xref: /openbmc/linux/net/tls/tls_sw.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  *
8  * This software is available to you under a choice of one of two
9  * licenses.  You may choose to be licensed under the terms of the GNU
10  * General Public License (GPL) Version 2, available from the file
11  * COPYING in the main directory of this source tree, or the
12  * OpenIB.org BSD license below:
13  *
14  *     Redistribution and use in source and binary forms, with or
15  *     without modification, are permitted provided that the following
16  *     conditions are met:
17  *
18  *      - Redistributions of source code must retain the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer.
21  *
22  *      - Redistributions in binary form must reproduce the above
23  *        copyright notice, this list of conditions and the following
24  *        disclaimer in the documentation and/or other materials
25  *        provided with the distribution.
26  *
27  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34  * SOFTWARE.
35  */
36 
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
40 
41 #include <net/strparser.h>
42 #include <net/tls.h>
43 
44 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
45 
46 static int tls_do_decryption(struct sock *sk,
47 			     struct scatterlist *sgin,
48 			     struct scatterlist *sgout,
49 			     char *iv_recv,
50 			     size_t data_len,
51 			     struct sk_buff *skb,
52 			     gfp_t flags)
53 {
54 	struct tls_context *tls_ctx = tls_get_ctx(sk);
55 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
56 	struct aead_request *aead_req;
57 
58 	int ret;
59 
60 	aead_req = aead_request_alloc(ctx->aead_recv, flags);
61 	if (!aead_req)
62 		return -ENOMEM;
63 
64 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
65 	aead_request_set_crypt(aead_req, sgin, sgout,
66 			       data_len + tls_ctx->rx.tag_size,
67 			       (u8 *)iv_recv);
68 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
69 				  crypto_req_done, &ctx->async_wait);
70 
71 	ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
72 
73 	aead_request_free(aead_req);
74 	return ret;
75 }
76 
77 static void trim_sg(struct sock *sk, struct scatterlist *sg,
78 		    int *sg_num_elem, unsigned int *sg_size, int target_size)
79 {
80 	int i = *sg_num_elem - 1;
81 	int trim = *sg_size - target_size;
82 
83 	if (trim <= 0) {
84 		WARN_ON(trim < 0);
85 		return;
86 	}
87 
88 	*sg_size = target_size;
89 	while (trim >= sg[i].length) {
90 		trim -= sg[i].length;
91 		sk_mem_uncharge(sk, sg[i].length);
92 		put_page(sg_page(&sg[i]));
93 		i--;
94 
95 		if (i < 0)
96 			goto out;
97 	}
98 
99 	sg[i].length -= trim;
100 	sk_mem_uncharge(sk, trim);
101 
102 out:
103 	*sg_num_elem = i + 1;
104 }
105 
106 static void trim_both_sgl(struct sock *sk, int target_size)
107 {
108 	struct tls_context *tls_ctx = tls_get_ctx(sk);
109 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
110 
111 	trim_sg(sk, ctx->sg_plaintext_data,
112 		&ctx->sg_plaintext_num_elem,
113 		&ctx->sg_plaintext_size,
114 		target_size);
115 
116 	if (target_size > 0)
117 		target_size += tls_ctx->tx.overhead_size;
118 
119 	trim_sg(sk, ctx->sg_encrypted_data,
120 		&ctx->sg_encrypted_num_elem,
121 		&ctx->sg_encrypted_size,
122 		target_size);
123 }
124 
125 static int alloc_encrypted_sg(struct sock *sk, int len)
126 {
127 	struct tls_context *tls_ctx = tls_get_ctx(sk);
128 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
129 	int rc = 0;
130 
131 	rc = sk_alloc_sg(sk, len,
132 			 ctx->sg_encrypted_data, 0,
133 			 &ctx->sg_encrypted_num_elem,
134 			 &ctx->sg_encrypted_size, 0);
135 
136 	return rc;
137 }
138 
139 static int alloc_plaintext_sg(struct sock *sk, int len)
140 {
141 	struct tls_context *tls_ctx = tls_get_ctx(sk);
142 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
143 	int rc = 0;
144 
145 	rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
146 			 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
147 			 tls_ctx->pending_open_record_frags);
148 
149 	return rc;
150 }
151 
152 static void free_sg(struct sock *sk, struct scatterlist *sg,
153 		    int *sg_num_elem, unsigned int *sg_size)
154 {
155 	int i, n = *sg_num_elem;
156 
157 	for (i = 0; i < n; ++i) {
158 		sk_mem_uncharge(sk, sg[i].length);
159 		put_page(sg_page(&sg[i]));
160 	}
161 	*sg_num_elem = 0;
162 	*sg_size = 0;
163 }
164 
165 static void tls_free_both_sg(struct sock *sk)
166 {
167 	struct tls_context *tls_ctx = tls_get_ctx(sk);
168 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
169 
170 	free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
171 		&ctx->sg_encrypted_size);
172 
173 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
174 		&ctx->sg_plaintext_size);
175 }
176 
177 static int tls_do_encryption(struct tls_context *tls_ctx,
178 			     struct tls_sw_context_tx *ctx,
179 			     struct aead_request *aead_req,
180 			     size_t data_len)
181 {
182 	int rc;
183 
184 	ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
185 	ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
186 
187 	aead_request_set_tfm(aead_req, ctx->aead_send);
188 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
189 	aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
190 			       data_len, tls_ctx->tx.iv);
191 
192 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
193 				  crypto_req_done, &ctx->async_wait);
194 
195 	rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
196 
197 	ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
198 	ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
199 
200 	return rc;
201 }
202 
203 static int tls_push_record(struct sock *sk, int flags,
204 			   unsigned char record_type)
205 {
206 	struct tls_context *tls_ctx = tls_get_ctx(sk);
207 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
208 	struct aead_request *req;
209 	int rc;
210 
211 	req = aead_request_alloc(ctx->aead_send, sk->sk_allocation);
212 	if (!req)
213 		return -ENOMEM;
214 
215 	sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
216 	sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
217 
218 	tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
219 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
220 		     record_type);
221 
222 	tls_fill_prepend(tls_ctx,
223 			 page_address(sg_page(&ctx->sg_encrypted_data[0])) +
224 			 ctx->sg_encrypted_data[0].offset,
225 			 ctx->sg_plaintext_size, record_type);
226 
227 	tls_ctx->pending_open_record_frags = 0;
228 	set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
229 
230 	rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size);
231 	if (rc < 0) {
232 		/* If we are called from write_space and
233 		 * we fail, we need to set this SOCK_NOSPACE
234 		 * to trigger another write_space in the future.
235 		 */
236 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
237 		goto out_req;
238 	}
239 
240 	free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
241 		&ctx->sg_plaintext_size);
242 
243 	ctx->sg_encrypted_num_elem = 0;
244 	ctx->sg_encrypted_size = 0;
245 
246 	/* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
247 	rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
248 	if (rc < 0 && rc != -EAGAIN)
249 		tls_err_abort(sk, EBADMSG);
250 
251 	tls_advance_record_sn(sk, &tls_ctx->tx);
252 out_req:
253 	aead_request_free(req);
254 	return rc;
255 }
256 
257 static int tls_sw_push_pending_record(struct sock *sk, int flags)
258 {
259 	return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
260 }
261 
262 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
263 			      int length, int *pages_used,
264 			      unsigned int *size_used,
265 			      struct scatterlist *to, int to_max_pages,
266 			      bool charge, bool revert)
267 {
268 	struct page *pages[MAX_SKB_FRAGS];
269 
270 	size_t offset;
271 	ssize_t copied, use;
272 	int i = 0;
273 	unsigned int size = *size_used;
274 	int num_elem = *pages_used;
275 	int rc = 0;
276 	int maxpages;
277 
278 	while (length > 0) {
279 		i = 0;
280 		maxpages = to_max_pages - num_elem;
281 		if (maxpages == 0) {
282 			rc = -EFAULT;
283 			goto out;
284 		}
285 		copied = iov_iter_get_pages(from, pages,
286 					    length,
287 					    maxpages, &offset);
288 		if (copied <= 0) {
289 			rc = -EFAULT;
290 			goto out;
291 		}
292 
293 		iov_iter_advance(from, copied);
294 
295 		length -= copied;
296 		size += copied;
297 		while (copied) {
298 			use = min_t(int, copied, PAGE_SIZE - offset);
299 
300 			sg_set_page(&to[num_elem],
301 				    pages[i], use, offset);
302 			sg_unmark_end(&to[num_elem]);
303 			if (charge)
304 				sk_mem_charge(sk, use);
305 
306 			offset = 0;
307 			copied -= use;
308 
309 			++i;
310 			++num_elem;
311 		}
312 	}
313 
314 out:
315 	*size_used = size;
316 	*pages_used = num_elem;
317 	if (revert)
318 		iov_iter_revert(from, size);
319 
320 	return rc;
321 }
322 
323 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
324 			     int bytes)
325 {
326 	struct tls_context *tls_ctx = tls_get_ctx(sk);
327 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
328 	struct scatterlist *sg = ctx->sg_plaintext_data;
329 	int copy, i, rc = 0;
330 
331 	for (i = tls_ctx->pending_open_record_frags;
332 	     i < ctx->sg_plaintext_num_elem; ++i) {
333 		copy = sg[i].length;
334 		if (copy_from_iter(
335 				page_address(sg_page(&sg[i])) + sg[i].offset,
336 				copy, from) != copy) {
337 			rc = -EFAULT;
338 			goto out;
339 		}
340 		bytes -= copy;
341 
342 		++tls_ctx->pending_open_record_frags;
343 
344 		if (!bytes)
345 			break;
346 	}
347 
348 out:
349 	return rc;
350 }
351 
352 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
353 {
354 	struct tls_context *tls_ctx = tls_get_ctx(sk);
355 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
356 	int ret = 0;
357 	int required_size;
358 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
359 	bool eor = !(msg->msg_flags & MSG_MORE);
360 	size_t try_to_copy, copied = 0;
361 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
362 	int record_room;
363 	bool full_record;
364 	int orig_size;
365 
366 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
367 		return -ENOTSUPP;
368 
369 	lock_sock(sk);
370 
371 	if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
372 		goto send_end;
373 
374 	if (unlikely(msg->msg_controllen)) {
375 		ret = tls_proccess_cmsg(sk, msg, &record_type);
376 		if (ret)
377 			goto send_end;
378 	}
379 
380 	while (msg_data_left(msg)) {
381 		if (sk->sk_err) {
382 			ret = -sk->sk_err;
383 			goto send_end;
384 		}
385 
386 		orig_size = ctx->sg_plaintext_size;
387 		full_record = false;
388 		try_to_copy = msg_data_left(msg);
389 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
390 		if (try_to_copy >= record_room) {
391 			try_to_copy = record_room;
392 			full_record = true;
393 		}
394 
395 		required_size = ctx->sg_plaintext_size + try_to_copy +
396 				tls_ctx->tx.overhead_size;
397 
398 		if (!sk_stream_memory_free(sk))
399 			goto wait_for_sndbuf;
400 alloc_encrypted:
401 		ret = alloc_encrypted_sg(sk, required_size);
402 		if (ret) {
403 			if (ret != -ENOSPC)
404 				goto wait_for_memory;
405 
406 			/* Adjust try_to_copy according to the amount that was
407 			 * actually allocated. The difference is due
408 			 * to max sg elements limit
409 			 */
410 			try_to_copy -= required_size - ctx->sg_encrypted_size;
411 			full_record = true;
412 		}
413 
414 		if (full_record || eor) {
415 			ret = zerocopy_from_iter(sk, &msg->msg_iter,
416 				try_to_copy, &ctx->sg_plaintext_num_elem,
417 				&ctx->sg_plaintext_size,
418 				ctx->sg_plaintext_data,
419 				ARRAY_SIZE(ctx->sg_plaintext_data),
420 				true, false);
421 			if (ret)
422 				goto fallback_to_reg_send;
423 
424 			copied += try_to_copy;
425 			ret = tls_push_record(sk, msg->msg_flags, record_type);
426 			if (!ret)
427 				continue;
428 			if (ret == -EAGAIN)
429 				goto send_end;
430 
431 			copied -= try_to_copy;
432 fallback_to_reg_send:
433 			iov_iter_revert(&msg->msg_iter,
434 					ctx->sg_plaintext_size - orig_size);
435 			trim_sg(sk, ctx->sg_plaintext_data,
436 				&ctx->sg_plaintext_num_elem,
437 				&ctx->sg_plaintext_size,
438 				orig_size);
439 		}
440 
441 		required_size = ctx->sg_plaintext_size + try_to_copy;
442 alloc_plaintext:
443 		ret = alloc_plaintext_sg(sk, required_size);
444 		if (ret) {
445 			if (ret != -ENOSPC)
446 				goto wait_for_memory;
447 
448 			/* Adjust try_to_copy according to the amount that was
449 			 * actually allocated. The difference is due
450 			 * to max sg elements limit
451 			 */
452 			try_to_copy -= required_size - ctx->sg_plaintext_size;
453 			full_record = true;
454 
455 			trim_sg(sk, ctx->sg_encrypted_data,
456 				&ctx->sg_encrypted_num_elem,
457 				&ctx->sg_encrypted_size,
458 				ctx->sg_plaintext_size +
459 				tls_ctx->tx.overhead_size);
460 		}
461 
462 		ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
463 		if (ret)
464 			goto trim_sgl;
465 
466 		copied += try_to_copy;
467 		if (full_record || eor) {
468 push_record:
469 			ret = tls_push_record(sk, msg->msg_flags, record_type);
470 			if (ret) {
471 				if (ret == -ENOMEM)
472 					goto wait_for_memory;
473 
474 				goto send_end;
475 			}
476 		}
477 
478 		continue;
479 
480 wait_for_sndbuf:
481 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
482 wait_for_memory:
483 		ret = sk_stream_wait_memory(sk, &timeo);
484 		if (ret) {
485 trim_sgl:
486 			trim_both_sgl(sk, orig_size);
487 			goto send_end;
488 		}
489 
490 		if (tls_is_pending_closed_record(tls_ctx))
491 			goto push_record;
492 
493 		if (ctx->sg_encrypted_size < required_size)
494 			goto alloc_encrypted;
495 
496 		goto alloc_plaintext;
497 	}
498 
499 send_end:
500 	ret = sk_stream_error(sk, msg->msg_flags, ret);
501 
502 	release_sock(sk);
503 	return copied ? copied : ret;
504 }
505 
506 int tls_sw_sendpage(struct sock *sk, struct page *page,
507 		    int offset, size_t size, int flags)
508 {
509 	struct tls_context *tls_ctx = tls_get_ctx(sk);
510 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
511 	int ret = 0;
512 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
513 	bool eor;
514 	size_t orig_size = size;
515 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
516 	struct scatterlist *sg;
517 	bool full_record;
518 	int record_room;
519 
520 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
521 		      MSG_SENDPAGE_NOTLAST))
522 		return -ENOTSUPP;
523 
524 	/* No MSG_EOR from splice, only look at MSG_MORE */
525 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
526 
527 	lock_sock(sk);
528 
529 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
530 
531 	if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
532 		goto sendpage_end;
533 
534 	/* Call the sk_stream functions to manage the sndbuf mem. */
535 	while (size > 0) {
536 		size_t copy, required_size;
537 
538 		if (sk->sk_err) {
539 			ret = -sk->sk_err;
540 			goto sendpage_end;
541 		}
542 
543 		full_record = false;
544 		record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
545 		copy = size;
546 		if (copy >= record_room) {
547 			copy = record_room;
548 			full_record = true;
549 		}
550 		required_size = ctx->sg_plaintext_size + copy +
551 			      tls_ctx->tx.overhead_size;
552 
553 		if (!sk_stream_memory_free(sk))
554 			goto wait_for_sndbuf;
555 alloc_payload:
556 		ret = alloc_encrypted_sg(sk, required_size);
557 		if (ret) {
558 			if (ret != -ENOSPC)
559 				goto wait_for_memory;
560 
561 			/* Adjust copy according to the amount that was
562 			 * actually allocated. The difference is due
563 			 * to max sg elements limit
564 			 */
565 			copy -= required_size - ctx->sg_plaintext_size;
566 			full_record = true;
567 		}
568 
569 		get_page(page);
570 		sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
571 		sg_set_page(sg, page, copy, offset);
572 		sg_unmark_end(sg);
573 
574 		ctx->sg_plaintext_num_elem++;
575 
576 		sk_mem_charge(sk, copy);
577 		offset += copy;
578 		size -= copy;
579 		ctx->sg_plaintext_size += copy;
580 		tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
581 
582 		if (full_record || eor ||
583 		    ctx->sg_plaintext_num_elem ==
584 		    ARRAY_SIZE(ctx->sg_plaintext_data)) {
585 push_record:
586 			ret = tls_push_record(sk, flags, record_type);
587 			if (ret) {
588 				if (ret == -ENOMEM)
589 					goto wait_for_memory;
590 
591 				goto sendpage_end;
592 			}
593 		}
594 		continue;
595 wait_for_sndbuf:
596 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
597 wait_for_memory:
598 		ret = sk_stream_wait_memory(sk, &timeo);
599 		if (ret) {
600 			trim_both_sgl(sk, ctx->sg_plaintext_size);
601 			goto sendpage_end;
602 		}
603 
604 		if (tls_is_pending_closed_record(tls_ctx))
605 			goto push_record;
606 
607 		goto alloc_payload;
608 	}
609 
610 sendpage_end:
611 	if (orig_size > size)
612 		ret = orig_size - size;
613 	else
614 		ret = sk_stream_error(sk, flags, ret);
615 
616 	release_sock(sk);
617 	return ret;
618 }
619 
620 static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
621 				     long timeo, int *err)
622 {
623 	struct tls_context *tls_ctx = tls_get_ctx(sk);
624 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
625 	struct sk_buff *skb;
626 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
627 
628 	while (!(skb = ctx->recv_pkt)) {
629 		if (sk->sk_err) {
630 			*err = sock_error(sk);
631 			return NULL;
632 		}
633 
634 		if (sock_flag(sk, SOCK_DONE))
635 			return NULL;
636 
637 		if ((flags & MSG_DONTWAIT) || !timeo) {
638 			*err = -EAGAIN;
639 			return NULL;
640 		}
641 
642 		add_wait_queue(sk_sleep(sk), &wait);
643 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
644 		sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
645 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
646 		remove_wait_queue(sk_sleep(sk), &wait);
647 
648 		/* Handle signals */
649 		if (signal_pending(current)) {
650 			*err = sock_intr_errno(timeo);
651 			return NULL;
652 		}
653 	}
654 
655 	return skb;
656 }
657 
658 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
659 			      struct scatterlist *sgout, bool *zc)
660 {
661 	struct tls_context *tls_ctx = tls_get_ctx(sk);
662 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
663 	struct strp_msg *rxm = strp_msg(skb);
664 	int err = 0;
665 
666 #ifdef CONFIG_TLS_DEVICE
667 	err = tls_device_decrypted(sk, skb);
668 	if (err < 0)
669 		return err;
670 #endif
671 	if (!ctx->decrypted) {
672 		err = decrypt_skb(sk, skb, sgout);
673 		if (err < 0)
674 			return err;
675 	} else {
676 		*zc = false;
677 	}
678 
679 	rxm->offset += tls_ctx->rx.prepend_size;
680 	rxm->full_len -= tls_ctx->rx.overhead_size;
681 	tls_advance_record_sn(sk, &tls_ctx->rx);
682 	ctx->decrypted = true;
683 	ctx->saved_data_ready(sk);
684 
685 	return err;
686 }
687 
688 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
689 		struct scatterlist *sgout)
690 {
691 	struct tls_context *tls_ctx = tls_get_ctx(sk);
692 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
693 	char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE];
694 	struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2];
695 	struct scatterlist *sgin = &sgin_arr[0];
696 	struct strp_msg *rxm = strp_msg(skb);
697 	int ret, nsg = ARRAY_SIZE(sgin_arr);
698 	struct sk_buff *unused;
699 
700 	ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
701 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
702 			    tls_ctx->rx.iv_size);
703 	if (ret < 0)
704 		return ret;
705 
706 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
707 	if (!sgout) {
708 		nsg = skb_cow_data(skb, 0, &unused) + 1;
709 		sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation);
710 		sgout = sgin;
711 	}
712 
713 	sg_init_table(sgin, nsg);
714 	sg_set_buf(&sgin[0], ctx->rx_aad_ciphertext, TLS_AAD_SPACE_SIZE);
715 
716 	nsg = skb_to_sgvec(skb, &sgin[1],
717 			   rxm->offset + tls_ctx->rx.prepend_size,
718 			   rxm->full_len - tls_ctx->rx.prepend_size);
719 
720 	tls_make_aad(ctx->rx_aad_ciphertext,
721 		     rxm->full_len - tls_ctx->rx.overhead_size,
722 		     tls_ctx->rx.rec_seq,
723 		     tls_ctx->rx.rec_seq_size,
724 		     ctx->control);
725 
726 	ret = tls_do_decryption(sk, sgin, sgout, iv,
727 				rxm->full_len - tls_ctx->rx.overhead_size,
728 				skb, sk->sk_allocation);
729 
730 	if (sgin != &sgin_arr[0])
731 		kfree(sgin);
732 
733 	return ret;
734 }
735 
736 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
737 			       unsigned int len)
738 {
739 	struct tls_context *tls_ctx = tls_get_ctx(sk);
740 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
741 	struct strp_msg *rxm = strp_msg(skb);
742 
743 	if (len < rxm->full_len) {
744 		rxm->offset += len;
745 		rxm->full_len -= len;
746 
747 		return false;
748 	}
749 
750 	/* Finished with message */
751 	ctx->recv_pkt = NULL;
752 	kfree_skb(skb);
753 	__strp_unpause(&ctx->strp);
754 
755 	return true;
756 }
757 
758 int tls_sw_recvmsg(struct sock *sk,
759 		   struct msghdr *msg,
760 		   size_t len,
761 		   int nonblock,
762 		   int flags,
763 		   int *addr_len)
764 {
765 	struct tls_context *tls_ctx = tls_get_ctx(sk);
766 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
767 	unsigned char control;
768 	struct strp_msg *rxm;
769 	struct sk_buff *skb;
770 	ssize_t copied = 0;
771 	bool cmsg = false;
772 	int target, err = 0;
773 	long timeo;
774 
775 	flags |= nonblock;
776 
777 	if (unlikely(flags & MSG_ERRQUEUE))
778 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
779 
780 	lock_sock(sk);
781 
782 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
783 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
784 	do {
785 		bool zc = false;
786 		int chunk = 0;
787 
788 		skb = tls_wait_data(sk, flags, timeo, &err);
789 		if (!skb)
790 			goto recv_end;
791 
792 		rxm = strp_msg(skb);
793 		if (!cmsg) {
794 			int cerr;
795 
796 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
797 					sizeof(ctx->control), &ctx->control);
798 			cmsg = true;
799 			control = ctx->control;
800 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
801 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
802 					err = -EIO;
803 					goto recv_end;
804 				}
805 			}
806 		} else if (control != ctx->control) {
807 			goto recv_end;
808 		}
809 
810 		if (!ctx->decrypted) {
811 			int page_count;
812 			int to_copy;
813 
814 			page_count = iov_iter_npages(&msg->msg_iter,
815 						     MAX_SKB_FRAGS);
816 			to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
817 			if (to_copy <= len && page_count < MAX_SKB_FRAGS &&
818 			    likely(!(flags & MSG_PEEK)))  {
819 				struct scatterlist sgin[MAX_SKB_FRAGS + 1];
820 				int pages = 0;
821 
822 				zc = true;
823 				sg_init_table(sgin, MAX_SKB_FRAGS + 1);
824 				sg_set_buf(&sgin[0], ctx->rx_aad_plaintext,
825 					   TLS_AAD_SPACE_SIZE);
826 
827 				err = zerocopy_from_iter(sk, &msg->msg_iter,
828 							 to_copy, &pages,
829 							 &chunk, &sgin[1],
830 							 MAX_SKB_FRAGS,	false, true);
831 				if (err < 0)
832 					goto fallback_to_reg_recv;
833 
834 				err = decrypt_skb_update(sk, skb, sgin, &zc);
835 				for (; pages > 0; pages--)
836 					put_page(sg_page(&sgin[pages]));
837 				if (err < 0) {
838 					tls_err_abort(sk, EBADMSG);
839 					goto recv_end;
840 				}
841 			} else {
842 fallback_to_reg_recv:
843 				err = decrypt_skb_update(sk, skb, NULL, &zc);
844 				if (err < 0) {
845 					tls_err_abort(sk, EBADMSG);
846 					goto recv_end;
847 				}
848 			}
849 			ctx->decrypted = true;
850 		}
851 
852 		if (!zc) {
853 			chunk = min_t(unsigned int, rxm->full_len, len);
854 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
855 						    chunk);
856 			if (err < 0)
857 				goto recv_end;
858 		}
859 
860 		copied += chunk;
861 		len -= chunk;
862 		if (likely(!(flags & MSG_PEEK))) {
863 			u8 control = ctx->control;
864 
865 			if (tls_sw_advance_skb(sk, skb, chunk)) {
866 				/* Return full control message to
867 				 * userspace before trying to parse
868 				 * another message type
869 				 */
870 				msg->msg_flags |= MSG_EOR;
871 				if (control != TLS_RECORD_TYPE_DATA)
872 					goto recv_end;
873 			}
874 		}
875 		/* If we have a new message from strparser, continue now. */
876 		if (copied >= target && !ctx->recv_pkt)
877 			break;
878 	} while (len);
879 
880 recv_end:
881 	release_sock(sk);
882 	return copied ? : err;
883 }
884 
885 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
886 			   struct pipe_inode_info *pipe,
887 			   size_t len, unsigned int flags)
888 {
889 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
890 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
891 	struct strp_msg *rxm = NULL;
892 	struct sock *sk = sock->sk;
893 	struct sk_buff *skb;
894 	ssize_t copied = 0;
895 	int err = 0;
896 	long timeo;
897 	int chunk;
898 	bool zc;
899 
900 	lock_sock(sk);
901 
902 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
903 
904 	skb = tls_wait_data(sk, flags, timeo, &err);
905 	if (!skb)
906 		goto splice_read_end;
907 
908 	/* splice does not support reading control messages */
909 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
910 		err = -ENOTSUPP;
911 		goto splice_read_end;
912 	}
913 
914 	if (!ctx->decrypted) {
915 		err = decrypt_skb_update(sk, skb, NULL, &zc);
916 
917 		if (err < 0) {
918 			tls_err_abort(sk, EBADMSG);
919 			goto splice_read_end;
920 		}
921 		ctx->decrypted = true;
922 	}
923 	rxm = strp_msg(skb);
924 
925 	chunk = min_t(unsigned int, rxm->full_len, len);
926 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
927 	if (copied < 0)
928 		goto splice_read_end;
929 
930 	if (likely(!(flags & MSG_PEEK)))
931 		tls_sw_advance_skb(sk, skb, copied);
932 
933 splice_read_end:
934 	release_sock(sk);
935 	return copied ? : err;
936 }
937 
938 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
939 			 struct poll_table_struct *wait)
940 {
941 	unsigned int ret;
942 	struct sock *sk = sock->sk;
943 	struct tls_context *tls_ctx = tls_get_ctx(sk);
944 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
945 
946 	/* Grab POLLOUT and POLLHUP from the underlying socket */
947 	ret = ctx->sk_poll(file, sock, wait);
948 
949 	/* Clear POLLIN bits, and set based on recv_pkt */
950 	ret &= ~(POLLIN | POLLRDNORM);
951 	if (ctx->recv_pkt)
952 		ret |= POLLIN | POLLRDNORM;
953 
954 	return ret;
955 }
956 
957 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
958 {
959 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
960 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
961 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
962 	struct strp_msg *rxm = strp_msg(skb);
963 	size_t cipher_overhead;
964 	size_t data_len = 0;
965 	int ret;
966 
967 	/* Verify that we have a full TLS header, or wait for more data */
968 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
969 		return 0;
970 
971 	/* Sanity-check size of on-stack buffer. */
972 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
973 		ret = -EINVAL;
974 		goto read_failure;
975 	}
976 
977 	/* Linearize header to local buffer */
978 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
979 
980 	if (ret < 0)
981 		goto read_failure;
982 
983 	ctx->control = header[0];
984 
985 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
986 
987 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
988 
989 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
990 		ret = -EMSGSIZE;
991 		goto read_failure;
992 	}
993 	if (data_len < cipher_overhead) {
994 		ret = -EBADMSG;
995 		goto read_failure;
996 	}
997 
998 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) ||
999 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) {
1000 		ret = -EINVAL;
1001 		goto read_failure;
1002 	}
1003 
1004 #ifdef CONFIG_TLS_DEVICE
1005 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1006 			     *(u64*)tls_ctx->rx.rec_seq);
1007 #endif
1008 	return data_len + TLS_HEADER_SIZE;
1009 
1010 read_failure:
1011 	tls_err_abort(strp->sk, ret);
1012 
1013 	return ret;
1014 }
1015 
1016 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1017 {
1018 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1019 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1020 
1021 	ctx->decrypted = false;
1022 
1023 	ctx->recv_pkt = skb;
1024 	strp_pause(strp);
1025 
1026 	strp->sk->sk_state_change(strp->sk);
1027 }
1028 
1029 static void tls_data_ready(struct sock *sk)
1030 {
1031 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1032 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1033 
1034 	strp_data_ready(&ctx->strp);
1035 }
1036 
1037 void tls_sw_free_resources_tx(struct sock *sk)
1038 {
1039 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1040 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1041 
1042 	if (ctx->aead_send)
1043 		crypto_free_aead(ctx->aead_send);
1044 	tls_free_both_sg(sk);
1045 
1046 	kfree(ctx);
1047 }
1048 
1049 void tls_sw_release_resources_rx(struct sock *sk)
1050 {
1051 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1052 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1053 
1054 	if (ctx->aead_recv) {
1055 		if (ctx->recv_pkt) {
1056 			kfree_skb(ctx->recv_pkt);
1057 			ctx->recv_pkt = NULL;
1058 		}
1059 		crypto_free_aead(ctx->aead_recv);
1060 		strp_stop(&ctx->strp);
1061 		write_lock_bh(&sk->sk_callback_lock);
1062 		sk->sk_data_ready = ctx->saved_data_ready;
1063 		write_unlock_bh(&sk->sk_callback_lock);
1064 		release_sock(sk);
1065 		strp_done(&ctx->strp);
1066 		lock_sock(sk);
1067 	}
1068 }
1069 
1070 void tls_sw_free_resources_rx(struct sock *sk)
1071 {
1072 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1073 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1074 
1075 	tls_sw_release_resources_rx(sk);
1076 
1077 	kfree(ctx);
1078 }
1079 
1080 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1081 {
1082 	char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE];
1083 	struct tls_crypto_info *crypto_info;
1084 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1085 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
1086 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
1087 	struct cipher_context *cctx;
1088 	struct crypto_aead **aead;
1089 	struct strp_callbacks cb;
1090 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1091 	char *iv, *rec_seq;
1092 	int rc = 0;
1093 
1094 	if (!ctx) {
1095 		rc = -EINVAL;
1096 		goto out;
1097 	}
1098 
1099 	if (tx) {
1100 		if (!ctx->priv_ctx_tx) {
1101 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1102 			if (!sw_ctx_tx) {
1103 				rc = -ENOMEM;
1104 				goto out;
1105 			}
1106 			ctx->priv_ctx_tx = sw_ctx_tx;
1107 		} else {
1108 			sw_ctx_tx =
1109 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1110 		}
1111 	} else {
1112 		if (!ctx->priv_ctx_rx) {
1113 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1114 			if (!sw_ctx_rx) {
1115 				rc = -ENOMEM;
1116 				goto out;
1117 			}
1118 			ctx->priv_ctx_rx = sw_ctx_rx;
1119 		} else {
1120 			sw_ctx_rx =
1121 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1122 		}
1123 	}
1124 
1125 	if (tx) {
1126 		crypto_init_wait(&sw_ctx_tx->async_wait);
1127 		crypto_info = &ctx->crypto_send;
1128 		cctx = &ctx->tx;
1129 		aead = &sw_ctx_tx->aead_send;
1130 	} else {
1131 		crypto_init_wait(&sw_ctx_rx->async_wait);
1132 		crypto_info = &ctx->crypto_recv;
1133 		cctx = &ctx->rx;
1134 		aead = &sw_ctx_rx->aead_recv;
1135 	}
1136 
1137 	switch (crypto_info->cipher_type) {
1138 	case TLS_CIPHER_AES_GCM_128: {
1139 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1140 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1141 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1142 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1143 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1144 		rec_seq =
1145 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1146 		gcm_128_info =
1147 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1148 		break;
1149 	}
1150 	default:
1151 		rc = -EINVAL;
1152 		goto free_priv;
1153 	}
1154 
1155 	/* Sanity-check the IV size for stack allocations. */
1156 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1157 		rc = -EINVAL;
1158 		goto free_priv;
1159 	}
1160 
1161 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1162 	cctx->tag_size = tag_size;
1163 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1164 	cctx->iv_size = iv_size;
1165 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1166 			   GFP_KERNEL);
1167 	if (!cctx->iv) {
1168 		rc = -ENOMEM;
1169 		goto free_priv;
1170 	}
1171 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1172 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1173 	cctx->rec_seq_size = rec_seq_size;
1174 	cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL);
1175 	if (!cctx->rec_seq) {
1176 		rc = -ENOMEM;
1177 		goto free_iv;
1178 	}
1179 	memcpy(cctx->rec_seq, rec_seq, rec_seq_size);
1180 
1181 	if (sw_ctx_tx) {
1182 		sg_init_table(sw_ctx_tx->sg_encrypted_data,
1183 			      ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data));
1184 		sg_init_table(sw_ctx_tx->sg_plaintext_data,
1185 			      ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data));
1186 
1187 		sg_init_table(sw_ctx_tx->sg_aead_in, 2);
1188 		sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space,
1189 			   sizeof(sw_ctx_tx->aad_space));
1190 		sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]);
1191 		sg_chain(sw_ctx_tx->sg_aead_in, 2,
1192 			 sw_ctx_tx->sg_plaintext_data);
1193 		sg_init_table(sw_ctx_tx->sg_aead_out, 2);
1194 		sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space,
1195 			   sizeof(sw_ctx_tx->aad_space));
1196 		sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]);
1197 		sg_chain(sw_ctx_tx->sg_aead_out, 2,
1198 			 sw_ctx_tx->sg_encrypted_data);
1199 	}
1200 
1201 	if (!*aead) {
1202 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1203 		if (IS_ERR(*aead)) {
1204 			rc = PTR_ERR(*aead);
1205 			*aead = NULL;
1206 			goto free_rec_seq;
1207 		}
1208 	}
1209 
1210 	ctx->push_pending_record = tls_sw_push_pending_record;
1211 
1212 	memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1213 
1214 	rc = crypto_aead_setkey(*aead, keyval,
1215 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1216 	if (rc)
1217 		goto free_aead;
1218 
1219 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1220 	if (rc)
1221 		goto free_aead;
1222 
1223 	if (sw_ctx_rx) {
1224 		/* Set up strparser */
1225 		memset(&cb, 0, sizeof(cb));
1226 		cb.rcv_msg = tls_queue;
1227 		cb.parse_msg = tls_read_size;
1228 
1229 		strp_init(&sw_ctx_rx->strp, sk, &cb);
1230 
1231 		write_lock_bh(&sk->sk_callback_lock);
1232 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1233 		sk->sk_data_ready = tls_data_ready;
1234 		write_unlock_bh(&sk->sk_callback_lock);
1235 
1236 		sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll;
1237 
1238 		strp_check_rcv(&sw_ctx_rx->strp);
1239 	}
1240 
1241 	goto out;
1242 
1243 free_aead:
1244 	crypto_free_aead(*aead);
1245 	*aead = NULL;
1246 free_rec_seq:
1247 	kfree(cctx->rec_seq);
1248 	cctx->rec_seq = NULL;
1249 free_iv:
1250 	kfree(cctx->iv);
1251 	cctx->iv = NULL;
1252 free_priv:
1253 	if (tx) {
1254 		kfree(ctx->priv_ctx_tx);
1255 		ctx->priv_ctx_tx = NULL;
1256 	} else {
1257 		kfree(ctx->priv_ctx_rx);
1258 		ctx->priv_ctx_rx = NULL;
1259 	}
1260 out:
1261 	return rc;
1262 }
1263