1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * 8 * This software is available to you under a choice of one of two 9 * licenses. You may choose to be licensed under the terms of the GNU 10 * General Public License (GPL) Version 2, available from the file 11 * COPYING in the main directory of this source tree, or the 12 * OpenIB.org BSD license below: 13 * 14 * Redistribution and use in source and binary forms, with or 15 * without modification, are permitted provided that the following 16 * conditions are met: 17 * 18 * - Redistributions of source code must retain the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer. 21 * 22 * - Redistributions in binary form must reproduce the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer in the documentation and/or other materials 25 * provided with the distribution. 26 * 27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 34 * SOFTWARE. 35 */ 36 37 #include <linux/sched/signal.h> 38 #include <linux/module.h> 39 #include <crypto/aead.h> 40 41 #include <net/strparser.h> 42 #include <net/tls.h> 43 44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 45 46 static int tls_do_decryption(struct sock *sk, 47 struct scatterlist *sgin, 48 struct scatterlist *sgout, 49 char *iv_recv, 50 size_t data_len, 51 struct aead_request *aead_req) 52 { 53 struct tls_context *tls_ctx = tls_get_ctx(sk); 54 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 55 int ret; 56 57 aead_request_set_tfm(aead_req, ctx->aead_recv); 58 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 59 aead_request_set_crypt(aead_req, sgin, sgout, 60 data_len + tls_ctx->rx.tag_size, 61 (u8 *)iv_recv); 62 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 63 crypto_req_done, &ctx->async_wait); 64 65 ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait); 66 return ret; 67 } 68 69 static void trim_sg(struct sock *sk, struct scatterlist *sg, 70 int *sg_num_elem, unsigned int *sg_size, int target_size) 71 { 72 int i = *sg_num_elem - 1; 73 int trim = *sg_size - target_size; 74 75 if (trim <= 0) { 76 WARN_ON(trim < 0); 77 return; 78 } 79 80 *sg_size = target_size; 81 while (trim >= sg[i].length) { 82 trim -= sg[i].length; 83 sk_mem_uncharge(sk, sg[i].length); 84 put_page(sg_page(&sg[i])); 85 i--; 86 87 if (i < 0) 88 goto out; 89 } 90 91 sg[i].length -= trim; 92 sk_mem_uncharge(sk, trim); 93 94 out: 95 *sg_num_elem = i + 1; 96 } 97 98 static void trim_both_sgl(struct sock *sk, int target_size) 99 { 100 struct tls_context *tls_ctx = tls_get_ctx(sk); 101 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 102 103 trim_sg(sk, ctx->sg_plaintext_data, 104 &ctx->sg_plaintext_num_elem, 105 &ctx->sg_plaintext_size, 106 target_size); 107 108 if (target_size > 0) 109 target_size += tls_ctx->tx.overhead_size; 110 111 trim_sg(sk, ctx->sg_encrypted_data, 112 &ctx->sg_encrypted_num_elem, 113 &ctx->sg_encrypted_size, 114 target_size); 115 } 116 117 static int alloc_encrypted_sg(struct sock *sk, int len) 118 { 119 struct tls_context *tls_ctx = tls_get_ctx(sk); 120 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 121 int rc = 0; 122 123 rc = sk_alloc_sg(sk, len, 124 ctx->sg_encrypted_data, 0, 125 &ctx->sg_encrypted_num_elem, 126 &ctx->sg_encrypted_size, 0); 127 128 return rc; 129 } 130 131 static int alloc_plaintext_sg(struct sock *sk, int len) 132 { 133 struct tls_context *tls_ctx = tls_get_ctx(sk); 134 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 135 int rc = 0; 136 137 rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0, 138 &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, 139 tls_ctx->pending_open_record_frags); 140 141 return rc; 142 } 143 144 static void free_sg(struct sock *sk, struct scatterlist *sg, 145 int *sg_num_elem, unsigned int *sg_size) 146 { 147 int i, n = *sg_num_elem; 148 149 for (i = 0; i < n; ++i) { 150 sk_mem_uncharge(sk, sg[i].length); 151 put_page(sg_page(&sg[i])); 152 } 153 *sg_num_elem = 0; 154 *sg_size = 0; 155 } 156 157 static void tls_free_both_sg(struct sock *sk) 158 { 159 struct tls_context *tls_ctx = tls_get_ctx(sk); 160 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 161 162 free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, 163 &ctx->sg_encrypted_size); 164 165 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 166 &ctx->sg_plaintext_size); 167 } 168 169 static int tls_do_encryption(struct tls_context *tls_ctx, 170 struct tls_sw_context_tx *ctx, 171 struct aead_request *aead_req, 172 size_t data_len) 173 { 174 int rc; 175 176 ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size; 177 ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size; 178 179 aead_request_set_tfm(aead_req, ctx->aead_send); 180 aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); 181 aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, 182 data_len, tls_ctx->tx.iv); 183 184 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 185 crypto_req_done, &ctx->async_wait); 186 187 rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait); 188 189 ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size; 190 ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size; 191 192 return rc; 193 } 194 195 static int tls_push_record(struct sock *sk, int flags, 196 unsigned char record_type) 197 { 198 struct tls_context *tls_ctx = tls_get_ctx(sk); 199 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 200 struct aead_request *req; 201 int rc; 202 203 req = aead_request_alloc(ctx->aead_send, sk->sk_allocation); 204 if (!req) 205 return -ENOMEM; 206 207 sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); 208 sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); 209 210 tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size, 211 tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, 212 record_type); 213 214 tls_fill_prepend(tls_ctx, 215 page_address(sg_page(&ctx->sg_encrypted_data[0])) + 216 ctx->sg_encrypted_data[0].offset, 217 ctx->sg_plaintext_size, record_type); 218 219 tls_ctx->pending_open_record_frags = 0; 220 set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); 221 222 rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size); 223 if (rc < 0) { 224 /* If we are called from write_space and 225 * we fail, we need to set this SOCK_NOSPACE 226 * to trigger another write_space in the future. 227 */ 228 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 229 goto out_req; 230 } 231 232 free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, 233 &ctx->sg_plaintext_size); 234 235 ctx->sg_encrypted_num_elem = 0; 236 ctx->sg_encrypted_size = 0; 237 238 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ 239 rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); 240 if (rc < 0 && rc != -EAGAIN) 241 tls_err_abort(sk, EBADMSG); 242 243 tls_advance_record_sn(sk, &tls_ctx->tx); 244 out_req: 245 aead_request_free(req); 246 return rc; 247 } 248 249 static int tls_sw_push_pending_record(struct sock *sk, int flags) 250 { 251 return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); 252 } 253 254 static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, 255 int length, int *pages_used, 256 unsigned int *size_used, 257 struct scatterlist *to, int to_max_pages, 258 bool charge) 259 { 260 struct page *pages[MAX_SKB_FRAGS]; 261 262 size_t offset; 263 ssize_t copied, use; 264 int i = 0; 265 unsigned int size = *size_used; 266 int num_elem = *pages_used; 267 int rc = 0; 268 int maxpages; 269 270 while (length > 0) { 271 i = 0; 272 maxpages = to_max_pages - num_elem; 273 if (maxpages == 0) { 274 rc = -EFAULT; 275 goto out; 276 } 277 copied = iov_iter_get_pages(from, pages, 278 length, 279 maxpages, &offset); 280 if (copied <= 0) { 281 rc = -EFAULT; 282 goto out; 283 } 284 285 iov_iter_advance(from, copied); 286 287 length -= copied; 288 size += copied; 289 while (copied) { 290 use = min_t(int, copied, PAGE_SIZE - offset); 291 292 sg_set_page(&to[num_elem], 293 pages[i], use, offset); 294 sg_unmark_end(&to[num_elem]); 295 if (charge) 296 sk_mem_charge(sk, use); 297 298 offset = 0; 299 copied -= use; 300 301 ++i; 302 ++num_elem; 303 } 304 } 305 306 /* Mark the end in the last sg entry if newly added */ 307 if (num_elem > *pages_used) 308 sg_mark_end(&to[num_elem - 1]); 309 out: 310 if (rc) 311 iov_iter_revert(from, size - *size_used); 312 *size_used = size; 313 *pages_used = num_elem; 314 315 return rc; 316 } 317 318 static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, 319 int bytes) 320 { 321 struct tls_context *tls_ctx = tls_get_ctx(sk); 322 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 323 struct scatterlist *sg = ctx->sg_plaintext_data; 324 int copy, i, rc = 0; 325 326 for (i = tls_ctx->pending_open_record_frags; 327 i < ctx->sg_plaintext_num_elem; ++i) { 328 copy = sg[i].length; 329 if (copy_from_iter( 330 page_address(sg_page(&sg[i])) + sg[i].offset, 331 copy, from) != copy) { 332 rc = -EFAULT; 333 goto out; 334 } 335 bytes -= copy; 336 337 ++tls_ctx->pending_open_record_frags; 338 339 if (!bytes) 340 break; 341 } 342 343 out: 344 return rc; 345 } 346 347 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 348 { 349 struct tls_context *tls_ctx = tls_get_ctx(sk); 350 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 351 int ret = 0; 352 int required_size; 353 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 354 bool eor = !(msg->msg_flags & MSG_MORE); 355 size_t try_to_copy, copied = 0; 356 unsigned char record_type = TLS_RECORD_TYPE_DATA; 357 int record_room; 358 bool full_record; 359 int orig_size; 360 bool is_kvec = msg->msg_iter.type & ITER_KVEC; 361 362 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 363 return -ENOTSUPP; 364 365 lock_sock(sk); 366 367 if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) 368 goto send_end; 369 370 if (unlikely(msg->msg_controllen)) { 371 ret = tls_proccess_cmsg(sk, msg, &record_type); 372 if (ret) 373 goto send_end; 374 } 375 376 while (msg_data_left(msg)) { 377 if (sk->sk_err) { 378 ret = -sk->sk_err; 379 goto send_end; 380 } 381 382 orig_size = ctx->sg_plaintext_size; 383 full_record = false; 384 try_to_copy = msg_data_left(msg); 385 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 386 if (try_to_copy >= record_room) { 387 try_to_copy = record_room; 388 full_record = true; 389 } 390 391 required_size = ctx->sg_plaintext_size + try_to_copy + 392 tls_ctx->tx.overhead_size; 393 394 if (!sk_stream_memory_free(sk)) 395 goto wait_for_sndbuf; 396 alloc_encrypted: 397 ret = alloc_encrypted_sg(sk, required_size); 398 if (ret) { 399 if (ret != -ENOSPC) 400 goto wait_for_memory; 401 402 /* Adjust try_to_copy according to the amount that was 403 * actually allocated. The difference is due 404 * to max sg elements limit 405 */ 406 try_to_copy -= required_size - ctx->sg_encrypted_size; 407 full_record = true; 408 } 409 if (!is_kvec && (full_record || eor)) { 410 ret = zerocopy_from_iter(sk, &msg->msg_iter, 411 try_to_copy, &ctx->sg_plaintext_num_elem, 412 &ctx->sg_plaintext_size, 413 ctx->sg_plaintext_data, 414 ARRAY_SIZE(ctx->sg_plaintext_data), 415 true); 416 if (ret) 417 goto fallback_to_reg_send; 418 419 copied += try_to_copy; 420 ret = tls_push_record(sk, msg->msg_flags, record_type); 421 if (ret) 422 goto send_end; 423 continue; 424 425 fallback_to_reg_send: 426 trim_sg(sk, ctx->sg_plaintext_data, 427 &ctx->sg_plaintext_num_elem, 428 &ctx->sg_plaintext_size, 429 orig_size); 430 } 431 432 required_size = ctx->sg_plaintext_size + try_to_copy; 433 alloc_plaintext: 434 ret = alloc_plaintext_sg(sk, required_size); 435 if (ret) { 436 if (ret != -ENOSPC) 437 goto wait_for_memory; 438 439 /* Adjust try_to_copy according to the amount that was 440 * actually allocated. The difference is due 441 * to max sg elements limit 442 */ 443 try_to_copy -= required_size - ctx->sg_plaintext_size; 444 full_record = true; 445 446 trim_sg(sk, ctx->sg_encrypted_data, 447 &ctx->sg_encrypted_num_elem, 448 &ctx->sg_encrypted_size, 449 ctx->sg_plaintext_size + 450 tls_ctx->tx.overhead_size); 451 } 452 453 ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); 454 if (ret) 455 goto trim_sgl; 456 457 copied += try_to_copy; 458 if (full_record || eor) { 459 push_record: 460 ret = tls_push_record(sk, msg->msg_flags, record_type); 461 if (ret) { 462 if (ret == -ENOMEM) 463 goto wait_for_memory; 464 465 goto send_end; 466 } 467 } 468 469 continue; 470 471 wait_for_sndbuf: 472 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 473 wait_for_memory: 474 ret = sk_stream_wait_memory(sk, &timeo); 475 if (ret) { 476 trim_sgl: 477 trim_both_sgl(sk, orig_size); 478 goto send_end; 479 } 480 481 if (tls_is_pending_closed_record(tls_ctx)) 482 goto push_record; 483 484 if (ctx->sg_encrypted_size < required_size) 485 goto alloc_encrypted; 486 487 goto alloc_plaintext; 488 } 489 490 send_end: 491 ret = sk_stream_error(sk, msg->msg_flags, ret); 492 493 release_sock(sk); 494 return copied ? copied : ret; 495 } 496 497 int tls_sw_sendpage(struct sock *sk, struct page *page, 498 int offset, size_t size, int flags) 499 { 500 struct tls_context *tls_ctx = tls_get_ctx(sk); 501 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 502 int ret = 0; 503 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 504 bool eor; 505 size_t orig_size = size; 506 unsigned char record_type = TLS_RECORD_TYPE_DATA; 507 struct scatterlist *sg; 508 bool full_record; 509 int record_room; 510 511 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 512 MSG_SENDPAGE_NOTLAST)) 513 return -ENOTSUPP; 514 515 /* No MSG_EOR from splice, only look at MSG_MORE */ 516 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 517 518 lock_sock(sk); 519 520 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 521 522 if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) 523 goto sendpage_end; 524 525 /* Call the sk_stream functions to manage the sndbuf mem. */ 526 while (size > 0) { 527 size_t copy, required_size; 528 529 if (sk->sk_err) { 530 ret = -sk->sk_err; 531 goto sendpage_end; 532 } 533 534 full_record = false; 535 record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; 536 copy = size; 537 if (copy >= record_room) { 538 copy = record_room; 539 full_record = true; 540 } 541 required_size = ctx->sg_plaintext_size + copy + 542 tls_ctx->tx.overhead_size; 543 544 if (!sk_stream_memory_free(sk)) 545 goto wait_for_sndbuf; 546 alloc_payload: 547 ret = alloc_encrypted_sg(sk, required_size); 548 if (ret) { 549 if (ret != -ENOSPC) 550 goto wait_for_memory; 551 552 /* Adjust copy according to the amount that was 553 * actually allocated. The difference is due 554 * to max sg elements limit 555 */ 556 copy -= required_size - ctx->sg_plaintext_size; 557 full_record = true; 558 } 559 560 get_page(page); 561 sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; 562 sg_set_page(sg, page, copy, offset); 563 sg_unmark_end(sg); 564 565 ctx->sg_plaintext_num_elem++; 566 567 sk_mem_charge(sk, copy); 568 offset += copy; 569 size -= copy; 570 ctx->sg_plaintext_size += copy; 571 tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; 572 573 if (full_record || eor || 574 ctx->sg_plaintext_num_elem == 575 ARRAY_SIZE(ctx->sg_plaintext_data)) { 576 push_record: 577 ret = tls_push_record(sk, flags, record_type); 578 if (ret) { 579 if (ret == -ENOMEM) 580 goto wait_for_memory; 581 582 goto sendpage_end; 583 } 584 } 585 continue; 586 wait_for_sndbuf: 587 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 588 wait_for_memory: 589 ret = sk_stream_wait_memory(sk, &timeo); 590 if (ret) { 591 trim_both_sgl(sk, ctx->sg_plaintext_size); 592 goto sendpage_end; 593 } 594 595 if (tls_is_pending_closed_record(tls_ctx)) 596 goto push_record; 597 598 goto alloc_payload; 599 } 600 601 sendpage_end: 602 if (orig_size > size) 603 ret = orig_size - size; 604 else 605 ret = sk_stream_error(sk, flags, ret); 606 607 release_sock(sk); 608 return ret; 609 } 610 611 static struct sk_buff *tls_wait_data(struct sock *sk, int flags, 612 long timeo, int *err) 613 { 614 struct tls_context *tls_ctx = tls_get_ctx(sk); 615 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 616 struct sk_buff *skb; 617 DEFINE_WAIT_FUNC(wait, woken_wake_function); 618 619 while (!(skb = ctx->recv_pkt)) { 620 if (sk->sk_err) { 621 *err = sock_error(sk); 622 return NULL; 623 } 624 625 if (sk->sk_shutdown & RCV_SHUTDOWN) 626 return NULL; 627 628 if (sock_flag(sk, SOCK_DONE)) 629 return NULL; 630 631 if ((flags & MSG_DONTWAIT) || !timeo) { 632 *err = -EAGAIN; 633 return NULL; 634 } 635 636 add_wait_queue(sk_sleep(sk), &wait); 637 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 638 sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); 639 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 640 remove_wait_queue(sk_sleep(sk), &wait); 641 642 /* Handle signals */ 643 if (signal_pending(current)) { 644 *err = sock_intr_errno(timeo); 645 return NULL; 646 } 647 } 648 649 return skb; 650 } 651 652 /* This function decrypts the input skb into either out_iov or in out_sg 653 * or in skb buffers itself. The input parameter 'zc' indicates if 654 * zero-copy mode needs to be tried or not. With zero-copy mode, either 655 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 656 * NULL, then the decryption happens inside skb buffers itself, i.e. 657 * zero-copy gets disabled and 'zc' is updated. 658 */ 659 660 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 661 struct iov_iter *out_iov, 662 struct scatterlist *out_sg, 663 int *chunk, bool *zc) 664 { 665 struct tls_context *tls_ctx = tls_get_ctx(sk); 666 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 667 struct strp_msg *rxm = strp_msg(skb); 668 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 669 struct aead_request *aead_req; 670 struct sk_buff *unused; 671 u8 *aad, *iv, *mem = NULL; 672 struct scatterlist *sgin = NULL; 673 struct scatterlist *sgout = NULL; 674 const int data_len = rxm->full_len - tls_ctx->rx.overhead_size; 675 676 if (*zc && (out_iov || out_sg)) { 677 if (out_iov) 678 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 679 else 680 n_sgout = sg_nents(out_sg); 681 } else { 682 n_sgout = 0; 683 *zc = false; 684 } 685 686 n_sgin = skb_cow_data(skb, 0, &unused); 687 if (n_sgin < 1) 688 return -EBADMSG; 689 690 /* Increment to accommodate AAD */ 691 n_sgin = n_sgin + 1; 692 693 nsg = n_sgin + n_sgout; 694 695 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 696 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 697 mem_size = mem_size + TLS_AAD_SPACE_SIZE; 698 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 699 700 /* Allocate a single block of memory which contains 701 * aead_req || sgin[] || sgout[] || aad || iv. 702 * This order achieves correct alignment for aead_req, sgin, sgout. 703 */ 704 mem = kmalloc(mem_size, sk->sk_allocation); 705 if (!mem) 706 return -ENOMEM; 707 708 /* Segment the allocated memory */ 709 aead_req = (struct aead_request *)mem; 710 sgin = (struct scatterlist *)(mem + aead_size); 711 sgout = sgin + n_sgin; 712 aad = (u8 *)(sgout + n_sgout); 713 iv = aad + TLS_AAD_SPACE_SIZE; 714 715 /* Prepare IV */ 716 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 717 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 718 tls_ctx->rx.iv_size); 719 if (err < 0) { 720 kfree(mem); 721 return err; 722 } 723 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 724 725 /* Prepare AAD */ 726 tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size, 727 tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, 728 ctx->control); 729 730 /* Prepare sgin */ 731 sg_init_table(sgin, n_sgin); 732 sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE); 733 err = skb_to_sgvec(skb, &sgin[1], 734 rxm->offset + tls_ctx->rx.prepend_size, 735 rxm->full_len - tls_ctx->rx.prepend_size); 736 if (err < 0) { 737 kfree(mem); 738 return err; 739 } 740 741 if (n_sgout) { 742 if (out_iov) { 743 sg_init_table(sgout, n_sgout); 744 sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE); 745 746 *chunk = 0; 747 err = zerocopy_from_iter(sk, out_iov, data_len, &pages, 748 chunk, &sgout[1], 749 (n_sgout - 1), false); 750 if (err < 0) 751 goto fallback_to_reg_recv; 752 } else if (out_sg) { 753 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 754 } else { 755 goto fallback_to_reg_recv; 756 } 757 } else { 758 fallback_to_reg_recv: 759 sgout = sgin; 760 pages = 0; 761 *chunk = 0; 762 *zc = false; 763 } 764 765 /* Prepare and submit AEAD request */ 766 err = tls_do_decryption(sk, sgin, sgout, iv, data_len, aead_req); 767 768 /* Release the pages in case iov was mapped to pages */ 769 for (; pages > 0; pages--) 770 put_page(sg_page(&sgout[pages])); 771 772 kfree(mem); 773 return err; 774 } 775 776 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 777 struct iov_iter *dest, int *chunk, bool *zc) 778 { 779 struct tls_context *tls_ctx = tls_get_ctx(sk); 780 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 781 struct strp_msg *rxm = strp_msg(skb); 782 int err = 0; 783 784 #ifdef CONFIG_TLS_DEVICE 785 err = tls_device_decrypted(sk, skb); 786 if (err < 0) 787 return err; 788 #endif 789 if (!ctx->decrypted) { 790 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc); 791 if (err < 0) 792 return err; 793 } else { 794 *zc = false; 795 } 796 797 rxm->offset += tls_ctx->rx.prepend_size; 798 rxm->full_len -= tls_ctx->rx.overhead_size; 799 tls_advance_record_sn(sk, &tls_ctx->rx); 800 ctx->decrypted = true; 801 ctx->saved_data_ready(sk); 802 803 return err; 804 } 805 806 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 807 struct scatterlist *sgout) 808 { 809 bool zc = true; 810 int chunk; 811 812 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc); 813 } 814 815 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 816 unsigned int len) 817 { 818 struct tls_context *tls_ctx = tls_get_ctx(sk); 819 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 820 struct strp_msg *rxm = strp_msg(skb); 821 822 if (len < rxm->full_len) { 823 rxm->offset += len; 824 rxm->full_len -= len; 825 826 return false; 827 } 828 829 /* Finished with message */ 830 ctx->recv_pkt = NULL; 831 kfree_skb(skb); 832 __strp_unpause(&ctx->strp); 833 834 return true; 835 } 836 837 int tls_sw_recvmsg(struct sock *sk, 838 struct msghdr *msg, 839 size_t len, 840 int nonblock, 841 int flags, 842 int *addr_len) 843 { 844 struct tls_context *tls_ctx = tls_get_ctx(sk); 845 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 846 unsigned char control; 847 struct strp_msg *rxm; 848 struct sk_buff *skb; 849 ssize_t copied = 0; 850 bool cmsg = false; 851 int target, err = 0; 852 long timeo; 853 bool is_kvec = msg->msg_iter.type & ITER_KVEC; 854 855 flags |= nonblock; 856 857 if (unlikely(flags & MSG_ERRQUEUE)) 858 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 859 860 lock_sock(sk); 861 862 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 863 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 864 do { 865 bool zc = false; 866 int chunk = 0; 867 868 skb = tls_wait_data(sk, flags, timeo, &err); 869 if (!skb) 870 goto recv_end; 871 872 rxm = strp_msg(skb); 873 if (!cmsg) { 874 int cerr; 875 876 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 877 sizeof(ctx->control), &ctx->control); 878 cmsg = true; 879 control = ctx->control; 880 if (ctx->control != TLS_RECORD_TYPE_DATA) { 881 if (cerr || msg->msg_flags & MSG_CTRUNC) { 882 err = -EIO; 883 goto recv_end; 884 } 885 } 886 } else if (control != ctx->control) { 887 goto recv_end; 888 } 889 890 if (!ctx->decrypted) { 891 int to_copy = rxm->full_len - tls_ctx->rx.overhead_size; 892 893 if (!is_kvec && to_copy <= len && 894 likely(!(flags & MSG_PEEK))) 895 zc = true; 896 897 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 898 &chunk, &zc); 899 if (err < 0) { 900 tls_err_abort(sk, EBADMSG); 901 goto recv_end; 902 } 903 ctx->decrypted = true; 904 } 905 906 if (!zc) { 907 chunk = min_t(unsigned int, rxm->full_len, len); 908 err = skb_copy_datagram_msg(skb, rxm->offset, msg, 909 chunk); 910 if (err < 0) 911 goto recv_end; 912 } 913 914 copied += chunk; 915 len -= chunk; 916 if (likely(!(flags & MSG_PEEK))) { 917 u8 control = ctx->control; 918 919 if (tls_sw_advance_skb(sk, skb, chunk)) { 920 /* Return full control message to 921 * userspace before trying to parse 922 * another message type 923 */ 924 msg->msg_flags |= MSG_EOR; 925 if (control != TLS_RECORD_TYPE_DATA) 926 goto recv_end; 927 } 928 } 929 /* If we have a new message from strparser, continue now. */ 930 if (copied >= target && !ctx->recv_pkt) 931 break; 932 } while (len); 933 934 recv_end: 935 release_sock(sk); 936 return copied ? : err; 937 } 938 939 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 940 struct pipe_inode_info *pipe, 941 size_t len, unsigned int flags) 942 { 943 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 944 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 945 struct strp_msg *rxm = NULL; 946 struct sock *sk = sock->sk; 947 struct sk_buff *skb; 948 ssize_t copied = 0; 949 int err = 0; 950 long timeo; 951 int chunk; 952 bool zc = false; 953 954 lock_sock(sk); 955 956 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 957 958 skb = tls_wait_data(sk, flags, timeo, &err); 959 if (!skb) 960 goto splice_read_end; 961 962 /* splice does not support reading control messages */ 963 if (ctx->control != TLS_RECORD_TYPE_DATA) { 964 err = -ENOTSUPP; 965 goto splice_read_end; 966 } 967 968 if (!ctx->decrypted) { 969 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc); 970 971 if (err < 0) { 972 tls_err_abort(sk, EBADMSG); 973 goto splice_read_end; 974 } 975 ctx->decrypted = true; 976 } 977 rxm = strp_msg(skb); 978 979 chunk = min_t(unsigned int, rxm->full_len, len); 980 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 981 if (copied < 0) 982 goto splice_read_end; 983 984 if (likely(!(flags & MSG_PEEK))) 985 tls_sw_advance_skb(sk, skb, copied); 986 987 splice_read_end: 988 release_sock(sk); 989 return copied ? : err; 990 } 991 992 unsigned int tls_sw_poll(struct file *file, struct socket *sock, 993 struct poll_table_struct *wait) 994 { 995 unsigned int ret; 996 struct sock *sk = sock->sk; 997 struct tls_context *tls_ctx = tls_get_ctx(sk); 998 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 999 1000 /* Grab POLLOUT and POLLHUP from the underlying socket */ 1001 ret = ctx->sk_poll(file, sock, wait); 1002 1003 /* Clear POLLIN bits, and set based on recv_pkt */ 1004 ret &= ~(POLLIN | POLLRDNORM); 1005 if (ctx->recv_pkt) 1006 ret |= POLLIN | POLLRDNORM; 1007 1008 return ret; 1009 } 1010 1011 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1012 { 1013 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1014 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1015 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1016 struct strp_msg *rxm = strp_msg(skb); 1017 size_t cipher_overhead; 1018 size_t data_len = 0; 1019 int ret; 1020 1021 /* Verify that we have a full TLS header, or wait for more data */ 1022 if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) 1023 return 0; 1024 1025 /* Sanity-check size of on-stack buffer. */ 1026 if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) { 1027 ret = -EINVAL; 1028 goto read_failure; 1029 } 1030 1031 /* Linearize header to local buffer */ 1032 ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); 1033 1034 if (ret < 0) 1035 goto read_failure; 1036 1037 ctx->control = header[0]; 1038 1039 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1040 1041 cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; 1042 1043 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { 1044 ret = -EMSGSIZE; 1045 goto read_failure; 1046 } 1047 if (data_len < cipher_overhead) { 1048 ret = -EBADMSG; 1049 goto read_failure; 1050 } 1051 1052 if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) || 1053 header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) { 1054 ret = -EINVAL; 1055 goto read_failure; 1056 } 1057 1058 #ifdef CONFIG_TLS_DEVICE 1059 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1060 *(u64*)tls_ctx->rx.rec_seq); 1061 #endif 1062 return data_len + TLS_HEADER_SIZE; 1063 1064 read_failure: 1065 tls_err_abort(strp->sk, ret); 1066 1067 return ret; 1068 } 1069 1070 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 1071 { 1072 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1073 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1074 1075 ctx->decrypted = false; 1076 1077 ctx->recv_pkt = skb; 1078 strp_pause(strp); 1079 1080 ctx->saved_data_ready(strp->sk); 1081 } 1082 1083 static void tls_data_ready(struct sock *sk) 1084 { 1085 struct tls_context *tls_ctx = tls_get_ctx(sk); 1086 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1087 1088 strp_data_ready(&ctx->strp); 1089 } 1090 1091 void tls_sw_free_resources_tx(struct sock *sk) 1092 { 1093 struct tls_context *tls_ctx = tls_get_ctx(sk); 1094 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1095 1096 crypto_free_aead(ctx->aead_send); 1097 tls_free_both_sg(sk); 1098 1099 kfree(ctx); 1100 } 1101 1102 void tls_sw_release_resources_rx(struct sock *sk) 1103 { 1104 struct tls_context *tls_ctx = tls_get_ctx(sk); 1105 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1106 1107 if (ctx->aead_recv) { 1108 kfree_skb(ctx->recv_pkt); 1109 ctx->recv_pkt = NULL; 1110 crypto_free_aead(ctx->aead_recv); 1111 strp_stop(&ctx->strp); 1112 write_lock_bh(&sk->sk_callback_lock); 1113 sk->sk_data_ready = ctx->saved_data_ready; 1114 write_unlock_bh(&sk->sk_callback_lock); 1115 release_sock(sk); 1116 strp_done(&ctx->strp); 1117 lock_sock(sk); 1118 } 1119 } 1120 1121 void tls_sw_free_resources_rx(struct sock *sk) 1122 { 1123 struct tls_context *tls_ctx = tls_get_ctx(sk); 1124 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1125 1126 tls_sw_release_resources_rx(sk); 1127 1128 kfree(ctx); 1129 } 1130 1131 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 1132 { 1133 char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; 1134 struct tls_crypto_info *crypto_info; 1135 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 1136 struct tls_sw_context_tx *sw_ctx_tx = NULL; 1137 struct tls_sw_context_rx *sw_ctx_rx = NULL; 1138 struct cipher_context *cctx; 1139 struct crypto_aead **aead; 1140 struct strp_callbacks cb; 1141 u16 nonce_size, tag_size, iv_size, rec_seq_size; 1142 char *iv, *rec_seq; 1143 int rc = 0; 1144 1145 if (!ctx) { 1146 rc = -EINVAL; 1147 goto out; 1148 } 1149 1150 if (tx) { 1151 if (!ctx->priv_ctx_tx) { 1152 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 1153 if (!sw_ctx_tx) { 1154 rc = -ENOMEM; 1155 goto out; 1156 } 1157 ctx->priv_ctx_tx = sw_ctx_tx; 1158 } else { 1159 sw_ctx_tx = 1160 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 1161 } 1162 } else { 1163 if (!ctx->priv_ctx_rx) { 1164 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 1165 if (!sw_ctx_rx) { 1166 rc = -ENOMEM; 1167 goto out; 1168 } 1169 ctx->priv_ctx_rx = sw_ctx_rx; 1170 } else { 1171 sw_ctx_rx = 1172 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 1173 } 1174 } 1175 1176 if (tx) { 1177 crypto_init_wait(&sw_ctx_tx->async_wait); 1178 crypto_info = &ctx->crypto_send; 1179 cctx = &ctx->tx; 1180 aead = &sw_ctx_tx->aead_send; 1181 } else { 1182 crypto_init_wait(&sw_ctx_rx->async_wait); 1183 crypto_info = &ctx->crypto_recv; 1184 cctx = &ctx->rx; 1185 aead = &sw_ctx_rx->aead_recv; 1186 } 1187 1188 switch (crypto_info->cipher_type) { 1189 case TLS_CIPHER_AES_GCM_128: { 1190 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1191 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 1192 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 1193 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 1194 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 1195 rec_seq = 1196 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 1197 gcm_128_info = 1198 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 1199 break; 1200 } 1201 default: 1202 rc = -EINVAL; 1203 goto free_priv; 1204 } 1205 1206 /* Sanity-check the IV size for stack allocations. */ 1207 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 1208 rc = -EINVAL; 1209 goto free_priv; 1210 } 1211 1212 cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; 1213 cctx->tag_size = tag_size; 1214 cctx->overhead_size = cctx->prepend_size + cctx->tag_size; 1215 cctx->iv_size = iv_size; 1216 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1217 GFP_KERNEL); 1218 if (!cctx->iv) { 1219 rc = -ENOMEM; 1220 goto free_priv; 1221 } 1222 memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1223 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 1224 cctx->rec_seq_size = rec_seq_size; 1225 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 1226 if (!cctx->rec_seq) { 1227 rc = -ENOMEM; 1228 goto free_iv; 1229 } 1230 1231 if (sw_ctx_tx) { 1232 sg_init_table(sw_ctx_tx->sg_encrypted_data, 1233 ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data)); 1234 sg_init_table(sw_ctx_tx->sg_plaintext_data, 1235 ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data)); 1236 1237 sg_init_table(sw_ctx_tx->sg_aead_in, 2); 1238 sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space, 1239 sizeof(sw_ctx_tx->aad_space)); 1240 sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]); 1241 sg_chain(sw_ctx_tx->sg_aead_in, 2, 1242 sw_ctx_tx->sg_plaintext_data); 1243 sg_init_table(sw_ctx_tx->sg_aead_out, 2); 1244 sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space, 1245 sizeof(sw_ctx_tx->aad_space)); 1246 sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]); 1247 sg_chain(sw_ctx_tx->sg_aead_out, 2, 1248 sw_ctx_tx->sg_encrypted_data); 1249 } 1250 1251 if (!*aead) { 1252 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 1253 if (IS_ERR(*aead)) { 1254 rc = PTR_ERR(*aead); 1255 *aead = NULL; 1256 goto free_rec_seq; 1257 } 1258 } 1259 1260 ctx->push_pending_record = tls_sw_push_pending_record; 1261 1262 memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1263 1264 rc = crypto_aead_setkey(*aead, keyval, 1265 TLS_CIPHER_AES_GCM_128_KEY_SIZE); 1266 if (rc) 1267 goto free_aead; 1268 1269 rc = crypto_aead_setauthsize(*aead, cctx->tag_size); 1270 if (rc) 1271 goto free_aead; 1272 1273 if (sw_ctx_rx) { 1274 /* Set up strparser */ 1275 memset(&cb, 0, sizeof(cb)); 1276 cb.rcv_msg = tls_queue; 1277 cb.parse_msg = tls_read_size; 1278 1279 strp_init(&sw_ctx_rx->strp, sk, &cb); 1280 1281 write_lock_bh(&sk->sk_callback_lock); 1282 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 1283 sk->sk_data_ready = tls_data_ready; 1284 write_unlock_bh(&sk->sk_callback_lock); 1285 1286 sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll; 1287 1288 strp_check_rcv(&sw_ctx_rx->strp); 1289 } 1290 1291 goto out; 1292 1293 free_aead: 1294 crypto_free_aead(*aead); 1295 *aead = NULL; 1296 free_rec_seq: 1297 kfree(cctx->rec_seq); 1298 cctx->rec_seq = NULL; 1299 free_iv: 1300 kfree(cctx->iv); 1301 cctx->iv = NULL; 1302 free_priv: 1303 if (tx) { 1304 kfree(ctx->priv_ctx_tx); 1305 ctx->priv_ctx_tx = NULL; 1306 } else { 1307 kfree(ctx->priv_ctx_rx); 1308 ctx->priv_ctx_rx = NULL; 1309 } 1310 out: 1311 return rc; 1312 } 1313