1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 if (err == -EBADMSG) 172 TLS_INC_STATS(sock_net(skb->sk), 173 LINUX_MIB_TLSDECRYPTERROR); 174 ctx->async_wait.err = err; 175 tls_err_abort(skb->sk, err); 176 } else { 177 struct strp_msg *rxm = strp_msg(skb); 178 int pad; 179 180 pad = padding_length(ctx, prot, skb); 181 if (pad < 0) { 182 ctx->async_wait.err = pad; 183 tls_err_abort(skb->sk, pad); 184 } else { 185 rxm->full_len -= pad; 186 rxm->offset += prot->prepend_size; 187 rxm->full_len -= prot->overhead_size; 188 } 189 } 190 191 /* After using skb->sk to propagate sk through crypto async callback 192 * we need to NULL it again. 193 */ 194 skb->sk = NULL; 195 196 197 /* Free the destination pages if skb was not decrypted inplace */ 198 if (sgout != sgin) { 199 /* Skip the first S/G entry as it points to AAD */ 200 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 201 if (!sg) 202 break; 203 put_page(sg_page(sg)); 204 } 205 } 206 207 kfree(aead_req); 208 209 pending = atomic_dec_return(&ctx->decrypt_pending); 210 211 if (!pending && READ_ONCE(ctx->async_notify)) 212 complete(&ctx->async_wait.completion); 213 } 214 215 static int tls_do_decryption(struct sock *sk, 216 struct sk_buff *skb, 217 struct scatterlist *sgin, 218 struct scatterlist *sgout, 219 char *iv_recv, 220 size_t data_len, 221 struct aead_request *aead_req, 222 bool async) 223 { 224 struct tls_context *tls_ctx = tls_get_ctx(sk); 225 struct tls_prot_info *prot = &tls_ctx->prot_info; 226 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 227 int ret; 228 229 aead_request_set_tfm(aead_req, ctx->aead_recv); 230 aead_request_set_ad(aead_req, prot->aad_size); 231 aead_request_set_crypt(aead_req, sgin, sgout, 232 data_len + prot->tag_size, 233 (u8 *)iv_recv); 234 235 if (async) { 236 /* Using skb->sk to push sk through to crypto async callback 237 * handler. This allows propagating errors up to the socket 238 * if needed. It _must_ be cleared in the async handler 239 * before consume_skb is called. We _know_ skb->sk is NULL 240 * because it is a clone from strparser. 241 */ 242 skb->sk = sk; 243 aead_request_set_callback(aead_req, 244 CRYPTO_TFM_REQ_MAY_BACKLOG, 245 tls_decrypt_done, skb); 246 atomic_inc(&ctx->decrypt_pending); 247 } else { 248 aead_request_set_callback(aead_req, 249 CRYPTO_TFM_REQ_MAY_BACKLOG, 250 crypto_req_done, &ctx->async_wait); 251 } 252 253 ret = crypto_aead_decrypt(aead_req); 254 if (ret == -EINPROGRESS) { 255 if (async) 256 return ret; 257 258 ret = crypto_wait_req(ret, &ctx->async_wait); 259 } 260 261 if (async) 262 atomic_dec(&ctx->decrypt_pending); 263 264 return ret; 265 } 266 267 static void tls_trim_both_msgs(struct sock *sk, int target_size) 268 { 269 struct tls_context *tls_ctx = tls_get_ctx(sk); 270 struct tls_prot_info *prot = &tls_ctx->prot_info; 271 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 272 struct tls_rec *rec = ctx->open_rec; 273 274 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 275 if (target_size > 0) 276 target_size += prot->overhead_size; 277 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 278 } 279 280 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 281 { 282 struct tls_context *tls_ctx = tls_get_ctx(sk); 283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 284 struct tls_rec *rec = ctx->open_rec; 285 struct sk_msg *msg_en = &rec->msg_encrypted; 286 287 return sk_msg_alloc(sk, msg_en, len, 0); 288 } 289 290 static int tls_clone_plaintext_msg(struct sock *sk, int required) 291 { 292 struct tls_context *tls_ctx = tls_get_ctx(sk); 293 struct tls_prot_info *prot = &tls_ctx->prot_info; 294 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 295 struct tls_rec *rec = ctx->open_rec; 296 struct sk_msg *msg_pl = &rec->msg_plaintext; 297 struct sk_msg *msg_en = &rec->msg_encrypted; 298 int skip, len; 299 300 /* We add page references worth len bytes from encrypted sg 301 * at the end of plaintext sg. It is guaranteed that msg_en 302 * has enough required room (ensured by caller). 303 */ 304 len = required - msg_pl->sg.size; 305 306 /* Skip initial bytes in msg_en's data to be able to use 307 * same offset of both plain and encrypted data. 308 */ 309 skip = prot->prepend_size + msg_pl->sg.size; 310 311 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 312 } 313 314 static struct tls_rec *tls_get_rec(struct sock *sk) 315 { 316 struct tls_context *tls_ctx = tls_get_ctx(sk); 317 struct tls_prot_info *prot = &tls_ctx->prot_info; 318 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 319 struct sk_msg *msg_pl, *msg_en; 320 struct tls_rec *rec; 321 int mem_size; 322 323 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 324 325 rec = kzalloc(mem_size, sk->sk_allocation); 326 if (!rec) 327 return NULL; 328 329 msg_pl = &rec->msg_plaintext; 330 msg_en = &rec->msg_encrypted; 331 332 sk_msg_init(msg_pl); 333 sk_msg_init(msg_en); 334 335 sg_init_table(rec->sg_aead_in, 2); 336 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 337 sg_unmark_end(&rec->sg_aead_in[1]); 338 339 sg_init_table(rec->sg_aead_out, 2); 340 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 341 sg_unmark_end(&rec->sg_aead_out[1]); 342 343 return rec; 344 } 345 346 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 347 { 348 sk_msg_free(sk, &rec->msg_encrypted); 349 sk_msg_free(sk, &rec->msg_plaintext); 350 kfree(rec); 351 } 352 353 static void tls_free_open_rec(struct sock *sk) 354 { 355 struct tls_context *tls_ctx = tls_get_ctx(sk); 356 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 357 struct tls_rec *rec = ctx->open_rec; 358 359 if (rec) { 360 tls_free_rec(sk, rec); 361 ctx->open_rec = NULL; 362 } 363 } 364 365 int tls_tx_records(struct sock *sk, int flags) 366 { 367 struct tls_context *tls_ctx = tls_get_ctx(sk); 368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 369 struct tls_rec *rec, *tmp; 370 struct sk_msg *msg_en; 371 int tx_flags, rc = 0; 372 373 if (tls_is_partially_sent_record(tls_ctx)) { 374 rec = list_first_entry(&ctx->tx_list, 375 struct tls_rec, list); 376 377 if (flags == -1) 378 tx_flags = rec->tx_flags; 379 else 380 tx_flags = flags; 381 382 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 383 if (rc) 384 goto tx_err; 385 386 /* Full record has been transmitted. 387 * Remove the head of tx_list 388 */ 389 list_del(&rec->list); 390 sk_msg_free(sk, &rec->msg_plaintext); 391 kfree(rec); 392 } 393 394 /* Tx all ready records */ 395 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 396 if (READ_ONCE(rec->tx_ready)) { 397 if (flags == -1) 398 tx_flags = rec->tx_flags; 399 else 400 tx_flags = flags; 401 402 msg_en = &rec->msg_encrypted; 403 rc = tls_push_sg(sk, tls_ctx, 404 &msg_en->sg.data[msg_en->sg.curr], 405 0, tx_flags); 406 if (rc) 407 goto tx_err; 408 409 list_del(&rec->list); 410 sk_msg_free(sk, &rec->msg_plaintext); 411 kfree(rec); 412 } else { 413 break; 414 } 415 } 416 417 tx_err: 418 if (rc < 0 && rc != -EAGAIN) 419 tls_err_abort(sk, EBADMSG); 420 421 return rc; 422 } 423 424 static void tls_encrypt_done(struct crypto_async_request *req, int err) 425 { 426 struct aead_request *aead_req = (struct aead_request *)req; 427 struct sock *sk = req->data; 428 struct tls_context *tls_ctx = tls_get_ctx(sk); 429 struct tls_prot_info *prot = &tls_ctx->prot_info; 430 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 431 struct scatterlist *sge; 432 struct sk_msg *msg_en; 433 struct tls_rec *rec; 434 bool ready = false; 435 int pending; 436 437 rec = container_of(aead_req, struct tls_rec, aead_req); 438 msg_en = &rec->msg_encrypted; 439 440 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 441 sge->offset -= prot->prepend_size; 442 sge->length += prot->prepend_size; 443 444 /* Check if error is previously set on socket */ 445 if (err || sk->sk_err) { 446 rec = NULL; 447 448 /* If err is already set on socket, return the same code */ 449 if (sk->sk_err) { 450 ctx->async_wait.err = sk->sk_err; 451 } else { 452 ctx->async_wait.err = err; 453 tls_err_abort(sk, err); 454 } 455 } 456 457 if (rec) { 458 struct tls_rec *first_rec; 459 460 /* Mark the record as ready for transmission */ 461 smp_store_mb(rec->tx_ready, true); 462 463 /* If received record is at head of tx_list, schedule tx */ 464 first_rec = list_first_entry(&ctx->tx_list, 465 struct tls_rec, list); 466 if (rec == first_rec) 467 ready = true; 468 } 469 470 pending = atomic_dec_return(&ctx->encrypt_pending); 471 472 if (!pending && READ_ONCE(ctx->async_notify)) 473 complete(&ctx->async_wait.completion); 474 475 if (!ready) 476 return; 477 478 /* Schedule the transmission */ 479 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 480 schedule_delayed_work(&ctx->tx_work.work, 1); 481 } 482 483 static int tls_do_encryption(struct sock *sk, 484 struct tls_context *tls_ctx, 485 struct tls_sw_context_tx *ctx, 486 struct aead_request *aead_req, 487 size_t data_len, u32 start) 488 { 489 struct tls_prot_info *prot = &tls_ctx->prot_info; 490 struct tls_rec *rec = ctx->open_rec; 491 struct sk_msg *msg_en = &rec->msg_encrypted; 492 struct scatterlist *sge = sk_msg_elem(msg_en, start); 493 int rc, iv_offset = 0; 494 495 /* For CCM based ciphers, first byte of IV is a constant */ 496 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 497 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 498 iv_offset = 1; 499 } 500 501 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 502 prot->iv_size + prot->salt_size); 503 504 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 505 506 sge->offset += prot->prepend_size; 507 sge->length -= prot->prepend_size; 508 509 msg_en->sg.curr = start; 510 511 aead_request_set_tfm(aead_req, ctx->aead_send); 512 aead_request_set_ad(aead_req, prot->aad_size); 513 aead_request_set_crypt(aead_req, rec->sg_aead_in, 514 rec->sg_aead_out, 515 data_len, rec->iv_data); 516 517 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 518 tls_encrypt_done, sk); 519 520 /* Add the record in tx_list */ 521 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 522 atomic_inc(&ctx->encrypt_pending); 523 524 rc = crypto_aead_encrypt(aead_req); 525 if (!rc || rc != -EINPROGRESS) { 526 atomic_dec(&ctx->encrypt_pending); 527 sge->offset -= prot->prepend_size; 528 sge->length += prot->prepend_size; 529 } 530 531 if (!rc) { 532 WRITE_ONCE(rec->tx_ready, true); 533 } else if (rc != -EINPROGRESS) { 534 list_del(&rec->list); 535 return rc; 536 } 537 538 /* Unhook the record from context if encryption is not failure */ 539 ctx->open_rec = NULL; 540 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 541 return rc; 542 } 543 544 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 545 struct tls_rec **to, struct sk_msg *msg_opl, 546 struct sk_msg *msg_oen, u32 split_point, 547 u32 tx_overhead_size, u32 *orig_end) 548 { 549 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 550 struct scatterlist *sge, *osge, *nsge; 551 u32 orig_size = msg_opl->sg.size; 552 struct scatterlist tmp = { }; 553 struct sk_msg *msg_npl; 554 struct tls_rec *new; 555 int ret; 556 557 new = tls_get_rec(sk); 558 if (!new) 559 return -ENOMEM; 560 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 561 tx_overhead_size, 0); 562 if (ret < 0) { 563 tls_free_rec(sk, new); 564 return ret; 565 } 566 567 *orig_end = msg_opl->sg.end; 568 i = msg_opl->sg.start; 569 sge = sk_msg_elem(msg_opl, i); 570 while (apply && sge->length) { 571 if (sge->length > apply) { 572 u32 len = sge->length - apply; 573 574 get_page(sg_page(sge)); 575 sg_set_page(&tmp, sg_page(sge), len, 576 sge->offset + apply); 577 sge->length = apply; 578 bytes += apply; 579 apply = 0; 580 } else { 581 apply -= sge->length; 582 bytes += sge->length; 583 } 584 585 sk_msg_iter_var_next(i); 586 if (i == msg_opl->sg.end) 587 break; 588 sge = sk_msg_elem(msg_opl, i); 589 } 590 591 msg_opl->sg.end = i; 592 msg_opl->sg.curr = i; 593 msg_opl->sg.copybreak = 0; 594 msg_opl->apply_bytes = 0; 595 msg_opl->sg.size = bytes; 596 597 msg_npl = &new->msg_plaintext; 598 msg_npl->apply_bytes = apply; 599 msg_npl->sg.size = orig_size - bytes; 600 601 j = msg_npl->sg.start; 602 nsge = sk_msg_elem(msg_npl, j); 603 if (tmp.length) { 604 memcpy(nsge, &tmp, sizeof(*nsge)); 605 sk_msg_iter_var_next(j); 606 nsge = sk_msg_elem(msg_npl, j); 607 } 608 609 osge = sk_msg_elem(msg_opl, i); 610 while (osge->length) { 611 memcpy(nsge, osge, sizeof(*nsge)); 612 sg_unmark_end(nsge); 613 sk_msg_iter_var_next(i); 614 sk_msg_iter_var_next(j); 615 if (i == *orig_end) 616 break; 617 osge = sk_msg_elem(msg_opl, i); 618 nsge = sk_msg_elem(msg_npl, j); 619 } 620 621 msg_npl->sg.end = j; 622 msg_npl->sg.curr = j; 623 msg_npl->sg.copybreak = 0; 624 625 *to = new; 626 return 0; 627 } 628 629 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 630 struct tls_rec *from, u32 orig_end) 631 { 632 struct sk_msg *msg_npl = &from->msg_plaintext; 633 struct sk_msg *msg_opl = &to->msg_plaintext; 634 struct scatterlist *osge, *nsge; 635 u32 i, j; 636 637 i = msg_opl->sg.end; 638 sk_msg_iter_var_prev(i); 639 j = msg_npl->sg.start; 640 641 osge = sk_msg_elem(msg_opl, i); 642 nsge = sk_msg_elem(msg_npl, j); 643 644 if (sg_page(osge) == sg_page(nsge) && 645 osge->offset + osge->length == nsge->offset) { 646 osge->length += nsge->length; 647 put_page(sg_page(nsge)); 648 } 649 650 msg_opl->sg.end = orig_end; 651 msg_opl->sg.curr = orig_end; 652 msg_opl->sg.copybreak = 0; 653 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 654 msg_opl->sg.size += msg_npl->sg.size; 655 656 sk_msg_free(sk, &to->msg_encrypted); 657 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 658 659 kfree(from); 660 } 661 662 static int tls_push_record(struct sock *sk, int flags, 663 unsigned char record_type) 664 { 665 struct tls_context *tls_ctx = tls_get_ctx(sk); 666 struct tls_prot_info *prot = &tls_ctx->prot_info; 667 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 668 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 669 u32 i, split_point, uninitialized_var(orig_end); 670 struct sk_msg *msg_pl, *msg_en; 671 struct aead_request *req; 672 bool split; 673 int rc; 674 675 if (!rec) 676 return 0; 677 678 msg_pl = &rec->msg_plaintext; 679 msg_en = &rec->msg_encrypted; 680 681 split_point = msg_pl->apply_bytes; 682 split = split_point && split_point < msg_pl->sg.size; 683 if (unlikely((!split && 684 msg_pl->sg.size + 685 prot->overhead_size > msg_en->sg.size) || 686 (split && 687 split_point + 688 prot->overhead_size > msg_en->sg.size))) { 689 split = true; 690 split_point = msg_en->sg.size; 691 } 692 if (split) { 693 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 694 split_point, prot->overhead_size, 695 &orig_end); 696 if (rc < 0) 697 return rc; 698 /* This can happen if above tls_split_open_record allocates 699 * a single large encryption buffer instead of two smaller 700 * ones. In this case adjust pointers and continue without 701 * split. 702 */ 703 if (!msg_pl->sg.size) { 704 tls_merge_open_record(sk, rec, tmp, orig_end); 705 msg_pl = &rec->msg_plaintext; 706 msg_en = &rec->msg_encrypted; 707 split = false; 708 } 709 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 710 prot->overhead_size); 711 } 712 713 rec->tx_flags = flags; 714 req = &rec->aead_req; 715 716 i = msg_pl->sg.end; 717 sk_msg_iter_var_prev(i); 718 719 rec->content_type = record_type; 720 if (prot->version == TLS_1_3_VERSION) { 721 /* Add content type to end of message. No padding added */ 722 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 723 sg_mark_end(&rec->sg_content_type); 724 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 725 &rec->sg_content_type); 726 } else { 727 sg_mark_end(sk_msg_elem(msg_pl, i)); 728 } 729 730 if (msg_pl->sg.end < msg_pl->sg.start) { 731 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 732 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 733 msg_pl->sg.data); 734 } 735 736 i = msg_pl->sg.start; 737 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 738 739 i = msg_en->sg.end; 740 sk_msg_iter_var_prev(i); 741 sg_mark_end(sk_msg_elem(msg_en, i)); 742 743 i = msg_en->sg.start; 744 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 745 746 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 747 tls_ctx->tx.rec_seq, prot->rec_seq_size, 748 record_type, prot->version); 749 750 tls_fill_prepend(tls_ctx, 751 page_address(sg_page(&msg_en->sg.data[i])) + 752 msg_en->sg.data[i].offset, 753 msg_pl->sg.size + prot->tail_size, 754 record_type, prot->version); 755 756 tls_ctx->pending_open_record_frags = false; 757 758 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 759 msg_pl->sg.size + prot->tail_size, i); 760 if (rc < 0) { 761 if (rc != -EINPROGRESS) { 762 tls_err_abort(sk, EBADMSG); 763 if (split) { 764 tls_ctx->pending_open_record_frags = true; 765 tls_merge_open_record(sk, rec, tmp, orig_end); 766 } 767 } 768 ctx->async_capable = 1; 769 return rc; 770 } else if (split) { 771 msg_pl = &tmp->msg_plaintext; 772 msg_en = &tmp->msg_encrypted; 773 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 774 tls_ctx->pending_open_record_frags = true; 775 ctx->open_rec = tmp; 776 } 777 778 return tls_tx_records(sk, flags); 779 } 780 781 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 782 bool full_record, u8 record_type, 783 ssize_t *copied, int flags) 784 { 785 struct tls_context *tls_ctx = tls_get_ctx(sk); 786 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 787 struct sk_msg msg_redir = { }; 788 struct sk_psock *psock; 789 struct sock *sk_redir; 790 struct tls_rec *rec; 791 bool enospc, policy; 792 int err = 0, send; 793 u32 delta = 0; 794 795 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 796 psock = sk_psock_get(sk); 797 if (!psock || !policy) { 798 err = tls_push_record(sk, flags, record_type); 799 if (err && sk->sk_err == EBADMSG) { 800 *copied -= sk_msg_free(sk, msg); 801 tls_free_open_rec(sk); 802 err = -sk->sk_err; 803 } 804 if (psock) 805 sk_psock_put(sk, psock); 806 return err; 807 } 808 more_data: 809 enospc = sk_msg_full(msg); 810 if (psock->eval == __SK_NONE) { 811 delta = msg->sg.size; 812 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 813 delta -= msg->sg.size; 814 } 815 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 816 !enospc && !full_record) { 817 err = -ENOSPC; 818 goto out_err; 819 } 820 msg->cork_bytes = 0; 821 send = msg->sg.size; 822 if (msg->apply_bytes && msg->apply_bytes < send) 823 send = msg->apply_bytes; 824 825 switch (psock->eval) { 826 case __SK_PASS: 827 err = tls_push_record(sk, flags, record_type); 828 if (err && sk->sk_err == EBADMSG) { 829 *copied -= sk_msg_free(sk, msg); 830 tls_free_open_rec(sk); 831 err = -sk->sk_err; 832 goto out_err; 833 } 834 break; 835 case __SK_REDIRECT: 836 sk_redir = psock->sk_redir; 837 memcpy(&msg_redir, msg, sizeof(*msg)); 838 if (msg->apply_bytes < send) 839 msg->apply_bytes = 0; 840 else 841 msg->apply_bytes -= send; 842 sk_msg_return_zero(sk, msg, send); 843 msg->sg.size -= send; 844 release_sock(sk); 845 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 846 lock_sock(sk); 847 if (err < 0) { 848 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 849 msg->sg.size = 0; 850 } 851 if (msg->sg.size == 0) 852 tls_free_open_rec(sk); 853 break; 854 case __SK_DROP: 855 default: 856 sk_msg_free_partial(sk, msg, send); 857 if (msg->apply_bytes < send) 858 msg->apply_bytes = 0; 859 else 860 msg->apply_bytes -= send; 861 if (msg->sg.size == 0) 862 tls_free_open_rec(sk); 863 *copied -= (send + delta); 864 err = -EACCES; 865 } 866 867 if (likely(!err)) { 868 bool reset_eval = !ctx->open_rec; 869 870 rec = ctx->open_rec; 871 if (rec) { 872 msg = &rec->msg_plaintext; 873 if (!msg->apply_bytes) 874 reset_eval = true; 875 } 876 if (reset_eval) { 877 psock->eval = __SK_NONE; 878 if (psock->sk_redir) { 879 sock_put(psock->sk_redir); 880 psock->sk_redir = NULL; 881 } 882 } 883 if (rec) 884 goto more_data; 885 } 886 out_err: 887 sk_psock_put(sk, psock); 888 return err; 889 } 890 891 static int tls_sw_push_pending_record(struct sock *sk, int flags) 892 { 893 struct tls_context *tls_ctx = tls_get_ctx(sk); 894 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 895 struct tls_rec *rec = ctx->open_rec; 896 struct sk_msg *msg_pl; 897 size_t copied; 898 899 if (!rec) 900 return 0; 901 902 msg_pl = &rec->msg_plaintext; 903 copied = msg_pl->sg.size; 904 if (!copied) 905 return 0; 906 907 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 908 &copied, flags); 909 } 910 911 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 912 { 913 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 914 struct tls_context *tls_ctx = tls_get_ctx(sk); 915 struct tls_prot_info *prot = &tls_ctx->prot_info; 916 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 917 bool async_capable = ctx->async_capable; 918 unsigned char record_type = TLS_RECORD_TYPE_DATA; 919 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 920 bool eor = !(msg->msg_flags & MSG_MORE); 921 size_t try_to_copy; 922 ssize_t copied = 0; 923 struct sk_msg *msg_pl, *msg_en; 924 struct tls_rec *rec; 925 int required_size; 926 int num_async = 0; 927 bool full_record; 928 int record_room; 929 int num_zc = 0; 930 int orig_size; 931 int ret = 0; 932 933 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 934 return -EOPNOTSUPP; 935 936 mutex_lock(&tls_ctx->tx_lock); 937 lock_sock(sk); 938 939 if (unlikely(msg->msg_controllen)) { 940 ret = tls_proccess_cmsg(sk, msg, &record_type); 941 if (ret) { 942 if (ret == -EINPROGRESS) 943 num_async++; 944 else if (ret != -EAGAIN) 945 goto send_end; 946 } 947 } 948 949 while (msg_data_left(msg)) { 950 if (sk->sk_err) { 951 ret = -sk->sk_err; 952 goto send_end; 953 } 954 955 if (ctx->open_rec) 956 rec = ctx->open_rec; 957 else 958 rec = ctx->open_rec = tls_get_rec(sk); 959 if (!rec) { 960 ret = -ENOMEM; 961 goto send_end; 962 } 963 964 msg_pl = &rec->msg_plaintext; 965 msg_en = &rec->msg_encrypted; 966 967 orig_size = msg_pl->sg.size; 968 full_record = false; 969 try_to_copy = msg_data_left(msg); 970 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 971 if (try_to_copy >= record_room) { 972 try_to_copy = record_room; 973 full_record = true; 974 } 975 976 required_size = msg_pl->sg.size + try_to_copy + 977 prot->overhead_size; 978 979 if (!sk_stream_memory_free(sk)) 980 goto wait_for_sndbuf; 981 982 alloc_encrypted: 983 ret = tls_alloc_encrypted_msg(sk, required_size); 984 if (ret) { 985 if (ret != -ENOSPC) 986 goto wait_for_memory; 987 988 /* Adjust try_to_copy according to the amount that was 989 * actually allocated. The difference is due 990 * to max sg elements limit 991 */ 992 try_to_copy -= required_size - msg_en->sg.size; 993 full_record = true; 994 } 995 996 if (!is_kvec && (full_record || eor) && !async_capable) { 997 u32 first = msg_pl->sg.end; 998 999 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1000 msg_pl, try_to_copy); 1001 if (ret) 1002 goto fallback_to_reg_send; 1003 1004 num_zc++; 1005 copied += try_to_copy; 1006 1007 sk_msg_sg_copy_set(msg_pl, first); 1008 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1009 record_type, &copied, 1010 msg->msg_flags); 1011 if (ret) { 1012 if (ret == -EINPROGRESS) 1013 num_async++; 1014 else if (ret == -ENOMEM) 1015 goto wait_for_memory; 1016 else if (ctx->open_rec && ret == -ENOSPC) 1017 goto rollback_iter; 1018 else if (ret != -EAGAIN) 1019 goto send_end; 1020 } 1021 continue; 1022 rollback_iter: 1023 copied -= try_to_copy; 1024 sk_msg_sg_copy_clear(msg_pl, first); 1025 iov_iter_revert(&msg->msg_iter, 1026 msg_pl->sg.size - orig_size); 1027 fallback_to_reg_send: 1028 sk_msg_trim(sk, msg_pl, orig_size); 1029 } 1030 1031 required_size = msg_pl->sg.size + try_to_copy; 1032 1033 ret = tls_clone_plaintext_msg(sk, required_size); 1034 if (ret) { 1035 if (ret != -ENOSPC) 1036 goto send_end; 1037 1038 /* Adjust try_to_copy according to the amount that was 1039 * actually allocated. The difference is due 1040 * to max sg elements limit 1041 */ 1042 try_to_copy -= required_size - msg_pl->sg.size; 1043 full_record = true; 1044 sk_msg_trim(sk, msg_en, 1045 msg_pl->sg.size + prot->overhead_size); 1046 } 1047 1048 if (try_to_copy) { 1049 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1050 msg_pl, try_to_copy); 1051 if (ret < 0) 1052 goto trim_sgl; 1053 } 1054 1055 /* Open records defined only if successfully copied, otherwise 1056 * we would trim the sg but not reset the open record frags. 1057 */ 1058 tls_ctx->pending_open_record_frags = true; 1059 copied += try_to_copy; 1060 if (full_record || eor) { 1061 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1062 record_type, &copied, 1063 msg->msg_flags); 1064 if (ret) { 1065 if (ret == -EINPROGRESS) 1066 num_async++; 1067 else if (ret == -ENOMEM) 1068 goto wait_for_memory; 1069 else if (ret != -EAGAIN) { 1070 if (ret == -ENOSPC) 1071 ret = 0; 1072 goto send_end; 1073 } 1074 } 1075 } 1076 1077 continue; 1078 1079 wait_for_sndbuf: 1080 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1081 wait_for_memory: 1082 ret = sk_stream_wait_memory(sk, &timeo); 1083 if (ret) { 1084 trim_sgl: 1085 if (ctx->open_rec) 1086 tls_trim_both_msgs(sk, orig_size); 1087 goto send_end; 1088 } 1089 1090 if (ctx->open_rec && msg_en->sg.size < required_size) 1091 goto alloc_encrypted; 1092 } 1093 1094 if (!num_async) { 1095 goto send_end; 1096 } else if (num_zc) { 1097 /* Wait for pending encryptions to get completed */ 1098 smp_store_mb(ctx->async_notify, true); 1099 1100 if (atomic_read(&ctx->encrypt_pending)) 1101 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1102 else 1103 reinit_completion(&ctx->async_wait.completion); 1104 1105 WRITE_ONCE(ctx->async_notify, false); 1106 1107 if (ctx->async_wait.err) { 1108 ret = ctx->async_wait.err; 1109 copied = 0; 1110 } 1111 } 1112 1113 /* Transmit if any encryptions have completed */ 1114 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1115 cancel_delayed_work(&ctx->tx_work.work); 1116 tls_tx_records(sk, msg->msg_flags); 1117 } 1118 1119 send_end: 1120 ret = sk_stream_error(sk, msg->msg_flags, ret); 1121 1122 release_sock(sk); 1123 mutex_unlock(&tls_ctx->tx_lock); 1124 return copied > 0 ? copied : ret; 1125 } 1126 1127 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1128 int offset, size_t size, int flags) 1129 { 1130 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1131 struct tls_context *tls_ctx = tls_get_ctx(sk); 1132 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1133 struct tls_prot_info *prot = &tls_ctx->prot_info; 1134 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1135 struct sk_msg *msg_pl; 1136 struct tls_rec *rec; 1137 int num_async = 0; 1138 ssize_t copied = 0; 1139 bool full_record; 1140 int record_room; 1141 int ret = 0; 1142 bool eor; 1143 1144 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1145 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1146 1147 /* Call the sk_stream functions to manage the sndbuf mem. */ 1148 while (size > 0) { 1149 size_t copy, required_size; 1150 1151 if (sk->sk_err) { 1152 ret = -sk->sk_err; 1153 goto sendpage_end; 1154 } 1155 1156 if (ctx->open_rec) 1157 rec = ctx->open_rec; 1158 else 1159 rec = ctx->open_rec = tls_get_rec(sk); 1160 if (!rec) { 1161 ret = -ENOMEM; 1162 goto sendpage_end; 1163 } 1164 1165 msg_pl = &rec->msg_plaintext; 1166 1167 full_record = false; 1168 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1169 copy = size; 1170 if (copy >= record_room) { 1171 copy = record_room; 1172 full_record = true; 1173 } 1174 1175 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1176 1177 if (!sk_stream_memory_free(sk)) 1178 goto wait_for_sndbuf; 1179 alloc_payload: 1180 ret = tls_alloc_encrypted_msg(sk, required_size); 1181 if (ret) { 1182 if (ret != -ENOSPC) 1183 goto wait_for_memory; 1184 1185 /* Adjust copy according to the amount that was 1186 * actually allocated. The difference is due 1187 * to max sg elements limit 1188 */ 1189 copy -= required_size - msg_pl->sg.size; 1190 full_record = true; 1191 } 1192 1193 sk_msg_page_add(msg_pl, page, copy, offset); 1194 sk_mem_charge(sk, copy); 1195 1196 offset += copy; 1197 size -= copy; 1198 copied += copy; 1199 1200 tls_ctx->pending_open_record_frags = true; 1201 if (full_record || eor || sk_msg_full(msg_pl)) { 1202 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1203 record_type, &copied, flags); 1204 if (ret) { 1205 if (ret == -EINPROGRESS) 1206 num_async++; 1207 else if (ret == -ENOMEM) 1208 goto wait_for_memory; 1209 else if (ret != -EAGAIN) { 1210 if (ret == -ENOSPC) 1211 ret = 0; 1212 goto sendpage_end; 1213 } 1214 } 1215 } 1216 continue; 1217 wait_for_sndbuf: 1218 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1219 wait_for_memory: 1220 ret = sk_stream_wait_memory(sk, &timeo); 1221 if (ret) { 1222 if (ctx->open_rec) 1223 tls_trim_both_msgs(sk, msg_pl->sg.size); 1224 goto sendpage_end; 1225 } 1226 1227 if (ctx->open_rec) 1228 goto alloc_payload; 1229 } 1230 1231 if (num_async) { 1232 /* Transmit if any encryptions have completed */ 1233 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1234 cancel_delayed_work(&ctx->tx_work.work); 1235 tls_tx_records(sk, flags); 1236 } 1237 } 1238 sendpage_end: 1239 ret = sk_stream_error(sk, flags, ret); 1240 return copied > 0 ? copied : ret; 1241 } 1242 1243 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1244 int offset, size_t size, int flags) 1245 { 1246 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1247 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1248 MSG_NO_SHARED_FRAGS)) 1249 return -EOPNOTSUPP; 1250 1251 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1252 } 1253 1254 int tls_sw_sendpage(struct sock *sk, struct page *page, 1255 int offset, size_t size, int flags) 1256 { 1257 struct tls_context *tls_ctx = tls_get_ctx(sk); 1258 int ret; 1259 1260 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1261 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1262 return -EOPNOTSUPP; 1263 1264 mutex_lock(&tls_ctx->tx_lock); 1265 lock_sock(sk); 1266 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1267 release_sock(sk); 1268 mutex_unlock(&tls_ctx->tx_lock); 1269 return ret; 1270 } 1271 1272 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1273 int flags, long timeo, int *err) 1274 { 1275 struct tls_context *tls_ctx = tls_get_ctx(sk); 1276 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1277 struct sk_buff *skb; 1278 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1279 1280 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1281 if (sk->sk_err) { 1282 *err = sock_error(sk); 1283 return NULL; 1284 } 1285 1286 if (sk->sk_shutdown & RCV_SHUTDOWN) 1287 return NULL; 1288 1289 if (sock_flag(sk, SOCK_DONE)) 1290 return NULL; 1291 1292 if ((flags & MSG_DONTWAIT) || !timeo) { 1293 *err = -EAGAIN; 1294 return NULL; 1295 } 1296 1297 add_wait_queue(sk_sleep(sk), &wait); 1298 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1299 sk_wait_event(sk, &timeo, 1300 ctx->recv_pkt != skb || 1301 !sk_psock_queue_empty(psock), 1302 &wait); 1303 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1304 remove_wait_queue(sk_sleep(sk), &wait); 1305 1306 /* Handle signals */ 1307 if (signal_pending(current)) { 1308 *err = sock_intr_errno(timeo); 1309 return NULL; 1310 } 1311 } 1312 1313 return skb; 1314 } 1315 1316 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1317 int length, int *pages_used, 1318 unsigned int *size_used, 1319 struct scatterlist *to, 1320 int to_max_pages) 1321 { 1322 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1323 struct page *pages[MAX_SKB_FRAGS]; 1324 unsigned int size = *size_used; 1325 ssize_t copied, use; 1326 size_t offset; 1327 1328 while (length > 0) { 1329 i = 0; 1330 maxpages = to_max_pages - num_elem; 1331 if (maxpages == 0) { 1332 rc = -EFAULT; 1333 goto out; 1334 } 1335 copied = iov_iter_get_pages(from, pages, 1336 length, 1337 maxpages, &offset); 1338 if (copied <= 0) { 1339 rc = -EFAULT; 1340 goto out; 1341 } 1342 1343 iov_iter_advance(from, copied); 1344 1345 length -= copied; 1346 size += copied; 1347 while (copied) { 1348 use = min_t(int, copied, PAGE_SIZE - offset); 1349 1350 sg_set_page(&to[num_elem], 1351 pages[i], use, offset); 1352 sg_unmark_end(&to[num_elem]); 1353 /* We do not uncharge memory from this API */ 1354 1355 offset = 0; 1356 copied -= use; 1357 1358 i++; 1359 num_elem++; 1360 } 1361 } 1362 /* Mark the end in the last sg entry if newly added */ 1363 if (num_elem > *pages_used) 1364 sg_mark_end(&to[num_elem - 1]); 1365 out: 1366 if (rc) 1367 iov_iter_revert(from, size - *size_used); 1368 *size_used = size; 1369 *pages_used = num_elem; 1370 1371 return rc; 1372 } 1373 1374 /* This function decrypts the input skb into either out_iov or in out_sg 1375 * or in skb buffers itself. The input parameter 'zc' indicates if 1376 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1377 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1378 * NULL, then the decryption happens inside skb buffers itself, i.e. 1379 * zero-copy gets disabled and 'zc' is updated. 1380 */ 1381 1382 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1383 struct iov_iter *out_iov, 1384 struct scatterlist *out_sg, 1385 int *chunk, bool *zc, bool async) 1386 { 1387 struct tls_context *tls_ctx = tls_get_ctx(sk); 1388 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1389 struct tls_prot_info *prot = &tls_ctx->prot_info; 1390 struct strp_msg *rxm = strp_msg(skb); 1391 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1392 struct aead_request *aead_req; 1393 struct sk_buff *unused; 1394 u8 *aad, *iv, *mem = NULL; 1395 struct scatterlist *sgin = NULL; 1396 struct scatterlist *sgout = NULL; 1397 const int data_len = rxm->full_len - prot->overhead_size + 1398 prot->tail_size; 1399 int iv_offset = 0; 1400 1401 if (*zc && (out_iov || out_sg)) { 1402 if (out_iov) 1403 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1404 else 1405 n_sgout = sg_nents(out_sg); 1406 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1407 rxm->full_len - prot->prepend_size); 1408 } else { 1409 n_sgout = 0; 1410 *zc = false; 1411 n_sgin = skb_cow_data(skb, 0, &unused); 1412 } 1413 1414 if (n_sgin < 1) 1415 return -EBADMSG; 1416 1417 /* Increment to accommodate AAD */ 1418 n_sgin = n_sgin + 1; 1419 1420 nsg = n_sgin + n_sgout; 1421 1422 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1423 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1424 mem_size = mem_size + prot->aad_size; 1425 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1426 1427 /* Allocate a single block of memory which contains 1428 * aead_req || sgin[] || sgout[] || aad || iv. 1429 * This order achieves correct alignment for aead_req, sgin, sgout. 1430 */ 1431 mem = kmalloc(mem_size, sk->sk_allocation); 1432 if (!mem) 1433 return -ENOMEM; 1434 1435 /* Segment the allocated memory */ 1436 aead_req = (struct aead_request *)mem; 1437 sgin = (struct scatterlist *)(mem + aead_size); 1438 sgout = sgin + n_sgin; 1439 aad = (u8 *)(sgout + n_sgout); 1440 iv = aad + prot->aad_size; 1441 1442 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1443 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1444 iv[0] = 2; 1445 iv_offset = 1; 1446 } 1447 1448 /* Prepare IV */ 1449 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1450 iv + iv_offset + prot->salt_size, 1451 prot->iv_size); 1452 if (err < 0) { 1453 kfree(mem); 1454 return err; 1455 } 1456 if (prot->version == TLS_1_3_VERSION) 1457 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1458 crypto_aead_ivsize(ctx->aead_recv)); 1459 else 1460 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1461 1462 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1463 1464 /* Prepare AAD */ 1465 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1466 prot->tail_size, 1467 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1468 ctx->control, prot->version); 1469 1470 /* Prepare sgin */ 1471 sg_init_table(sgin, n_sgin); 1472 sg_set_buf(&sgin[0], aad, prot->aad_size); 1473 err = skb_to_sgvec(skb, &sgin[1], 1474 rxm->offset + prot->prepend_size, 1475 rxm->full_len - prot->prepend_size); 1476 if (err < 0) { 1477 kfree(mem); 1478 return err; 1479 } 1480 1481 if (n_sgout) { 1482 if (out_iov) { 1483 sg_init_table(sgout, n_sgout); 1484 sg_set_buf(&sgout[0], aad, prot->aad_size); 1485 1486 *chunk = 0; 1487 err = tls_setup_from_iter(sk, out_iov, data_len, 1488 &pages, chunk, &sgout[1], 1489 (n_sgout - 1)); 1490 if (err < 0) 1491 goto fallback_to_reg_recv; 1492 } else if (out_sg) { 1493 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1494 } else { 1495 goto fallback_to_reg_recv; 1496 } 1497 } else { 1498 fallback_to_reg_recv: 1499 sgout = sgin; 1500 pages = 0; 1501 *chunk = data_len; 1502 *zc = false; 1503 } 1504 1505 /* Prepare and submit AEAD request */ 1506 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1507 data_len, aead_req, async); 1508 if (err == -EINPROGRESS) 1509 return err; 1510 1511 /* Release the pages in case iov was mapped to pages */ 1512 for (; pages > 0; pages--) 1513 put_page(sg_page(&sgout[pages])); 1514 1515 kfree(mem); 1516 return err; 1517 } 1518 1519 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1520 struct iov_iter *dest, int *chunk, bool *zc, 1521 bool async) 1522 { 1523 struct tls_context *tls_ctx = tls_get_ctx(sk); 1524 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1525 struct tls_prot_info *prot = &tls_ctx->prot_info; 1526 struct strp_msg *rxm = strp_msg(skb); 1527 int pad, err = 0; 1528 1529 if (!ctx->decrypted) { 1530 if (tls_ctx->rx_conf == TLS_HW) { 1531 err = tls_device_decrypted(sk, tls_ctx, skb, rxm); 1532 if (err < 0) 1533 return err; 1534 } 1535 1536 /* Still not decrypted after tls_device */ 1537 if (!ctx->decrypted) { 1538 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1539 async); 1540 if (err < 0) { 1541 if (err == -EINPROGRESS) 1542 tls_advance_record_sn(sk, prot, 1543 &tls_ctx->rx); 1544 else if (err == -EBADMSG) 1545 TLS_INC_STATS(sock_net(sk), 1546 LINUX_MIB_TLSDECRYPTERROR); 1547 return err; 1548 } 1549 } else { 1550 *zc = false; 1551 } 1552 1553 pad = padding_length(ctx, prot, skb); 1554 if (pad < 0) 1555 return pad; 1556 1557 rxm->full_len -= pad; 1558 rxm->offset += prot->prepend_size; 1559 rxm->full_len -= prot->overhead_size; 1560 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1561 ctx->decrypted = 1; 1562 ctx->saved_data_ready(sk); 1563 } else { 1564 *zc = false; 1565 } 1566 1567 return err; 1568 } 1569 1570 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1571 struct scatterlist *sgout) 1572 { 1573 bool zc = true; 1574 int chunk; 1575 1576 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1577 } 1578 1579 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1580 unsigned int len) 1581 { 1582 struct tls_context *tls_ctx = tls_get_ctx(sk); 1583 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1584 1585 if (skb) { 1586 struct strp_msg *rxm = strp_msg(skb); 1587 1588 if (len < rxm->full_len) { 1589 rxm->offset += len; 1590 rxm->full_len -= len; 1591 return false; 1592 } 1593 consume_skb(skb); 1594 } 1595 1596 /* Finished with message */ 1597 ctx->recv_pkt = NULL; 1598 __strp_unpause(&ctx->strp); 1599 1600 return true; 1601 } 1602 1603 /* This function traverses the rx_list in tls receive context to copies the 1604 * decrypted records into the buffer provided by caller zero copy is not 1605 * true. Further, the records are removed from the rx_list if it is not a peek 1606 * case and the record has been consumed completely. 1607 */ 1608 static int process_rx_list(struct tls_sw_context_rx *ctx, 1609 struct msghdr *msg, 1610 u8 *control, 1611 bool *cmsg, 1612 size_t skip, 1613 size_t len, 1614 bool zc, 1615 bool is_peek) 1616 { 1617 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1618 u8 ctrl = *control; 1619 u8 msgc = *cmsg; 1620 struct tls_msg *tlm; 1621 ssize_t copied = 0; 1622 1623 /* Set the record type in 'control' if caller didn't pass it */ 1624 if (!ctrl && skb) { 1625 tlm = tls_msg(skb); 1626 ctrl = tlm->control; 1627 } 1628 1629 while (skip && skb) { 1630 struct strp_msg *rxm = strp_msg(skb); 1631 tlm = tls_msg(skb); 1632 1633 /* Cannot process a record of different type */ 1634 if (ctrl != tlm->control) 1635 return 0; 1636 1637 if (skip < rxm->full_len) 1638 break; 1639 1640 skip = skip - rxm->full_len; 1641 skb = skb_peek_next(skb, &ctx->rx_list); 1642 } 1643 1644 while (len && skb) { 1645 struct sk_buff *next_skb; 1646 struct strp_msg *rxm = strp_msg(skb); 1647 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1648 1649 tlm = tls_msg(skb); 1650 1651 /* Cannot process a record of different type */ 1652 if (ctrl != tlm->control) 1653 return 0; 1654 1655 /* Set record type if not already done. For a non-data record, 1656 * do not proceed if record type could not be copied. 1657 */ 1658 if (!msgc) { 1659 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1660 sizeof(ctrl), &ctrl); 1661 msgc = true; 1662 if (ctrl != TLS_RECORD_TYPE_DATA) { 1663 if (cerr || msg->msg_flags & MSG_CTRUNC) 1664 return -EIO; 1665 1666 *cmsg = msgc; 1667 } 1668 } 1669 1670 if (!zc || (rxm->full_len - skip) > len) { 1671 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1672 msg, chunk); 1673 if (err < 0) 1674 return err; 1675 } 1676 1677 len = len - chunk; 1678 copied = copied + chunk; 1679 1680 /* Consume the data from record if it is non-peek case*/ 1681 if (!is_peek) { 1682 rxm->offset = rxm->offset + chunk; 1683 rxm->full_len = rxm->full_len - chunk; 1684 1685 /* Return if there is unconsumed data in the record */ 1686 if (rxm->full_len - skip) 1687 break; 1688 } 1689 1690 /* The remaining skip-bytes must lie in 1st record in rx_list. 1691 * So from the 2nd record, 'skip' should be 0. 1692 */ 1693 skip = 0; 1694 1695 if (msg) 1696 msg->msg_flags |= MSG_EOR; 1697 1698 next_skb = skb_peek_next(skb, &ctx->rx_list); 1699 1700 if (!is_peek) { 1701 skb_unlink(skb, &ctx->rx_list); 1702 consume_skb(skb); 1703 } 1704 1705 skb = next_skb; 1706 } 1707 1708 *control = ctrl; 1709 return copied; 1710 } 1711 1712 int tls_sw_recvmsg(struct sock *sk, 1713 struct msghdr *msg, 1714 size_t len, 1715 int nonblock, 1716 int flags, 1717 int *addr_len) 1718 { 1719 struct tls_context *tls_ctx = tls_get_ctx(sk); 1720 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1721 struct tls_prot_info *prot = &tls_ctx->prot_info; 1722 struct sk_psock *psock; 1723 unsigned char control = 0; 1724 ssize_t decrypted = 0; 1725 struct strp_msg *rxm; 1726 struct tls_msg *tlm; 1727 struct sk_buff *skb; 1728 ssize_t copied = 0; 1729 bool cmsg = false; 1730 int target, err = 0; 1731 long timeo; 1732 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1733 bool is_peek = flags & MSG_PEEK; 1734 int num_async = 0; 1735 1736 flags |= nonblock; 1737 1738 if (unlikely(flags & MSG_ERRQUEUE)) 1739 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1740 1741 psock = sk_psock_get(sk); 1742 lock_sock(sk); 1743 1744 /* Process pending decrypted records. It must be non-zero-copy */ 1745 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1746 is_peek); 1747 if (err < 0) { 1748 tls_err_abort(sk, err); 1749 goto end; 1750 } else { 1751 copied = err; 1752 } 1753 1754 if (len <= copied) 1755 goto recv_end; 1756 1757 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1758 len = len - copied; 1759 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1760 1761 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1762 bool retain_skb = false; 1763 bool zc = false; 1764 int to_decrypt; 1765 int chunk = 0; 1766 bool async_capable; 1767 bool async = false; 1768 1769 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1770 if (!skb) { 1771 if (psock) { 1772 int ret = __tcp_bpf_recvmsg(sk, psock, 1773 msg, len, flags); 1774 1775 if (ret > 0) { 1776 decrypted += ret; 1777 len -= ret; 1778 continue; 1779 } 1780 } 1781 goto recv_end; 1782 } else { 1783 tlm = tls_msg(skb); 1784 if (prot->version == TLS_1_3_VERSION) 1785 tlm->control = 0; 1786 else 1787 tlm->control = ctx->control; 1788 } 1789 1790 rxm = strp_msg(skb); 1791 1792 to_decrypt = rxm->full_len - prot->overhead_size; 1793 1794 if (to_decrypt <= len && !is_kvec && !is_peek && 1795 ctx->control == TLS_RECORD_TYPE_DATA && 1796 prot->version != TLS_1_3_VERSION) 1797 zc = true; 1798 1799 /* Do not use async mode if record is non-data */ 1800 if (ctx->control == TLS_RECORD_TYPE_DATA) 1801 async_capable = ctx->async_capable; 1802 else 1803 async_capable = false; 1804 1805 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1806 &chunk, &zc, async_capable); 1807 if (err < 0 && err != -EINPROGRESS) { 1808 tls_err_abort(sk, EBADMSG); 1809 goto recv_end; 1810 } 1811 1812 if (err == -EINPROGRESS) { 1813 async = true; 1814 num_async++; 1815 } else if (prot->version == TLS_1_3_VERSION) { 1816 tlm->control = ctx->control; 1817 } 1818 1819 /* If the type of records being processed is not known yet, 1820 * set it to record type just dequeued. If it is already known, 1821 * but does not match the record type just dequeued, go to end. 1822 * We always get record type here since for tls1.2, record type 1823 * is known just after record is dequeued from stream parser. 1824 * For tls1.3, we disable async. 1825 */ 1826 1827 if (!control) 1828 control = tlm->control; 1829 else if (control != tlm->control) 1830 goto recv_end; 1831 1832 if (!cmsg) { 1833 int cerr; 1834 1835 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1836 sizeof(control), &control); 1837 cmsg = true; 1838 if (control != TLS_RECORD_TYPE_DATA) { 1839 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1840 err = -EIO; 1841 goto recv_end; 1842 } 1843 } 1844 } 1845 1846 if (async) 1847 goto pick_next_record; 1848 1849 if (!zc) { 1850 if (rxm->full_len > len) { 1851 retain_skb = true; 1852 chunk = len; 1853 } else { 1854 chunk = rxm->full_len; 1855 } 1856 1857 err = skb_copy_datagram_msg(skb, rxm->offset, 1858 msg, chunk); 1859 if (err < 0) 1860 goto recv_end; 1861 1862 if (!is_peek) { 1863 rxm->offset = rxm->offset + chunk; 1864 rxm->full_len = rxm->full_len - chunk; 1865 } 1866 } 1867 1868 pick_next_record: 1869 if (chunk > len) 1870 chunk = len; 1871 1872 decrypted += chunk; 1873 len -= chunk; 1874 1875 /* For async or peek case, queue the current skb */ 1876 if (async || is_peek || retain_skb) { 1877 skb_queue_tail(&ctx->rx_list, skb); 1878 skb = NULL; 1879 } 1880 1881 if (tls_sw_advance_skb(sk, skb, chunk)) { 1882 /* Return full control message to 1883 * userspace before trying to parse 1884 * another message type 1885 */ 1886 msg->msg_flags |= MSG_EOR; 1887 if (ctx->control != TLS_RECORD_TYPE_DATA) 1888 goto recv_end; 1889 } else { 1890 break; 1891 } 1892 } 1893 1894 recv_end: 1895 if (num_async) { 1896 /* Wait for all previously submitted records to be decrypted */ 1897 smp_store_mb(ctx->async_notify, true); 1898 if (atomic_read(&ctx->decrypt_pending)) { 1899 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1900 if (err) { 1901 /* one of async decrypt failed */ 1902 tls_err_abort(sk, err); 1903 copied = 0; 1904 decrypted = 0; 1905 goto end; 1906 } 1907 } else { 1908 reinit_completion(&ctx->async_wait.completion); 1909 } 1910 WRITE_ONCE(ctx->async_notify, false); 1911 1912 /* Drain records from the rx_list & copy if required */ 1913 if (is_peek || is_kvec) 1914 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1915 decrypted, false, is_peek); 1916 else 1917 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1918 decrypted, true, is_peek); 1919 if (err < 0) { 1920 tls_err_abort(sk, err); 1921 copied = 0; 1922 goto end; 1923 } 1924 } 1925 1926 copied += decrypted; 1927 1928 end: 1929 release_sock(sk); 1930 if (psock) 1931 sk_psock_put(sk, psock); 1932 return copied ? : err; 1933 } 1934 1935 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1936 struct pipe_inode_info *pipe, 1937 size_t len, unsigned int flags) 1938 { 1939 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1940 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1941 struct strp_msg *rxm = NULL; 1942 struct sock *sk = sock->sk; 1943 struct sk_buff *skb; 1944 ssize_t copied = 0; 1945 int err = 0; 1946 long timeo; 1947 int chunk; 1948 bool zc = false; 1949 1950 lock_sock(sk); 1951 1952 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1953 1954 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1955 if (!skb) 1956 goto splice_read_end; 1957 1958 if (!ctx->decrypted) { 1959 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1960 1961 /* splice does not support reading control messages */ 1962 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1963 err = -EINVAL; 1964 goto splice_read_end; 1965 } 1966 1967 if (err < 0) { 1968 tls_err_abort(sk, EBADMSG); 1969 goto splice_read_end; 1970 } 1971 ctx->decrypted = 1; 1972 } 1973 rxm = strp_msg(skb); 1974 1975 chunk = min_t(unsigned int, rxm->full_len, len); 1976 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1977 if (copied < 0) 1978 goto splice_read_end; 1979 1980 if (likely(!(flags & MSG_PEEK))) 1981 tls_sw_advance_skb(sk, skb, copied); 1982 1983 splice_read_end: 1984 release_sock(sk); 1985 return copied ? : err; 1986 } 1987 1988 bool tls_sw_stream_read(const struct sock *sk) 1989 { 1990 struct tls_context *tls_ctx = tls_get_ctx(sk); 1991 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1992 bool ingress_empty = true; 1993 struct sk_psock *psock; 1994 1995 rcu_read_lock(); 1996 psock = sk_psock(sk); 1997 if (psock) 1998 ingress_empty = list_empty(&psock->ingress_msg); 1999 rcu_read_unlock(); 2000 2001 return !ingress_empty || ctx->recv_pkt || 2002 !skb_queue_empty(&ctx->rx_list); 2003 } 2004 2005 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 2006 { 2007 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2008 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2009 struct tls_prot_info *prot = &tls_ctx->prot_info; 2010 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2011 struct strp_msg *rxm = strp_msg(skb); 2012 size_t cipher_overhead; 2013 size_t data_len = 0; 2014 int ret; 2015 2016 /* Verify that we have a full TLS header, or wait for more data */ 2017 if (rxm->offset + prot->prepend_size > skb->len) 2018 return 0; 2019 2020 /* Sanity-check size of on-stack buffer. */ 2021 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2022 ret = -EINVAL; 2023 goto read_failure; 2024 } 2025 2026 /* Linearize header to local buffer */ 2027 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 2028 2029 if (ret < 0) 2030 goto read_failure; 2031 2032 ctx->control = header[0]; 2033 2034 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2035 2036 cipher_overhead = prot->tag_size; 2037 if (prot->version != TLS_1_3_VERSION) 2038 cipher_overhead += prot->iv_size; 2039 2040 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2041 prot->tail_size) { 2042 ret = -EMSGSIZE; 2043 goto read_failure; 2044 } 2045 if (data_len < cipher_overhead) { 2046 ret = -EBADMSG; 2047 goto read_failure; 2048 } 2049 2050 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2051 if (header[1] != TLS_1_2_VERSION_MINOR || 2052 header[2] != TLS_1_2_VERSION_MAJOR) { 2053 ret = -EINVAL; 2054 goto read_failure; 2055 } 2056 2057 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2058 TCP_SKB_CB(skb)->seq + rxm->offset); 2059 return data_len + TLS_HEADER_SIZE; 2060 2061 read_failure: 2062 tls_err_abort(strp->sk, ret); 2063 2064 return ret; 2065 } 2066 2067 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2068 { 2069 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2070 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2071 2072 ctx->decrypted = 0; 2073 2074 ctx->recv_pkt = skb; 2075 strp_pause(strp); 2076 2077 ctx->saved_data_ready(strp->sk); 2078 } 2079 2080 static void tls_data_ready(struct sock *sk) 2081 { 2082 struct tls_context *tls_ctx = tls_get_ctx(sk); 2083 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2084 struct sk_psock *psock; 2085 2086 strp_data_ready(&ctx->strp); 2087 2088 psock = sk_psock_get(sk); 2089 if (psock) { 2090 if (!list_empty(&psock->ingress_msg)) 2091 ctx->saved_data_ready(sk); 2092 sk_psock_put(sk, psock); 2093 } 2094 } 2095 2096 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2097 { 2098 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2099 2100 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2101 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2102 cancel_delayed_work_sync(&ctx->tx_work.work); 2103 } 2104 2105 void tls_sw_release_resources_tx(struct sock *sk) 2106 { 2107 struct tls_context *tls_ctx = tls_get_ctx(sk); 2108 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2109 struct tls_rec *rec, *tmp; 2110 2111 /* Wait for any pending async encryptions to complete */ 2112 smp_store_mb(ctx->async_notify, true); 2113 if (atomic_read(&ctx->encrypt_pending)) 2114 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2115 2116 tls_tx_records(sk, -1); 2117 2118 /* Free up un-sent records in tx_list. First, free 2119 * the partially sent record if any at head of tx_list. 2120 */ 2121 if (tls_ctx->partially_sent_record) { 2122 tls_free_partial_record(sk, tls_ctx); 2123 rec = list_first_entry(&ctx->tx_list, 2124 struct tls_rec, list); 2125 list_del(&rec->list); 2126 sk_msg_free(sk, &rec->msg_plaintext); 2127 kfree(rec); 2128 } 2129 2130 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2131 list_del(&rec->list); 2132 sk_msg_free(sk, &rec->msg_encrypted); 2133 sk_msg_free(sk, &rec->msg_plaintext); 2134 kfree(rec); 2135 } 2136 2137 crypto_free_aead(ctx->aead_send); 2138 tls_free_open_rec(sk); 2139 } 2140 2141 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2142 { 2143 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2144 2145 kfree(ctx); 2146 } 2147 2148 void tls_sw_release_resources_rx(struct sock *sk) 2149 { 2150 struct tls_context *tls_ctx = tls_get_ctx(sk); 2151 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2152 2153 kfree(tls_ctx->rx.rec_seq); 2154 kfree(tls_ctx->rx.iv); 2155 2156 if (ctx->aead_recv) { 2157 kfree_skb(ctx->recv_pkt); 2158 ctx->recv_pkt = NULL; 2159 skb_queue_purge(&ctx->rx_list); 2160 crypto_free_aead(ctx->aead_recv); 2161 strp_stop(&ctx->strp); 2162 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2163 * we still want to strp_stop(), but sk->sk_data_ready was 2164 * never swapped. 2165 */ 2166 if (ctx->saved_data_ready) { 2167 write_lock_bh(&sk->sk_callback_lock); 2168 sk->sk_data_ready = ctx->saved_data_ready; 2169 write_unlock_bh(&sk->sk_callback_lock); 2170 } 2171 } 2172 } 2173 2174 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2175 { 2176 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2177 2178 strp_done(&ctx->strp); 2179 } 2180 2181 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2182 { 2183 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2184 2185 kfree(ctx); 2186 } 2187 2188 void tls_sw_free_resources_rx(struct sock *sk) 2189 { 2190 struct tls_context *tls_ctx = tls_get_ctx(sk); 2191 2192 tls_sw_release_resources_rx(sk); 2193 tls_sw_free_ctx_rx(tls_ctx); 2194 } 2195 2196 /* The work handler to transmitt the encrypted records in tx_list */ 2197 static void tx_work_handler(struct work_struct *work) 2198 { 2199 struct delayed_work *delayed_work = to_delayed_work(work); 2200 struct tx_work *tx_work = container_of(delayed_work, 2201 struct tx_work, work); 2202 struct sock *sk = tx_work->sk; 2203 struct tls_context *tls_ctx = tls_get_ctx(sk); 2204 struct tls_sw_context_tx *ctx; 2205 2206 if (unlikely(!tls_ctx)) 2207 return; 2208 2209 ctx = tls_sw_ctx_tx(tls_ctx); 2210 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2211 return; 2212 2213 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2214 return; 2215 mutex_lock(&tls_ctx->tx_lock); 2216 lock_sock(sk); 2217 tls_tx_records(sk, -1); 2218 release_sock(sk); 2219 mutex_unlock(&tls_ctx->tx_lock); 2220 } 2221 2222 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2223 { 2224 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2225 2226 /* Schedule the transmission if tx list is ready */ 2227 if (is_tx_ready(tx_ctx) && 2228 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2229 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2230 } 2231 2232 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2233 { 2234 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2235 2236 write_lock_bh(&sk->sk_callback_lock); 2237 rx_ctx->saved_data_ready = sk->sk_data_ready; 2238 sk->sk_data_ready = tls_data_ready; 2239 write_unlock_bh(&sk->sk_callback_lock); 2240 2241 strp_check_rcv(&rx_ctx->strp); 2242 } 2243 2244 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2245 { 2246 struct tls_context *tls_ctx = tls_get_ctx(sk); 2247 struct tls_prot_info *prot = &tls_ctx->prot_info; 2248 struct tls_crypto_info *crypto_info; 2249 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2250 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2251 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2252 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2253 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2254 struct cipher_context *cctx; 2255 struct crypto_aead **aead; 2256 struct strp_callbacks cb; 2257 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2258 struct crypto_tfm *tfm; 2259 char *iv, *rec_seq, *key, *salt, *cipher_name; 2260 size_t keysize; 2261 int rc = 0; 2262 2263 if (!ctx) { 2264 rc = -EINVAL; 2265 goto out; 2266 } 2267 2268 if (tx) { 2269 if (!ctx->priv_ctx_tx) { 2270 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2271 if (!sw_ctx_tx) { 2272 rc = -ENOMEM; 2273 goto out; 2274 } 2275 ctx->priv_ctx_tx = sw_ctx_tx; 2276 } else { 2277 sw_ctx_tx = 2278 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2279 } 2280 } else { 2281 if (!ctx->priv_ctx_rx) { 2282 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2283 if (!sw_ctx_rx) { 2284 rc = -ENOMEM; 2285 goto out; 2286 } 2287 ctx->priv_ctx_rx = sw_ctx_rx; 2288 } else { 2289 sw_ctx_rx = 2290 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2291 } 2292 } 2293 2294 if (tx) { 2295 crypto_init_wait(&sw_ctx_tx->async_wait); 2296 crypto_info = &ctx->crypto_send.info; 2297 cctx = &ctx->tx; 2298 aead = &sw_ctx_tx->aead_send; 2299 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2300 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2301 sw_ctx_tx->tx_work.sk = sk; 2302 } else { 2303 crypto_init_wait(&sw_ctx_rx->async_wait); 2304 crypto_info = &ctx->crypto_recv.info; 2305 cctx = &ctx->rx; 2306 skb_queue_head_init(&sw_ctx_rx->rx_list); 2307 aead = &sw_ctx_rx->aead_recv; 2308 } 2309 2310 switch (crypto_info->cipher_type) { 2311 case TLS_CIPHER_AES_GCM_128: { 2312 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2313 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2314 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2315 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2316 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2317 rec_seq = 2318 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2319 gcm_128_info = 2320 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2321 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2322 key = gcm_128_info->key; 2323 salt = gcm_128_info->salt; 2324 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2325 cipher_name = "gcm(aes)"; 2326 break; 2327 } 2328 case TLS_CIPHER_AES_GCM_256: { 2329 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2330 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2331 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2332 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2333 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2334 rec_seq = 2335 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2336 gcm_256_info = 2337 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2338 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2339 key = gcm_256_info->key; 2340 salt = gcm_256_info->salt; 2341 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2342 cipher_name = "gcm(aes)"; 2343 break; 2344 } 2345 case TLS_CIPHER_AES_CCM_128: { 2346 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2347 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2348 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2349 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2350 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2351 rec_seq = 2352 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2353 ccm_128_info = 2354 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2355 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2356 key = ccm_128_info->key; 2357 salt = ccm_128_info->salt; 2358 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2359 cipher_name = "ccm(aes)"; 2360 break; 2361 } 2362 default: 2363 rc = -EINVAL; 2364 goto free_priv; 2365 } 2366 2367 /* Sanity-check the sizes for stack allocations. */ 2368 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2369 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2370 rc = -EINVAL; 2371 goto free_priv; 2372 } 2373 2374 if (crypto_info->version == TLS_1_3_VERSION) { 2375 nonce_size = 0; 2376 prot->aad_size = TLS_HEADER_SIZE; 2377 prot->tail_size = 1; 2378 } else { 2379 prot->aad_size = TLS_AAD_SPACE_SIZE; 2380 prot->tail_size = 0; 2381 } 2382 2383 prot->version = crypto_info->version; 2384 prot->cipher_type = crypto_info->cipher_type; 2385 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2386 prot->tag_size = tag_size; 2387 prot->overhead_size = prot->prepend_size + 2388 prot->tag_size + prot->tail_size; 2389 prot->iv_size = iv_size; 2390 prot->salt_size = salt_size; 2391 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2392 if (!cctx->iv) { 2393 rc = -ENOMEM; 2394 goto free_priv; 2395 } 2396 /* Note: 128 & 256 bit salt are the same size */ 2397 prot->rec_seq_size = rec_seq_size; 2398 memcpy(cctx->iv, salt, salt_size); 2399 memcpy(cctx->iv + salt_size, iv, iv_size); 2400 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2401 if (!cctx->rec_seq) { 2402 rc = -ENOMEM; 2403 goto free_iv; 2404 } 2405 2406 if (!*aead) { 2407 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2408 if (IS_ERR(*aead)) { 2409 rc = PTR_ERR(*aead); 2410 *aead = NULL; 2411 goto free_rec_seq; 2412 } 2413 } 2414 2415 ctx->push_pending_record = tls_sw_push_pending_record; 2416 2417 rc = crypto_aead_setkey(*aead, key, keysize); 2418 2419 if (rc) 2420 goto free_aead; 2421 2422 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2423 if (rc) 2424 goto free_aead; 2425 2426 if (sw_ctx_rx) { 2427 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2428 2429 if (crypto_info->version == TLS_1_3_VERSION) 2430 sw_ctx_rx->async_capable = 0; 2431 else 2432 sw_ctx_rx->async_capable = 2433 !!(tfm->__crt_alg->cra_flags & 2434 CRYPTO_ALG_ASYNC); 2435 2436 /* Set up strparser */ 2437 memset(&cb, 0, sizeof(cb)); 2438 cb.rcv_msg = tls_queue; 2439 cb.parse_msg = tls_read_size; 2440 2441 strp_init(&sw_ctx_rx->strp, sk, &cb); 2442 } 2443 2444 goto out; 2445 2446 free_aead: 2447 crypto_free_aead(*aead); 2448 *aead = NULL; 2449 free_rec_seq: 2450 kfree(cctx->rec_seq); 2451 cctx->rec_seq = NULL; 2452 free_iv: 2453 kfree(cctx->iv); 2454 cctx->iv = NULL; 2455 free_priv: 2456 if (tx) { 2457 kfree(ctx->priv_ctx_tx); 2458 ctx->priv_ctx_tx = NULL; 2459 } else { 2460 kfree(ctx->priv_ctx_rx); 2461 ctx->priv_ctx_rx = NULL; 2462 } 2463 out: 2464 return rc; 2465 } 2466