1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/splice.h> 42 #include <crypto/aead.h> 43 44 #include <net/strparser.h> 45 #include <net/tls.h> 46 47 #include "tls.h" 48 49 struct tls_decrypt_arg { 50 struct_group(inargs, 51 bool zc; 52 bool async; 53 u8 tail; 54 ); 55 56 struct sk_buff *skb; 57 }; 58 59 struct tls_decrypt_ctx { 60 u8 iv[MAX_IV_SIZE]; 61 u8 aad[TLS_MAX_AAD_SIZE]; 62 u8 tail; 63 struct scatterlist sg[]; 64 }; 65 66 noinline void tls_err_abort(struct sock *sk, int err) 67 { 68 WARN_ON_ONCE(err >= 0); 69 /* sk->sk_err should contain a positive error code. */ 70 sk->sk_err = -err; 71 sk_error_report(sk); 72 } 73 74 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 75 unsigned int recursion_level) 76 { 77 int start = skb_headlen(skb); 78 int i, chunk = start - offset; 79 struct sk_buff *frag_iter; 80 int elt = 0; 81 82 if (unlikely(recursion_level >= 24)) 83 return -EMSGSIZE; 84 85 if (chunk > 0) { 86 if (chunk > len) 87 chunk = len; 88 elt++; 89 len -= chunk; 90 if (len == 0) 91 return elt; 92 offset += chunk; 93 } 94 95 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 96 int end; 97 98 WARN_ON(start > offset + len); 99 100 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 101 chunk = end - offset; 102 if (chunk > 0) { 103 if (chunk > len) 104 chunk = len; 105 elt++; 106 len -= chunk; 107 if (len == 0) 108 return elt; 109 offset += chunk; 110 } 111 start = end; 112 } 113 114 if (unlikely(skb_has_frag_list(skb))) { 115 skb_walk_frags(skb, frag_iter) { 116 int end, ret; 117 118 WARN_ON(start > offset + len); 119 120 end = start + frag_iter->len; 121 chunk = end - offset; 122 if (chunk > 0) { 123 if (chunk > len) 124 chunk = len; 125 ret = __skb_nsg(frag_iter, offset - start, chunk, 126 recursion_level + 1); 127 if (unlikely(ret < 0)) 128 return ret; 129 elt += ret; 130 len -= chunk; 131 if (len == 0) 132 return elt; 133 offset += chunk; 134 } 135 start = end; 136 } 137 } 138 BUG_ON(len); 139 return elt; 140 } 141 142 /* Return the number of scatterlist elements required to completely map the 143 * skb, or -EMSGSIZE if the recursion depth is exceeded. 144 */ 145 static int skb_nsg(struct sk_buff *skb, int offset, int len) 146 { 147 return __skb_nsg(skb, offset, len, 0); 148 } 149 150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 151 struct tls_decrypt_arg *darg) 152 { 153 struct strp_msg *rxm = strp_msg(skb); 154 struct tls_msg *tlm = tls_msg(skb); 155 int sub = 0; 156 157 /* Determine zero-padding length */ 158 if (prot->version == TLS_1_3_VERSION) { 159 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 160 char content_type = darg->zc ? darg->tail : 0; 161 int err; 162 163 while (content_type == 0) { 164 if (offset < prot->prepend_size) 165 return -EBADMSG; 166 err = skb_copy_bits(skb, rxm->offset + offset, 167 &content_type, 1); 168 if (err) 169 return err; 170 if (content_type) 171 break; 172 sub++; 173 offset--; 174 } 175 tlm->control = content_type; 176 } 177 return sub; 178 } 179 180 static void tls_decrypt_done(struct crypto_async_request *req, int err) 181 { 182 struct aead_request *aead_req = (struct aead_request *)req; 183 struct scatterlist *sgout = aead_req->dst; 184 struct scatterlist *sgin = aead_req->src; 185 struct tls_sw_context_rx *ctx; 186 struct tls_context *tls_ctx; 187 struct scatterlist *sg; 188 unsigned int pages; 189 struct sock *sk; 190 191 sk = (struct sock *)req->data; 192 tls_ctx = tls_get_ctx(sk); 193 ctx = tls_sw_ctx_rx(tls_ctx); 194 195 /* Propagate if there was an err */ 196 if (err) { 197 if (err == -EBADMSG) 198 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 199 ctx->async_wait.err = err; 200 tls_err_abort(sk, err); 201 } 202 203 /* Free the destination pages if skb was not decrypted inplace */ 204 if (sgout != sgin) { 205 /* Skip the first S/G entry as it points to AAD */ 206 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 207 if (!sg) 208 break; 209 put_page(sg_page(sg)); 210 } 211 } 212 213 kfree(aead_req); 214 215 spin_lock_bh(&ctx->decrypt_compl_lock); 216 if (!atomic_dec_return(&ctx->decrypt_pending)) 217 complete(&ctx->async_wait.completion); 218 spin_unlock_bh(&ctx->decrypt_compl_lock); 219 } 220 221 static int tls_do_decryption(struct sock *sk, 222 struct scatterlist *sgin, 223 struct scatterlist *sgout, 224 char *iv_recv, 225 size_t data_len, 226 struct aead_request *aead_req, 227 struct tls_decrypt_arg *darg) 228 { 229 struct tls_context *tls_ctx = tls_get_ctx(sk); 230 struct tls_prot_info *prot = &tls_ctx->prot_info; 231 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 232 int ret; 233 234 aead_request_set_tfm(aead_req, ctx->aead_recv); 235 aead_request_set_ad(aead_req, prot->aad_size); 236 aead_request_set_crypt(aead_req, sgin, sgout, 237 data_len + prot->tag_size, 238 (u8 *)iv_recv); 239 240 if (darg->async) { 241 aead_request_set_callback(aead_req, 242 CRYPTO_TFM_REQ_MAY_BACKLOG, 243 tls_decrypt_done, sk); 244 atomic_inc(&ctx->decrypt_pending); 245 } else { 246 aead_request_set_callback(aead_req, 247 CRYPTO_TFM_REQ_MAY_BACKLOG, 248 crypto_req_done, &ctx->async_wait); 249 } 250 251 ret = crypto_aead_decrypt(aead_req); 252 if (ret == -EINPROGRESS) { 253 if (darg->async) 254 return 0; 255 256 ret = crypto_wait_req(ret, &ctx->async_wait); 257 } 258 darg->async = false; 259 260 return ret; 261 } 262 263 static void tls_trim_both_msgs(struct sock *sk, int target_size) 264 { 265 struct tls_context *tls_ctx = tls_get_ctx(sk); 266 struct tls_prot_info *prot = &tls_ctx->prot_info; 267 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 268 struct tls_rec *rec = ctx->open_rec; 269 270 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 271 if (target_size > 0) 272 target_size += prot->overhead_size; 273 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 274 } 275 276 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 277 { 278 struct tls_context *tls_ctx = tls_get_ctx(sk); 279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 280 struct tls_rec *rec = ctx->open_rec; 281 struct sk_msg *msg_en = &rec->msg_encrypted; 282 283 return sk_msg_alloc(sk, msg_en, len, 0); 284 } 285 286 static int tls_clone_plaintext_msg(struct sock *sk, int required) 287 { 288 struct tls_context *tls_ctx = tls_get_ctx(sk); 289 struct tls_prot_info *prot = &tls_ctx->prot_info; 290 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 291 struct tls_rec *rec = ctx->open_rec; 292 struct sk_msg *msg_pl = &rec->msg_plaintext; 293 struct sk_msg *msg_en = &rec->msg_encrypted; 294 int skip, len; 295 296 /* We add page references worth len bytes from encrypted sg 297 * at the end of plaintext sg. It is guaranteed that msg_en 298 * has enough required room (ensured by caller). 299 */ 300 len = required - msg_pl->sg.size; 301 302 /* Skip initial bytes in msg_en's data to be able to use 303 * same offset of both plain and encrypted data. 304 */ 305 skip = prot->prepend_size + msg_pl->sg.size; 306 307 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 308 } 309 310 static struct tls_rec *tls_get_rec(struct sock *sk) 311 { 312 struct tls_context *tls_ctx = tls_get_ctx(sk); 313 struct tls_prot_info *prot = &tls_ctx->prot_info; 314 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 315 struct sk_msg *msg_pl, *msg_en; 316 struct tls_rec *rec; 317 int mem_size; 318 319 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 320 321 rec = kzalloc(mem_size, sk->sk_allocation); 322 if (!rec) 323 return NULL; 324 325 msg_pl = &rec->msg_plaintext; 326 msg_en = &rec->msg_encrypted; 327 328 sk_msg_init(msg_pl); 329 sk_msg_init(msg_en); 330 331 sg_init_table(rec->sg_aead_in, 2); 332 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 333 sg_unmark_end(&rec->sg_aead_in[1]); 334 335 sg_init_table(rec->sg_aead_out, 2); 336 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 337 sg_unmark_end(&rec->sg_aead_out[1]); 338 339 return rec; 340 } 341 342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 343 { 344 sk_msg_free(sk, &rec->msg_encrypted); 345 sk_msg_free(sk, &rec->msg_plaintext); 346 kfree(rec); 347 } 348 349 static void tls_free_open_rec(struct sock *sk) 350 { 351 struct tls_context *tls_ctx = tls_get_ctx(sk); 352 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 353 struct tls_rec *rec = ctx->open_rec; 354 355 if (rec) { 356 tls_free_rec(sk, rec); 357 ctx->open_rec = NULL; 358 } 359 } 360 361 int tls_tx_records(struct sock *sk, int flags) 362 { 363 struct tls_context *tls_ctx = tls_get_ctx(sk); 364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 365 struct tls_rec *rec, *tmp; 366 struct sk_msg *msg_en; 367 int tx_flags, rc = 0; 368 369 if (tls_is_partially_sent_record(tls_ctx)) { 370 rec = list_first_entry(&ctx->tx_list, 371 struct tls_rec, list); 372 373 if (flags == -1) 374 tx_flags = rec->tx_flags; 375 else 376 tx_flags = flags; 377 378 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 379 if (rc) 380 goto tx_err; 381 382 /* Full record has been transmitted. 383 * Remove the head of tx_list 384 */ 385 list_del(&rec->list); 386 sk_msg_free(sk, &rec->msg_plaintext); 387 kfree(rec); 388 } 389 390 /* Tx all ready records */ 391 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 392 if (READ_ONCE(rec->tx_ready)) { 393 if (flags == -1) 394 tx_flags = rec->tx_flags; 395 else 396 tx_flags = flags; 397 398 msg_en = &rec->msg_encrypted; 399 rc = tls_push_sg(sk, tls_ctx, 400 &msg_en->sg.data[msg_en->sg.curr], 401 0, tx_flags); 402 if (rc) 403 goto tx_err; 404 405 list_del(&rec->list); 406 sk_msg_free(sk, &rec->msg_plaintext); 407 kfree(rec); 408 } else { 409 break; 410 } 411 } 412 413 tx_err: 414 if (rc < 0 && rc != -EAGAIN) 415 tls_err_abort(sk, -EBADMSG); 416 417 return rc; 418 } 419 420 static void tls_encrypt_done(struct crypto_async_request *req, int err) 421 { 422 struct aead_request *aead_req = (struct aead_request *)req; 423 struct sock *sk = req->data; 424 struct tls_context *tls_ctx = tls_get_ctx(sk); 425 struct tls_prot_info *prot = &tls_ctx->prot_info; 426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 427 struct scatterlist *sge; 428 struct sk_msg *msg_en; 429 struct tls_rec *rec; 430 bool ready = false; 431 int pending; 432 433 rec = container_of(aead_req, struct tls_rec, aead_req); 434 msg_en = &rec->msg_encrypted; 435 436 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 437 sge->offset -= prot->prepend_size; 438 sge->length += prot->prepend_size; 439 440 /* Check if error is previously set on socket */ 441 if (err || sk->sk_err) { 442 rec = NULL; 443 444 /* If err is already set on socket, return the same code */ 445 if (sk->sk_err) { 446 ctx->async_wait.err = -sk->sk_err; 447 } else { 448 ctx->async_wait.err = err; 449 tls_err_abort(sk, err); 450 } 451 } 452 453 if (rec) { 454 struct tls_rec *first_rec; 455 456 /* Mark the record as ready for transmission */ 457 smp_store_mb(rec->tx_ready, true); 458 459 /* If received record is at head of tx_list, schedule tx */ 460 first_rec = list_first_entry(&ctx->tx_list, 461 struct tls_rec, list); 462 if (rec == first_rec) 463 ready = true; 464 } 465 466 spin_lock_bh(&ctx->encrypt_compl_lock); 467 pending = atomic_dec_return(&ctx->encrypt_pending); 468 469 if (!pending && ctx->async_notify) 470 complete(&ctx->async_wait.completion); 471 spin_unlock_bh(&ctx->encrypt_compl_lock); 472 473 if (!ready) 474 return; 475 476 /* Schedule the transmission */ 477 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 478 schedule_delayed_work(&ctx->tx_work.work, 1); 479 } 480 481 static int tls_do_encryption(struct sock *sk, 482 struct tls_context *tls_ctx, 483 struct tls_sw_context_tx *ctx, 484 struct aead_request *aead_req, 485 size_t data_len, u32 start) 486 { 487 struct tls_prot_info *prot = &tls_ctx->prot_info; 488 struct tls_rec *rec = ctx->open_rec; 489 struct sk_msg *msg_en = &rec->msg_encrypted; 490 struct scatterlist *sge = sk_msg_elem(msg_en, start); 491 int rc, iv_offset = 0; 492 493 /* For CCM based ciphers, first byte of IV is a constant */ 494 switch (prot->cipher_type) { 495 case TLS_CIPHER_AES_CCM_128: 496 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 497 iv_offset = 1; 498 break; 499 case TLS_CIPHER_SM4_CCM: 500 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 501 iv_offset = 1; 502 break; 503 } 504 505 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 506 prot->iv_size + prot->salt_size); 507 508 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 509 tls_ctx->tx.rec_seq); 510 511 sge->offset += prot->prepend_size; 512 sge->length -= prot->prepend_size; 513 514 msg_en->sg.curr = start; 515 516 aead_request_set_tfm(aead_req, ctx->aead_send); 517 aead_request_set_ad(aead_req, prot->aad_size); 518 aead_request_set_crypt(aead_req, rec->sg_aead_in, 519 rec->sg_aead_out, 520 data_len, rec->iv_data); 521 522 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 523 tls_encrypt_done, sk); 524 525 /* Add the record in tx_list */ 526 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 527 atomic_inc(&ctx->encrypt_pending); 528 529 rc = crypto_aead_encrypt(aead_req); 530 if (!rc || rc != -EINPROGRESS) { 531 atomic_dec(&ctx->encrypt_pending); 532 sge->offset -= prot->prepend_size; 533 sge->length += prot->prepend_size; 534 } 535 536 if (!rc) { 537 WRITE_ONCE(rec->tx_ready, true); 538 } else if (rc != -EINPROGRESS) { 539 list_del(&rec->list); 540 return rc; 541 } 542 543 /* Unhook the record from context if encryption is not failure */ 544 ctx->open_rec = NULL; 545 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 546 return rc; 547 } 548 549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 550 struct tls_rec **to, struct sk_msg *msg_opl, 551 struct sk_msg *msg_oen, u32 split_point, 552 u32 tx_overhead_size, u32 *orig_end) 553 { 554 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 555 struct scatterlist *sge, *osge, *nsge; 556 u32 orig_size = msg_opl->sg.size; 557 struct scatterlist tmp = { }; 558 struct sk_msg *msg_npl; 559 struct tls_rec *new; 560 int ret; 561 562 new = tls_get_rec(sk); 563 if (!new) 564 return -ENOMEM; 565 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 566 tx_overhead_size, 0); 567 if (ret < 0) { 568 tls_free_rec(sk, new); 569 return ret; 570 } 571 572 *orig_end = msg_opl->sg.end; 573 i = msg_opl->sg.start; 574 sge = sk_msg_elem(msg_opl, i); 575 while (apply && sge->length) { 576 if (sge->length > apply) { 577 u32 len = sge->length - apply; 578 579 get_page(sg_page(sge)); 580 sg_set_page(&tmp, sg_page(sge), len, 581 sge->offset + apply); 582 sge->length = apply; 583 bytes += apply; 584 apply = 0; 585 } else { 586 apply -= sge->length; 587 bytes += sge->length; 588 } 589 590 sk_msg_iter_var_next(i); 591 if (i == msg_opl->sg.end) 592 break; 593 sge = sk_msg_elem(msg_opl, i); 594 } 595 596 msg_opl->sg.end = i; 597 msg_opl->sg.curr = i; 598 msg_opl->sg.copybreak = 0; 599 msg_opl->apply_bytes = 0; 600 msg_opl->sg.size = bytes; 601 602 msg_npl = &new->msg_plaintext; 603 msg_npl->apply_bytes = apply; 604 msg_npl->sg.size = orig_size - bytes; 605 606 j = msg_npl->sg.start; 607 nsge = sk_msg_elem(msg_npl, j); 608 if (tmp.length) { 609 memcpy(nsge, &tmp, sizeof(*nsge)); 610 sk_msg_iter_var_next(j); 611 nsge = sk_msg_elem(msg_npl, j); 612 } 613 614 osge = sk_msg_elem(msg_opl, i); 615 while (osge->length) { 616 memcpy(nsge, osge, sizeof(*nsge)); 617 sg_unmark_end(nsge); 618 sk_msg_iter_var_next(i); 619 sk_msg_iter_var_next(j); 620 if (i == *orig_end) 621 break; 622 osge = sk_msg_elem(msg_opl, i); 623 nsge = sk_msg_elem(msg_npl, j); 624 } 625 626 msg_npl->sg.end = j; 627 msg_npl->sg.curr = j; 628 msg_npl->sg.copybreak = 0; 629 630 *to = new; 631 return 0; 632 } 633 634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 635 struct tls_rec *from, u32 orig_end) 636 { 637 struct sk_msg *msg_npl = &from->msg_plaintext; 638 struct sk_msg *msg_opl = &to->msg_plaintext; 639 struct scatterlist *osge, *nsge; 640 u32 i, j; 641 642 i = msg_opl->sg.end; 643 sk_msg_iter_var_prev(i); 644 j = msg_npl->sg.start; 645 646 osge = sk_msg_elem(msg_opl, i); 647 nsge = sk_msg_elem(msg_npl, j); 648 649 if (sg_page(osge) == sg_page(nsge) && 650 osge->offset + osge->length == nsge->offset) { 651 osge->length += nsge->length; 652 put_page(sg_page(nsge)); 653 } 654 655 msg_opl->sg.end = orig_end; 656 msg_opl->sg.curr = orig_end; 657 msg_opl->sg.copybreak = 0; 658 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 659 msg_opl->sg.size += msg_npl->sg.size; 660 661 sk_msg_free(sk, &to->msg_encrypted); 662 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 663 664 kfree(from); 665 } 666 667 static int tls_push_record(struct sock *sk, int flags, 668 unsigned char record_type) 669 { 670 struct tls_context *tls_ctx = tls_get_ctx(sk); 671 struct tls_prot_info *prot = &tls_ctx->prot_info; 672 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 673 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 674 u32 i, split_point, orig_end; 675 struct sk_msg *msg_pl, *msg_en; 676 struct aead_request *req; 677 bool split; 678 int rc; 679 680 if (!rec) 681 return 0; 682 683 msg_pl = &rec->msg_plaintext; 684 msg_en = &rec->msg_encrypted; 685 686 split_point = msg_pl->apply_bytes; 687 split = split_point && split_point < msg_pl->sg.size; 688 if (unlikely((!split && 689 msg_pl->sg.size + 690 prot->overhead_size > msg_en->sg.size) || 691 (split && 692 split_point + 693 prot->overhead_size > msg_en->sg.size))) { 694 split = true; 695 split_point = msg_en->sg.size; 696 } 697 if (split) { 698 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 699 split_point, prot->overhead_size, 700 &orig_end); 701 if (rc < 0) 702 return rc; 703 /* This can happen if above tls_split_open_record allocates 704 * a single large encryption buffer instead of two smaller 705 * ones. In this case adjust pointers and continue without 706 * split. 707 */ 708 if (!msg_pl->sg.size) { 709 tls_merge_open_record(sk, rec, tmp, orig_end); 710 msg_pl = &rec->msg_plaintext; 711 msg_en = &rec->msg_encrypted; 712 split = false; 713 } 714 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 715 prot->overhead_size); 716 } 717 718 rec->tx_flags = flags; 719 req = &rec->aead_req; 720 721 i = msg_pl->sg.end; 722 sk_msg_iter_var_prev(i); 723 724 rec->content_type = record_type; 725 if (prot->version == TLS_1_3_VERSION) { 726 /* Add content type to end of message. No padding added */ 727 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 728 sg_mark_end(&rec->sg_content_type); 729 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 730 &rec->sg_content_type); 731 } else { 732 sg_mark_end(sk_msg_elem(msg_pl, i)); 733 } 734 735 if (msg_pl->sg.end < msg_pl->sg.start) { 736 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 737 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 738 msg_pl->sg.data); 739 } 740 741 i = msg_pl->sg.start; 742 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 743 744 i = msg_en->sg.end; 745 sk_msg_iter_var_prev(i); 746 sg_mark_end(sk_msg_elem(msg_en, i)); 747 748 i = msg_en->sg.start; 749 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 750 751 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 752 tls_ctx->tx.rec_seq, record_type, prot); 753 754 tls_fill_prepend(tls_ctx, 755 page_address(sg_page(&msg_en->sg.data[i])) + 756 msg_en->sg.data[i].offset, 757 msg_pl->sg.size + prot->tail_size, 758 record_type); 759 760 tls_ctx->pending_open_record_frags = false; 761 762 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 763 msg_pl->sg.size + prot->tail_size, i); 764 if (rc < 0) { 765 if (rc != -EINPROGRESS) { 766 tls_err_abort(sk, -EBADMSG); 767 if (split) { 768 tls_ctx->pending_open_record_frags = true; 769 tls_merge_open_record(sk, rec, tmp, orig_end); 770 } 771 } 772 ctx->async_capable = 1; 773 return rc; 774 } else if (split) { 775 msg_pl = &tmp->msg_plaintext; 776 msg_en = &tmp->msg_encrypted; 777 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 778 tls_ctx->pending_open_record_frags = true; 779 ctx->open_rec = tmp; 780 } 781 782 return tls_tx_records(sk, flags); 783 } 784 785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 786 bool full_record, u8 record_type, 787 ssize_t *copied, int flags) 788 { 789 struct tls_context *tls_ctx = tls_get_ctx(sk); 790 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 791 struct sk_msg msg_redir = { }; 792 struct sk_psock *psock; 793 struct sock *sk_redir; 794 struct tls_rec *rec; 795 bool enospc, policy, redir_ingress; 796 int err = 0, send; 797 u32 delta = 0; 798 799 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 800 psock = sk_psock_get(sk); 801 if (!psock || !policy) { 802 err = tls_push_record(sk, flags, record_type); 803 if (err && sk->sk_err == EBADMSG) { 804 *copied -= sk_msg_free(sk, msg); 805 tls_free_open_rec(sk); 806 err = -sk->sk_err; 807 } 808 if (psock) 809 sk_psock_put(sk, psock); 810 return err; 811 } 812 more_data: 813 enospc = sk_msg_full(msg); 814 if (psock->eval == __SK_NONE) { 815 delta = msg->sg.size; 816 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 817 delta -= msg->sg.size; 818 } 819 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 820 !enospc && !full_record) { 821 err = -ENOSPC; 822 goto out_err; 823 } 824 msg->cork_bytes = 0; 825 send = msg->sg.size; 826 if (msg->apply_bytes && msg->apply_bytes < send) 827 send = msg->apply_bytes; 828 829 switch (psock->eval) { 830 case __SK_PASS: 831 err = tls_push_record(sk, flags, record_type); 832 if (err && sk->sk_err == EBADMSG) { 833 *copied -= sk_msg_free(sk, msg); 834 tls_free_open_rec(sk); 835 err = -sk->sk_err; 836 goto out_err; 837 } 838 break; 839 case __SK_REDIRECT: 840 redir_ingress = psock->redir_ingress; 841 sk_redir = psock->sk_redir; 842 memcpy(&msg_redir, msg, sizeof(*msg)); 843 if (msg->apply_bytes < send) 844 msg->apply_bytes = 0; 845 else 846 msg->apply_bytes -= send; 847 sk_msg_return_zero(sk, msg, send); 848 msg->sg.size -= send; 849 release_sock(sk); 850 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 851 &msg_redir, send, flags); 852 lock_sock(sk); 853 if (err < 0) { 854 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 855 msg->sg.size = 0; 856 } 857 if (msg->sg.size == 0) 858 tls_free_open_rec(sk); 859 break; 860 case __SK_DROP: 861 default: 862 sk_msg_free_partial(sk, msg, send); 863 if (msg->apply_bytes < send) 864 msg->apply_bytes = 0; 865 else 866 msg->apply_bytes -= send; 867 if (msg->sg.size == 0) 868 tls_free_open_rec(sk); 869 *copied -= (send + delta); 870 err = -EACCES; 871 } 872 873 if (likely(!err)) { 874 bool reset_eval = !ctx->open_rec; 875 876 rec = ctx->open_rec; 877 if (rec) { 878 msg = &rec->msg_plaintext; 879 if (!msg->apply_bytes) 880 reset_eval = true; 881 } 882 if (reset_eval) { 883 psock->eval = __SK_NONE; 884 if (psock->sk_redir) { 885 sock_put(psock->sk_redir); 886 psock->sk_redir = NULL; 887 } 888 } 889 if (rec) 890 goto more_data; 891 } 892 out_err: 893 sk_psock_put(sk, psock); 894 return err; 895 } 896 897 static int tls_sw_push_pending_record(struct sock *sk, int flags) 898 { 899 struct tls_context *tls_ctx = tls_get_ctx(sk); 900 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 901 struct tls_rec *rec = ctx->open_rec; 902 struct sk_msg *msg_pl; 903 size_t copied; 904 905 if (!rec) 906 return 0; 907 908 msg_pl = &rec->msg_plaintext; 909 copied = msg_pl->sg.size; 910 if (!copied) 911 return 0; 912 913 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 914 &copied, flags); 915 } 916 917 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 918 { 919 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 920 struct tls_context *tls_ctx = tls_get_ctx(sk); 921 struct tls_prot_info *prot = &tls_ctx->prot_info; 922 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 923 bool async_capable = ctx->async_capable; 924 unsigned char record_type = TLS_RECORD_TYPE_DATA; 925 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 926 bool eor = !(msg->msg_flags & MSG_MORE); 927 size_t try_to_copy; 928 ssize_t copied = 0; 929 struct sk_msg *msg_pl, *msg_en; 930 struct tls_rec *rec; 931 int required_size; 932 int num_async = 0; 933 bool full_record; 934 int record_room; 935 int num_zc = 0; 936 int orig_size; 937 int ret = 0; 938 int pending; 939 940 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 941 MSG_CMSG_COMPAT)) 942 return -EOPNOTSUPP; 943 944 mutex_lock(&tls_ctx->tx_lock); 945 lock_sock(sk); 946 947 if (unlikely(msg->msg_controllen)) { 948 ret = tls_process_cmsg(sk, msg, &record_type); 949 if (ret) { 950 if (ret == -EINPROGRESS) 951 num_async++; 952 else if (ret != -EAGAIN) 953 goto send_end; 954 } 955 } 956 957 while (msg_data_left(msg)) { 958 if (sk->sk_err) { 959 ret = -sk->sk_err; 960 goto send_end; 961 } 962 963 if (ctx->open_rec) 964 rec = ctx->open_rec; 965 else 966 rec = ctx->open_rec = tls_get_rec(sk); 967 if (!rec) { 968 ret = -ENOMEM; 969 goto send_end; 970 } 971 972 msg_pl = &rec->msg_plaintext; 973 msg_en = &rec->msg_encrypted; 974 975 orig_size = msg_pl->sg.size; 976 full_record = false; 977 try_to_copy = msg_data_left(msg); 978 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 979 if (try_to_copy >= record_room) { 980 try_to_copy = record_room; 981 full_record = true; 982 } 983 984 required_size = msg_pl->sg.size + try_to_copy + 985 prot->overhead_size; 986 987 if (!sk_stream_memory_free(sk)) 988 goto wait_for_sndbuf; 989 990 alloc_encrypted: 991 ret = tls_alloc_encrypted_msg(sk, required_size); 992 if (ret) { 993 if (ret != -ENOSPC) 994 goto wait_for_memory; 995 996 /* Adjust try_to_copy according to the amount that was 997 * actually allocated. The difference is due 998 * to max sg elements limit 999 */ 1000 try_to_copy -= required_size - msg_en->sg.size; 1001 full_record = true; 1002 } 1003 1004 if (!is_kvec && (full_record || eor) && !async_capable) { 1005 u32 first = msg_pl->sg.end; 1006 1007 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1008 msg_pl, try_to_copy); 1009 if (ret) 1010 goto fallback_to_reg_send; 1011 1012 num_zc++; 1013 copied += try_to_copy; 1014 1015 sk_msg_sg_copy_set(msg_pl, first); 1016 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1017 record_type, &copied, 1018 msg->msg_flags); 1019 if (ret) { 1020 if (ret == -EINPROGRESS) 1021 num_async++; 1022 else if (ret == -ENOMEM) 1023 goto wait_for_memory; 1024 else if (ctx->open_rec && ret == -ENOSPC) 1025 goto rollback_iter; 1026 else if (ret != -EAGAIN) 1027 goto send_end; 1028 } 1029 continue; 1030 rollback_iter: 1031 copied -= try_to_copy; 1032 sk_msg_sg_copy_clear(msg_pl, first); 1033 iov_iter_revert(&msg->msg_iter, 1034 msg_pl->sg.size - orig_size); 1035 fallback_to_reg_send: 1036 sk_msg_trim(sk, msg_pl, orig_size); 1037 } 1038 1039 required_size = msg_pl->sg.size + try_to_copy; 1040 1041 ret = tls_clone_plaintext_msg(sk, required_size); 1042 if (ret) { 1043 if (ret != -ENOSPC) 1044 goto send_end; 1045 1046 /* Adjust try_to_copy according to the amount that was 1047 * actually allocated. The difference is due 1048 * to max sg elements limit 1049 */ 1050 try_to_copy -= required_size - msg_pl->sg.size; 1051 full_record = true; 1052 sk_msg_trim(sk, msg_en, 1053 msg_pl->sg.size + prot->overhead_size); 1054 } 1055 1056 if (try_to_copy) { 1057 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1058 msg_pl, try_to_copy); 1059 if (ret < 0) 1060 goto trim_sgl; 1061 } 1062 1063 /* Open records defined only if successfully copied, otherwise 1064 * we would trim the sg but not reset the open record frags. 1065 */ 1066 tls_ctx->pending_open_record_frags = true; 1067 copied += try_to_copy; 1068 if (full_record || eor) { 1069 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1070 record_type, &copied, 1071 msg->msg_flags); 1072 if (ret) { 1073 if (ret == -EINPROGRESS) 1074 num_async++; 1075 else if (ret == -ENOMEM) 1076 goto wait_for_memory; 1077 else if (ret != -EAGAIN) { 1078 if (ret == -ENOSPC) 1079 ret = 0; 1080 goto send_end; 1081 } 1082 } 1083 } 1084 1085 continue; 1086 1087 wait_for_sndbuf: 1088 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1089 wait_for_memory: 1090 ret = sk_stream_wait_memory(sk, &timeo); 1091 if (ret) { 1092 trim_sgl: 1093 if (ctx->open_rec) 1094 tls_trim_both_msgs(sk, orig_size); 1095 goto send_end; 1096 } 1097 1098 if (ctx->open_rec && msg_en->sg.size < required_size) 1099 goto alloc_encrypted; 1100 } 1101 1102 if (!num_async) { 1103 goto send_end; 1104 } else if (num_zc) { 1105 /* Wait for pending encryptions to get completed */ 1106 spin_lock_bh(&ctx->encrypt_compl_lock); 1107 ctx->async_notify = true; 1108 1109 pending = atomic_read(&ctx->encrypt_pending); 1110 spin_unlock_bh(&ctx->encrypt_compl_lock); 1111 if (pending) 1112 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1113 else 1114 reinit_completion(&ctx->async_wait.completion); 1115 1116 /* There can be no concurrent accesses, since we have no 1117 * pending encrypt operations 1118 */ 1119 WRITE_ONCE(ctx->async_notify, false); 1120 1121 if (ctx->async_wait.err) { 1122 ret = ctx->async_wait.err; 1123 copied = 0; 1124 } 1125 } 1126 1127 /* Transmit if any encryptions have completed */ 1128 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1129 cancel_delayed_work(&ctx->tx_work.work); 1130 tls_tx_records(sk, msg->msg_flags); 1131 } 1132 1133 send_end: 1134 ret = sk_stream_error(sk, msg->msg_flags, ret); 1135 1136 release_sock(sk); 1137 mutex_unlock(&tls_ctx->tx_lock); 1138 return copied > 0 ? copied : ret; 1139 } 1140 1141 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1142 int offset, size_t size, int flags) 1143 { 1144 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1145 struct tls_context *tls_ctx = tls_get_ctx(sk); 1146 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1147 struct tls_prot_info *prot = &tls_ctx->prot_info; 1148 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1149 struct sk_msg *msg_pl; 1150 struct tls_rec *rec; 1151 int num_async = 0; 1152 ssize_t copied = 0; 1153 bool full_record; 1154 int record_room; 1155 int ret = 0; 1156 bool eor; 1157 1158 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1159 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1160 1161 /* Call the sk_stream functions to manage the sndbuf mem. */ 1162 while (size > 0) { 1163 size_t copy, required_size; 1164 1165 if (sk->sk_err) { 1166 ret = -sk->sk_err; 1167 goto sendpage_end; 1168 } 1169 1170 if (ctx->open_rec) 1171 rec = ctx->open_rec; 1172 else 1173 rec = ctx->open_rec = tls_get_rec(sk); 1174 if (!rec) { 1175 ret = -ENOMEM; 1176 goto sendpage_end; 1177 } 1178 1179 msg_pl = &rec->msg_plaintext; 1180 1181 full_record = false; 1182 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1183 copy = size; 1184 if (copy >= record_room) { 1185 copy = record_room; 1186 full_record = true; 1187 } 1188 1189 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1190 1191 if (!sk_stream_memory_free(sk)) 1192 goto wait_for_sndbuf; 1193 alloc_payload: 1194 ret = tls_alloc_encrypted_msg(sk, required_size); 1195 if (ret) { 1196 if (ret != -ENOSPC) 1197 goto wait_for_memory; 1198 1199 /* Adjust copy according to the amount that was 1200 * actually allocated. The difference is due 1201 * to max sg elements limit 1202 */ 1203 copy -= required_size - msg_pl->sg.size; 1204 full_record = true; 1205 } 1206 1207 sk_msg_page_add(msg_pl, page, copy, offset); 1208 sk_mem_charge(sk, copy); 1209 1210 offset += copy; 1211 size -= copy; 1212 copied += copy; 1213 1214 tls_ctx->pending_open_record_frags = true; 1215 if (full_record || eor || sk_msg_full(msg_pl)) { 1216 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1217 record_type, &copied, flags); 1218 if (ret) { 1219 if (ret == -EINPROGRESS) 1220 num_async++; 1221 else if (ret == -ENOMEM) 1222 goto wait_for_memory; 1223 else if (ret != -EAGAIN) { 1224 if (ret == -ENOSPC) 1225 ret = 0; 1226 goto sendpage_end; 1227 } 1228 } 1229 } 1230 continue; 1231 wait_for_sndbuf: 1232 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1233 wait_for_memory: 1234 ret = sk_stream_wait_memory(sk, &timeo); 1235 if (ret) { 1236 if (ctx->open_rec) 1237 tls_trim_both_msgs(sk, msg_pl->sg.size); 1238 goto sendpage_end; 1239 } 1240 1241 if (ctx->open_rec) 1242 goto alloc_payload; 1243 } 1244 1245 if (num_async) { 1246 /* Transmit if any encryptions have completed */ 1247 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1248 cancel_delayed_work(&ctx->tx_work.work); 1249 tls_tx_records(sk, flags); 1250 } 1251 } 1252 sendpage_end: 1253 ret = sk_stream_error(sk, flags, ret); 1254 return copied > 0 ? copied : ret; 1255 } 1256 1257 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1258 int offset, size_t size, int flags) 1259 { 1260 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1261 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1262 MSG_NO_SHARED_FRAGS)) 1263 return -EOPNOTSUPP; 1264 1265 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1266 } 1267 1268 int tls_sw_sendpage(struct sock *sk, struct page *page, 1269 int offset, size_t size, int flags) 1270 { 1271 struct tls_context *tls_ctx = tls_get_ctx(sk); 1272 int ret; 1273 1274 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1275 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1276 return -EOPNOTSUPP; 1277 1278 mutex_lock(&tls_ctx->tx_lock); 1279 lock_sock(sk); 1280 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1281 release_sock(sk); 1282 mutex_unlock(&tls_ctx->tx_lock); 1283 return ret; 1284 } 1285 1286 static int 1287 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1288 bool released) 1289 { 1290 struct tls_context *tls_ctx = tls_get_ctx(sk); 1291 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1292 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1293 long timeo; 1294 1295 timeo = sock_rcvtimeo(sk, nonblock); 1296 1297 while (!tls_strp_msg_ready(ctx)) { 1298 if (!sk_psock_queue_empty(psock)) 1299 return 0; 1300 1301 if (sk->sk_err) 1302 return sock_error(sk); 1303 1304 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1305 tls_strp_check_rcv(&ctx->strp); 1306 if (tls_strp_msg_ready(ctx)) 1307 break; 1308 } 1309 1310 if (sk->sk_shutdown & RCV_SHUTDOWN) 1311 return 0; 1312 1313 if (sock_flag(sk, SOCK_DONE)) 1314 return 0; 1315 1316 if (!timeo) 1317 return -EAGAIN; 1318 1319 released = true; 1320 add_wait_queue(sk_sleep(sk), &wait); 1321 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1322 sk_wait_event(sk, &timeo, 1323 tls_strp_msg_ready(ctx) || 1324 !sk_psock_queue_empty(psock), 1325 &wait); 1326 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1327 remove_wait_queue(sk_sleep(sk), &wait); 1328 1329 /* Handle signals */ 1330 if (signal_pending(current)) 1331 return sock_intr_errno(timeo); 1332 } 1333 1334 tls_strp_msg_load(&ctx->strp, released); 1335 1336 return 1; 1337 } 1338 1339 static int tls_setup_from_iter(struct iov_iter *from, 1340 int length, int *pages_used, 1341 struct scatterlist *to, 1342 int to_max_pages) 1343 { 1344 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1345 struct page *pages[MAX_SKB_FRAGS]; 1346 unsigned int size = 0; 1347 ssize_t copied, use; 1348 size_t offset; 1349 1350 while (length > 0) { 1351 i = 0; 1352 maxpages = to_max_pages - num_elem; 1353 if (maxpages == 0) { 1354 rc = -EFAULT; 1355 goto out; 1356 } 1357 copied = iov_iter_get_pages2(from, pages, 1358 length, 1359 maxpages, &offset); 1360 if (copied <= 0) { 1361 rc = -EFAULT; 1362 goto out; 1363 } 1364 1365 length -= copied; 1366 size += copied; 1367 while (copied) { 1368 use = min_t(int, copied, PAGE_SIZE - offset); 1369 1370 sg_set_page(&to[num_elem], 1371 pages[i], use, offset); 1372 sg_unmark_end(&to[num_elem]); 1373 /* We do not uncharge memory from this API */ 1374 1375 offset = 0; 1376 copied -= use; 1377 1378 i++; 1379 num_elem++; 1380 } 1381 } 1382 /* Mark the end in the last sg entry if newly added */ 1383 if (num_elem > *pages_used) 1384 sg_mark_end(&to[num_elem - 1]); 1385 out: 1386 if (rc) 1387 iov_iter_revert(from, size); 1388 *pages_used = num_elem; 1389 1390 return rc; 1391 } 1392 1393 static struct sk_buff * 1394 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1395 unsigned int full_len) 1396 { 1397 struct strp_msg *clr_rxm; 1398 struct sk_buff *clr_skb; 1399 int err; 1400 1401 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1402 &err, sk->sk_allocation); 1403 if (!clr_skb) 1404 return NULL; 1405 1406 skb_copy_header(clr_skb, skb); 1407 clr_skb->len = full_len; 1408 clr_skb->data_len = full_len; 1409 1410 clr_rxm = strp_msg(clr_skb); 1411 clr_rxm->offset = 0; 1412 1413 return clr_skb; 1414 } 1415 1416 /* Decrypt handlers 1417 * 1418 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1419 * They must transform the darg in/out argument are as follows: 1420 * | Input | Output 1421 * ------------------------------------------------------------------- 1422 * zc | Zero-copy decrypt allowed | Zero-copy performed 1423 * async | Async decrypt allowed | Async crypto used / in progress 1424 * skb | * | Output skb 1425 * 1426 * If ZC decryption was performed darg.skb will point to the input skb. 1427 */ 1428 1429 /* This function decrypts the input skb into either out_iov or in out_sg 1430 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1431 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1432 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1433 * NULL, then the decryption happens inside skb buffers itself, i.e. 1434 * zero-copy gets disabled and 'darg->zc' is updated. 1435 */ 1436 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1437 struct scatterlist *out_sg, 1438 struct tls_decrypt_arg *darg) 1439 { 1440 struct tls_context *tls_ctx = tls_get_ctx(sk); 1441 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1442 struct tls_prot_info *prot = &tls_ctx->prot_info; 1443 int n_sgin, n_sgout, aead_size, err, pages = 0; 1444 struct sk_buff *skb = tls_strp_msg(ctx); 1445 const struct strp_msg *rxm = strp_msg(skb); 1446 const struct tls_msg *tlm = tls_msg(skb); 1447 struct aead_request *aead_req; 1448 struct scatterlist *sgin = NULL; 1449 struct scatterlist *sgout = NULL; 1450 const int data_len = rxm->full_len - prot->overhead_size; 1451 int tail_pages = !!prot->tail_size; 1452 struct tls_decrypt_ctx *dctx; 1453 struct sk_buff *clear_skb; 1454 int iv_offset = 0; 1455 u8 *mem; 1456 1457 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1458 rxm->full_len - prot->prepend_size); 1459 if (n_sgin < 1) 1460 return n_sgin ?: -EBADMSG; 1461 1462 if (darg->zc && (out_iov || out_sg)) { 1463 clear_skb = NULL; 1464 1465 if (out_iov) 1466 n_sgout = 1 + tail_pages + 1467 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1468 else 1469 n_sgout = sg_nents(out_sg); 1470 } else { 1471 darg->zc = false; 1472 1473 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1474 if (!clear_skb) 1475 return -ENOMEM; 1476 1477 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1478 } 1479 1480 /* Increment to accommodate AAD */ 1481 n_sgin = n_sgin + 1; 1482 1483 /* Allocate a single block of memory which contains 1484 * aead_req || tls_decrypt_ctx. 1485 * Both structs are variable length. 1486 */ 1487 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1488 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1489 sk->sk_allocation); 1490 if (!mem) { 1491 err = -ENOMEM; 1492 goto exit_free_skb; 1493 } 1494 1495 /* Segment the allocated memory */ 1496 aead_req = (struct aead_request *)mem; 1497 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1498 sgin = &dctx->sg[0]; 1499 sgout = &dctx->sg[n_sgin]; 1500 1501 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1502 switch (prot->cipher_type) { 1503 case TLS_CIPHER_AES_CCM_128: 1504 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1505 iv_offset = 1; 1506 break; 1507 case TLS_CIPHER_SM4_CCM: 1508 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1509 iv_offset = 1; 1510 break; 1511 } 1512 1513 /* Prepare IV */ 1514 if (prot->version == TLS_1_3_VERSION || 1515 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1516 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1517 prot->iv_size + prot->salt_size); 1518 } else { 1519 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1520 &dctx->iv[iv_offset] + prot->salt_size, 1521 prot->iv_size); 1522 if (err < 0) 1523 goto exit_free; 1524 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1525 } 1526 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1527 1528 /* Prepare AAD */ 1529 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1530 prot->tail_size, 1531 tls_ctx->rx.rec_seq, tlm->control, prot); 1532 1533 /* Prepare sgin */ 1534 sg_init_table(sgin, n_sgin); 1535 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1536 err = skb_to_sgvec(skb, &sgin[1], 1537 rxm->offset + prot->prepend_size, 1538 rxm->full_len - prot->prepend_size); 1539 if (err < 0) 1540 goto exit_free; 1541 1542 if (clear_skb) { 1543 sg_init_table(sgout, n_sgout); 1544 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1545 1546 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1547 data_len + prot->tail_size); 1548 if (err < 0) 1549 goto exit_free; 1550 } else if (out_iov) { 1551 sg_init_table(sgout, n_sgout); 1552 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1553 1554 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1555 (n_sgout - 1 - tail_pages)); 1556 if (err < 0) 1557 goto exit_free_pages; 1558 1559 if (prot->tail_size) { 1560 sg_unmark_end(&sgout[pages]); 1561 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1562 prot->tail_size); 1563 sg_mark_end(&sgout[pages + 1]); 1564 } 1565 } else if (out_sg) { 1566 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1567 } 1568 1569 /* Prepare and submit AEAD request */ 1570 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1571 data_len + prot->tail_size, aead_req, darg); 1572 if (err) 1573 goto exit_free_pages; 1574 1575 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1576 clear_skb = NULL; 1577 1578 if (unlikely(darg->async)) { 1579 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1580 if (err) 1581 __skb_queue_tail(&ctx->async_hold, darg->skb); 1582 return err; 1583 } 1584 1585 if (prot->tail_size) 1586 darg->tail = dctx->tail; 1587 1588 exit_free_pages: 1589 /* Release the pages in case iov was mapped to pages */ 1590 for (; pages > 0; pages--) 1591 put_page(sg_page(&sgout[pages])); 1592 exit_free: 1593 kfree(mem); 1594 exit_free_skb: 1595 consume_skb(clear_skb); 1596 return err; 1597 } 1598 1599 static int 1600 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1601 struct msghdr *msg, struct tls_decrypt_arg *darg) 1602 { 1603 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1604 struct tls_prot_info *prot = &tls_ctx->prot_info; 1605 struct strp_msg *rxm; 1606 int pad, err; 1607 1608 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1609 if (err < 0) { 1610 if (err == -EBADMSG) 1611 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1612 return err; 1613 } 1614 /* keep going even for ->async, the code below is TLS 1.3 */ 1615 1616 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1617 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1618 darg->tail != TLS_RECORD_TYPE_DATA)) { 1619 darg->zc = false; 1620 if (!darg->tail) 1621 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1622 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1623 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1624 } 1625 1626 pad = tls_padding_length(prot, darg->skb, darg); 1627 if (pad < 0) { 1628 if (darg->skb != tls_strp_msg(ctx)) 1629 consume_skb(darg->skb); 1630 return pad; 1631 } 1632 1633 rxm = strp_msg(darg->skb); 1634 rxm->full_len -= pad; 1635 1636 return 0; 1637 } 1638 1639 static int 1640 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1641 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1642 { 1643 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1644 struct tls_prot_info *prot = &tls_ctx->prot_info; 1645 struct strp_msg *rxm; 1646 int pad, err; 1647 1648 if (tls_ctx->rx_conf != TLS_HW) 1649 return 0; 1650 1651 err = tls_device_decrypted(sk, tls_ctx); 1652 if (err <= 0) 1653 return err; 1654 1655 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1656 if (pad < 0) 1657 return pad; 1658 1659 darg->async = false; 1660 darg->skb = tls_strp_msg(ctx); 1661 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1662 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1663 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1664 1665 rxm = strp_msg(darg->skb); 1666 rxm->full_len -= pad; 1667 1668 if (!darg->zc) { 1669 /* Non-ZC case needs a real skb */ 1670 darg->skb = tls_strp_msg_detach(ctx); 1671 if (!darg->skb) 1672 return -ENOMEM; 1673 } else { 1674 unsigned int off, len; 1675 1676 /* In ZC case nobody cares about the output skb. 1677 * Just copy the data here. Note the skb is not fully trimmed. 1678 */ 1679 off = rxm->offset + prot->prepend_size; 1680 len = rxm->full_len - prot->overhead_size; 1681 1682 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1683 if (err) 1684 return err; 1685 } 1686 return 1; 1687 } 1688 1689 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1690 struct tls_decrypt_arg *darg) 1691 { 1692 struct tls_context *tls_ctx = tls_get_ctx(sk); 1693 struct tls_prot_info *prot = &tls_ctx->prot_info; 1694 struct strp_msg *rxm; 1695 int err; 1696 1697 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1698 if (!err) 1699 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1700 if (err < 0) 1701 return err; 1702 1703 rxm = strp_msg(darg->skb); 1704 rxm->offset += prot->prepend_size; 1705 rxm->full_len -= prot->overhead_size; 1706 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1707 1708 return 0; 1709 } 1710 1711 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1712 { 1713 struct tls_decrypt_arg darg = { .zc = true, }; 1714 1715 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1716 } 1717 1718 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1719 u8 *control) 1720 { 1721 int err; 1722 1723 if (!*control) { 1724 *control = tlm->control; 1725 if (!*control) 1726 return -EBADMSG; 1727 1728 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1729 sizeof(*control), control); 1730 if (*control != TLS_RECORD_TYPE_DATA) { 1731 if (err || msg->msg_flags & MSG_CTRUNC) 1732 return -EIO; 1733 } 1734 } else if (*control != tlm->control) { 1735 return 0; 1736 } 1737 1738 return 1; 1739 } 1740 1741 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1742 { 1743 tls_strp_msg_done(&ctx->strp); 1744 } 1745 1746 /* This function traverses the rx_list in tls receive context to copies the 1747 * decrypted records into the buffer provided by caller zero copy is not 1748 * true. Further, the records are removed from the rx_list if it is not a peek 1749 * case and the record has been consumed completely. 1750 */ 1751 static int process_rx_list(struct tls_sw_context_rx *ctx, 1752 struct msghdr *msg, 1753 u8 *control, 1754 size_t skip, 1755 size_t len, 1756 bool is_peek) 1757 { 1758 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1759 struct tls_msg *tlm; 1760 ssize_t copied = 0; 1761 int err; 1762 1763 while (skip && skb) { 1764 struct strp_msg *rxm = strp_msg(skb); 1765 tlm = tls_msg(skb); 1766 1767 err = tls_record_content_type(msg, tlm, control); 1768 if (err <= 0) 1769 goto out; 1770 1771 if (skip < rxm->full_len) 1772 break; 1773 1774 skip = skip - rxm->full_len; 1775 skb = skb_peek_next(skb, &ctx->rx_list); 1776 } 1777 1778 while (len && skb) { 1779 struct sk_buff *next_skb; 1780 struct strp_msg *rxm = strp_msg(skb); 1781 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1782 1783 tlm = tls_msg(skb); 1784 1785 err = tls_record_content_type(msg, tlm, control); 1786 if (err <= 0) 1787 goto out; 1788 1789 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1790 msg, chunk); 1791 if (err < 0) 1792 goto out; 1793 1794 len = len - chunk; 1795 copied = copied + chunk; 1796 1797 /* Consume the data from record if it is non-peek case*/ 1798 if (!is_peek) { 1799 rxm->offset = rxm->offset + chunk; 1800 rxm->full_len = rxm->full_len - chunk; 1801 1802 /* Return if there is unconsumed data in the record */ 1803 if (rxm->full_len - skip) 1804 break; 1805 } 1806 1807 /* The remaining skip-bytes must lie in 1st record in rx_list. 1808 * So from the 2nd record, 'skip' should be 0. 1809 */ 1810 skip = 0; 1811 1812 if (msg) 1813 msg->msg_flags |= MSG_EOR; 1814 1815 next_skb = skb_peek_next(skb, &ctx->rx_list); 1816 1817 if (!is_peek) { 1818 __skb_unlink(skb, &ctx->rx_list); 1819 consume_skb(skb); 1820 } 1821 1822 skb = next_skb; 1823 } 1824 err = 0; 1825 1826 out: 1827 return copied ? : err; 1828 } 1829 1830 static bool 1831 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1832 size_t len_left, size_t decrypted, ssize_t done, 1833 size_t *flushed_at) 1834 { 1835 size_t max_rec; 1836 1837 if (len_left <= decrypted) 1838 return false; 1839 1840 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1841 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1842 return false; 1843 1844 *flushed_at = done; 1845 return sk_flush_backlog(sk); 1846 } 1847 1848 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1849 bool nonblock) 1850 { 1851 long timeo; 1852 int err; 1853 1854 lock_sock(sk); 1855 1856 timeo = sock_rcvtimeo(sk, nonblock); 1857 1858 while (unlikely(ctx->reader_present)) { 1859 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1860 1861 ctx->reader_contended = 1; 1862 1863 add_wait_queue(&ctx->wq, &wait); 1864 sk_wait_event(sk, &timeo, 1865 !READ_ONCE(ctx->reader_present), &wait); 1866 remove_wait_queue(&ctx->wq, &wait); 1867 1868 if (timeo <= 0) { 1869 err = -EAGAIN; 1870 goto err_unlock; 1871 } 1872 if (signal_pending(current)) { 1873 err = sock_intr_errno(timeo); 1874 goto err_unlock; 1875 } 1876 } 1877 1878 WRITE_ONCE(ctx->reader_present, 1); 1879 1880 return 0; 1881 1882 err_unlock: 1883 release_sock(sk); 1884 return err; 1885 } 1886 1887 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1888 { 1889 if (unlikely(ctx->reader_contended)) { 1890 if (wq_has_sleeper(&ctx->wq)) 1891 wake_up(&ctx->wq); 1892 else 1893 ctx->reader_contended = 0; 1894 1895 WARN_ON_ONCE(!ctx->reader_present); 1896 } 1897 1898 WRITE_ONCE(ctx->reader_present, 0); 1899 release_sock(sk); 1900 } 1901 1902 int tls_sw_recvmsg(struct sock *sk, 1903 struct msghdr *msg, 1904 size_t len, 1905 int flags, 1906 int *addr_len) 1907 { 1908 struct tls_context *tls_ctx = tls_get_ctx(sk); 1909 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1910 struct tls_prot_info *prot = &tls_ctx->prot_info; 1911 ssize_t decrypted = 0, async_copy_bytes = 0; 1912 struct sk_psock *psock; 1913 unsigned char control = 0; 1914 size_t flushed_at = 0; 1915 struct strp_msg *rxm; 1916 struct tls_msg *tlm; 1917 ssize_t copied = 0; 1918 bool async = false; 1919 int target, err; 1920 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1921 bool is_peek = flags & MSG_PEEK; 1922 bool released = true; 1923 bool bpf_strp_enabled; 1924 bool zc_capable; 1925 1926 if (unlikely(flags & MSG_ERRQUEUE)) 1927 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1928 1929 psock = sk_psock_get(sk); 1930 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1931 if (err < 0) 1932 return err; 1933 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1934 1935 /* If crypto failed the connection is broken */ 1936 err = ctx->async_wait.err; 1937 if (err) 1938 goto end; 1939 1940 /* Process pending decrypted records. It must be non-zero-copy */ 1941 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1942 if (err < 0) 1943 goto end; 1944 1945 copied = err; 1946 if (len <= copied) 1947 goto end; 1948 1949 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1950 len = len - copied; 1951 1952 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1953 ctx->zc_capable; 1954 decrypted = 0; 1955 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1956 struct tls_decrypt_arg darg; 1957 int to_decrypt, chunk; 1958 1959 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1960 released); 1961 if (err <= 0) { 1962 if (psock) { 1963 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1964 flags); 1965 if (chunk > 0) { 1966 decrypted += chunk; 1967 len -= chunk; 1968 continue; 1969 } 1970 } 1971 goto recv_end; 1972 } 1973 1974 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1975 1976 rxm = strp_msg(tls_strp_msg(ctx)); 1977 tlm = tls_msg(tls_strp_msg(ctx)); 1978 1979 to_decrypt = rxm->full_len - prot->overhead_size; 1980 1981 if (zc_capable && to_decrypt <= len && 1982 tlm->control == TLS_RECORD_TYPE_DATA) 1983 darg.zc = true; 1984 1985 /* Do not use async mode if record is non-data */ 1986 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 1987 darg.async = ctx->async_capable; 1988 else 1989 darg.async = false; 1990 1991 err = tls_rx_one_record(sk, msg, &darg); 1992 if (err < 0) { 1993 tls_err_abort(sk, -EBADMSG); 1994 goto recv_end; 1995 } 1996 1997 async |= darg.async; 1998 1999 /* If the type of records being processed is not known yet, 2000 * set it to record type just dequeued. If it is already known, 2001 * but does not match the record type just dequeued, go to end. 2002 * We always get record type here since for tls1.2, record type 2003 * is known just after record is dequeued from stream parser. 2004 * For tls1.3, we disable async. 2005 */ 2006 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2007 if (err <= 0) { 2008 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2009 tls_rx_rec_done(ctx); 2010 put_on_rx_list_err: 2011 __skb_queue_tail(&ctx->rx_list, darg.skb); 2012 goto recv_end; 2013 } 2014 2015 /* periodically flush backlog, and feed strparser */ 2016 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2017 decrypted + copied, 2018 &flushed_at); 2019 2020 /* TLS 1.3 may have updated the length by more than overhead */ 2021 rxm = strp_msg(darg.skb); 2022 chunk = rxm->full_len; 2023 tls_rx_rec_done(ctx); 2024 2025 if (!darg.zc) { 2026 bool partially_consumed = chunk > len; 2027 struct sk_buff *skb = darg.skb; 2028 2029 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2030 2031 if (async) { 2032 /* TLS 1.2-only, to_decrypt must be text len */ 2033 chunk = min_t(int, to_decrypt, len); 2034 async_copy_bytes += chunk; 2035 put_on_rx_list: 2036 decrypted += chunk; 2037 len -= chunk; 2038 __skb_queue_tail(&ctx->rx_list, skb); 2039 continue; 2040 } 2041 2042 if (bpf_strp_enabled) { 2043 released = true; 2044 err = sk_psock_tls_strp_read(psock, skb); 2045 if (err != __SK_PASS) { 2046 rxm->offset = rxm->offset + rxm->full_len; 2047 rxm->full_len = 0; 2048 if (err == __SK_DROP) 2049 consume_skb(skb); 2050 continue; 2051 } 2052 } 2053 2054 if (partially_consumed) 2055 chunk = len; 2056 2057 err = skb_copy_datagram_msg(skb, rxm->offset, 2058 msg, chunk); 2059 if (err < 0) 2060 goto put_on_rx_list_err; 2061 2062 if (is_peek) 2063 goto put_on_rx_list; 2064 2065 if (partially_consumed) { 2066 rxm->offset += chunk; 2067 rxm->full_len -= chunk; 2068 goto put_on_rx_list; 2069 } 2070 2071 consume_skb(skb); 2072 } 2073 2074 decrypted += chunk; 2075 len -= chunk; 2076 2077 /* Return full control message to userspace before trying 2078 * to parse another message type 2079 */ 2080 msg->msg_flags |= MSG_EOR; 2081 if (control != TLS_RECORD_TYPE_DATA) 2082 break; 2083 } 2084 2085 recv_end: 2086 if (async) { 2087 int ret, pending; 2088 2089 /* Wait for all previously submitted records to be decrypted */ 2090 spin_lock_bh(&ctx->decrypt_compl_lock); 2091 reinit_completion(&ctx->async_wait.completion); 2092 pending = atomic_read(&ctx->decrypt_pending); 2093 spin_unlock_bh(&ctx->decrypt_compl_lock); 2094 ret = 0; 2095 if (pending) 2096 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2097 __skb_queue_purge(&ctx->async_hold); 2098 2099 if (ret) { 2100 if (err >= 0 || err == -EINPROGRESS) 2101 err = ret; 2102 decrypted = 0; 2103 goto end; 2104 } 2105 2106 /* Drain records from the rx_list & copy if required */ 2107 if (is_peek || is_kvec) 2108 err = process_rx_list(ctx, msg, &control, copied, 2109 decrypted, is_peek); 2110 else 2111 err = process_rx_list(ctx, msg, &control, 0, 2112 async_copy_bytes, is_peek); 2113 decrypted = max(err, 0); 2114 } 2115 2116 copied += decrypted; 2117 2118 end: 2119 tls_rx_reader_unlock(sk, ctx); 2120 if (psock) 2121 sk_psock_put(sk, psock); 2122 return copied ? : err; 2123 } 2124 2125 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2126 struct pipe_inode_info *pipe, 2127 size_t len, unsigned int flags) 2128 { 2129 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2130 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2131 struct strp_msg *rxm = NULL; 2132 struct sock *sk = sock->sk; 2133 struct tls_msg *tlm; 2134 struct sk_buff *skb; 2135 ssize_t copied = 0; 2136 int chunk; 2137 int err; 2138 2139 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2140 if (err < 0) 2141 return err; 2142 2143 if (!skb_queue_empty(&ctx->rx_list)) { 2144 skb = __skb_dequeue(&ctx->rx_list); 2145 } else { 2146 struct tls_decrypt_arg darg; 2147 2148 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2149 true); 2150 if (err <= 0) 2151 goto splice_read_end; 2152 2153 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2154 2155 err = tls_rx_one_record(sk, NULL, &darg); 2156 if (err < 0) { 2157 tls_err_abort(sk, -EBADMSG); 2158 goto splice_read_end; 2159 } 2160 2161 tls_rx_rec_done(ctx); 2162 skb = darg.skb; 2163 } 2164 2165 rxm = strp_msg(skb); 2166 tlm = tls_msg(skb); 2167 2168 /* splice does not support reading control messages */ 2169 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2170 err = -EINVAL; 2171 goto splice_requeue; 2172 } 2173 2174 chunk = min_t(unsigned int, rxm->full_len, len); 2175 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2176 if (copied < 0) 2177 goto splice_requeue; 2178 2179 if (chunk < rxm->full_len) { 2180 rxm->offset += len; 2181 rxm->full_len -= len; 2182 goto splice_requeue; 2183 } 2184 2185 consume_skb(skb); 2186 2187 splice_read_end: 2188 tls_rx_reader_unlock(sk, ctx); 2189 return copied ? : err; 2190 2191 splice_requeue: 2192 __skb_queue_head(&ctx->rx_list, skb); 2193 goto splice_read_end; 2194 } 2195 2196 bool tls_sw_sock_is_readable(struct sock *sk) 2197 { 2198 struct tls_context *tls_ctx = tls_get_ctx(sk); 2199 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2200 bool ingress_empty = true; 2201 struct sk_psock *psock; 2202 2203 rcu_read_lock(); 2204 psock = sk_psock(sk); 2205 if (psock) 2206 ingress_empty = list_empty(&psock->ingress_msg); 2207 rcu_read_unlock(); 2208 2209 return !ingress_empty || tls_strp_msg_ready(ctx) || 2210 !skb_queue_empty(&ctx->rx_list); 2211 } 2212 2213 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2214 { 2215 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2216 struct tls_prot_info *prot = &tls_ctx->prot_info; 2217 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2218 size_t cipher_overhead; 2219 size_t data_len = 0; 2220 int ret; 2221 2222 /* Verify that we have a full TLS header, or wait for more data */ 2223 if (strp->stm.offset + prot->prepend_size > skb->len) 2224 return 0; 2225 2226 /* Sanity-check size of on-stack buffer. */ 2227 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2228 ret = -EINVAL; 2229 goto read_failure; 2230 } 2231 2232 /* Linearize header to local buffer */ 2233 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2234 if (ret < 0) 2235 goto read_failure; 2236 2237 strp->mark = header[0]; 2238 2239 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2240 2241 cipher_overhead = prot->tag_size; 2242 if (prot->version != TLS_1_3_VERSION && 2243 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2244 cipher_overhead += prot->iv_size; 2245 2246 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2247 prot->tail_size) { 2248 ret = -EMSGSIZE; 2249 goto read_failure; 2250 } 2251 if (data_len < cipher_overhead) { 2252 ret = -EBADMSG; 2253 goto read_failure; 2254 } 2255 2256 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2257 if (header[1] != TLS_1_2_VERSION_MINOR || 2258 header[2] != TLS_1_2_VERSION_MAJOR) { 2259 ret = -EINVAL; 2260 goto read_failure; 2261 } 2262 2263 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2264 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2265 return data_len + TLS_HEADER_SIZE; 2266 2267 read_failure: 2268 tls_err_abort(strp->sk, ret); 2269 2270 return ret; 2271 } 2272 2273 void tls_rx_msg_ready(struct tls_strparser *strp) 2274 { 2275 struct tls_sw_context_rx *ctx; 2276 2277 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2278 ctx->saved_data_ready(strp->sk); 2279 } 2280 2281 static void tls_data_ready(struct sock *sk) 2282 { 2283 struct tls_context *tls_ctx = tls_get_ctx(sk); 2284 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2285 struct sk_psock *psock; 2286 2287 tls_strp_data_ready(&ctx->strp); 2288 2289 psock = sk_psock_get(sk); 2290 if (psock) { 2291 if (!list_empty(&psock->ingress_msg)) 2292 ctx->saved_data_ready(sk); 2293 sk_psock_put(sk, psock); 2294 } 2295 } 2296 2297 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2298 { 2299 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2300 2301 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2302 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2303 cancel_delayed_work_sync(&ctx->tx_work.work); 2304 } 2305 2306 void tls_sw_release_resources_tx(struct sock *sk) 2307 { 2308 struct tls_context *tls_ctx = tls_get_ctx(sk); 2309 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2310 struct tls_rec *rec, *tmp; 2311 int pending; 2312 2313 /* Wait for any pending async encryptions to complete */ 2314 spin_lock_bh(&ctx->encrypt_compl_lock); 2315 ctx->async_notify = true; 2316 pending = atomic_read(&ctx->encrypt_pending); 2317 spin_unlock_bh(&ctx->encrypt_compl_lock); 2318 2319 if (pending) 2320 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2321 2322 tls_tx_records(sk, -1); 2323 2324 /* Free up un-sent records in tx_list. First, free 2325 * the partially sent record if any at head of tx_list. 2326 */ 2327 if (tls_ctx->partially_sent_record) { 2328 tls_free_partial_record(sk, tls_ctx); 2329 rec = list_first_entry(&ctx->tx_list, 2330 struct tls_rec, list); 2331 list_del(&rec->list); 2332 sk_msg_free(sk, &rec->msg_plaintext); 2333 kfree(rec); 2334 } 2335 2336 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2337 list_del(&rec->list); 2338 sk_msg_free(sk, &rec->msg_encrypted); 2339 sk_msg_free(sk, &rec->msg_plaintext); 2340 kfree(rec); 2341 } 2342 2343 crypto_free_aead(ctx->aead_send); 2344 tls_free_open_rec(sk); 2345 } 2346 2347 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2348 { 2349 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2350 2351 kfree(ctx); 2352 } 2353 2354 void tls_sw_release_resources_rx(struct sock *sk) 2355 { 2356 struct tls_context *tls_ctx = tls_get_ctx(sk); 2357 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2358 2359 kfree(tls_ctx->rx.rec_seq); 2360 kfree(tls_ctx->rx.iv); 2361 2362 if (ctx->aead_recv) { 2363 __skb_queue_purge(&ctx->rx_list); 2364 crypto_free_aead(ctx->aead_recv); 2365 tls_strp_stop(&ctx->strp); 2366 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2367 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2368 * never swapped. 2369 */ 2370 if (ctx->saved_data_ready) { 2371 write_lock_bh(&sk->sk_callback_lock); 2372 sk->sk_data_ready = ctx->saved_data_ready; 2373 write_unlock_bh(&sk->sk_callback_lock); 2374 } 2375 } 2376 } 2377 2378 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2379 { 2380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2381 2382 tls_strp_done(&ctx->strp); 2383 } 2384 2385 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2386 { 2387 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2388 2389 kfree(ctx); 2390 } 2391 2392 void tls_sw_free_resources_rx(struct sock *sk) 2393 { 2394 struct tls_context *tls_ctx = tls_get_ctx(sk); 2395 2396 tls_sw_release_resources_rx(sk); 2397 tls_sw_free_ctx_rx(tls_ctx); 2398 } 2399 2400 /* The work handler to transmitt the encrypted records in tx_list */ 2401 static void tx_work_handler(struct work_struct *work) 2402 { 2403 struct delayed_work *delayed_work = to_delayed_work(work); 2404 struct tx_work *tx_work = container_of(delayed_work, 2405 struct tx_work, work); 2406 struct sock *sk = tx_work->sk; 2407 struct tls_context *tls_ctx = tls_get_ctx(sk); 2408 struct tls_sw_context_tx *ctx; 2409 2410 if (unlikely(!tls_ctx)) 2411 return; 2412 2413 ctx = tls_sw_ctx_tx(tls_ctx); 2414 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2415 return; 2416 2417 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2418 return; 2419 mutex_lock(&tls_ctx->tx_lock); 2420 lock_sock(sk); 2421 tls_tx_records(sk, -1); 2422 release_sock(sk); 2423 mutex_unlock(&tls_ctx->tx_lock); 2424 } 2425 2426 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2427 { 2428 struct tls_rec *rec; 2429 2430 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 2431 if (!rec) 2432 return false; 2433 2434 return READ_ONCE(rec->tx_ready); 2435 } 2436 2437 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2438 { 2439 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2440 2441 /* Schedule the transmission if tx list is ready */ 2442 if (tls_is_tx_ready(tx_ctx) && 2443 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2444 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2445 } 2446 2447 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2448 { 2449 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2450 2451 write_lock_bh(&sk->sk_callback_lock); 2452 rx_ctx->saved_data_ready = sk->sk_data_ready; 2453 sk->sk_data_ready = tls_data_ready; 2454 write_unlock_bh(&sk->sk_callback_lock); 2455 } 2456 2457 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2458 { 2459 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2460 2461 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2462 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2463 } 2464 2465 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2466 { 2467 struct tls_context *tls_ctx = tls_get_ctx(sk); 2468 struct tls_prot_info *prot = &tls_ctx->prot_info; 2469 struct tls_crypto_info *crypto_info; 2470 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2471 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2472 struct cipher_context *cctx; 2473 struct crypto_aead **aead; 2474 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2475 struct crypto_tfm *tfm; 2476 char *iv, *rec_seq, *key, *salt, *cipher_name; 2477 size_t keysize; 2478 int rc = 0; 2479 2480 if (!ctx) { 2481 rc = -EINVAL; 2482 goto out; 2483 } 2484 2485 if (tx) { 2486 if (!ctx->priv_ctx_tx) { 2487 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2488 if (!sw_ctx_tx) { 2489 rc = -ENOMEM; 2490 goto out; 2491 } 2492 ctx->priv_ctx_tx = sw_ctx_tx; 2493 } else { 2494 sw_ctx_tx = 2495 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2496 } 2497 } else { 2498 if (!ctx->priv_ctx_rx) { 2499 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2500 if (!sw_ctx_rx) { 2501 rc = -ENOMEM; 2502 goto out; 2503 } 2504 ctx->priv_ctx_rx = sw_ctx_rx; 2505 } else { 2506 sw_ctx_rx = 2507 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2508 } 2509 } 2510 2511 if (tx) { 2512 crypto_init_wait(&sw_ctx_tx->async_wait); 2513 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2514 crypto_info = &ctx->crypto_send.info; 2515 cctx = &ctx->tx; 2516 aead = &sw_ctx_tx->aead_send; 2517 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2518 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2519 sw_ctx_tx->tx_work.sk = sk; 2520 } else { 2521 crypto_init_wait(&sw_ctx_rx->async_wait); 2522 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2523 init_waitqueue_head(&sw_ctx_rx->wq); 2524 crypto_info = &ctx->crypto_recv.info; 2525 cctx = &ctx->rx; 2526 skb_queue_head_init(&sw_ctx_rx->rx_list); 2527 skb_queue_head_init(&sw_ctx_rx->async_hold); 2528 aead = &sw_ctx_rx->aead_recv; 2529 } 2530 2531 switch (crypto_info->cipher_type) { 2532 case TLS_CIPHER_AES_GCM_128: { 2533 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2534 2535 gcm_128_info = (void *)crypto_info; 2536 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2537 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2538 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2539 iv = gcm_128_info->iv; 2540 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2541 rec_seq = gcm_128_info->rec_seq; 2542 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2543 key = gcm_128_info->key; 2544 salt = gcm_128_info->salt; 2545 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2546 cipher_name = "gcm(aes)"; 2547 break; 2548 } 2549 case TLS_CIPHER_AES_GCM_256: { 2550 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2551 2552 gcm_256_info = (void *)crypto_info; 2553 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2554 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2555 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2556 iv = gcm_256_info->iv; 2557 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2558 rec_seq = gcm_256_info->rec_seq; 2559 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2560 key = gcm_256_info->key; 2561 salt = gcm_256_info->salt; 2562 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2563 cipher_name = "gcm(aes)"; 2564 break; 2565 } 2566 case TLS_CIPHER_AES_CCM_128: { 2567 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2568 2569 ccm_128_info = (void *)crypto_info; 2570 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2571 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2572 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2573 iv = ccm_128_info->iv; 2574 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2575 rec_seq = ccm_128_info->rec_seq; 2576 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2577 key = ccm_128_info->key; 2578 salt = ccm_128_info->salt; 2579 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2580 cipher_name = "ccm(aes)"; 2581 break; 2582 } 2583 case TLS_CIPHER_CHACHA20_POLY1305: { 2584 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2585 2586 chacha20_poly1305_info = (void *)crypto_info; 2587 nonce_size = 0; 2588 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2589 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2590 iv = chacha20_poly1305_info->iv; 2591 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2592 rec_seq = chacha20_poly1305_info->rec_seq; 2593 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2594 key = chacha20_poly1305_info->key; 2595 salt = chacha20_poly1305_info->salt; 2596 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2597 cipher_name = "rfc7539(chacha20,poly1305)"; 2598 break; 2599 } 2600 case TLS_CIPHER_SM4_GCM: { 2601 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2602 2603 sm4_gcm_info = (void *)crypto_info; 2604 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2605 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2606 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2607 iv = sm4_gcm_info->iv; 2608 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2609 rec_seq = sm4_gcm_info->rec_seq; 2610 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2611 key = sm4_gcm_info->key; 2612 salt = sm4_gcm_info->salt; 2613 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2614 cipher_name = "gcm(sm4)"; 2615 break; 2616 } 2617 case TLS_CIPHER_SM4_CCM: { 2618 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2619 2620 sm4_ccm_info = (void *)crypto_info; 2621 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2622 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2623 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2624 iv = sm4_ccm_info->iv; 2625 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2626 rec_seq = sm4_ccm_info->rec_seq; 2627 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2628 key = sm4_ccm_info->key; 2629 salt = sm4_ccm_info->salt; 2630 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2631 cipher_name = "ccm(sm4)"; 2632 break; 2633 } 2634 case TLS_CIPHER_ARIA_GCM_128: { 2635 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; 2636 2637 aria_gcm_128_info = (void *)crypto_info; 2638 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2639 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; 2640 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2641 iv = aria_gcm_128_info->iv; 2642 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; 2643 rec_seq = aria_gcm_128_info->rec_seq; 2644 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; 2645 key = aria_gcm_128_info->key; 2646 salt = aria_gcm_128_info->salt; 2647 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; 2648 cipher_name = "gcm(aria)"; 2649 break; 2650 } 2651 case TLS_CIPHER_ARIA_GCM_256: { 2652 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; 2653 2654 gcm_256_info = (void *)crypto_info; 2655 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2656 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; 2657 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2658 iv = gcm_256_info->iv; 2659 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; 2660 rec_seq = gcm_256_info->rec_seq; 2661 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; 2662 key = gcm_256_info->key; 2663 salt = gcm_256_info->salt; 2664 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; 2665 cipher_name = "gcm(aria)"; 2666 break; 2667 } 2668 default: 2669 rc = -EINVAL; 2670 goto free_priv; 2671 } 2672 2673 if (crypto_info->version == TLS_1_3_VERSION) { 2674 nonce_size = 0; 2675 prot->aad_size = TLS_HEADER_SIZE; 2676 prot->tail_size = 1; 2677 } else { 2678 prot->aad_size = TLS_AAD_SPACE_SIZE; 2679 prot->tail_size = 0; 2680 } 2681 2682 /* Sanity-check the sizes for stack allocations. */ 2683 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2684 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2685 prot->aad_size > TLS_MAX_AAD_SIZE) { 2686 rc = -EINVAL; 2687 goto free_priv; 2688 } 2689 2690 prot->version = crypto_info->version; 2691 prot->cipher_type = crypto_info->cipher_type; 2692 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2693 prot->tag_size = tag_size; 2694 prot->overhead_size = prot->prepend_size + 2695 prot->tag_size + prot->tail_size; 2696 prot->iv_size = iv_size; 2697 prot->salt_size = salt_size; 2698 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2699 if (!cctx->iv) { 2700 rc = -ENOMEM; 2701 goto free_priv; 2702 } 2703 /* Note: 128 & 256 bit salt are the same size */ 2704 prot->rec_seq_size = rec_seq_size; 2705 memcpy(cctx->iv, salt, salt_size); 2706 memcpy(cctx->iv + salt_size, iv, iv_size); 2707 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2708 if (!cctx->rec_seq) { 2709 rc = -ENOMEM; 2710 goto free_iv; 2711 } 2712 2713 if (!*aead) { 2714 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2715 if (IS_ERR(*aead)) { 2716 rc = PTR_ERR(*aead); 2717 *aead = NULL; 2718 goto free_rec_seq; 2719 } 2720 } 2721 2722 ctx->push_pending_record = tls_sw_push_pending_record; 2723 2724 rc = crypto_aead_setkey(*aead, key, keysize); 2725 2726 if (rc) 2727 goto free_aead; 2728 2729 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2730 if (rc) 2731 goto free_aead; 2732 2733 if (sw_ctx_rx) { 2734 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2735 2736 tls_update_rx_zc_capable(ctx); 2737 sw_ctx_rx->async_capable = 2738 crypto_info->version != TLS_1_3_VERSION && 2739 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2740 2741 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2742 if (rc) 2743 goto free_aead; 2744 } 2745 2746 goto out; 2747 2748 free_aead: 2749 crypto_free_aead(*aead); 2750 *aead = NULL; 2751 free_rec_seq: 2752 kfree(cctx->rec_seq); 2753 cctx->rec_seq = NULL; 2754 free_iv: 2755 kfree(cctx->iv); 2756 cctx->iv = NULL; 2757 free_priv: 2758 if (tx) { 2759 kfree(ctx->priv_ctx_tx); 2760 ctx->priv_ctx_tx = NULL; 2761 } else { 2762 kfree(ctx->priv_ctx_rx); 2763 ctx->priv_ctx_rx = NULL; 2764 } 2765 out: 2766 return rc; 2767 } 2768