xref: /openbmc/linux/net/tls/tls_sw.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52 
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55 
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65 
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68 
69                 WARN_ON(start > offset + len);
70 
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84 
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88 
89                         WARN_ON(start > offset + len);
90 
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112 
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120 
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 			  struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 	struct strp_msg *rxm = strp_msg(skb);
125 	int sub = 0;
126 
127 	/* Determine zero-padding length */
128 	if (prot->version == TLS_1_3_VERSION) {
129 		char content_type = 0;
130 		int err;
131 		int back = 17;
132 
133 		while (content_type == 0) {
134 			if (back > rxm->full_len - prot->prepend_size)
135 				return -EBADMSG;
136 			err = skb_copy_bits(skb,
137 					    rxm->offset + rxm->full_len - back,
138 					    &content_type, 1);
139 			if (err)
140 				return err;
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		if (err == -EBADMSG)
172 			TLS_INC_STATS(sock_net(skb->sk),
173 				      LINUX_MIB_TLSDECRYPTERROR);
174 		ctx->async_wait.err = err;
175 		tls_err_abort(skb->sk, err);
176 	} else {
177 		struct strp_msg *rxm = strp_msg(skb);
178 		int pad;
179 
180 		pad = padding_length(ctx, prot, skb);
181 		if (pad < 0) {
182 			ctx->async_wait.err = pad;
183 			tls_err_abort(skb->sk, pad);
184 		} else {
185 			rxm->full_len -= pad;
186 			rxm->offset += prot->prepend_size;
187 			rxm->full_len -= prot->overhead_size;
188 		}
189 	}
190 
191 	/* After using skb->sk to propagate sk through crypto async callback
192 	 * we need to NULL it again.
193 	 */
194 	skb->sk = NULL;
195 
196 
197 	/* Free the destination pages if skb was not decrypted inplace */
198 	if (sgout != sgin) {
199 		/* Skip the first S/G entry as it points to AAD */
200 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 			if (!sg)
202 				break;
203 			put_page(sg_page(sg));
204 		}
205 	}
206 
207 	kfree(aead_req);
208 
209 	pending = atomic_dec_return(&ctx->decrypt_pending);
210 
211 	if (!pending && READ_ONCE(ctx->async_notify))
212 		complete(&ctx->async_wait.completion);
213 }
214 
215 static int tls_do_decryption(struct sock *sk,
216 			     struct sk_buff *skb,
217 			     struct scatterlist *sgin,
218 			     struct scatterlist *sgout,
219 			     char *iv_recv,
220 			     size_t data_len,
221 			     struct aead_request *aead_req,
222 			     bool async)
223 {
224 	struct tls_context *tls_ctx = tls_get_ctx(sk);
225 	struct tls_prot_info *prot = &tls_ctx->prot_info;
226 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
227 	int ret;
228 
229 	aead_request_set_tfm(aead_req, ctx->aead_recv);
230 	aead_request_set_ad(aead_req, prot->aad_size);
231 	aead_request_set_crypt(aead_req, sgin, sgout,
232 			       data_len + prot->tag_size,
233 			       (u8 *)iv_recv);
234 
235 	if (async) {
236 		/* Using skb->sk to push sk through to crypto async callback
237 		 * handler. This allows propagating errors up to the socket
238 		 * if needed. It _must_ be cleared in the async handler
239 		 * before consume_skb is called. We _know_ skb->sk is NULL
240 		 * because it is a clone from strparser.
241 		 */
242 		skb->sk = sk;
243 		aead_request_set_callback(aead_req,
244 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
245 					  tls_decrypt_done, skb);
246 		atomic_inc(&ctx->decrypt_pending);
247 	} else {
248 		aead_request_set_callback(aead_req,
249 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
250 					  crypto_req_done, &ctx->async_wait);
251 	}
252 
253 	ret = crypto_aead_decrypt(aead_req);
254 	if (ret == -EINPROGRESS) {
255 		if (async)
256 			return ret;
257 
258 		ret = crypto_wait_req(ret, &ctx->async_wait);
259 	}
260 
261 	if (async)
262 		atomic_dec(&ctx->decrypt_pending);
263 
264 	return ret;
265 }
266 
267 static void tls_trim_both_msgs(struct sock *sk, int target_size)
268 {
269 	struct tls_context *tls_ctx = tls_get_ctx(sk);
270 	struct tls_prot_info *prot = &tls_ctx->prot_info;
271 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
272 	struct tls_rec *rec = ctx->open_rec;
273 
274 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
275 	if (target_size > 0)
276 		target_size += prot->overhead_size;
277 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
278 }
279 
280 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
281 {
282 	struct tls_context *tls_ctx = tls_get_ctx(sk);
283 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 	struct tls_rec *rec = ctx->open_rec;
285 	struct sk_msg *msg_en = &rec->msg_encrypted;
286 
287 	return sk_msg_alloc(sk, msg_en, len, 0);
288 }
289 
290 static int tls_clone_plaintext_msg(struct sock *sk, int required)
291 {
292 	struct tls_context *tls_ctx = tls_get_ctx(sk);
293 	struct tls_prot_info *prot = &tls_ctx->prot_info;
294 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
295 	struct tls_rec *rec = ctx->open_rec;
296 	struct sk_msg *msg_pl = &rec->msg_plaintext;
297 	struct sk_msg *msg_en = &rec->msg_encrypted;
298 	int skip, len;
299 
300 	/* We add page references worth len bytes from encrypted sg
301 	 * at the end of plaintext sg. It is guaranteed that msg_en
302 	 * has enough required room (ensured by caller).
303 	 */
304 	len = required - msg_pl->sg.size;
305 
306 	/* Skip initial bytes in msg_en's data to be able to use
307 	 * same offset of both plain and encrypted data.
308 	 */
309 	skip = prot->prepend_size + msg_pl->sg.size;
310 
311 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
312 }
313 
314 static struct tls_rec *tls_get_rec(struct sock *sk)
315 {
316 	struct tls_context *tls_ctx = tls_get_ctx(sk);
317 	struct tls_prot_info *prot = &tls_ctx->prot_info;
318 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
319 	struct sk_msg *msg_pl, *msg_en;
320 	struct tls_rec *rec;
321 	int mem_size;
322 
323 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
324 
325 	rec = kzalloc(mem_size, sk->sk_allocation);
326 	if (!rec)
327 		return NULL;
328 
329 	msg_pl = &rec->msg_plaintext;
330 	msg_en = &rec->msg_encrypted;
331 
332 	sk_msg_init(msg_pl);
333 	sk_msg_init(msg_en);
334 
335 	sg_init_table(rec->sg_aead_in, 2);
336 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
337 	sg_unmark_end(&rec->sg_aead_in[1]);
338 
339 	sg_init_table(rec->sg_aead_out, 2);
340 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
341 	sg_unmark_end(&rec->sg_aead_out[1]);
342 
343 	return rec;
344 }
345 
346 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
347 {
348 	sk_msg_free(sk, &rec->msg_encrypted);
349 	sk_msg_free(sk, &rec->msg_plaintext);
350 	kfree(rec);
351 }
352 
353 static void tls_free_open_rec(struct sock *sk)
354 {
355 	struct tls_context *tls_ctx = tls_get_ctx(sk);
356 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
357 	struct tls_rec *rec = ctx->open_rec;
358 
359 	if (rec) {
360 		tls_free_rec(sk, rec);
361 		ctx->open_rec = NULL;
362 	}
363 }
364 
365 int tls_tx_records(struct sock *sk, int flags)
366 {
367 	struct tls_context *tls_ctx = tls_get_ctx(sk);
368 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 	struct tls_rec *rec, *tmp;
370 	struct sk_msg *msg_en;
371 	int tx_flags, rc = 0;
372 
373 	if (tls_is_partially_sent_record(tls_ctx)) {
374 		rec = list_first_entry(&ctx->tx_list,
375 				       struct tls_rec, list);
376 
377 		if (flags == -1)
378 			tx_flags = rec->tx_flags;
379 		else
380 			tx_flags = flags;
381 
382 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
383 		if (rc)
384 			goto tx_err;
385 
386 		/* Full record has been transmitted.
387 		 * Remove the head of tx_list
388 		 */
389 		list_del(&rec->list);
390 		sk_msg_free(sk, &rec->msg_plaintext);
391 		kfree(rec);
392 	}
393 
394 	/* Tx all ready records */
395 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
396 		if (READ_ONCE(rec->tx_ready)) {
397 			if (flags == -1)
398 				tx_flags = rec->tx_flags;
399 			else
400 				tx_flags = flags;
401 
402 			msg_en = &rec->msg_encrypted;
403 			rc = tls_push_sg(sk, tls_ctx,
404 					 &msg_en->sg.data[msg_en->sg.curr],
405 					 0, tx_flags);
406 			if (rc)
407 				goto tx_err;
408 
409 			list_del(&rec->list);
410 			sk_msg_free(sk, &rec->msg_plaintext);
411 			kfree(rec);
412 		} else {
413 			break;
414 		}
415 	}
416 
417 tx_err:
418 	if (rc < 0 && rc != -EAGAIN)
419 		tls_err_abort(sk, EBADMSG);
420 
421 	return rc;
422 }
423 
424 static void tls_encrypt_done(struct crypto_async_request *req, int err)
425 {
426 	struct aead_request *aead_req = (struct aead_request *)req;
427 	struct sock *sk = req->data;
428 	struct tls_context *tls_ctx = tls_get_ctx(sk);
429 	struct tls_prot_info *prot = &tls_ctx->prot_info;
430 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
431 	struct scatterlist *sge;
432 	struct sk_msg *msg_en;
433 	struct tls_rec *rec;
434 	bool ready = false;
435 	int pending;
436 
437 	rec = container_of(aead_req, struct tls_rec, aead_req);
438 	msg_en = &rec->msg_encrypted;
439 
440 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
441 	sge->offset -= prot->prepend_size;
442 	sge->length += prot->prepend_size;
443 
444 	/* Check if error is previously set on socket */
445 	if (err || sk->sk_err) {
446 		rec = NULL;
447 
448 		/* If err is already set on socket, return the same code */
449 		if (sk->sk_err) {
450 			ctx->async_wait.err = sk->sk_err;
451 		} else {
452 			ctx->async_wait.err = err;
453 			tls_err_abort(sk, err);
454 		}
455 	}
456 
457 	if (rec) {
458 		struct tls_rec *first_rec;
459 
460 		/* Mark the record as ready for transmission */
461 		smp_store_mb(rec->tx_ready, true);
462 
463 		/* If received record is at head of tx_list, schedule tx */
464 		first_rec = list_first_entry(&ctx->tx_list,
465 					     struct tls_rec, list);
466 		if (rec == first_rec)
467 			ready = true;
468 	}
469 
470 	pending = atomic_dec_return(&ctx->encrypt_pending);
471 
472 	if (!pending && READ_ONCE(ctx->async_notify))
473 		complete(&ctx->async_wait.completion);
474 
475 	if (!ready)
476 		return;
477 
478 	/* Schedule the transmission */
479 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
480 		schedule_delayed_work(&ctx->tx_work.work, 1);
481 }
482 
483 static int tls_do_encryption(struct sock *sk,
484 			     struct tls_context *tls_ctx,
485 			     struct tls_sw_context_tx *ctx,
486 			     struct aead_request *aead_req,
487 			     size_t data_len, u32 start)
488 {
489 	struct tls_prot_info *prot = &tls_ctx->prot_info;
490 	struct tls_rec *rec = ctx->open_rec;
491 	struct sk_msg *msg_en = &rec->msg_encrypted;
492 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
493 	int rc, iv_offset = 0;
494 
495 	/* For CCM based ciphers, first byte of IV is a constant */
496 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
497 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
498 		iv_offset = 1;
499 	}
500 
501 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
502 	       prot->iv_size + prot->salt_size);
503 
504 	xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
505 
506 	sge->offset += prot->prepend_size;
507 	sge->length -= prot->prepend_size;
508 
509 	msg_en->sg.curr = start;
510 
511 	aead_request_set_tfm(aead_req, ctx->aead_send);
512 	aead_request_set_ad(aead_req, prot->aad_size);
513 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
514 			       rec->sg_aead_out,
515 			       data_len, rec->iv_data);
516 
517 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
518 				  tls_encrypt_done, sk);
519 
520 	/* Add the record in tx_list */
521 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
522 	atomic_inc(&ctx->encrypt_pending);
523 
524 	rc = crypto_aead_encrypt(aead_req);
525 	if (!rc || rc != -EINPROGRESS) {
526 		atomic_dec(&ctx->encrypt_pending);
527 		sge->offset -= prot->prepend_size;
528 		sge->length += prot->prepend_size;
529 	}
530 
531 	if (!rc) {
532 		WRITE_ONCE(rec->tx_ready, true);
533 	} else if (rc != -EINPROGRESS) {
534 		list_del(&rec->list);
535 		return rc;
536 	}
537 
538 	/* Unhook the record from context if encryption is not failure */
539 	ctx->open_rec = NULL;
540 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
541 	return rc;
542 }
543 
544 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
545 				 struct tls_rec **to, struct sk_msg *msg_opl,
546 				 struct sk_msg *msg_oen, u32 split_point,
547 				 u32 tx_overhead_size, u32 *orig_end)
548 {
549 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
550 	struct scatterlist *sge, *osge, *nsge;
551 	u32 orig_size = msg_opl->sg.size;
552 	struct scatterlist tmp = { };
553 	struct sk_msg *msg_npl;
554 	struct tls_rec *new;
555 	int ret;
556 
557 	new = tls_get_rec(sk);
558 	if (!new)
559 		return -ENOMEM;
560 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
561 			   tx_overhead_size, 0);
562 	if (ret < 0) {
563 		tls_free_rec(sk, new);
564 		return ret;
565 	}
566 
567 	*orig_end = msg_opl->sg.end;
568 	i = msg_opl->sg.start;
569 	sge = sk_msg_elem(msg_opl, i);
570 	while (apply && sge->length) {
571 		if (sge->length > apply) {
572 			u32 len = sge->length - apply;
573 
574 			get_page(sg_page(sge));
575 			sg_set_page(&tmp, sg_page(sge), len,
576 				    sge->offset + apply);
577 			sge->length = apply;
578 			bytes += apply;
579 			apply = 0;
580 		} else {
581 			apply -= sge->length;
582 			bytes += sge->length;
583 		}
584 
585 		sk_msg_iter_var_next(i);
586 		if (i == msg_opl->sg.end)
587 			break;
588 		sge = sk_msg_elem(msg_opl, i);
589 	}
590 
591 	msg_opl->sg.end = i;
592 	msg_opl->sg.curr = i;
593 	msg_opl->sg.copybreak = 0;
594 	msg_opl->apply_bytes = 0;
595 	msg_opl->sg.size = bytes;
596 
597 	msg_npl = &new->msg_plaintext;
598 	msg_npl->apply_bytes = apply;
599 	msg_npl->sg.size = orig_size - bytes;
600 
601 	j = msg_npl->sg.start;
602 	nsge = sk_msg_elem(msg_npl, j);
603 	if (tmp.length) {
604 		memcpy(nsge, &tmp, sizeof(*nsge));
605 		sk_msg_iter_var_next(j);
606 		nsge = sk_msg_elem(msg_npl, j);
607 	}
608 
609 	osge = sk_msg_elem(msg_opl, i);
610 	while (osge->length) {
611 		memcpy(nsge, osge, sizeof(*nsge));
612 		sg_unmark_end(nsge);
613 		sk_msg_iter_var_next(i);
614 		sk_msg_iter_var_next(j);
615 		if (i == *orig_end)
616 			break;
617 		osge = sk_msg_elem(msg_opl, i);
618 		nsge = sk_msg_elem(msg_npl, j);
619 	}
620 
621 	msg_npl->sg.end = j;
622 	msg_npl->sg.curr = j;
623 	msg_npl->sg.copybreak = 0;
624 
625 	*to = new;
626 	return 0;
627 }
628 
629 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
630 				  struct tls_rec *from, u32 orig_end)
631 {
632 	struct sk_msg *msg_npl = &from->msg_plaintext;
633 	struct sk_msg *msg_opl = &to->msg_plaintext;
634 	struct scatterlist *osge, *nsge;
635 	u32 i, j;
636 
637 	i = msg_opl->sg.end;
638 	sk_msg_iter_var_prev(i);
639 	j = msg_npl->sg.start;
640 
641 	osge = sk_msg_elem(msg_opl, i);
642 	nsge = sk_msg_elem(msg_npl, j);
643 
644 	if (sg_page(osge) == sg_page(nsge) &&
645 	    osge->offset + osge->length == nsge->offset) {
646 		osge->length += nsge->length;
647 		put_page(sg_page(nsge));
648 	}
649 
650 	msg_opl->sg.end = orig_end;
651 	msg_opl->sg.curr = orig_end;
652 	msg_opl->sg.copybreak = 0;
653 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
654 	msg_opl->sg.size += msg_npl->sg.size;
655 
656 	sk_msg_free(sk, &to->msg_encrypted);
657 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
658 
659 	kfree(from);
660 }
661 
662 static int tls_push_record(struct sock *sk, int flags,
663 			   unsigned char record_type)
664 {
665 	struct tls_context *tls_ctx = tls_get_ctx(sk);
666 	struct tls_prot_info *prot = &tls_ctx->prot_info;
667 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
668 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
669 	u32 i, split_point, uninitialized_var(orig_end);
670 	struct sk_msg *msg_pl, *msg_en;
671 	struct aead_request *req;
672 	bool split;
673 	int rc;
674 
675 	if (!rec)
676 		return 0;
677 
678 	msg_pl = &rec->msg_plaintext;
679 	msg_en = &rec->msg_encrypted;
680 
681 	split_point = msg_pl->apply_bytes;
682 	split = split_point && split_point < msg_pl->sg.size;
683 	if (unlikely((!split &&
684 		      msg_pl->sg.size +
685 		      prot->overhead_size > msg_en->sg.size) ||
686 		     (split &&
687 		      split_point +
688 		      prot->overhead_size > msg_en->sg.size))) {
689 		split = true;
690 		split_point = msg_en->sg.size;
691 	}
692 	if (split) {
693 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
694 					   split_point, prot->overhead_size,
695 					   &orig_end);
696 		if (rc < 0)
697 			return rc;
698 		/* This can happen if above tls_split_open_record allocates
699 		 * a single large encryption buffer instead of two smaller
700 		 * ones. In this case adjust pointers and continue without
701 		 * split.
702 		 */
703 		if (!msg_pl->sg.size) {
704 			tls_merge_open_record(sk, rec, tmp, orig_end);
705 			msg_pl = &rec->msg_plaintext;
706 			msg_en = &rec->msg_encrypted;
707 			split = false;
708 		}
709 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
710 			    prot->overhead_size);
711 	}
712 
713 	rec->tx_flags = flags;
714 	req = &rec->aead_req;
715 
716 	i = msg_pl->sg.end;
717 	sk_msg_iter_var_prev(i);
718 
719 	rec->content_type = record_type;
720 	if (prot->version == TLS_1_3_VERSION) {
721 		/* Add content type to end of message.  No padding added */
722 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
723 		sg_mark_end(&rec->sg_content_type);
724 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
725 			 &rec->sg_content_type);
726 	} else {
727 		sg_mark_end(sk_msg_elem(msg_pl, i));
728 	}
729 
730 	if (msg_pl->sg.end < msg_pl->sg.start) {
731 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
732 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
733 			 msg_pl->sg.data);
734 	}
735 
736 	i = msg_pl->sg.start;
737 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
738 
739 	i = msg_en->sg.end;
740 	sk_msg_iter_var_prev(i);
741 	sg_mark_end(sk_msg_elem(msg_en, i));
742 
743 	i = msg_en->sg.start;
744 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
745 
746 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
747 		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
748 		     record_type, prot->version);
749 
750 	tls_fill_prepend(tls_ctx,
751 			 page_address(sg_page(&msg_en->sg.data[i])) +
752 			 msg_en->sg.data[i].offset,
753 			 msg_pl->sg.size + prot->tail_size,
754 			 record_type, prot->version);
755 
756 	tls_ctx->pending_open_record_frags = false;
757 
758 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
759 			       msg_pl->sg.size + prot->tail_size, i);
760 	if (rc < 0) {
761 		if (rc != -EINPROGRESS) {
762 			tls_err_abort(sk, EBADMSG);
763 			if (split) {
764 				tls_ctx->pending_open_record_frags = true;
765 				tls_merge_open_record(sk, rec, tmp, orig_end);
766 			}
767 		}
768 		ctx->async_capable = 1;
769 		return rc;
770 	} else if (split) {
771 		msg_pl = &tmp->msg_plaintext;
772 		msg_en = &tmp->msg_encrypted;
773 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
774 		tls_ctx->pending_open_record_frags = true;
775 		ctx->open_rec = tmp;
776 	}
777 
778 	return tls_tx_records(sk, flags);
779 }
780 
781 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
782 			       bool full_record, u8 record_type,
783 			       ssize_t *copied, int flags)
784 {
785 	struct tls_context *tls_ctx = tls_get_ctx(sk);
786 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
787 	struct sk_msg msg_redir = { };
788 	struct sk_psock *psock;
789 	struct sock *sk_redir;
790 	struct tls_rec *rec;
791 	bool enospc, policy;
792 	int err = 0, send;
793 	u32 delta = 0;
794 
795 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
796 	psock = sk_psock_get(sk);
797 	if (!psock || !policy) {
798 		err = tls_push_record(sk, flags, record_type);
799 		if (err && sk->sk_err == EBADMSG) {
800 			*copied -= sk_msg_free(sk, msg);
801 			tls_free_open_rec(sk);
802 			err = -sk->sk_err;
803 		}
804 		if (psock)
805 			sk_psock_put(sk, psock);
806 		return err;
807 	}
808 more_data:
809 	enospc = sk_msg_full(msg);
810 	if (psock->eval == __SK_NONE) {
811 		delta = msg->sg.size;
812 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
813 		delta -= msg->sg.size;
814 	}
815 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
816 	    !enospc && !full_record) {
817 		err = -ENOSPC;
818 		goto out_err;
819 	}
820 	msg->cork_bytes = 0;
821 	send = msg->sg.size;
822 	if (msg->apply_bytes && msg->apply_bytes < send)
823 		send = msg->apply_bytes;
824 
825 	switch (psock->eval) {
826 	case __SK_PASS:
827 		err = tls_push_record(sk, flags, record_type);
828 		if (err && sk->sk_err == EBADMSG) {
829 			*copied -= sk_msg_free(sk, msg);
830 			tls_free_open_rec(sk);
831 			err = -sk->sk_err;
832 			goto out_err;
833 		}
834 		break;
835 	case __SK_REDIRECT:
836 		sk_redir = psock->sk_redir;
837 		memcpy(&msg_redir, msg, sizeof(*msg));
838 		if (msg->apply_bytes < send)
839 			msg->apply_bytes = 0;
840 		else
841 			msg->apply_bytes -= send;
842 		sk_msg_return_zero(sk, msg, send);
843 		msg->sg.size -= send;
844 		release_sock(sk);
845 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
846 		lock_sock(sk);
847 		if (err < 0) {
848 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
849 			msg->sg.size = 0;
850 		}
851 		if (msg->sg.size == 0)
852 			tls_free_open_rec(sk);
853 		break;
854 	case __SK_DROP:
855 	default:
856 		sk_msg_free_partial(sk, msg, send);
857 		if (msg->apply_bytes < send)
858 			msg->apply_bytes = 0;
859 		else
860 			msg->apply_bytes -= send;
861 		if (msg->sg.size == 0)
862 			tls_free_open_rec(sk);
863 		*copied -= (send + delta);
864 		err = -EACCES;
865 	}
866 
867 	if (likely(!err)) {
868 		bool reset_eval = !ctx->open_rec;
869 
870 		rec = ctx->open_rec;
871 		if (rec) {
872 			msg = &rec->msg_plaintext;
873 			if (!msg->apply_bytes)
874 				reset_eval = true;
875 		}
876 		if (reset_eval) {
877 			psock->eval = __SK_NONE;
878 			if (psock->sk_redir) {
879 				sock_put(psock->sk_redir);
880 				psock->sk_redir = NULL;
881 			}
882 		}
883 		if (rec)
884 			goto more_data;
885 	}
886  out_err:
887 	sk_psock_put(sk, psock);
888 	return err;
889 }
890 
891 static int tls_sw_push_pending_record(struct sock *sk, int flags)
892 {
893 	struct tls_context *tls_ctx = tls_get_ctx(sk);
894 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
895 	struct tls_rec *rec = ctx->open_rec;
896 	struct sk_msg *msg_pl;
897 	size_t copied;
898 
899 	if (!rec)
900 		return 0;
901 
902 	msg_pl = &rec->msg_plaintext;
903 	copied = msg_pl->sg.size;
904 	if (!copied)
905 		return 0;
906 
907 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
908 				   &copied, flags);
909 }
910 
911 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
912 {
913 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
914 	struct tls_context *tls_ctx = tls_get_ctx(sk);
915 	struct tls_prot_info *prot = &tls_ctx->prot_info;
916 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
917 	bool async_capable = ctx->async_capable;
918 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
919 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
920 	bool eor = !(msg->msg_flags & MSG_MORE);
921 	size_t try_to_copy;
922 	ssize_t copied = 0;
923 	struct sk_msg *msg_pl, *msg_en;
924 	struct tls_rec *rec;
925 	int required_size;
926 	int num_async = 0;
927 	bool full_record;
928 	int record_room;
929 	int num_zc = 0;
930 	int orig_size;
931 	int ret = 0;
932 
933 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
934 		return -EOPNOTSUPP;
935 
936 	mutex_lock(&tls_ctx->tx_lock);
937 	lock_sock(sk);
938 
939 	if (unlikely(msg->msg_controllen)) {
940 		ret = tls_proccess_cmsg(sk, msg, &record_type);
941 		if (ret) {
942 			if (ret == -EINPROGRESS)
943 				num_async++;
944 			else if (ret != -EAGAIN)
945 				goto send_end;
946 		}
947 	}
948 
949 	while (msg_data_left(msg)) {
950 		if (sk->sk_err) {
951 			ret = -sk->sk_err;
952 			goto send_end;
953 		}
954 
955 		if (ctx->open_rec)
956 			rec = ctx->open_rec;
957 		else
958 			rec = ctx->open_rec = tls_get_rec(sk);
959 		if (!rec) {
960 			ret = -ENOMEM;
961 			goto send_end;
962 		}
963 
964 		msg_pl = &rec->msg_plaintext;
965 		msg_en = &rec->msg_encrypted;
966 
967 		orig_size = msg_pl->sg.size;
968 		full_record = false;
969 		try_to_copy = msg_data_left(msg);
970 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
971 		if (try_to_copy >= record_room) {
972 			try_to_copy = record_room;
973 			full_record = true;
974 		}
975 
976 		required_size = msg_pl->sg.size + try_to_copy +
977 				prot->overhead_size;
978 
979 		if (!sk_stream_memory_free(sk))
980 			goto wait_for_sndbuf;
981 
982 alloc_encrypted:
983 		ret = tls_alloc_encrypted_msg(sk, required_size);
984 		if (ret) {
985 			if (ret != -ENOSPC)
986 				goto wait_for_memory;
987 
988 			/* Adjust try_to_copy according to the amount that was
989 			 * actually allocated. The difference is due
990 			 * to max sg elements limit
991 			 */
992 			try_to_copy -= required_size - msg_en->sg.size;
993 			full_record = true;
994 		}
995 
996 		if (!is_kvec && (full_record || eor) && !async_capable) {
997 			u32 first = msg_pl->sg.end;
998 
999 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1000 							msg_pl, try_to_copy);
1001 			if (ret)
1002 				goto fallback_to_reg_send;
1003 
1004 			num_zc++;
1005 			copied += try_to_copy;
1006 
1007 			sk_msg_sg_copy_set(msg_pl, first);
1008 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1009 						  record_type, &copied,
1010 						  msg->msg_flags);
1011 			if (ret) {
1012 				if (ret == -EINPROGRESS)
1013 					num_async++;
1014 				else if (ret == -ENOMEM)
1015 					goto wait_for_memory;
1016 				else if (ctx->open_rec && ret == -ENOSPC)
1017 					goto rollback_iter;
1018 				else if (ret != -EAGAIN)
1019 					goto send_end;
1020 			}
1021 			continue;
1022 rollback_iter:
1023 			copied -= try_to_copy;
1024 			sk_msg_sg_copy_clear(msg_pl, first);
1025 			iov_iter_revert(&msg->msg_iter,
1026 					msg_pl->sg.size - orig_size);
1027 fallback_to_reg_send:
1028 			sk_msg_trim(sk, msg_pl, orig_size);
1029 		}
1030 
1031 		required_size = msg_pl->sg.size + try_to_copy;
1032 
1033 		ret = tls_clone_plaintext_msg(sk, required_size);
1034 		if (ret) {
1035 			if (ret != -ENOSPC)
1036 				goto send_end;
1037 
1038 			/* Adjust try_to_copy according to the amount that was
1039 			 * actually allocated. The difference is due
1040 			 * to max sg elements limit
1041 			 */
1042 			try_to_copy -= required_size - msg_pl->sg.size;
1043 			full_record = true;
1044 			sk_msg_trim(sk, msg_en,
1045 				    msg_pl->sg.size + prot->overhead_size);
1046 		}
1047 
1048 		if (try_to_copy) {
1049 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1050 						       msg_pl, try_to_copy);
1051 			if (ret < 0)
1052 				goto trim_sgl;
1053 		}
1054 
1055 		/* Open records defined only if successfully copied, otherwise
1056 		 * we would trim the sg but not reset the open record frags.
1057 		 */
1058 		tls_ctx->pending_open_record_frags = true;
1059 		copied += try_to_copy;
1060 		if (full_record || eor) {
1061 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1062 						  record_type, &copied,
1063 						  msg->msg_flags);
1064 			if (ret) {
1065 				if (ret == -EINPROGRESS)
1066 					num_async++;
1067 				else if (ret == -ENOMEM)
1068 					goto wait_for_memory;
1069 				else if (ret != -EAGAIN) {
1070 					if (ret == -ENOSPC)
1071 						ret = 0;
1072 					goto send_end;
1073 				}
1074 			}
1075 		}
1076 
1077 		continue;
1078 
1079 wait_for_sndbuf:
1080 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1081 wait_for_memory:
1082 		ret = sk_stream_wait_memory(sk, &timeo);
1083 		if (ret) {
1084 trim_sgl:
1085 			if (ctx->open_rec)
1086 				tls_trim_both_msgs(sk, orig_size);
1087 			goto send_end;
1088 		}
1089 
1090 		if (ctx->open_rec && msg_en->sg.size < required_size)
1091 			goto alloc_encrypted;
1092 	}
1093 
1094 	if (!num_async) {
1095 		goto send_end;
1096 	} else if (num_zc) {
1097 		/* Wait for pending encryptions to get completed */
1098 		smp_store_mb(ctx->async_notify, true);
1099 
1100 		if (atomic_read(&ctx->encrypt_pending))
1101 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1102 		else
1103 			reinit_completion(&ctx->async_wait.completion);
1104 
1105 		WRITE_ONCE(ctx->async_notify, false);
1106 
1107 		if (ctx->async_wait.err) {
1108 			ret = ctx->async_wait.err;
1109 			copied = 0;
1110 		}
1111 	}
1112 
1113 	/* Transmit if any encryptions have completed */
1114 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1115 		cancel_delayed_work(&ctx->tx_work.work);
1116 		tls_tx_records(sk, msg->msg_flags);
1117 	}
1118 
1119 send_end:
1120 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1121 
1122 	release_sock(sk);
1123 	mutex_unlock(&tls_ctx->tx_lock);
1124 	return copied > 0 ? copied : ret;
1125 }
1126 
1127 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1128 			      int offset, size_t size, int flags)
1129 {
1130 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1131 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1132 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1133 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1134 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1135 	struct sk_msg *msg_pl;
1136 	struct tls_rec *rec;
1137 	int num_async = 0;
1138 	ssize_t copied = 0;
1139 	bool full_record;
1140 	int record_room;
1141 	int ret = 0;
1142 	bool eor;
1143 
1144 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1145 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1146 
1147 	/* Call the sk_stream functions to manage the sndbuf mem. */
1148 	while (size > 0) {
1149 		size_t copy, required_size;
1150 
1151 		if (sk->sk_err) {
1152 			ret = -sk->sk_err;
1153 			goto sendpage_end;
1154 		}
1155 
1156 		if (ctx->open_rec)
1157 			rec = ctx->open_rec;
1158 		else
1159 			rec = ctx->open_rec = tls_get_rec(sk);
1160 		if (!rec) {
1161 			ret = -ENOMEM;
1162 			goto sendpage_end;
1163 		}
1164 
1165 		msg_pl = &rec->msg_plaintext;
1166 
1167 		full_record = false;
1168 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1169 		copy = size;
1170 		if (copy >= record_room) {
1171 			copy = record_room;
1172 			full_record = true;
1173 		}
1174 
1175 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1176 
1177 		if (!sk_stream_memory_free(sk))
1178 			goto wait_for_sndbuf;
1179 alloc_payload:
1180 		ret = tls_alloc_encrypted_msg(sk, required_size);
1181 		if (ret) {
1182 			if (ret != -ENOSPC)
1183 				goto wait_for_memory;
1184 
1185 			/* Adjust copy according to the amount that was
1186 			 * actually allocated. The difference is due
1187 			 * to max sg elements limit
1188 			 */
1189 			copy -= required_size - msg_pl->sg.size;
1190 			full_record = true;
1191 		}
1192 
1193 		sk_msg_page_add(msg_pl, page, copy, offset);
1194 		sk_mem_charge(sk, copy);
1195 
1196 		offset += copy;
1197 		size -= copy;
1198 		copied += copy;
1199 
1200 		tls_ctx->pending_open_record_frags = true;
1201 		if (full_record || eor || sk_msg_full(msg_pl)) {
1202 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1203 						  record_type, &copied, flags);
1204 			if (ret) {
1205 				if (ret == -EINPROGRESS)
1206 					num_async++;
1207 				else if (ret == -ENOMEM)
1208 					goto wait_for_memory;
1209 				else if (ret != -EAGAIN) {
1210 					if (ret == -ENOSPC)
1211 						ret = 0;
1212 					goto sendpage_end;
1213 				}
1214 			}
1215 		}
1216 		continue;
1217 wait_for_sndbuf:
1218 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1219 wait_for_memory:
1220 		ret = sk_stream_wait_memory(sk, &timeo);
1221 		if (ret) {
1222 			if (ctx->open_rec)
1223 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1224 			goto sendpage_end;
1225 		}
1226 
1227 		if (ctx->open_rec)
1228 			goto alloc_payload;
1229 	}
1230 
1231 	if (num_async) {
1232 		/* Transmit if any encryptions have completed */
1233 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1234 			cancel_delayed_work(&ctx->tx_work.work);
1235 			tls_tx_records(sk, flags);
1236 		}
1237 	}
1238 sendpage_end:
1239 	ret = sk_stream_error(sk, flags, ret);
1240 	return copied > 0 ? copied : ret;
1241 }
1242 
1243 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1244 			   int offset, size_t size, int flags)
1245 {
1246 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1247 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1248 		      MSG_NO_SHARED_FRAGS))
1249 		return -EOPNOTSUPP;
1250 
1251 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1252 }
1253 
1254 int tls_sw_sendpage(struct sock *sk, struct page *page,
1255 		    int offset, size_t size, int flags)
1256 {
1257 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1258 	int ret;
1259 
1260 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1261 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1262 		return -EOPNOTSUPP;
1263 
1264 	mutex_lock(&tls_ctx->tx_lock);
1265 	lock_sock(sk);
1266 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1267 	release_sock(sk);
1268 	mutex_unlock(&tls_ctx->tx_lock);
1269 	return ret;
1270 }
1271 
1272 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1273 				     int flags, long timeo, int *err)
1274 {
1275 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1276 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1277 	struct sk_buff *skb;
1278 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1279 
1280 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1281 		if (sk->sk_err) {
1282 			*err = sock_error(sk);
1283 			return NULL;
1284 		}
1285 
1286 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1287 			return NULL;
1288 
1289 		if (sock_flag(sk, SOCK_DONE))
1290 			return NULL;
1291 
1292 		if ((flags & MSG_DONTWAIT) || !timeo) {
1293 			*err = -EAGAIN;
1294 			return NULL;
1295 		}
1296 
1297 		add_wait_queue(sk_sleep(sk), &wait);
1298 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1299 		sk_wait_event(sk, &timeo,
1300 			      ctx->recv_pkt != skb ||
1301 			      !sk_psock_queue_empty(psock),
1302 			      &wait);
1303 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1304 		remove_wait_queue(sk_sleep(sk), &wait);
1305 
1306 		/* Handle signals */
1307 		if (signal_pending(current)) {
1308 			*err = sock_intr_errno(timeo);
1309 			return NULL;
1310 		}
1311 	}
1312 
1313 	return skb;
1314 }
1315 
1316 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1317 			       int length, int *pages_used,
1318 			       unsigned int *size_used,
1319 			       struct scatterlist *to,
1320 			       int to_max_pages)
1321 {
1322 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1323 	struct page *pages[MAX_SKB_FRAGS];
1324 	unsigned int size = *size_used;
1325 	ssize_t copied, use;
1326 	size_t offset;
1327 
1328 	while (length > 0) {
1329 		i = 0;
1330 		maxpages = to_max_pages - num_elem;
1331 		if (maxpages == 0) {
1332 			rc = -EFAULT;
1333 			goto out;
1334 		}
1335 		copied = iov_iter_get_pages(from, pages,
1336 					    length,
1337 					    maxpages, &offset);
1338 		if (copied <= 0) {
1339 			rc = -EFAULT;
1340 			goto out;
1341 		}
1342 
1343 		iov_iter_advance(from, copied);
1344 
1345 		length -= copied;
1346 		size += copied;
1347 		while (copied) {
1348 			use = min_t(int, copied, PAGE_SIZE - offset);
1349 
1350 			sg_set_page(&to[num_elem],
1351 				    pages[i], use, offset);
1352 			sg_unmark_end(&to[num_elem]);
1353 			/* We do not uncharge memory from this API */
1354 
1355 			offset = 0;
1356 			copied -= use;
1357 
1358 			i++;
1359 			num_elem++;
1360 		}
1361 	}
1362 	/* Mark the end in the last sg entry if newly added */
1363 	if (num_elem > *pages_used)
1364 		sg_mark_end(&to[num_elem - 1]);
1365 out:
1366 	if (rc)
1367 		iov_iter_revert(from, size - *size_used);
1368 	*size_used = size;
1369 	*pages_used = num_elem;
1370 
1371 	return rc;
1372 }
1373 
1374 /* This function decrypts the input skb into either out_iov or in out_sg
1375  * or in skb buffers itself. The input parameter 'zc' indicates if
1376  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1377  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1378  * NULL, then the decryption happens inside skb buffers itself, i.e.
1379  * zero-copy gets disabled and 'zc' is updated.
1380  */
1381 
1382 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1383 			    struct iov_iter *out_iov,
1384 			    struct scatterlist *out_sg,
1385 			    int *chunk, bool *zc, bool async)
1386 {
1387 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1388 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1389 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1390 	struct strp_msg *rxm = strp_msg(skb);
1391 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1392 	struct aead_request *aead_req;
1393 	struct sk_buff *unused;
1394 	u8 *aad, *iv, *mem = NULL;
1395 	struct scatterlist *sgin = NULL;
1396 	struct scatterlist *sgout = NULL;
1397 	const int data_len = rxm->full_len - prot->overhead_size +
1398 			     prot->tail_size;
1399 	int iv_offset = 0;
1400 
1401 	if (*zc && (out_iov || out_sg)) {
1402 		if (out_iov)
1403 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1404 		else
1405 			n_sgout = sg_nents(out_sg);
1406 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1407 				 rxm->full_len - prot->prepend_size);
1408 	} else {
1409 		n_sgout = 0;
1410 		*zc = false;
1411 		n_sgin = skb_cow_data(skb, 0, &unused);
1412 	}
1413 
1414 	if (n_sgin < 1)
1415 		return -EBADMSG;
1416 
1417 	/* Increment to accommodate AAD */
1418 	n_sgin = n_sgin + 1;
1419 
1420 	nsg = n_sgin + n_sgout;
1421 
1422 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1423 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1424 	mem_size = mem_size + prot->aad_size;
1425 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1426 
1427 	/* Allocate a single block of memory which contains
1428 	 * aead_req || sgin[] || sgout[] || aad || iv.
1429 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1430 	 */
1431 	mem = kmalloc(mem_size, sk->sk_allocation);
1432 	if (!mem)
1433 		return -ENOMEM;
1434 
1435 	/* Segment the allocated memory */
1436 	aead_req = (struct aead_request *)mem;
1437 	sgin = (struct scatterlist *)(mem + aead_size);
1438 	sgout = sgin + n_sgin;
1439 	aad = (u8 *)(sgout + n_sgout);
1440 	iv = aad + prot->aad_size;
1441 
1442 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1443 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1444 		iv[0] = 2;
1445 		iv_offset = 1;
1446 	}
1447 
1448 	/* Prepare IV */
1449 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1450 			    iv + iv_offset + prot->salt_size,
1451 			    prot->iv_size);
1452 	if (err < 0) {
1453 		kfree(mem);
1454 		return err;
1455 	}
1456 	if (prot->version == TLS_1_3_VERSION)
1457 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1458 		       crypto_aead_ivsize(ctx->aead_recv));
1459 	else
1460 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1461 
1462 	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1463 
1464 	/* Prepare AAD */
1465 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1466 		     prot->tail_size,
1467 		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1468 		     ctx->control, prot->version);
1469 
1470 	/* Prepare sgin */
1471 	sg_init_table(sgin, n_sgin);
1472 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1473 	err = skb_to_sgvec(skb, &sgin[1],
1474 			   rxm->offset + prot->prepend_size,
1475 			   rxm->full_len - prot->prepend_size);
1476 	if (err < 0) {
1477 		kfree(mem);
1478 		return err;
1479 	}
1480 
1481 	if (n_sgout) {
1482 		if (out_iov) {
1483 			sg_init_table(sgout, n_sgout);
1484 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1485 
1486 			*chunk = 0;
1487 			err = tls_setup_from_iter(sk, out_iov, data_len,
1488 						  &pages, chunk, &sgout[1],
1489 						  (n_sgout - 1));
1490 			if (err < 0)
1491 				goto fallback_to_reg_recv;
1492 		} else if (out_sg) {
1493 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1494 		} else {
1495 			goto fallback_to_reg_recv;
1496 		}
1497 	} else {
1498 fallback_to_reg_recv:
1499 		sgout = sgin;
1500 		pages = 0;
1501 		*chunk = data_len;
1502 		*zc = false;
1503 	}
1504 
1505 	/* Prepare and submit AEAD request */
1506 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1507 				data_len, aead_req, async);
1508 	if (err == -EINPROGRESS)
1509 		return err;
1510 
1511 	/* Release the pages in case iov was mapped to pages */
1512 	for (; pages > 0; pages--)
1513 		put_page(sg_page(&sgout[pages]));
1514 
1515 	kfree(mem);
1516 	return err;
1517 }
1518 
1519 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1520 			      struct iov_iter *dest, int *chunk, bool *zc,
1521 			      bool async)
1522 {
1523 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1524 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1525 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1526 	struct strp_msg *rxm = strp_msg(skb);
1527 	int pad, err = 0;
1528 
1529 	if (!ctx->decrypted) {
1530 		if (tls_ctx->rx_conf == TLS_HW) {
1531 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1532 			if (err < 0)
1533 				return err;
1534 		}
1535 
1536 		/* Still not decrypted after tls_device */
1537 		if (!ctx->decrypted) {
1538 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1539 					       async);
1540 			if (err < 0) {
1541 				if (err == -EINPROGRESS)
1542 					tls_advance_record_sn(sk, prot,
1543 							      &tls_ctx->rx);
1544 				else if (err == -EBADMSG)
1545 					TLS_INC_STATS(sock_net(sk),
1546 						      LINUX_MIB_TLSDECRYPTERROR);
1547 				return err;
1548 			}
1549 		} else {
1550 			*zc = false;
1551 		}
1552 
1553 		pad = padding_length(ctx, prot, skb);
1554 		if (pad < 0)
1555 			return pad;
1556 
1557 		rxm->full_len -= pad;
1558 		rxm->offset += prot->prepend_size;
1559 		rxm->full_len -= prot->overhead_size;
1560 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1561 		ctx->decrypted = 1;
1562 		ctx->saved_data_ready(sk);
1563 	} else {
1564 		*zc = false;
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1571 		struct scatterlist *sgout)
1572 {
1573 	bool zc = true;
1574 	int chunk;
1575 
1576 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1577 }
1578 
1579 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1580 			       unsigned int len)
1581 {
1582 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1583 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1584 
1585 	if (skb) {
1586 		struct strp_msg *rxm = strp_msg(skb);
1587 
1588 		if (len < rxm->full_len) {
1589 			rxm->offset += len;
1590 			rxm->full_len -= len;
1591 			return false;
1592 		}
1593 		consume_skb(skb);
1594 	}
1595 
1596 	/* Finished with message */
1597 	ctx->recv_pkt = NULL;
1598 	__strp_unpause(&ctx->strp);
1599 
1600 	return true;
1601 }
1602 
1603 /* This function traverses the rx_list in tls receive context to copies the
1604  * decrypted records into the buffer provided by caller zero copy is not
1605  * true. Further, the records are removed from the rx_list if it is not a peek
1606  * case and the record has been consumed completely.
1607  */
1608 static int process_rx_list(struct tls_sw_context_rx *ctx,
1609 			   struct msghdr *msg,
1610 			   u8 *control,
1611 			   bool *cmsg,
1612 			   size_t skip,
1613 			   size_t len,
1614 			   bool zc,
1615 			   bool is_peek)
1616 {
1617 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1618 	u8 ctrl = *control;
1619 	u8 msgc = *cmsg;
1620 	struct tls_msg *tlm;
1621 	ssize_t copied = 0;
1622 
1623 	/* Set the record type in 'control' if caller didn't pass it */
1624 	if (!ctrl && skb) {
1625 		tlm = tls_msg(skb);
1626 		ctrl = tlm->control;
1627 	}
1628 
1629 	while (skip && skb) {
1630 		struct strp_msg *rxm = strp_msg(skb);
1631 		tlm = tls_msg(skb);
1632 
1633 		/* Cannot process a record of different type */
1634 		if (ctrl != tlm->control)
1635 			return 0;
1636 
1637 		if (skip < rxm->full_len)
1638 			break;
1639 
1640 		skip = skip - rxm->full_len;
1641 		skb = skb_peek_next(skb, &ctx->rx_list);
1642 	}
1643 
1644 	while (len && skb) {
1645 		struct sk_buff *next_skb;
1646 		struct strp_msg *rxm = strp_msg(skb);
1647 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1648 
1649 		tlm = tls_msg(skb);
1650 
1651 		/* Cannot process a record of different type */
1652 		if (ctrl != tlm->control)
1653 			return 0;
1654 
1655 		/* Set record type if not already done. For a non-data record,
1656 		 * do not proceed if record type could not be copied.
1657 		 */
1658 		if (!msgc) {
1659 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1660 					    sizeof(ctrl), &ctrl);
1661 			msgc = true;
1662 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1663 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1664 					return -EIO;
1665 
1666 				*cmsg = msgc;
1667 			}
1668 		}
1669 
1670 		if (!zc || (rxm->full_len - skip) > len) {
1671 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1672 						    msg, chunk);
1673 			if (err < 0)
1674 				return err;
1675 		}
1676 
1677 		len = len - chunk;
1678 		copied = copied + chunk;
1679 
1680 		/* Consume the data from record if it is non-peek case*/
1681 		if (!is_peek) {
1682 			rxm->offset = rxm->offset + chunk;
1683 			rxm->full_len = rxm->full_len - chunk;
1684 
1685 			/* Return if there is unconsumed data in the record */
1686 			if (rxm->full_len - skip)
1687 				break;
1688 		}
1689 
1690 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1691 		 * So from the 2nd record, 'skip' should be 0.
1692 		 */
1693 		skip = 0;
1694 
1695 		if (msg)
1696 			msg->msg_flags |= MSG_EOR;
1697 
1698 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1699 
1700 		if (!is_peek) {
1701 			skb_unlink(skb, &ctx->rx_list);
1702 			consume_skb(skb);
1703 		}
1704 
1705 		skb = next_skb;
1706 	}
1707 
1708 	*control = ctrl;
1709 	return copied;
1710 }
1711 
1712 int tls_sw_recvmsg(struct sock *sk,
1713 		   struct msghdr *msg,
1714 		   size_t len,
1715 		   int nonblock,
1716 		   int flags,
1717 		   int *addr_len)
1718 {
1719 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1720 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1721 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1722 	struct sk_psock *psock;
1723 	unsigned char control = 0;
1724 	ssize_t decrypted = 0;
1725 	struct strp_msg *rxm;
1726 	struct tls_msg *tlm;
1727 	struct sk_buff *skb;
1728 	ssize_t copied = 0;
1729 	bool cmsg = false;
1730 	int target, err = 0;
1731 	long timeo;
1732 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1733 	bool is_peek = flags & MSG_PEEK;
1734 	int num_async = 0;
1735 
1736 	flags |= nonblock;
1737 
1738 	if (unlikely(flags & MSG_ERRQUEUE))
1739 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1740 
1741 	psock = sk_psock_get(sk);
1742 	lock_sock(sk);
1743 
1744 	/* Process pending decrypted records. It must be non-zero-copy */
1745 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1746 			      is_peek);
1747 	if (err < 0) {
1748 		tls_err_abort(sk, err);
1749 		goto end;
1750 	} else {
1751 		copied = err;
1752 	}
1753 
1754 	if (len <= copied)
1755 		goto recv_end;
1756 
1757 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1758 	len = len - copied;
1759 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1760 
1761 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1762 		bool retain_skb = false;
1763 		bool zc = false;
1764 		int to_decrypt;
1765 		int chunk = 0;
1766 		bool async_capable;
1767 		bool async = false;
1768 
1769 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1770 		if (!skb) {
1771 			if (psock) {
1772 				int ret = __tcp_bpf_recvmsg(sk, psock,
1773 							    msg, len, flags);
1774 
1775 				if (ret > 0) {
1776 					decrypted += ret;
1777 					len -= ret;
1778 					continue;
1779 				}
1780 			}
1781 			goto recv_end;
1782 		} else {
1783 			tlm = tls_msg(skb);
1784 			if (prot->version == TLS_1_3_VERSION)
1785 				tlm->control = 0;
1786 			else
1787 				tlm->control = ctx->control;
1788 		}
1789 
1790 		rxm = strp_msg(skb);
1791 
1792 		to_decrypt = rxm->full_len - prot->overhead_size;
1793 
1794 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1795 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1796 		    prot->version != TLS_1_3_VERSION)
1797 			zc = true;
1798 
1799 		/* Do not use async mode if record is non-data */
1800 		if (ctx->control == TLS_RECORD_TYPE_DATA)
1801 			async_capable = ctx->async_capable;
1802 		else
1803 			async_capable = false;
1804 
1805 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1806 					 &chunk, &zc, async_capable);
1807 		if (err < 0 && err != -EINPROGRESS) {
1808 			tls_err_abort(sk, EBADMSG);
1809 			goto recv_end;
1810 		}
1811 
1812 		if (err == -EINPROGRESS) {
1813 			async = true;
1814 			num_async++;
1815 		} else if (prot->version == TLS_1_3_VERSION) {
1816 			tlm->control = ctx->control;
1817 		}
1818 
1819 		/* If the type of records being processed is not known yet,
1820 		 * set it to record type just dequeued. If it is already known,
1821 		 * but does not match the record type just dequeued, go to end.
1822 		 * We always get record type here since for tls1.2, record type
1823 		 * is known just after record is dequeued from stream parser.
1824 		 * For tls1.3, we disable async.
1825 		 */
1826 
1827 		if (!control)
1828 			control = tlm->control;
1829 		else if (control != tlm->control)
1830 			goto recv_end;
1831 
1832 		if (!cmsg) {
1833 			int cerr;
1834 
1835 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1836 					sizeof(control), &control);
1837 			cmsg = true;
1838 			if (control != TLS_RECORD_TYPE_DATA) {
1839 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1840 					err = -EIO;
1841 					goto recv_end;
1842 				}
1843 			}
1844 		}
1845 
1846 		if (async)
1847 			goto pick_next_record;
1848 
1849 		if (!zc) {
1850 			if (rxm->full_len > len) {
1851 				retain_skb = true;
1852 				chunk = len;
1853 			} else {
1854 				chunk = rxm->full_len;
1855 			}
1856 
1857 			err = skb_copy_datagram_msg(skb, rxm->offset,
1858 						    msg, chunk);
1859 			if (err < 0)
1860 				goto recv_end;
1861 
1862 			if (!is_peek) {
1863 				rxm->offset = rxm->offset + chunk;
1864 				rxm->full_len = rxm->full_len - chunk;
1865 			}
1866 		}
1867 
1868 pick_next_record:
1869 		if (chunk > len)
1870 			chunk = len;
1871 
1872 		decrypted += chunk;
1873 		len -= chunk;
1874 
1875 		/* For async or peek case, queue the current skb */
1876 		if (async || is_peek || retain_skb) {
1877 			skb_queue_tail(&ctx->rx_list, skb);
1878 			skb = NULL;
1879 		}
1880 
1881 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1882 			/* Return full control message to
1883 			 * userspace before trying to parse
1884 			 * another message type
1885 			 */
1886 			msg->msg_flags |= MSG_EOR;
1887 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1888 				goto recv_end;
1889 		} else {
1890 			break;
1891 		}
1892 	}
1893 
1894 recv_end:
1895 	if (num_async) {
1896 		/* Wait for all previously submitted records to be decrypted */
1897 		smp_store_mb(ctx->async_notify, true);
1898 		if (atomic_read(&ctx->decrypt_pending)) {
1899 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1900 			if (err) {
1901 				/* one of async decrypt failed */
1902 				tls_err_abort(sk, err);
1903 				copied = 0;
1904 				decrypted = 0;
1905 				goto end;
1906 			}
1907 		} else {
1908 			reinit_completion(&ctx->async_wait.completion);
1909 		}
1910 		WRITE_ONCE(ctx->async_notify, false);
1911 
1912 		/* Drain records from the rx_list & copy if required */
1913 		if (is_peek || is_kvec)
1914 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1915 					      decrypted, false, is_peek);
1916 		else
1917 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1918 					      decrypted, true, is_peek);
1919 		if (err < 0) {
1920 			tls_err_abort(sk, err);
1921 			copied = 0;
1922 			goto end;
1923 		}
1924 	}
1925 
1926 	copied += decrypted;
1927 
1928 end:
1929 	release_sock(sk);
1930 	if (psock)
1931 		sk_psock_put(sk, psock);
1932 	return copied ? : err;
1933 }
1934 
1935 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1936 			   struct pipe_inode_info *pipe,
1937 			   size_t len, unsigned int flags)
1938 {
1939 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1940 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1941 	struct strp_msg *rxm = NULL;
1942 	struct sock *sk = sock->sk;
1943 	struct sk_buff *skb;
1944 	ssize_t copied = 0;
1945 	int err = 0;
1946 	long timeo;
1947 	int chunk;
1948 	bool zc = false;
1949 
1950 	lock_sock(sk);
1951 
1952 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1953 
1954 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1955 	if (!skb)
1956 		goto splice_read_end;
1957 
1958 	if (!ctx->decrypted) {
1959 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1960 
1961 		/* splice does not support reading control messages */
1962 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1963 			err = -EINVAL;
1964 			goto splice_read_end;
1965 		}
1966 
1967 		if (err < 0) {
1968 			tls_err_abort(sk, EBADMSG);
1969 			goto splice_read_end;
1970 		}
1971 		ctx->decrypted = 1;
1972 	}
1973 	rxm = strp_msg(skb);
1974 
1975 	chunk = min_t(unsigned int, rxm->full_len, len);
1976 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1977 	if (copied < 0)
1978 		goto splice_read_end;
1979 
1980 	if (likely(!(flags & MSG_PEEK)))
1981 		tls_sw_advance_skb(sk, skb, copied);
1982 
1983 splice_read_end:
1984 	release_sock(sk);
1985 	return copied ? : err;
1986 }
1987 
1988 bool tls_sw_stream_read(const struct sock *sk)
1989 {
1990 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1991 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1992 	bool ingress_empty = true;
1993 	struct sk_psock *psock;
1994 
1995 	rcu_read_lock();
1996 	psock = sk_psock(sk);
1997 	if (psock)
1998 		ingress_empty = list_empty(&psock->ingress_msg);
1999 	rcu_read_unlock();
2000 
2001 	return !ingress_empty || ctx->recv_pkt ||
2002 		!skb_queue_empty(&ctx->rx_list);
2003 }
2004 
2005 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2006 {
2007 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2008 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2009 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2010 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2011 	struct strp_msg *rxm = strp_msg(skb);
2012 	size_t cipher_overhead;
2013 	size_t data_len = 0;
2014 	int ret;
2015 
2016 	/* Verify that we have a full TLS header, or wait for more data */
2017 	if (rxm->offset + prot->prepend_size > skb->len)
2018 		return 0;
2019 
2020 	/* Sanity-check size of on-stack buffer. */
2021 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2022 		ret = -EINVAL;
2023 		goto read_failure;
2024 	}
2025 
2026 	/* Linearize header to local buffer */
2027 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2028 
2029 	if (ret < 0)
2030 		goto read_failure;
2031 
2032 	ctx->control = header[0];
2033 
2034 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2035 
2036 	cipher_overhead = prot->tag_size;
2037 	if (prot->version != TLS_1_3_VERSION)
2038 		cipher_overhead += prot->iv_size;
2039 
2040 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2041 	    prot->tail_size) {
2042 		ret = -EMSGSIZE;
2043 		goto read_failure;
2044 	}
2045 	if (data_len < cipher_overhead) {
2046 		ret = -EBADMSG;
2047 		goto read_failure;
2048 	}
2049 
2050 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2051 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2052 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2053 		ret = -EINVAL;
2054 		goto read_failure;
2055 	}
2056 
2057 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2058 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2059 	return data_len + TLS_HEADER_SIZE;
2060 
2061 read_failure:
2062 	tls_err_abort(strp->sk, ret);
2063 
2064 	return ret;
2065 }
2066 
2067 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2068 {
2069 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2070 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2071 
2072 	ctx->decrypted = 0;
2073 
2074 	ctx->recv_pkt = skb;
2075 	strp_pause(strp);
2076 
2077 	ctx->saved_data_ready(strp->sk);
2078 }
2079 
2080 static void tls_data_ready(struct sock *sk)
2081 {
2082 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2083 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2084 	struct sk_psock *psock;
2085 
2086 	strp_data_ready(&ctx->strp);
2087 
2088 	psock = sk_psock_get(sk);
2089 	if (psock) {
2090 		if (!list_empty(&psock->ingress_msg))
2091 			ctx->saved_data_ready(sk);
2092 		sk_psock_put(sk, psock);
2093 	}
2094 }
2095 
2096 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2097 {
2098 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2099 
2100 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2101 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2102 	cancel_delayed_work_sync(&ctx->tx_work.work);
2103 }
2104 
2105 void tls_sw_release_resources_tx(struct sock *sk)
2106 {
2107 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2108 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2109 	struct tls_rec *rec, *tmp;
2110 
2111 	/* Wait for any pending async encryptions to complete */
2112 	smp_store_mb(ctx->async_notify, true);
2113 	if (atomic_read(&ctx->encrypt_pending))
2114 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2115 
2116 	tls_tx_records(sk, -1);
2117 
2118 	/* Free up un-sent records in tx_list. First, free
2119 	 * the partially sent record if any at head of tx_list.
2120 	 */
2121 	if (tls_ctx->partially_sent_record) {
2122 		tls_free_partial_record(sk, tls_ctx);
2123 		rec = list_first_entry(&ctx->tx_list,
2124 				       struct tls_rec, list);
2125 		list_del(&rec->list);
2126 		sk_msg_free(sk, &rec->msg_plaintext);
2127 		kfree(rec);
2128 	}
2129 
2130 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2131 		list_del(&rec->list);
2132 		sk_msg_free(sk, &rec->msg_encrypted);
2133 		sk_msg_free(sk, &rec->msg_plaintext);
2134 		kfree(rec);
2135 	}
2136 
2137 	crypto_free_aead(ctx->aead_send);
2138 	tls_free_open_rec(sk);
2139 }
2140 
2141 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2142 {
2143 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2144 
2145 	kfree(ctx);
2146 }
2147 
2148 void tls_sw_release_resources_rx(struct sock *sk)
2149 {
2150 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2151 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2152 
2153 	kfree(tls_ctx->rx.rec_seq);
2154 	kfree(tls_ctx->rx.iv);
2155 
2156 	if (ctx->aead_recv) {
2157 		kfree_skb(ctx->recv_pkt);
2158 		ctx->recv_pkt = NULL;
2159 		skb_queue_purge(&ctx->rx_list);
2160 		crypto_free_aead(ctx->aead_recv);
2161 		strp_stop(&ctx->strp);
2162 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2163 		 * we still want to strp_stop(), but sk->sk_data_ready was
2164 		 * never swapped.
2165 		 */
2166 		if (ctx->saved_data_ready) {
2167 			write_lock_bh(&sk->sk_callback_lock);
2168 			sk->sk_data_ready = ctx->saved_data_ready;
2169 			write_unlock_bh(&sk->sk_callback_lock);
2170 		}
2171 	}
2172 }
2173 
2174 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2175 {
2176 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2177 
2178 	strp_done(&ctx->strp);
2179 }
2180 
2181 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2182 {
2183 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2184 
2185 	kfree(ctx);
2186 }
2187 
2188 void tls_sw_free_resources_rx(struct sock *sk)
2189 {
2190 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2191 
2192 	tls_sw_release_resources_rx(sk);
2193 	tls_sw_free_ctx_rx(tls_ctx);
2194 }
2195 
2196 /* The work handler to transmitt the encrypted records in tx_list */
2197 static void tx_work_handler(struct work_struct *work)
2198 {
2199 	struct delayed_work *delayed_work = to_delayed_work(work);
2200 	struct tx_work *tx_work = container_of(delayed_work,
2201 					       struct tx_work, work);
2202 	struct sock *sk = tx_work->sk;
2203 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2204 	struct tls_sw_context_tx *ctx;
2205 
2206 	if (unlikely(!tls_ctx))
2207 		return;
2208 
2209 	ctx = tls_sw_ctx_tx(tls_ctx);
2210 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2211 		return;
2212 
2213 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2214 		return;
2215 	mutex_lock(&tls_ctx->tx_lock);
2216 	lock_sock(sk);
2217 	tls_tx_records(sk, -1);
2218 	release_sock(sk);
2219 	mutex_unlock(&tls_ctx->tx_lock);
2220 }
2221 
2222 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2223 {
2224 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2225 
2226 	/* Schedule the transmission if tx list is ready */
2227 	if (is_tx_ready(tx_ctx) &&
2228 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2229 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2230 }
2231 
2232 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2233 {
2234 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2235 
2236 	write_lock_bh(&sk->sk_callback_lock);
2237 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2238 	sk->sk_data_ready = tls_data_ready;
2239 	write_unlock_bh(&sk->sk_callback_lock);
2240 
2241 	strp_check_rcv(&rx_ctx->strp);
2242 }
2243 
2244 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2245 {
2246 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2247 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2248 	struct tls_crypto_info *crypto_info;
2249 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2250 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2251 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2252 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2253 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2254 	struct cipher_context *cctx;
2255 	struct crypto_aead **aead;
2256 	struct strp_callbacks cb;
2257 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2258 	struct crypto_tfm *tfm;
2259 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2260 	size_t keysize;
2261 	int rc = 0;
2262 
2263 	if (!ctx) {
2264 		rc = -EINVAL;
2265 		goto out;
2266 	}
2267 
2268 	if (tx) {
2269 		if (!ctx->priv_ctx_tx) {
2270 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2271 			if (!sw_ctx_tx) {
2272 				rc = -ENOMEM;
2273 				goto out;
2274 			}
2275 			ctx->priv_ctx_tx = sw_ctx_tx;
2276 		} else {
2277 			sw_ctx_tx =
2278 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2279 		}
2280 	} else {
2281 		if (!ctx->priv_ctx_rx) {
2282 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2283 			if (!sw_ctx_rx) {
2284 				rc = -ENOMEM;
2285 				goto out;
2286 			}
2287 			ctx->priv_ctx_rx = sw_ctx_rx;
2288 		} else {
2289 			sw_ctx_rx =
2290 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2291 		}
2292 	}
2293 
2294 	if (tx) {
2295 		crypto_init_wait(&sw_ctx_tx->async_wait);
2296 		crypto_info = &ctx->crypto_send.info;
2297 		cctx = &ctx->tx;
2298 		aead = &sw_ctx_tx->aead_send;
2299 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2300 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2301 		sw_ctx_tx->tx_work.sk = sk;
2302 	} else {
2303 		crypto_init_wait(&sw_ctx_rx->async_wait);
2304 		crypto_info = &ctx->crypto_recv.info;
2305 		cctx = &ctx->rx;
2306 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2307 		aead = &sw_ctx_rx->aead_recv;
2308 	}
2309 
2310 	switch (crypto_info->cipher_type) {
2311 	case TLS_CIPHER_AES_GCM_128: {
2312 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2313 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2314 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2315 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2316 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2317 		rec_seq =
2318 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2319 		gcm_128_info =
2320 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2321 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2322 		key = gcm_128_info->key;
2323 		salt = gcm_128_info->salt;
2324 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2325 		cipher_name = "gcm(aes)";
2326 		break;
2327 	}
2328 	case TLS_CIPHER_AES_GCM_256: {
2329 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2330 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2331 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2332 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2333 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2334 		rec_seq =
2335 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2336 		gcm_256_info =
2337 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2338 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2339 		key = gcm_256_info->key;
2340 		salt = gcm_256_info->salt;
2341 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2342 		cipher_name = "gcm(aes)";
2343 		break;
2344 	}
2345 	case TLS_CIPHER_AES_CCM_128: {
2346 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2347 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2348 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2349 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2350 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2351 		rec_seq =
2352 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2353 		ccm_128_info =
2354 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2355 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2356 		key = ccm_128_info->key;
2357 		salt = ccm_128_info->salt;
2358 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2359 		cipher_name = "ccm(aes)";
2360 		break;
2361 	}
2362 	default:
2363 		rc = -EINVAL;
2364 		goto free_priv;
2365 	}
2366 
2367 	/* Sanity-check the sizes for stack allocations. */
2368 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2369 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2370 		rc = -EINVAL;
2371 		goto free_priv;
2372 	}
2373 
2374 	if (crypto_info->version == TLS_1_3_VERSION) {
2375 		nonce_size = 0;
2376 		prot->aad_size = TLS_HEADER_SIZE;
2377 		prot->tail_size = 1;
2378 	} else {
2379 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2380 		prot->tail_size = 0;
2381 	}
2382 
2383 	prot->version = crypto_info->version;
2384 	prot->cipher_type = crypto_info->cipher_type;
2385 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2386 	prot->tag_size = tag_size;
2387 	prot->overhead_size = prot->prepend_size +
2388 			      prot->tag_size + prot->tail_size;
2389 	prot->iv_size = iv_size;
2390 	prot->salt_size = salt_size;
2391 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2392 	if (!cctx->iv) {
2393 		rc = -ENOMEM;
2394 		goto free_priv;
2395 	}
2396 	/* Note: 128 & 256 bit salt are the same size */
2397 	prot->rec_seq_size = rec_seq_size;
2398 	memcpy(cctx->iv, salt, salt_size);
2399 	memcpy(cctx->iv + salt_size, iv, iv_size);
2400 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2401 	if (!cctx->rec_seq) {
2402 		rc = -ENOMEM;
2403 		goto free_iv;
2404 	}
2405 
2406 	if (!*aead) {
2407 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2408 		if (IS_ERR(*aead)) {
2409 			rc = PTR_ERR(*aead);
2410 			*aead = NULL;
2411 			goto free_rec_seq;
2412 		}
2413 	}
2414 
2415 	ctx->push_pending_record = tls_sw_push_pending_record;
2416 
2417 	rc = crypto_aead_setkey(*aead, key, keysize);
2418 
2419 	if (rc)
2420 		goto free_aead;
2421 
2422 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2423 	if (rc)
2424 		goto free_aead;
2425 
2426 	if (sw_ctx_rx) {
2427 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2428 
2429 		if (crypto_info->version == TLS_1_3_VERSION)
2430 			sw_ctx_rx->async_capable = 0;
2431 		else
2432 			sw_ctx_rx->async_capable =
2433 				!!(tfm->__crt_alg->cra_flags &
2434 				   CRYPTO_ALG_ASYNC);
2435 
2436 		/* Set up strparser */
2437 		memset(&cb, 0, sizeof(cb));
2438 		cb.rcv_msg = tls_queue;
2439 		cb.parse_msg = tls_read_size;
2440 
2441 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2442 	}
2443 
2444 	goto out;
2445 
2446 free_aead:
2447 	crypto_free_aead(*aead);
2448 	*aead = NULL;
2449 free_rec_seq:
2450 	kfree(cctx->rec_seq);
2451 	cctx->rec_seq = NULL;
2452 free_iv:
2453 	kfree(cctx->iv);
2454 	cctx->iv = NULL;
2455 free_priv:
2456 	if (tx) {
2457 		kfree(ctx->priv_ctx_tx);
2458 		ctx->priv_ctx_tx = NULL;
2459 	} else {
2460 		kfree(ctx->priv_ctx_rx);
2461 		ctx->priv_ctx_rx = NULL;
2462 	}
2463 out:
2464 	return rc;
2465 }
2466