1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 46 unsigned int recursion_level) 47 { 48 int start = skb_headlen(skb); 49 int i, chunk = start - offset; 50 struct sk_buff *frag_iter; 51 int elt = 0; 52 53 if (unlikely(recursion_level >= 24)) 54 return -EMSGSIZE; 55 56 if (chunk > 0) { 57 if (chunk > len) 58 chunk = len; 59 elt++; 60 len -= chunk; 61 if (len == 0) 62 return elt; 63 offset += chunk; 64 } 65 66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 67 int end; 68 69 WARN_ON(start > offset + len); 70 71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 72 chunk = end - offset; 73 if (chunk > 0) { 74 if (chunk > len) 75 chunk = len; 76 elt++; 77 len -= chunk; 78 if (len == 0) 79 return elt; 80 offset += chunk; 81 } 82 start = end; 83 } 84 85 if (unlikely(skb_has_frag_list(skb))) { 86 skb_walk_frags(skb, frag_iter) { 87 int end, ret; 88 89 WARN_ON(start > offset + len); 90 91 end = start + frag_iter->len; 92 chunk = end - offset; 93 if (chunk > 0) { 94 if (chunk > len) 95 chunk = len; 96 ret = __skb_nsg(frag_iter, offset - start, chunk, 97 recursion_level + 1); 98 if (unlikely(ret < 0)) 99 return ret; 100 elt += ret; 101 len -= chunk; 102 if (len == 0) 103 return elt; 104 offset += chunk; 105 } 106 start = end; 107 } 108 } 109 BUG_ON(len); 110 return elt; 111 } 112 113 /* Return the number of scatterlist elements required to completely map the 114 * skb, or -EMSGSIZE if the recursion depth is exceeded. 115 */ 116 static int skb_nsg(struct sk_buff *skb, int offset, int len) 117 { 118 return __skb_nsg(skb, offset, len, 0); 119 } 120 121 static int padding_length(struct tls_sw_context_rx *ctx, 122 struct tls_prot_info *prot, struct sk_buff *skb) 123 { 124 struct strp_msg *rxm = strp_msg(skb); 125 int sub = 0; 126 127 /* Determine zero-padding length */ 128 if (prot->version == TLS_1_3_VERSION) { 129 char content_type = 0; 130 int err; 131 int back = 17; 132 133 while (content_type == 0) { 134 if (back > rxm->full_len - prot->prepend_size) 135 return -EBADMSG; 136 err = skb_copy_bits(skb, 137 rxm->offset + rxm->full_len - back, 138 &content_type, 1); 139 if (err) 140 return err; 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 ctx->async_wait.err = err; 172 tls_err_abort(skb->sk, err); 173 } else { 174 struct strp_msg *rxm = strp_msg(skb); 175 int pad; 176 177 pad = padding_length(ctx, prot, skb); 178 if (pad < 0) { 179 ctx->async_wait.err = pad; 180 tls_err_abort(skb->sk, pad); 181 } else { 182 rxm->full_len -= pad; 183 rxm->offset += prot->prepend_size; 184 rxm->full_len -= prot->overhead_size; 185 } 186 } 187 188 /* After using skb->sk to propagate sk through crypto async callback 189 * we need to NULL it again. 190 */ 191 skb->sk = NULL; 192 193 194 /* Free the destination pages if skb was not decrypted inplace */ 195 if (sgout != sgin) { 196 /* Skip the first S/G entry as it points to AAD */ 197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 198 if (!sg) 199 break; 200 put_page(sg_page(sg)); 201 } 202 } 203 204 kfree(aead_req); 205 206 pending = atomic_dec_return(&ctx->decrypt_pending); 207 208 if (!pending && READ_ONCE(ctx->async_notify)) 209 complete(&ctx->async_wait.completion); 210 } 211 212 static int tls_do_decryption(struct sock *sk, 213 struct sk_buff *skb, 214 struct scatterlist *sgin, 215 struct scatterlist *sgout, 216 char *iv_recv, 217 size_t data_len, 218 struct aead_request *aead_req, 219 bool async) 220 { 221 struct tls_context *tls_ctx = tls_get_ctx(sk); 222 struct tls_prot_info *prot = &tls_ctx->prot_info; 223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 224 int ret; 225 226 aead_request_set_tfm(aead_req, ctx->aead_recv); 227 aead_request_set_ad(aead_req, prot->aad_size); 228 aead_request_set_crypt(aead_req, sgin, sgout, 229 data_len + prot->tag_size, 230 (u8 *)iv_recv); 231 232 if (async) { 233 /* Using skb->sk to push sk through to crypto async callback 234 * handler. This allows propagating errors up to the socket 235 * if needed. It _must_ be cleared in the async handler 236 * before consume_skb is called. We _know_ skb->sk is NULL 237 * because it is a clone from strparser. 238 */ 239 skb->sk = sk; 240 aead_request_set_callback(aead_req, 241 CRYPTO_TFM_REQ_MAY_BACKLOG, 242 tls_decrypt_done, skb); 243 atomic_inc(&ctx->decrypt_pending); 244 } else { 245 aead_request_set_callback(aead_req, 246 CRYPTO_TFM_REQ_MAY_BACKLOG, 247 crypto_req_done, &ctx->async_wait); 248 } 249 250 ret = crypto_aead_decrypt(aead_req); 251 if (ret == -EINPROGRESS) { 252 if (async) 253 return ret; 254 255 ret = crypto_wait_req(ret, &ctx->async_wait); 256 } 257 258 if (async) 259 atomic_dec(&ctx->decrypt_pending); 260 261 return ret; 262 } 263 264 static void tls_trim_both_msgs(struct sock *sk, int target_size) 265 { 266 struct tls_context *tls_ctx = tls_get_ctx(sk); 267 struct tls_prot_info *prot = &tls_ctx->prot_info; 268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 269 struct tls_rec *rec = ctx->open_rec; 270 271 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 272 if (target_size > 0) 273 target_size += prot->overhead_size; 274 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 275 } 276 277 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 278 { 279 struct tls_context *tls_ctx = tls_get_ctx(sk); 280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 281 struct tls_rec *rec = ctx->open_rec; 282 struct sk_msg *msg_en = &rec->msg_encrypted; 283 284 return sk_msg_alloc(sk, msg_en, len, 0); 285 } 286 287 static int tls_clone_plaintext_msg(struct sock *sk, int required) 288 { 289 struct tls_context *tls_ctx = tls_get_ctx(sk); 290 struct tls_prot_info *prot = &tls_ctx->prot_info; 291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 292 struct tls_rec *rec = ctx->open_rec; 293 struct sk_msg *msg_pl = &rec->msg_plaintext; 294 struct sk_msg *msg_en = &rec->msg_encrypted; 295 int skip, len; 296 297 /* We add page references worth len bytes from encrypted sg 298 * at the end of plaintext sg. It is guaranteed that msg_en 299 * has enough required room (ensured by caller). 300 */ 301 len = required - msg_pl->sg.size; 302 303 /* Skip initial bytes in msg_en's data to be able to use 304 * same offset of both plain and encrypted data. 305 */ 306 skip = prot->prepend_size + msg_pl->sg.size; 307 308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 309 } 310 311 static struct tls_rec *tls_get_rec(struct sock *sk) 312 { 313 struct tls_context *tls_ctx = tls_get_ctx(sk); 314 struct tls_prot_info *prot = &tls_ctx->prot_info; 315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 316 struct sk_msg *msg_pl, *msg_en; 317 struct tls_rec *rec; 318 int mem_size; 319 320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 321 322 rec = kzalloc(mem_size, sk->sk_allocation); 323 if (!rec) 324 return NULL; 325 326 msg_pl = &rec->msg_plaintext; 327 msg_en = &rec->msg_encrypted; 328 329 sk_msg_init(msg_pl); 330 sk_msg_init(msg_en); 331 332 sg_init_table(rec->sg_aead_in, 2); 333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 334 sg_unmark_end(&rec->sg_aead_in[1]); 335 336 sg_init_table(rec->sg_aead_out, 2); 337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 338 sg_unmark_end(&rec->sg_aead_out[1]); 339 340 return rec; 341 } 342 343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 344 { 345 sk_msg_free(sk, &rec->msg_encrypted); 346 sk_msg_free(sk, &rec->msg_plaintext); 347 kfree(rec); 348 } 349 350 static void tls_free_open_rec(struct sock *sk) 351 { 352 struct tls_context *tls_ctx = tls_get_ctx(sk); 353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 354 struct tls_rec *rec = ctx->open_rec; 355 356 if (rec) { 357 tls_free_rec(sk, rec); 358 ctx->open_rec = NULL; 359 } 360 } 361 362 int tls_tx_records(struct sock *sk, int flags) 363 { 364 struct tls_context *tls_ctx = tls_get_ctx(sk); 365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 366 struct tls_rec *rec, *tmp; 367 struct sk_msg *msg_en; 368 int tx_flags, rc = 0; 369 370 if (tls_is_partially_sent_record(tls_ctx)) { 371 rec = list_first_entry(&ctx->tx_list, 372 struct tls_rec, list); 373 374 if (flags == -1) 375 tx_flags = rec->tx_flags; 376 else 377 tx_flags = flags; 378 379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 380 if (rc) 381 goto tx_err; 382 383 /* Full record has been transmitted. 384 * Remove the head of tx_list 385 */ 386 list_del(&rec->list); 387 sk_msg_free(sk, &rec->msg_plaintext); 388 kfree(rec); 389 } 390 391 /* Tx all ready records */ 392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 393 if (READ_ONCE(rec->tx_ready)) { 394 if (flags == -1) 395 tx_flags = rec->tx_flags; 396 else 397 tx_flags = flags; 398 399 msg_en = &rec->msg_encrypted; 400 rc = tls_push_sg(sk, tls_ctx, 401 &msg_en->sg.data[msg_en->sg.curr], 402 0, tx_flags); 403 if (rc) 404 goto tx_err; 405 406 list_del(&rec->list); 407 sk_msg_free(sk, &rec->msg_plaintext); 408 kfree(rec); 409 } else { 410 break; 411 } 412 } 413 414 tx_err: 415 if (rc < 0 && rc != -EAGAIN) 416 tls_err_abort(sk, EBADMSG); 417 418 return rc; 419 } 420 421 static void tls_encrypt_done(struct crypto_async_request *req, int err) 422 { 423 struct aead_request *aead_req = (struct aead_request *)req; 424 struct sock *sk = req->data; 425 struct tls_context *tls_ctx = tls_get_ctx(sk); 426 struct tls_prot_info *prot = &tls_ctx->prot_info; 427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 428 struct scatterlist *sge; 429 struct sk_msg *msg_en; 430 struct tls_rec *rec; 431 bool ready = false; 432 int pending; 433 434 rec = container_of(aead_req, struct tls_rec, aead_req); 435 msg_en = &rec->msg_encrypted; 436 437 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 438 sge->offset -= prot->prepend_size; 439 sge->length += prot->prepend_size; 440 441 /* Check if error is previously set on socket */ 442 if (err || sk->sk_err) { 443 rec = NULL; 444 445 /* If err is already set on socket, return the same code */ 446 if (sk->sk_err) { 447 ctx->async_wait.err = sk->sk_err; 448 } else { 449 ctx->async_wait.err = err; 450 tls_err_abort(sk, err); 451 } 452 } 453 454 if (rec) { 455 struct tls_rec *first_rec; 456 457 /* Mark the record as ready for transmission */ 458 smp_store_mb(rec->tx_ready, true); 459 460 /* If received record is at head of tx_list, schedule tx */ 461 first_rec = list_first_entry(&ctx->tx_list, 462 struct tls_rec, list); 463 if (rec == first_rec) 464 ready = true; 465 } 466 467 pending = atomic_dec_return(&ctx->encrypt_pending); 468 469 if (!pending && READ_ONCE(ctx->async_notify)) 470 complete(&ctx->async_wait.completion); 471 472 if (!ready) 473 return; 474 475 /* Schedule the transmission */ 476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 477 schedule_delayed_work(&ctx->tx_work.work, 1); 478 } 479 480 static int tls_do_encryption(struct sock *sk, 481 struct tls_context *tls_ctx, 482 struct tls_sw_context_tx *ctx, 483 struct aead_request *aead_req, 484 size_t data_len, u32 start) 485 { 486 struct tls_prot_info *prot = &tls_ctx->prot_info; 487 struct tls_rec *rec = ctx->open_rec; 488 struct sk_msg *msg_en = &rec->msg_encrypted; 489 struct scatterlist *sge = sk_msg_elem(msg_en, start); 490 int rc, iv_offset = 0; 491 492 /* For CCM based ciphers, first byte of IV is a constant */ 493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 495 iv_offset = 1; 496 } 497 498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 499 prot->iv_size + prot->salt_size); 500 501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq); 502 503 sge->offset += prot->prepend_size; 504 sge->length -= prot->prepend_size; 505 506 msg_en->sg.curr = start; 507 508 aead_request_set_tfm(aead_req, ctx->aead_send); 509 aead_request_set_ad(aead_req, prot->aad_size); 510 aead_request_set_crypt(aead_req, rec->sg_aead_in, 511 rec->sg_aead_out, 512 data_len, rec->iv_data); 513 514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 515 tls_encrypt_done, sk); 516 517 /* Add the record in tx_list */ 518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 519 atomic_inc(&ctx->encrypt_pending); 520 521 rc = crypto_aead_encrypt(aead_req); 522 if (!rc || rc != -EINPROGRESS) { 523 atomic_dec(&ctx->encrypt_pending); 524 sge->offset -= prot->prepend_size; 525 sge->length += prot->prepend_size; 526 } 527 528 if (!rc) { 529 WRITE_ONCE(rec->tx_ready, true); 530 } else if (rc != -EINPROGRESS) { 531 list_del(&rec->list); 532 return rc; 533 } 534 535 /* Unhook the record from context if encryption is not failure */ 536 ctx->open_rec = NULL; 537 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 538 return rc; 539 } 540 541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 542 struct tls_rec **to, struct sk_msg *msg_opl, 543 struct sk_msg *msg_oen, u32 split_point, 544 u32 tx_overhead_size, u32 *orig_end) 545 { 546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 547 struct scatterlist *sge, *osge, *nsge; 548 u32 orig_size = msg_opl->sg.size; 549 struct scatterlist tmp = { }; 550 struct sk_msg *msg_npl; 551 struct tls_rec *new; 552 int ret; 553 554 new = tls_get_rec(sk); 555 if (!new) 556 return -ENOMEM; 557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 558 tx_overhead_size, 0); 559 if (ret < 0) { 560 tls_free_rec(sk, new); 561 return ret; 562 } 563 564 *orig_end = msg_opl->sg.end; 565 i = msg_opl->sg.start; 566 sge = sk_msg_elem(msg_opl, i); 567 while (apply && sge->length) { 568 if (sge->length > apply) { 569 u32 len = sge->length - apply; 570 571 get_page(sg_page(sge)); 572 sg_set_page(&tmp, sg_page(sge), len, 573 sge->offset + apply); 574 sge->length = apply; 575 bytes += apply; 576 apply = 0; 577 } else { 578 apply -= sge->length; 579 bytes += sge->length; 580 } 581 582 sk_msg_iter_var_next(i); 583 if (i == msg_opl->sg.end) 584 break; 585 sge = sk_msg_elem(msg_opl, i); 586 } 587 588 msg_opl->sg.end = i; 589 msg_opl->sg.curr = i; 590 msg_opl->sg.copybreak = 0; 591 msg_opl->apply_bytes = 0; 592 msg_opl->sg.size = bytes; 593 594 msg_npl = &new->msg_plaintext; 595 msg_npl->apply_bytes = apply; 596 msg_npl->sg.size = orig_size - bytes; 597 598 j = msg_npl->sg.start; 599 nsge = sk_msg_elem(msg_npl, j); 600 if (tmp.length) { 601 memcpy(nsge, &tmp, sizeof(*nsge)); 602 sk_msg_iter_var_next(j); 603 nsge = sk_msg_elem(msg_npl, j); 604 } 605 606 osge = sk_msg_elem(msg_opl, i); 607 while (osge->length) { 608 memcpy(nsge, osge, sizeof(*nsge)); 609 sg_unmark_end(nsge); 610 sk_msg_iter_var_next(i); 611 sk_msg_iter_var_next(j); 612 if (i == *orig_end) 613 break; 614 osge = sk_msg_elem(msg_opl, i); 615 nsge = sk_msg_elem(msg_npl, j); 616 } 617 618 msg_npl->sg.end = j; 619 msg_npl->sg.curr = j; 620 msg_npl->sg.copybreak = 0; 621 622 *to = new; 623 return 0; 624 } 625 626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 627 struct tls_rec *from, u32 orig_end) 628 { 629 struct sk_msg *msg_npl = &from->msg_plaintext; 630 struct sk_msg *msg_opl = &to->msg_plaintext; 631 struct scatterlist *osge, *nsge; 632 u32 i, j; 633 634 i = msg_opl->sg.end; 635 sk_msg_iter_var_prev(i); 636 j = msg_npl->sg.start; 637 638 osge = sk_msg_elem(msg_opl, i); 639 nsge = sk_msg_elem(msg_npl, j); 640 641 if (sg_page(osge) == sg_page(nsge) && 642 osge->offset + osge->length == nsge->offset) { 643 osge->length += nsge->length; 644 put_page(sg_page(nsge)); 645 } 646 647 msg_opl->sg.end = orig_end; 648 msg_opl->sg.curr = orig_end; 649 msg_opl->sg.copybreak = 0; 650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 651 msg_opl->sg.size += msg_npl->sg.size; 652 653 sk_msg_free(sk, &to->msg_encrypted); 654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 655 656 kfree(from); 657 } 658 659 static int tls_push_record(struct sock *sk, int flags, 660 unsigned char record_type) 661 { 662 struct tls_context *tls_ctx = tls_get_ctx(sk); 663 struct tls_prot_info *prot = &tls_ctx->prot_info; 664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 666 u32 i, split_point, uninitialized_var(orig_end); 667 struct sk_msg *msg_pl, *msg_en; 668 struct aead_request *req; 669 bool split; 670 int rc; 671 672 if (!rec) 673 return 0; 674 675 msg_pl = &rec->msg_plaintext; 676 msg_en = &rec->msg_encrypted; 677 678 split_point = msg_pl->apply_bytes; 679 split = split_point && split_point < msg_pl->sg.size; 680 if (split) { 681 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 682 split_point, prot->overhead_size, 683 &orig_end); 684 if (rc < 0) 685 return rc; 686 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 687 prot->overhead_size); 688 } 689 690 rec->tx_flags = flags; 691 req = &rec->aead_req; 692 693 i = msg_pl->sg.end; 694 sk_msg_iter_var_prev(i); 695 696 rec->content_type = record_type; 697 if (prot->version == TLS_1_3_VERSION) { 698 /* Add content type to end of message. No padding added */ 699 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 700 sg_mark_end(&rec->sg_content_type); 701 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 702 &rec->sg_content_type); 703 } else { 704 sg_mark_end(sk_msg_elem(msg_pl, i)); 705 } 706 707 i = msg_pl->sg.start; 708 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 709 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 710 711 i = msg_en->sg.end; 712 sk_msg_iter_var_prev(i); 713 sg_mark_end(sk_msg_elem(msg_en, i)); 714 715 i = msg_en->sg.start; 716 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 717 718 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 719 tls_ctx->tx.rec_seq, prot->rec_seq_size, 720 record_type, prot->version); 721 722 tls_fill_prepend(tls_ctx, 723 page_address(sg_page(&msg_en->sg.data[i])) + 724 msg_en->sg.data[i].offset, 725 msg_pl->sg.size + prot->tail_size, 726 record_type, prot->version); 727 728 tls_ctx->pending_open_record_frags = false; 729 730 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 731 msg_pl->sg.size + prot->tail_size, i); 732 if (rc < 0) { 733 if (rc != -EINPROGRESS) { 734 tls_err_abort(sk, EBADMSG); 735 if (split) { 736 tls_ctx->pending_open_record_frags = true; 737 tls_merge_open_record(sk, rec, tmp, orig_end); 738 } 739 } 740 ctx->async_capable = 1; 741 return rc; 742 } else if (split) { 743 msg_pl = &tmp->msg_plaintext; 744 msg_en = &tmp->msg_encrypted; 745 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 746 tls_ctx->pending_open_record_frags = true; 747 ctx->open_rec = tmp; 748 } 749 750 return tls_tx_records(sk, flags); 751 } 752 753 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 754 bool full_record, u8 record_type, 755 size_t *copied, int flags) 756 { 757 struct tls_context *tls_ctx = tls_get_ctx(sk); 758 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 759 struct sk_msg msg_redir = { }; 760 struct sk_psock *psock; 761 struct sock *sk_redir; 762 struct tls_rec *rec; 763 bool enospc, policy; 764 int err = 0, send; 765 u32 delta = 0; 766 767 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 768 psock = sk_psock_get(sk); 769 if (!psock || !policy) 770 return tls_push_record(sk, flags, record_type); 771 more_data: 772 enospc = sk_msg_full(msg); 773 if (psock->eval == __SK_NONE) { 774 delta = msg->sg.size; 775 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 776 if (delta < msg->sg.size) 777 delta -= msg->sg.size; 778 else 779 delta = 0; 780 } 781 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 782 !enospc && !full_record) { 783 err = -ENOSPC; 784 goto out_err; 785 } 786 msg->cork_bytes = 0; 787 send = msg->sg.size; 788 if (msg->apply_bytes && msg->apply_bytes < send) 789 send = msg->apply_bytes; 790 791 switch (psock->eval) { 792 case __SK_PASS: 793 err = tls_push_record(sk, flags, record_type); 794 if (err < 0) { 795 *copied -= sk_msg_free(sk, msg); 796 tls_free_open_rec(sk); 797 goto out_err; 798 } 799 break; 800 case __SK_REDIRECT: 801 sk_redir = psock->sk_redir; 802 memcpy(&msg_redir, msg, sizeof(*msg)); 803 if (msg->apply_bytes < send) 804 msg->apply_bytes = 0; 805 else 806 msg->apply_bytes -= send; 807 sk_msg_return_zero(sk, msg, send); 808 msg->sg.size -= send; 809 release_sock(sk); 810 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 811 lock_sock(sk); 812 if (err < 0) { 813 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 814 msg->sg.size = 0; 815 } 816 if (msg->sg.size == 0) 817 tls_free_open_rec(sk); 818 break; 819 case __SK_DROP: 820 default: 821 sk_msg_free_partial(sk, msg, send); 822 if (msg->apply_bytes < send) 823 msg->apply_bytes = 0; 824 else 825 msg->apply_bytes -= send; 826 if (msg->sg.size == 0) 827 tls_free_open_rec(sk); 828 *copied -= (send + delta); 829 err = -EACCES; 830 } 831 832 if (likely(!err)) { 833 bool reset_eval = !ctx->open_rec; 834 835 rec = ctx->open_rec; 836 if (rec) { 837 msg = &rec->msg_plaintext; 838 if (!msg->apply_bytes) 839 reset_eval = true; 840 } 841 if (reset_eval) { 842 psock->eval = __SK_NONE; 843 if (psock->sk_redir) { 844 sock_put(psock->sk_redir); 845 psock->sk_redir = NULL; 846 } 847 } 848 if (rec) 849 goto more_data; 850 } 851 out_err: 852 sk_psock_put(sk, psock); 853 return err; 854 } 855 856 static int tls_sw_push_pending_record(struct sock *sk, int flags) 857 { 858 struct tls_context *tls_ctx = tls_get_ctx(sk); 859 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 860 struct tls_rec *rec = ctx->open_rec; 861 struct sk_msg *msg_pl; 862 size_t copied; 863 864 if (!rec) 865 return 0; 866 867 msg_pl = &rec->msg_plaintext; 868 copied = msg_pl->sg.size; 869 if (!copied) 870 return 0; 871 872 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 873 &copied, flags); 874 } 875 876 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 877 { 878 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 879 struct tls_context *tls_ctx = tls_get_ctx(sk); 880 struct tls_prot_info *prot = &tls_ctx->prot_info; 881 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 882 bool async_capable = ctx->async_capable; 883 unsigned char record_type = TLS_RECORD_TYPE_DATA; 884 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 885 bool eor = !(msg->msg_flags & MSG_MORE); 886 size_t try_to_copy, copied = 0; 887 struct sk_msg *msg_pl, *msg_en; 888 struct tls_rec *rec; 889 int required_size; 890 int num_async = 0; 891 bool full_record; 892 int record_room; 893 int num_zc = 0; 894 int orig_size; 895 int ret = 0; 896 897 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 898 return -ENOTSUPP; 899 900 lock_sock(sk); 901 902 /* Wait till there is any pending write on socket */ 903 if (unlikely(sk->sk_write_pending)) { 904 ret = wait_on_pending_writer(sk, &timeo); 905 if (unlikely(ret)) 906 goto send_end; 907 } 908 909 if (unlikely(msg->msg_controllen)) { 910 ret = tls_proccess_cmsg(sk, msg, &record_type); 911 if (ret) { 912 if (ret == -EINPROGRESS) 913 num_async++; 914 else if (ret != -EAGAIN) 915 goto send_end; 916 } 917 } 918 919 while (msg_data_left(msg)) { 920 if (sk->sk_err) { 921 ret = -sk->sk_err; 922 goto send_end; 923 } 924 925 if (ctx->open_rec) 926 rec = ctx->open_rec; 927 else 928 rec = ctx->open_rec = tls_get_rec(sk); 929 if (!rec) { 930 ret = -ENOMEM; 931 goto send_end; 932 } 933 934 msg_pl = &rec->msg_plaintext; 935 msg_en = &rec->msg_encrypted; 936 937 orig_size = msg_pl->sg.size; 938 full_record = false; 939 try_to_copy = msg_data_left(msg); 940 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 941 if (try_to_copy >= record_room) { 942 try_to_copy = record_room; 943 full_record = true; 944 } 945 946 required_size = msg_pl->sg.size + try_to_copy + 947 prot->overhead_size; 948 949 if (!sk_stream_memory_free(sk)) 950 goto wait_for_sndbuf; 951 952 alloc_encrypted: 953 ret = tls_alloc_encrypted_msg(sk, required_size); 954 if (ret) { 955 if (ret != -ENOSPC) 956 goto wait_for_memory; 957 958 /* Adjust try_to_copy according to the amount that was 959 * actually allocated. The difference is due 960 * to max sg elements limit 961 */ 962 try_to_copy -= required_size - msg_en->sg.size; 963 full_record = true; 964 } 965 966 if (!is_kvec && (full_record || eor) && !async_capable) { 967 u32 first = msg_pl->sg.end; 968 969 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 970 msg_pl, try_to_copy); 971 if (ret) 972 goto fallback_to_reg_send; 973 974 rec->inplace_crypto = 0; 975 976 num_zc++; 977 copied += try_to_copy; 978 979 sk_msg_sg_copy_set(msg_pl, first); 980 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 981 record_type, &copied, 982 msg->msg_flags); 983 if (ret) { 984 if (ret == -EINPROGRESS) 985 num_async++; 986 else if (ret == -ENOMEM) 987 goto wait_for_memory; 988 else if (ret == -ENOSPC) 989 goto rollback_iter; 990 else if (ret != -EAGAIN) 991 goto send_end; 992 } 993 continue; 994 rollback_iter: 995 copied -= try_to_copy; 996 sk_msg_sg_copy_clear(msg_pl, first); 997 iov_iter_revert(&msg->msg_iter, 998 msg_pl->sg.size - orig_size); 999 fallback_to_reg_send: 1000 sk_msg_trim(sk, msg_pl, orig_size); 1001 } 1002 1003 required_size = msg_pl->sg.size + try_to_copy; 1004 1005 ret = tls_clone_plaintext_msg(sk, required_size); 1006 if (ret) { 1007 if (ret != -ENOSPC) 1008 goto send_end; 1009 1010 /* Adjust try_to_copy according to the amount that was 1011 * actually allocated. The difference is due 1012 * to max sg elements limit 1013 */ 1014 try_to_copy -= required_size - msg_pl->sg.size; 1015 full_record = true; 1016 sk_msg_trim(sk, msg_en, 1017 msg_pl->sg.size + prot->overhead_size); 1018 } 1019 1020 if (try_to_copy) { 1021 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1022 msg_pl, try_to_copy); 1023 if (ret < 0) 1024 goto trim_sgl; 1025 } 1026 1027 /* Open records defined only if successfully copied, otherwise 1028 * we would trim the sg but not reset the open record frags. 1029 */ 1030 tls_ctx->pending_open_record_frags = true; 1031 copied += try_to_copy; 1032 if (full_record || eor) { 1033 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1034 record_type, &copied, 1035 msg->msg_flags); 1036 if (ret) { 1037 if (ret == -EINPROGRESS) 1038 num_async++; 1039 else if (ret == -ENOMEM) 1040 goto wait_for_memory; 1041 else if (ret != -EAGAIN) { 1042 if (ret == -ENOSPC) 1043 ret = 0; 1044 goto send_end; 1045 } 1046 } 1047 } 1048 1049 continue; 1050 1051 wait_for_sndbuf: 1052 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1053 wait_for_memory: 1054 ret = sk_stream_wait_memory(sk, &timeo); 1055 if (ret) { 1056 trim_sgl: 1057 tls_trim_both_msgs(sk, orig_size); 1058 goto send_end; 1059 } 1060 1061 if (msg_en->sg.size < required_size) 1062 goto alloc_encrypted; 1063 } 1064 1065 if (!num_async) { 1066 goto send_end; 1067 } else if (num_zc) { 1068 /* Wait for pending encryptions to get completed */ 1069 smp_store_mb(ctx->async_notify, true); 1070 1071 if (atomic_read(&ctx->encrypt_pending)) 1072 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1073 else 1074 reinit_completion(&ctx->async_wait.completion); 1075 1076 WRITE_ONCE(ctx->async_notify, false); 1077 1078 if (ctx->async_wait.err) { 1079 ret = ctx->async_wait.err; 1080 copied = 0; 1081 } 1082 } 1083 1084 /* Transmit if any encryptions have completed */ 1085 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1086 cancel_delayed_work(&ctx->tx_work.work); 1087 tls_tx_records(sk, msg->msg_flags); 1088 } 1089 1090 send_end: 1091 ret = sk_stream_error(sk, msg->msg_flags, ret); 1092 1093 release_sock(sk); 1094 return copied ? copied : ret; 1095 } 1096 1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1098 int offset, size_t size, int flags) 1099 { 1100 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1101 struct tls_context *tls_ctx = tls_get_ctx(sk); 1102 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1103 struct tls_prot_info *prot = &tls_ctx->prot_info; 1104 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1105 struct sk_msg *msg_pl; 1106 struct tls_rec *rec; 1107 int num_async = 0; 1108 size_t copied = 0; 1109 bool full_record; 1110 int record_room; 1111 int ret = 0; 1112 bool eor; 1113 1114 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1116 1117 /* Wait till there is any pending write on socket */ 1118 if (unlikely(sk->sk_write_pending)) { 1119 ret = wait_on_pending_writer(sk, &timeo); 1120 if (unlikely(ret)) 1121 goto sendpage_end; 1122 } 1123 1124 /* Call the sk_stream functions to manage the sndbuf mem. */ 1125 while (size > 0) { 1126 size_t copy, required_size; 1127 1128 if (sk->sk_err) { 1129 ret = -sk->sk_err; 1130 goto sendpage_end; 1131 } 1132 1133 if (ctx->open_rec) 1134 rec = ctx->open_rec; 1135 else 1136 rec = ctx->open_rec = tls_get_rec(sk); 1137 if (!rec) { 1138 ret = -ENOMEM; 1139 goto sendpage_end; 1140 } 1141 1142 msg_pl = &rec->msg_plaintext; 1143 1144 full_record = false; 1145 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1146 copy = size; 1147 if (copy >= record_room) { 1148 copy = record_room; 1149 full_record = true; 1150 } 1151 1152 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1153 1154 if (!sk_stream_memory_free(sk)) 1155 goto wait_for_sndbuf; 1156 alloc_payload: 1157 ret = tls_alloc_encrypted_msg(sk, required_size); 1158 if (ret) { 1159 if (ret != -ENOSPC) 1160 goto wait_for_memory; 1161 1162 /* Adjust copy according to the amount that was 1163 * actually allocated. The difference is due 1164 * to max sg elements limit 1165 */ 1166 copy -= required_size - msg_pl->sg.size; 1167 full_record = true; 1168 } 1169 1170 sk_msg_page_add(msg_pl, page, copy, offset); 1171 sk_mem_charge(sk, copy); 1172 1173 offset += copy; 1174 size -= copy; 1175 copied += copy; 1176 1177 tls_ctx->pending_open_record_frags = true; 1178 if (full_record || eor || sk_msg_full(msg_pl)) { 1179 rec->inplace_crypto = 0; 1180 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1181 record_type, &copied, flags); 1182 if (ret) { 1183 if (ret == -EINPROGRESS) 1184 num_async++; 1185 else if (ret == -ENOMEM) 1186 goto wait_for_memory; 1187 else if (ret != -EAGAIN) { 1188 if (ret == -ENOSPC) 1189 ret = 0; 1190 goto sendpage_end; 1191 } 1192 } 1193 } 1194 continue; 1195 wait_for_sndbuf: 1196 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1197 wait_for_memory: 1198 ret = sk_stream_wait_memory(sk, &timeo); 1199 if (ret) { 1200 tls_trim_both_msgs(sk, msg_pl->sg.size); 1201 goto sendpage_end; 1202 } 1203 1204 goto alloc_payload; 1205 } 1206 1207 if (num_async) { 1208 /* Transmit if any encryptions have completed */ 1209 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1210 cancel_delayed_work(&ctx->tx_work.work); 1211 tls_tx_records(sk, flags); 1212 } 1213 } 1214 sendpage_end: 1215 ret = sk_stream_error(sk, flags, ret); 1216 return copied ? copied : ret; 1217 } 1218 1219 int tls_sw_sendpage(struct sock *sk, struct page *page, 1220 int offset, size_t size, int flags) 1221 { 1222 int ret; 1223 1224 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1225 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1226 return -ENOTSUPP; 1227 1228 lock_sock(sk); 1229 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1230 release_sock(sk); 1231 return ret; 1232 } 1233 1234 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1235 int flags, long timeo, int *err) 1236 { 1237 struct tls_context *tls_ctx = tls_get_ctx(sk); 1238 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1239 struct sk_buff *skb; 1240 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1241 1242 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1243 if (sk->sk_err) { 1244 *err = sock_error(sk); 1245 return NULL; 1246 } 1247 1248 if (sk->sk_shutdown & RCV_SHUTDOWN) 1249 return NULL; 1250 1251 if (sock_flag(sk, SOCK_DONE)) 1252 return NULL; 1253 1254 if ((flags & MSG_DONTWAIT) || !timeo) { 1255 *err = -EAGAIN; 1256 return NULL; 1257 } 1258 1259 add_wait_queue(sk_sleep(sk), &wait); 1260 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1261 sk_wait_event(sk, &timeo, 1262 ctx->recv_pkt != skb || 1263 !sk_psock_queue_empty(psock), 1264 &wait); 1265 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1266 remove_wait_queue(sk_sleep(sk), &wait); 1267 1268 /* Handle signals */ 1269 if (signal_pending(current)) { 1270 *err = sock_intr_errno(timeo); 1271 return NULL; 1272 } 1273 } 1274 1275 return skb; 1276 } 1277 1278 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1279 int length, int *pages_used, 1280 unsigned int *size_used, 1281 struct scatterlist *to, 1282 int to_max_pages) 1283 { 1284 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1285 struct page *pages[MAX_SKB_FRAGS]; 1286 unsigned int size = *size_used; 1287 ssize_t copied, use; 1288 size_t offset; 1289 1290 while (length > 0) { 1291 i = 0; 1292 maxpages = to_max_pages - num_elem; 1293 if (maxpages == 0) { 1294 rc = -EFAULT; 1295 goto out; 1296 } 1297 copied = iov_iter_get_pages(from, pages, 1298 length, 1299 maxpages, &offset); 1300 if (copied <= 0) { 1301 rc = -EFAULT; 1302 goto out; 1303 } 1304 1305 iov_iter_advance(from, copied); 1306 1307 length -= copied; 1308 size += copied; 1309 while (copied) { 1310 use = min_t(int, copied, PAGE_SIZE - offset); 1311 1312 sg_set_page(&to[num_elem], 1313 pages[i], use, offset); 1314 sg_unmark_end(&to[num_elem]); 1315 /* We do not uncharge memory from this API */ 1316 1317 offset = 0; 1318 copied -= use; 1319 1320 i++; 1321 num_elem++; 1322 } 1323 } 1324 /* Mark the end in the last sg entry if newly added */ 1325 if (num_elem > *pages_used) 1326 sg_mark_end(&to[num_elem - 1]); 1327 out: 1328 if (rc) 1329 iov_iter_revert(from, size - *size_used); 1330 *size_used = size; 1331 *pages_used = num_elem; 1332 1333 return rc; 1334 } 1335 1336 /* This function decrypts the input skb into either out_iov or in out_sg 1337 * or in skb buffers itself. The input parameter 'zc' indicates if 1338 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1339 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1340 * NULL, then the decryption happens inside skb buffers itself, i.e. 1341 * zero-copy gets disabled and 'zc' is updated. 1342 */ 1343 1344 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1345 struct iov_iter *out_iov, 1346 struct scatterlist *out_sg, 1347 int *chunk, bool *zc, bool async) 1348 { 1349 struct tls_context *tls_ctx = tls_get_ctx(sk); 1350 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1351 struct tls_prot_info *prot = &tls_ctx->prot_info; 1352 struct strp_msg *rxm = strp_msg(skb); 1353 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1354 struct aead_request *aead_req; 1355 struct sk_buff *unused; 1356 u8 *aad, *iv, *mem = NULL; 1357 struct scatterlist *sgin = NULL; 1358 struct scatterlist *sgout = NULL; 1359 const int data_len = rxm->full_len - prot->overhead_size + 1360 prot->tail_size; 1361 int iv_offset = 0; 1362 1363 if (*zc && (out_iov || out_sg)) { 1364 if (out_iov) 1365 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1366 else 1367 n_sgout = sg_nents(out_sg); 1368 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1369 rxm->full_len - prot->prepend_size); 1370 } else { 1371 n_sgout = 0; 1372 *zc = false; 1373 n_sgin = skb_cow_data(skb, 0, &unused); 1374 } 1375 1376 if (n_sgin < 1) 1377 return -EBADMSG; 1378 1379 /* Increment to accommodate AAD */ 1380 n_sgin = n_sgin + 1; 1381 1382 nsg = n_sgin + n_sgout; 1383 1384 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1385 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1386 mem_size = mem_size + prot->aad_size; 1387 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1388 1389 /* Allocate a single block of memory which contains 1390 * aead_req || sgin[] || sgout[] || aad || iv. 1391 * This order achieves correct alignment for aead_req, sgin, sgout. 1392 */ 1393 mem = kmalloc(mem_size, sk->sk_allocation); 1394 if (!mem) 1395 return -ENOMEM; 1396 1397 /* Segment the allocated memory */ 1398 aead_req = (struct aead_request *)mem; 1399 sgin = (struct scatterlist *)(mem + aead_size); 1400 sgout = sgin + n_sgin; 1401 aad = (u8 *)(sgout + n_sgout); 1402 iv = aad + prot->aad_size; 1403 1404 /* For CCM based ciphers, first byte of nonce+iv is always '2' */ 1405 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) { 1406 iv[0] = 2; 1407 iv_offset = 1; 1408 } 1409 1410 /* Prepare IV */ 1411 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1412 iv + iv_offset + prot->salt_size, 1413 prot->iv_size); 1414 if (err < 0) { 1415 kfree(mem); 1416 return err; 1417 } 1418 if (prot->version == TLS_1_3_VERSION) 1419 memcpy(iv + iv_offset, tls_ctx->rx.iv, 1420 crypto_aead_ivsize(ctx->aead_recv)); 1421 else 1422 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size); 1423 1424 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1425 1426 /* Prepare AAD */ 1427 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1428 prot->tail_size, 1429 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1430 ctx->control, prot->version); 1431 1432 /* Prepare sgin */ 1433 sg_init_table(sgin, n_sgin); 1434 sg_set_buf(&sgin[0], aad, prot->aad_size); 1435 err = skb_to_sgvec(skb, &sgin[1], 1436 rxm->offset + prot->prepend_size, 1437 rxm->full_len - prot->prepend_size); 1438 if (err < 0) { 1439 kfree(mem); 1440 return err; 1441 } 1442 1443 if (n_sgout) { 1444 if (out_iov) { 1445 sg_init_table(sgout, n_sgout); 1446 sg_set_buf(&sgout[0], aad, prot->aad_size); 1447 1448 *chunk = 0; 1449 err = tls_setup_from_iter(sk, out_iov, data_len, 1450 &pages, chunk, &sgout[1], 1451 (n_sgout - 1)); 1452 if (err < 0) 1453 goto fallback_to_reg_recv; 1454 } else if (out_sg) { 1455 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1456 } else { 1457 goto fallback_to_reg_recv; 1458 } 1459 } else { 1460 fallback_to_reg_recv: 1461 sgout = sgin; 1462 pages = 0; 1463 *chunk = data_len; 1464 *zc = false; 1465 } 1466 1467 /* Prepare and submit AEAD request */ 1468 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1469 data_len, aead_req, async); 1470 if (err == -EINPROGRESS) 1471 return err; 1472 1473 /* Release the pages in case iov was mapped to pages */ 1474 for (; pages > 0; pages--) 1475 put_page(sg_page(&sgout[pages])); 1476 1477 kfree(mem); 1478 return err; 1479 } 1480 1481 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1482 struct iov_iter *dest, int *chunk, bool *zc, 1483 bool async) 1484 { 1485 struct tls_context *tls_ctx = tls_get_ctx(sk); 1486 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1487 struct tls_prot_info *prot = &tls_ctx->prot_info; 1488 struct strp_msg *rxm = strp_msg(skb); 1489 int pad, err = 0; 1490 1491 if (!ctx->decrypted) { 1492 if (tls_ctx->rx_conf == TLS_HW) { 1493 err = tls_device_decrypted(sk, skb); 1494 if (err < 0) 1495 return err; 1496 } 1497 1498 /* Still not decrypted after tls_device */ 1499 if (!ctx->decrypted) { 1500 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1501 async); 1502 if (err < 0) { 1503 if (err == -EINPROGRESS) 1504 tls_advance_record_sn(sk, prot, 1505 &tls_ctx->rx); 1506 1507 return err; 1508 } 1509 } else { 1510 *zc = false; 1511 } 1512 1513 pad = padding_length(ctx, prot, skb); 1514 if (pad < 0) 1515 return pad; 1516 1517 rxm->full_len -= pad; 1518 rxm->offset += prot->prepend_size; 1519 rxm->full_len -= prot->overhead_size; 1520 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1521 ctx->decrypted = true; 1522 ctx->saved_data_ready(sk); 1523 } else { 1524 *zc = false; 1525 } 1526 1527 return err; 1528 } 1529 1530 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1531 struct scatterlist *sgout) 1532 { 1533 bool zc = true; 1534 int chunk; 1535 1536 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1537 } 1538 1539 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1540 unsigned int len) 1541 { 1542 struct tls_context *tls_ctx = tls_get_ctx(sk); 1543 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1544 1545 if (skb) { 1546 struct strp_msg *rxm = strp_msg(skb); 1547 1548 if (len < rxm->full_len) { 1549 rxm->offset += len; 1550 rxm->full_len -= len; 1551 return false; 1552 } 1553 consume_skb(skb); 1554 } 1555 1556 /* Finished with message */ 1557 ctx->recv_pkt = NULL; 1558 __strp_unpause(&ctx->strp); 1559 1560 return true; 1561 } 1562 1563 /* This function traverses the rx_list in tls receive context to copies the 1564 * decrypted records into the buffer provided by caller zero copy is not 1565 * true. Further, the records are removed from the rx_list if it is not a peek 1566 * case and the record has been consumed completely. 1567 */ 1568 static int process_rx_list(struct tls_sw_context_rx *ctx, 1569 struct msghdr *msg, 1570 u8 *control, 1571 bool *cmsg, 1572 size_t skip, 1573 size_t len, 1574 bool zc, 1575 bool is_peek) 1576 { 1577 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1578 u8 ctrl = *control; 1579 u8 msgc = *cmsg; 1580 struct tls_msg *tlm; 1581 ssize_t copied = 0; 1582 1583 /* Set the record type in 'control' if caller didn't pass it */ 1584 if (!ctrl && skb) { 1585 tlm = tls_msg(skb); 1586 ctrl = tlm->control; 1587 } 1588 1589 while (skip && skb) { 1590 struct strp_msg *rxm = strp_msg(skb); 1591 tlm = tls_msg(skb); 1592 1593 /* Cannot process a record of different type */ 1594 if (ctrl != tlm->control) 1595 return 0; 1596 1597 if (skip < rxm->full_len) 1598 break; 1599 1600 skip = skip - rxm->full_len; 1601 skb = skb_peek_next(skb, &ctx->rx_list); 1602 } 1603 1604 while (len && skb) { 1605 struct sk_buff *next_skb; 1606 struct strp_msg *rxm = strp_msg(skb); 1607 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1608 1609 tlm = tls_msg(skb); 1610 1611 /* Cannot process a record of different type */ 1612 if (ctrl != tlm->control) 1613 return 0; 1614 1615 /* Set record type if not already done. For a non-data record, 1616 * do not proceed if record type could not be copied. 1617 */ 1618 if (!msgc) { 1619 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1620 sizeof(ctrl), &ctrl); 1621 msgc = true; 1622 if (ctrl != TLS_RECORD_TYPE_DATA) { 1623 if (cerr || msg->msg_flags & MSG_CTRUNC) 1624 return -EIO; 1625 1626 *cmsg = msgc; 1627 } 1628 } 1629 1630 if (!zc || (rxm->full_len - skip) > len) { 1631 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1632 msg, chunk); 1633 if (err < 0) 1634 return err; 1635 } 1636 1637 len = len - chunk; 1638 copied = copied + chunk; 1639 1640 /* Consume the data from record if it is non-peek case*/ 1641 if (!is_peek) { 1642 rxm->offset = rxm->offset + chunk; 1643 rxm->full_len = rxm->full_len - chunk; 1644 1645 /* Return if there is unconsumed data in the record */ 1646 if (rxm->full_len - skip) 1647 break; 1648 } 1649 1650 /* The remaining skip-bytes must lie in 1st record in rx_list. 1651 * So from the 2nd record, 'skip' should be 0. 1652 */ 1653 skip = 0; 1654 1655 if (msg) 1656 msg->msg_flags |= MSG_EOR; 1657 1658 next_skb = skb_peek_next(skb, &ctx->rx_list); 1659 1660 if (!is_peek) { 1661 skb_unlink(skb, &ctx->rx_list); 1662 consume_skb(skb); 1663 } 1664 1665 skb = next_skb; 1666 } 1667 1668 *control = ctrl; 1669 return copied; 1670 } 1671 1672 int tls_sw_recvmsg(struct sock *sk, 1673 struct msghdr *msg, 1674 size_t len, 1675 int nonblock, 1676 int flags, 1677 int *addr_len) 1678 { 1679 struct tls_context *tls_ctx = tls_get_ctx(sk); 1680 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1681 struct tls_prot_info *prot = &tls_ctx->prot_info; 1682 struct sk_psock *psock; 1683 unsigned char control = 0; 1684 ssize_t decrypted = 0; 1685 struct strp_msg *rxm; 1686 struct tls_msg *tlm; 1687 struct sk_buff *skb; 1688 ssize_t copied = 0; 1689 bool cmsg = false; 1690 int target, err = 0; 1691 long timeo; 1692 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1693 bool is_peek = flags & MSG_PEEK; 1694 int num_async = 0; 1695 1696 flags |= nonblock; 1697 1698 if (unlikely(flags & MSG_ERRQUEUE)) 1699 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1700 1701 psock = sk_psock_get(sk); 1702 lock_sock(sk); 1703 1704 /* Process pending decrypted records. It must be non-zero-copy */ 1705 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1706 is_peek); 1707 if (err < 0) { 1708 tls_err_abort(sk, err); 1709 goto end; 1710 } else { 1711 copied = err; 1712 } 1713 1714 if (len <= copied) 1715 goto recv_end; 1716 1717 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1718 len = len - copied; 1719 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1720 1721 while (len && (decrypted + copied < target || ctx->recv_pkt)) { 1722 bool retain_skb = false; 1723 bool zc = false; 1724 int to_decrypt; 1725 int chunk = 0; 1726 bool async_capable; 1727 bool async = false; 1728 1729 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1730 if (!skb) { 1731 if (psock) { 1732 int ret = __tcp_bpf_recvmsg(sk, psock, 1733 msg, len, flags); 1734 1735 if (ret > 0) { 1736 decrypted += ret; 1737 len -= ret; 1738 continue; 1739 } 1740 } 1741 goto recv_end; 1742 } else { 1743 tlm = tls_msg(skb); 1744 if (prot->version == TLS_1_3_VERSION) 1745 tlm->control = 0; 1746 else 1747 tlm->control = ctx->control; 1748 } 1749 1750 rxm = strp_msg(skb); 1751 1752 to_decrypt = rxm->full_len - prot->overhead_size; 1753 1754 if (to_decrypt <= len && !is_kvec && !is_peek && 1755 ctx->control == TLS_RECORD_TYPE_DATA && 1756 prot->version != TLS_1_3_VERSION) 1757 zc = true; 1758 1759 /* Do not use async mode if record is non-data */ 1760 if (ctx->control == TLS_RECORD_TYPE_DATA) 1761 async_capable = ctx->async_capable; 1762 else 1763 async_capable = false; 1764 1765 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1766 &chunk, &zc, async_capable); 1767 if (err < 0 && err != -EINPROGRESS) { 1768 tls_err_abort(sk, EBADMSG); 1769 goto recv_end; 1770 } 1771 1772 if (err == -EINPROGRESS) { 1773 async = true; 1774 num_async++; 1775 } else if (prot->version == TLS_1_3_VERSION) { 1776 tlm->control = ctx->control; 1777 } 1778 1779 /* If the type of records being processed is not known yet, 1780 * set it to record type just dequeued. If it is already known, 1781 * but does not match the record type just dequeued, go to end. 1782 * We always get record type here since for tls1.2, record type 1783 * is known just after record is dequeued from stream parser. 1784 * For tls1.3, we disable async. 1785 */ 1786 1787 if (!control) 1788 control = tlm->control; 1789 else if (control != tlm->control) 1790 goto recv_end; 1791 1792 if (!cmsg) { 1793 int cerr; 1794 1795 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1796 sizeof(control), &control); 1797 cmsg = true; 1798 if (control != TLS_RECORD_TYPE_DATA) { 1799 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1800 err = -EIO; 1801 goto recv_end; 1802 } 1803 } 1804 } 1805 1806 if (async) 1807 goto pick_next_record; 1808 1809 if (!zc) { 1810 if (rxm->full_len > len) { 1811 retain_skb = true; 1812 chunk = len; 1813 } else { 1814 chunk = rxm->full_len; 1815 } 1816 1817 err = skb_copy_datagram_msg(skb, rxm->offset, 1818 msg, chunk); 1819 if (err < 0) 1820 goto recv_end; 1821 1822 if (!is_peek) { 1823 rxm->offset = rxm->offset + chunk; 1824 rxm->full_len = rxm->full_len - chunk; 1825 } 1826 } 1827 1828 pick_next_record: 1829 if (chunk > len) 1830 chunk = len; 1831 1832 decrypted += chunk; 1833 len -= chunk; 1834 1835 /* For async or peek case, queue the current skb */ 1836 if (async || is_peek || retain_skb) { 1837 skb_queue_tail(&ctx->rx_list, skb); 1838 skb = NULL; 1839 } 1840 1841 if (tls_sw_advance_skb(sk, skb, chunk)) { 1842 /* Return full control message to 1843 * userspace before trying to parse 1844 * another message type 1845 */ 1846 msg->msg_flags |= MSG_EOR; 1847 if (ctx->control != TLS_RECORD_TYPE_DATA) 1848 goto recv_end; 1849 } else { 1850 break; 1851 } 1852 } 1853 1854 recv_end: 1855 if (num_async) { 1856 /* Wait for all previously submitted records to be decrypted */ 1857 smp_store_mb(ctx->async_notify, true); 1858 if (atomic_read(&ctx->decrypt_pending)) { 1859 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1860 if (err) { 1861 /* one of async decrypt failed */ 1862 tls_err_abort(sk, err); 1863 copied = 0; 1864 decrypted = 0; 1865 goto end; 1866 } 1867 } else { 1868 reinit_completion(&ctx->async_wait.completion); 1869 } 1870 WRITE_ONCE(ctx->async_notify, false); 1871 1872 /* Drain records from the rx_list & copy if required */ 1873 if (is_peek || is_kvec) 1874 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1875 decrypted, false, is_peek); 1876 else 1877 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1878 decrypted, true, is_peek); 1879 if (err < 0) { 1880 tls_err_abort(sk, err); 1881 copied = 0; 1882 goto end; 1883 } 1884 } 1885 1886 copied += decrypted; 1887 1888 end: 1889 release_sock(sk); 1890 if (psock) 1891 sk_psock_put(sk, psock); 1892 return copied ? : err; 1893 } 1894 1895 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1896 struct pipe_inode_info *pipe, 1897 size_t len, unsigned int flags) 1898 { 1899 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1900 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1901 struct strp_msg *rxm = NULL; 1902 struct sock *sk = sock->sk; 1903 struct sk_buff *skb; 1904 ssize_t copied = 0; 1905 int err = 0; 1906 long timeo; 1907 int chunk; 1908 bool zc = false; 1909 1910 lock_sock(sk); 1911 1912 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1913 1914 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1915 if (!skb) 1916 goto splice_read_end; 1917 1918 if (!ctx->decrypted) { 1919 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1920 1921 /* splice does not support reading control messages */ 1922 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1923 err = -ENOTSUPP; 1924 goto splice_read_end; 1925 } 1926 1927 if (err < 0) { 1928 tls_err_abort(sk, EBADMSG); 1929 goto splice_read_end; 1930 } 1931 ctx->decrypted = true; 1932 } 1933 rxm = strp_msg(skb); 1934 1935 chunk = min_t(unsigned int, rxm->full_len, len); 1936 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1937 if (copied < 0) 1938 goto splice_read_end; 1939 1940 if (likely(!(flags & MSG_PEEK))) 1941 tls_sw_advance_skb(sk, skb, copied); 1942 1943 splice_read_end: 1944 release_sock(sk); 1945 return copied ? : err; 1946 } 1947 1948 bool tls_sw_stream_read(const struct sock *sk) 1949 { 1950 struct tls_context *tls_ctx = tls_get_ctx(sk); 1951 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1952 bool ingress_empty = true; 1953 struct sk_psock *psock; 1954 1955 rcu_read_lock(); 1956 psock = sk_psock(sk); 1957 if (psock) 1958 ingress_empty = list_empty(&psock->ingress_msg); 1959 rcu_read_unlock(); 1960 1961 return !ingress_empty || ctx->recv_pkt || 1962 !skb_queue_empty(&ctx->rx_list); 1963 } 1964 1965 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1966 { 1967 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1968 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1969 struct tls_prot_info *prot = &tls_ctx->prot_info; 1970 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1971 struct strp_msg *rxm = strp_msg(skb); 1972 size_t cipher_overhead; 1973 size_t data_len = 0; 1974 int ret; 1975 1976 /* Verify that we have a full TLS header, or wait for more data */ 1977 if (rxm->offset + prot->prepend_size > skb->len) 1978 return 0; 1979 1980 /* Sanity-check size of on-stack buffer. */ 1981 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1982 ret = -EINVAL; 1983 goto read_failure; 1984 } 1985 1986 /* Linearize header to local buffer */ 1987 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1988 1989 if (ret < 0) 1990 goto read_failure; 1991 1992 ctx->control = header[0]; 1993 1994 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1995 1996 cipher_overhead = prot->tag_size; 1997 if (prot->version != TLS_1_3_VERSION) 1998 cipher_overhead += prot->iv_size; 1999 2000 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2001 prot->tail_size) { 2002 ret = -EMSGSIZE; 2003 goto read_failure; 2004 } 2005 if (data_len < cipher_overhead) { 2006 ret = -EBADMSG; 2007 goto read_failure; 2008 } 2009 2010 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2011 if (header[1] != TLS_1_2_VERSION_MINOR || 2012 header[2] != TLS_1_2_VERSION_MAJOR) { 2013 ret = -EINVAL; 2014 goto read_failure; 2015 } 2016 2017 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2018 TCP_SKB_CB(skb)->seq + rxm->offset); 2019 return data_len + TLS_HEADER_SIZE; 2020 2021 read_failure: 2022 tls_err_abort(strp->sk, ret); 2023 2024 return ret; 2025 } 2026 2027 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2028 { 2029 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2030 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2031 2032 ctx->decrypted = false; 2033 2034 ctx->recv_pkt = skb; 2035 strp_pause(strp); 2036 2037 ctx->saved_data_ready(strp->sk); 2038 } 2039 2040 static void tls_data_ready(struct sock *sk) 2041 { 2042 struct tls_context *tls_ctx = tls_get_ctx(sk); 2043 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2044 struct sk_psock *psock; 2045 2046 strp_data_ready(&ctx->strp); 2047 2048 psock = sk_psock_get(sk); 2049 if (psock && !list_empty(&psock->ingress_msg)) { 2050 ctx->saved_data_ready(sk); 2051 sk_psock_put(sk, psock); 2052 } 2053 } 2054 2055 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2056 { 2057 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2058 2059 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2060 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2061 cancel_delayed_work_sync(&ctx->tx_work.work); 2062 } 2063 2064 void tls_sw_release_resources_tx(struct sock *sk) 2065 { 2066 struct tls_context *tls_ctx = tls_get_ctx(sk); 2067 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2068 struct tls_rec *rec, *tmp; 2069 2070 /* Wait for any pending async encryptions to complete */ 2071 smp_store_mb(ctx->async_notify, true); 2072 if (atomic_read(&ctx->encrypt_pending)) 2073 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2074 2075 tls_tx_records(sk, -1); 2076 2077 /* Free up un-sent records in tx_list. First, free 2078 * the partially sent record if any at head of tx_list. 2079 */ 2080 if (tls_free_partial_record(sk, tls_ctx)) { 2081 rec = list_first_entry(&ctx->tx_list, 2082 struct tls_rec, list); 2083 list_del(&rec->list); 2084 sk_msg_free(sk, &rec->msg_plaintext); 2085 kfree(rec); 2086 } 2087 2088 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2089 list_del(&rec->list); 2090 sk_msg_free(sk, &rec->msg_encrypted); 2091 sk_msg_free(sk, &rec->msg_plaintext); 2092 kfree(rec); 2093 } 2094 2095 crypto_free_aead(ctx->aead_send); 2096 tls_free_open_rec(sk); 2097 } 2098 2099 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2100 { 2101 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2102 2103 kfree(ctx); 2104 } 2105 2106 void tls_sw_release_resources_rx(struct sock *sk) 2107 { 2108 struct tls_context *tls_ctx = tls_get_ctx(sk); 2109 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2110 2111 kfree(tls_ctx->rx.rec_seq); 2112 kfree(tls_ctx->rx.iv); 2113 2114 if (ctx->aead_recv) { 2115 kfree_skb(ctx->recv_pkt); 2116 ctx->recv_pkt = NULL; 2117 skb_queue_purge(&ctx->rx_list); 2118 crypto_free_aead(ctx->aead_recv); 2119 strp_stop(&ctx->strp); 2120 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2121 * we still want to strp_stop(), but sk->sk_data_ready was 2122 * never swapped. 2123 */ 2124 if (ctx->saved_data_ready) { 2125 write_lock_bh(&sk->sk_callback_lock); 2126 sk->sk_data_ready = ctx->saved_data_ready; 2127 write_unlock_bh(&sk->sk_callback_lock); 2128 } 2129 } 2130 } 2131 2132 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2133 { 2134 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2135 2136 strp_done(&ctx->strp); 2137 } 2138 2139 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2140 { 2141 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2142 2143 kfree(ctx); 2144 } 2145 2146 void tls_sw_free_resources_rx(struct sock *sk) 2147 { 2148 struct tls_context *tls_ctx = tls_get_ctx(sk); 2149 2150 tls_sw_release_resources_rx(sk); 2151 tls_sw_free_ctx_rx(tls_ctx); 2152 } 2153 2154 /* The work handler to transmitt the encrypted records in tx_list */ 2155 static void tx_work_handler(struct work_struct *work) 2156 { 2157 struct delayed_work *delayed_work = to_delayed_work(work); 2158 struct tx_work *tx_work = container_of(delayed_work, 2159 struct tx_work, work); 2160 struct sock *sk = tx_work->sk; 2161 struct tls_context *tls_ctx = tls_get_ctx(sk); 2162 struct tls_sw_context_tx *ctx; 2163 2164 if (unlikely(!tls_ctx)) 2165 return; 2166 2167 ctx = tls_sw_ctx_tx(tls_ctx); 2168 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2169 return; 2170 2171 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2172 return; 2173 lock_sock(sk); 2174 tls_tx_records(sk, -1); 2175 release_sock(sk); 2176 } 2177 2178 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2179 { 2180 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2181 2182 /* Schedule the transmission if tx list is ready */ 2183 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) { 2184 /* Schedule the transmission */ 2185 if (!test_and_set_bit(BIT_TX_SCHEDULED, 2186 &tx_ctx->tx_bitmask)) 2187 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2188 } 2189 } 2190 2191 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2192 { 2193 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2194 2195 write_lock_bh(&sk->sk_callback_lock); 2196 rx_ctx->saved_data_ready = sk->sk_data_ready; 2197 sk->sk_data_ready = tls_data_ready; 2198 write_unlock_bh(&sk->sk_callback_lock); 2199 2200 strp_check_rcv(&rx_ctx->strp); 2201 } 2202 2203 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2204 { 2205 struct tls_context *tls_ctx = tls_get_ctx(sk); 2206 struct tls_prot_info *prot = &tls_ctx->prot_info; 2207 struct tls_crypto_info *crypto_info; 2208 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2209 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2210 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2211 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2212 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2213 struct cipher_context *cctx; 2214 struct crypto_aead **aead; 2215 struct strp_callbacks cb; 2216 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2217 struct crypto_tfm *tfm; 2218 char *iv, *rec_seq, *key, *salt, *cipher_name; 2219 size_t keysize; 2220 int rc = 0; 2221 2222 if (!ctx) { 2223 rc = -EINVAL; 2224 goto out; 2225 } 2226 2227 if (tx) { 2228 if (!ctx->priv_ctx_tx) { 2229 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2230 if (!sw_ctx_tx) { 2231 rc = -ENOMEM; 2232 goto out; 2233 } 2234 ctx->priv_ctx_tx = sw_ctx_tx; 2235 } else { 2236 sw_ctx_tx = 2237 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2238 } 2239 } else { 2240 if (!ctx->priv_ctx_rx) { 2241 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2242 if (!sw_ctx_rx) { 2243 rc = -ENOMEM; 2244 goto out; 2245 } 2246 ctx->priv_ctx_rx = sw_ctx_rx; 2247 } else { 2248 sw_ctx_rx = 2249 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2250 } 2251 } 2252 2253 if (tx) { 2254 crypto_init_wait(&sw_ctx_tx->async_wait); 2255 crypto_info = &ctx->crypto_send.info; 2256 cctx = &ctx->tx; 2257 aead = &sw_ctx_tx->aead_send; 2258 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2259 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2260 sw_ctx_tx->tx_work.sk = sk; 2261 } else { 2262 crypto_init_wait(&sw_ctx_rx->async_wait); 2263 crypto_info = &ctx->crypto_recv.info; 2264 cctx = &ctx->rx; 2265 skb_queue_head_init(&sw_ctx_rx->rx_list); 2266 aead = &sw_ctx_rx->aead_recv; 2267 } 2268 2269 switch (crypto_info->cipher_type) { 2270 case TLS_CIPHER_AES_GCM_128: { 2271 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2272 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2273 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2274 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2275 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2276 rec_seq = 2277 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2278 gcm_128_info = 2279 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2280 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2281 key = gcm_128_info->key; 2282 salt = gcm_128_info->salt; 2283 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2284 cipher_name = "gcm(aes)"; 2285 break; 2286 } 2287 case TLS_CIPHER_AES_GCM_256: { 2288 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2289 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2290 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2291 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2292 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2293 rec_seq = 2294 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2295 gcm_256_info = 2296 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2297 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2298 key = gcm_256_info->key; 2299 salt = gcm_256_info->salt; 2300 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2301 cipher_name = "gcm(aes)"; 2302 break; 2303 } 2304 case TLS_CIPHER_AES_CCM_128: { 2305 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2306 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2307 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2308 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv; 2309 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2310 rec_seq = 2311 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq; 2312 ccm_128_info = 2313 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info; 2314 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2315 key = ccm_128_info->key; 2316 salt = ccm_128_info->salt; 2317 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2318 cipher_name = "ccm(aes)"; 2319 break; 2320 } 2321 default: 2322 rc = -EINVAL; 2323 goto free_priv; 2324 } 2325 2326 /* Sanity-check the sizes for stack allocations. */ 2327 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2328 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) { 2329 rc = -EINVAL; 2330 goto free_priv; 2331 } 2332 2333 if (crypto_info->version == TLS_1_3_VERSION) { 2334 nonce_size = 0; 2335 prot->aad_size = TLS_HEADER_SIZE; 2336 prot->tail_size = 1; 2337 } else { 2338 prot->aad_size = TLS_AAD_SPACE_SIZE; 2339 prot->tail_size = 0; 2340 } 2341 2342 prot->version = crypto_info->version; 2343 prot->cipher_type = crypto_info->cipher_type; 2344 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2345 prot->tag_size = tag_size; 2346 prot->overhead_size = prot->prepend_size + 2347 prot->tag_size + prot->tail_size; 2348 prot->iv_size = iv_size; 2349 prot->salt_size = salt_size; 2350 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2351 if (!cctx->iv) { 2352 rc = -ENOMEM; 2353 goto free_priv; 2354 } 2355 /* Note: 128 & 256 bit salt are the same size */ 2356 prot->rec_seq_size = rec_seq_size; 2357 memcpy(cctx->iv, salt, salt_size); 2358 memcpy(cctx->iv + salt_size, iv, iv_size); 2359 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2360 if (!cctx->rec_seq) { 2361 rc = -ENOMEM; 2362 goto free_iv; 2363 } 2364 2365 if (!*aead) { 2366 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2367 if (IS_ERR(*aead)) { 2368 rc = PTR_ERR(*aead); 2369 *aead = NULL; 2370 goto free_rec_seq; 2371 } 2372 } 2373 2374 ctx->push_pending_record = tls_sw_push_pending_record; 2375 2376 rc = crypto_aead_setkey(*aead, key, keysize); 2377 2378 if (rc) 2379 goto free_aead; 2380 2381 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2382 if (rc) 2383 goto free_aead; 2384 2385 if (sw_ctx_rx) { 2386 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2387 2388 if (crypto_info->version == TLS_1_3_VERSION) 2389 sw_ctx_rx->async_capable = false; 2390 else 2391 sw_ctx_rx->async_capable = 2392 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 2393 2394 /* Set up strparser */ 2395 memset(&cb, 0, sizeof(cb)); 2396 cb.rcv_msg = tls_queue; 2397 cb.parse_msg = tls_read_size; 2398 2399 strp_init(&sw_ctx_rx->strp, sk, &cb); 2400 } 2401 2402 goto out; 2403 2404 free_aead: 2405 crypto_free_aead(*aead); 2406 *aead = NULL; 2407 free_rec_seq: 2408 kfree(cctx->rec_seq); 2409 cctx->rec_seq = NULL; 2410 free_iv: 2411 kfree(cctx->iv); 2412 cctx->iv = NULL; 2413 free_priv: 2414 if (tx) { 2415 kfree(ctx->priv_ctx_tx); 2416 ctx->priv_ctx_tx = NULL; 2417 } else { 2418 kfree(ctx->priv_ctx_rx); 2419 ctx->priv_ctx_rx = NULL; 2420 } 2421 out: 2422 return rc; 2423 } 2424