); 2304 aead = &sw_ctx_rx->aead_recv; 2305 } 2306 2307 switch (crypto_info->cipher_type) { 2308 case TLS_CIPHER_AES_GCM_128: { 2309 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2310 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2311 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2312 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2313 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2314 rec_seq = 2315 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2316 gcm_128_info = 2317 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2318 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2319 key = gcm_128_info->key; 2320 salt = gcm_128_info->salt; 2321 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2322 cipher_name = "gcm(aes)"; 2323 break; 2324 } 2325 case TLS_CIPHER_AES_GCM_256: { 2326 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2327 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2328 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2329 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2330 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2331 rec_seq = 2332 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2333 gcm_256_info = 2334 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2335 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2336 key = gcm_256_info->key; 2337 salt = gcm_256_info->salt; 2338 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2339 cipher_name = "gcm(aes)"; 2340 break; 2341 } 2342 case TLS_CIPHER_AES_CCM_128: { 2343 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2344 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2345 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2346 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2347 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2348 rec_seq = 2349 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2350 ccm_128_info = 2351 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2352 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2353 key = ccm_128_info->key; 2354 salt = ccm_128_info->salt; 2355 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2356 cipher_name = "ccm(aes)"; 2357 break; 2358 } 2359 default: 2360 rc = -EINVAL; 2361 goto free_priv; 2362 } 2363 2364 /* Sanity-check the sizes for stack allocations. */ 2365 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2366 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2367 rc = -EINVAL; 2368 goto free_priv; 2369 } 2370 2371 if (crypto_info->version == TLS_1_3_VERSION) { 2372 nonce_size = 0; 2373 prot->aad_size = TLS_HEADER_SIZE; 2374 prot->tail_size = 1; 2375 } else { 2376 prot->aad_size = TLS_AAD_SPACE_SIZE; 2377 prot->tail_size = 0; 2378 } 2379 2380 prot->version = crypto_info->version; 2381 prot->cipher_type = crypto_info->cipher_type; 2382 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2383 prot->tag_size = tag_size; 2384 prot->overhead_size = prot->prepend_size + 2385 prot->tag_size + prot->tail_size; 2386 prot->iv_size = iv_size; 2387 prot->salt_size = salt_size; 2388 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2389 if (!cctx->iv) { 2390 rc = -ENOMEM; 2391 goto free_priv; 2392 } 2393 /* Note: 128 & 256 bit salt are the same size */ 2394 prot->rec_seq_size = rec_seq_size; 2395 memcpy(cctx->iv, salt, salt_size); 2396 memcpy(cctx->iv + salt_size, iv, iv_size); 2397 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2398 if (!cctx->rec_seq) { 2399 rc = -ENOMEM; 2400 goto free_iv; 2401 } 2402 2403 if (!*aead) { 2404 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2405 if (IS_ERR(*aead)) { 2406 rc = PTR_ERR(*aead); 2407 *aead = NULL; 2408 goto free_rec_seq; 2409 } 2410 } 2411 2412 ctx->push_pending_record = tls_sw_push_pending_record; 2413 2414 rc = crypto_aead_setkey(*aead, key, keysize); 2415 2416 if (rc) 2417 goto free_aead; 2418 2419 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2420 if (rc) 2421 goto free_aead; 2422 2423 if (sw_ctx_rx) { 2424 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2425 2426 if (crypto_info->version == TLS_1_3_VERSION) 2427 sw_ctx_rx->async_capable = 0; 2428 else 2429 sw_ctx_rx->async_capable = 2430 !!(tfm->__crt_alg->cra_flags & 2431 CRYPTO_ALG_ASYNC); 2432 2433 /* Set up strparser */ 2434 memset(&cb, 0, sizeof(cb)); 2435 cb.rcv_msg = tls_queue; 2436 cb.parse_msg = tls_read_size; 2437 2438 strp_init(&sw_ctx_rx->strp, sk, &cb); 2439 } 2440 2441 goto out; 2442 2443 free_aead: 2444 crypto_free_aead(*aead); 2445 *aead = NULL; 2446 free_rec_seq: 2447 kfree(cctx->rec_seq); 2448 cctx->rec_seq = NULL; 2449 free_iv: 2450 kfree(cctx->iv); 2451 cctx->iv = NULL; 2452 free_priv: 2453 if (tx) { 2454 kfree(ctx->priv_ctx_tx); 2455 ctx->priv_ctx_tx = NULL; 2456 } else { 2457 kfree(ctx->priv_ctx_rx); 2458 ctx->priv_ctx_rx = NULL; 2459 } 2460 out: 2461 return rc; 2462 } 2463