xref: /openbmc/linux/net/tls/tls_sw.c (revision 7c0afcad)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52 
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55 
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65 
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68 
69                 WARN_ON(start > offset + len);
70 
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84 
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88 
89                         WARN_ON(start > offset + len);
90 
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112 
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120 
121 static int padding_length(struct tls_sw_context_rx *ctx,
122 			  struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 	struct strp_msg *rxm = strp_msg(skb);
125 	int sub = 0;
126 
127 	/* Determine zero-padding length */
128 	if (prot->version == TLS_1_3_VERSION) {
129 		char content_type = 0;
130 		int err;
131 		int back = 17;
132 
133 		while (content_type == 0) {
134 			if (back > rxm->full_len - prot->prepend_size)
135 				return -EBADMSG;
136 			err = skb_copy_bits(skb,
137 					    rxm->offset + rxm->full_len - back,
138 					    &content_type, 1);
139 			if (err)
140 				return err;
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		if (err == -EBADMSG)
172 			TLS_INC_STATS(sock_net(skb->sk),
173 				      LINUX_MIB_TLSDECRYPTERROR);
174 		ctx->async_wait.err = err;
175 		tls_err_abort(skb->sk, err);
176 	} else {
177 		struct strp_msg *rxm = strp_msg(skb);
178 		int pad;
179 
180 		pad = padding_length(ctx, prot, skb);
181 		if (pad < 0) {
182 			ctx->async_wait.err = pad;
183 			tls_err_abort(skb->sk, pad);
184 		} else {
185 			rxm->full_len -= pad;
186 			rxm->offset += prot->prepend_size;
187 			rxm->full_len -= prot->overhead_size;
188 		}
189 	}
190 
191 	/* After using skb->sk to propagate sk through crypto async callback
192 	 * we need to NULL it again.
193 	 */
194 	skb->sk = NULL;
195 
196 
197 	/* Free the destination pages if skb was not decrypted inplace */
198 	if (sgout != sgin) {
199 		/* Skip the first S/G entry as it points to AAD */
200 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201 			if (!sg)
202 				break;
203 			put_page(sg_page(sg));
204 		}
205 	}
206 
207 	kfree(aead_req);
208 
209 	spin_lock_bh(&ctx->decrypt_compl_lock);
210 	pending = atomic_dec_return(&ctx->decrypt_pending);
211 
212 	if (!pending && ctx->async_notify)
213 		complete(&ctx->async_wait.completion);
214 	spin_unlock_bh(&ctx->decrypt_compl_lock);
215 }
216 
217 static int tls_do_decryption(struct sock *sk,
218 			     struct sk_buff *skb,
219 			     struct scatterlist *sgin,
220 			     struct scatterlist *sgout,
221 			     char *iv_recv,
222 			     size_t data_len,
223 			     struct aead_request *aead_req,
224 			     bool async)
225 {
226 	struct tls_context *tls_ctx = tls_get_ctx(sk);
227 	struct tls_prot_info *prot = &tls_ctx->prot_info;
228 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
229 	int ret;
230 
231 	aead_request_set_tfm(aead_req, ctx->aead_recv);
232 	aead_request_set_ad(aead_req, prot->aad_size);
233 	aead_request_set_crypt(aead_req, sgin, sgout,
234 			       data_len + prot->tag_size,
235 			       (u8 *)iv_recv);
236 
237 	if (async) {
238 		/* Using skb->sk to push sk through to crypto async callback
239 		 * handler. This allows propagating errors up to the socket
240 		 * if needed. It _must_ be cleared in the async handler
241 		 * before consume_skb is called. We _know_ skb->sk is NULL
242 		 * because it is a clone from strparser.
243 		 */
244 		skb->sk = sk;
245 		aead_request_set_callback(aead_req,
246 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
247 					  tls_decrypt_done, skb);
248 		atomic_inc(&ctx->decrypt_pending);
249 	} else {
250 		aead_request_set_callback(aead_req,
251 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
252 					  crypto_req_done, &ctx->async_wait);
253 	}
254 
255 	ret = crypto_aead_decrypt(aead_req);
256 	if (ret == -EINPROGRESS) {
257 		if (async)
258 			return ret;
259 
260 		ret = crypto_wait_req(ret, &ctx->async_wait);
261 	}
262 
263 	if (async)
264 		atomic_dec(&ctx->decrypt_pending);
265 
266 	return ret;
267 }
268 
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271 	struct tls_context *tls_ctx = tls_get_ctx(sk);
272 	struct tls_prot_info *prot = &tls_ctx->prot_info;
273 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274 	struct tls_rec *rec = ctx->open_rec;
275 
276 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277 	if (target_size > 0)
278 		target_size += prot->overhead_size;
279 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281 
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284 	struct tls_context *tls_ctx = tls_get_ctx(sk);
285 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286 	struct tls_rec *rec = ctx->open_rec;
287 	struct sk_msg *msg_en = &rec->msg_encrypted;
288 
289 	return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291 
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
295 	struct tls_prot_info *prot = &tls_ctx->prot_info;
296 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297 	struct tls_rec *rec = ctx->open_rec;
298 	struct sk_msg *msg_pl = &rec->msg_plaintext;
299 	struct sk_msg *msg_en = &rec->msg_encrypted;
300 	int skip, len;
301 
302 	/* We add page references worth len bytes from encrypted sg
303 	 * at the end of plaintext sg. It is guaranteed that msg_en
304 	 * has enough required room (ensured by caller).
305 	 */
306 	len = required - msg_pl->sg.size;
307 
308 	/* Skip initial bytes in msg_en's data to be able to use
309 	 * same offset of both plain and encrypted data.
310 	 */
311 	skip = prot->prepend_size + msg_pl->sg.size;
312 
313 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315 
316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318 	struct tls_context *tls_ctx = tls_get_ctx(sk);
319 	struct tls_prot_info *prot = &tls_ctx->prot_info;
320 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321 	struct sk_msg *msg_pl, *msg_en;
322 	struct tls_rec *rec;
323 	int mem_size;
324 
325 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326 
327 	rec = kzalloc(mem_size, sk->sk_allocation);
328 	if (!rec)
329 		return NULL;
330 
331 	msg_pl = &rec->msg_plaintext;
332 	msg_en = &rec->msg_encrypted;
333 
334 	sk_msg_init(msg_pl);
335 	sk_msg_init(msg_en);
336 
337 	sg_init_table(rec->sg_aead_in, 2);
338 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339 	sg_unmark_end(&rec->sg_aead_in[1]);
340 
341 	sg_init_table(rec->sg_aead_out, 2);
342 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343 	sg_unmark_end(&rec->sg_aead_out[1]);
344 
345 	return rec;
346 }
347 
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350 	sk_msg_free(sk, &rec->msg_encrypted);
351 	sk_msg_free(sk, &rec->msg_plaintext);
352 	kfree(rec);
353 }
354 
355 static void tls_free_open_rec(struct sock *sk)
356 {
357 	struct tls_context *tls_ctx = tls_get_ctx(sk);
358 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 	struct tls_rec *rec = ctx->open_rec;
360 
361 	if (rec) {
362 		tls_free_rec(sk, rec);
363 		ctx->open_rec = NULL;
364 	}
365 }
366 
367 int tls_tx_records(struct sock *sk, int flags)
368 {
369 	struct tls_context *tls_ctx = tls_get_ctx(sk);
370 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371 	struct tls_rec *rec, *tmp;
372 	struct sk_msg *msg_en;
373 	int tx_flags, rc = 0;
374 
375 	if (tls_is_partially_sent_record(tls_ctx)) {
376 		rec = list_first_entry(&ctx->tx_list,
377 				       struct tls_rec, list);
378 
379 		if (flags == -1)
380 			tx_flags = rec->tx_flags;
381 		else
382 			tx_flags = flags;
383 
384 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385 		if (rc)
386 			goto tx_err;
387 
388 		/* Full record has been transmitted.
389 		 * Remove the head of tx_list
390 		 */
391 		list_del(&rec->list);
392 		sk_msg_free(sk, &rec->msg_plaintext);
393 		kfree(rec);
394 	}
395 
396 	/* Tx all ready records */
397 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398 		if (READ_ONCE(rec->tx_ready)) {
399 			if (flags == -1)
400 				tx_flags = rec->tx_flags;
401 			else
402 				tx_flags = flags;
403 
404 			msg_en = &rec->msg_encrypted;
405 			rc = tls_push_sg(sk, tls_ctx,
406 					 &msg_en->sg.data[msg_en->sg.curr],
407 					 0, tx_flags);
408 			if (rc)
409 				goto tx_err;
410 
411 			list_del(&rec->list);
412 			sk_msg_free(sk, &rec->msg_plaintext);
413 			kfree(rec);
414 		} else {
415 			break;
416 		}
417 	}
418 
419 tx_err:
420 	if (rc < 0 && rc != -EAGAIN)
421 		tls_err_abort(sk, EBADMSG);
422 
423 	return rc;
424 }
425 
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428 	struct aead_request *aead_req = (struct aead_request *)req;
429 	struct sock *sk = req->data;
430 	struct tls_context *tls_ctx = tls_get_ctx(sk);
431 	struct tls_prot_info *prot = &tls_ctx->prot_info;
432 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433 	struct scatterlist *sge;
434 	struct sk_msg *msg_en;
435 	struct tls_rec *rec;
436 	bool ready = false;
437 	int pending;
438 
439 	rec = container_of(aead_req, struct tls_rec, aead_req);
440 	msg_en = &rec->msg_encrypted;
441 
442 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443 	sge->offset -= prot->prepend_size;
444 	sge->length += prot->prepend_size;
445 
446 	/* Check if error is previously set on socket */
447 	if (err || sk->sk_err) {
448 		rec = NULL;
449 
450 		/* If err is already set on socket, return the same code */
451 		if (sk->sk_err) {
452 			ctx->async_wait.err = sk->sk_err;
453 		} else {
454 			ctx->async_wait.err = err;
455 			tls_err_abort(sk, err);
456 		}
457 	}
458 
459 	if (rec) {
460 		struct tls_rec *first_rec;
461 
462 		/* Mark the record as ready for transmission */
463 		smp_store_mb(rec->tx_ready, true);
464 
465 		/* If received record is at head of tx_list, schedule tx */
466 		first_rec = list_first_entry(&ctx->tx_list,
467 					     struct tls_rec, list);
468 		if (rec == first_rec)
469 			ready = true;
470 	}
471 
472 	spin_lock_bh(&ctx->encrypt_compl_lock);
473 	pending = atomic_dec_return(&ctx->encrypt_pending);
474 
475 	if (!pending && ctx->async_notify)
476 		complete(&ctx->async_wait.completion);
477 	spin_unlock_bh(&ctx->encrypt_compl_lock);
478 
479 	if (!ready)
480 		return;
481 
482 	/* Schedule the transmission */
483 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
484 		schedule_delayed_work(&ctx->tx_work.work, 1);
485 }
486 
487 static int tls_do_encryption(struct sock *sk,
488 			     struct tls_context *tls_ctx,
489 			     struct tls_sw_context_tx *ctx,
490 			     struct aead_request *aead_req,
491 			     size_t data_len, u32 start)
492 {
493 	struct tls_prot_info *prot = &tls_ctx->prot_info;
494 	struct tls_rec *rec = ctx->open_rec;
495 	struct sk_msg *msg_en = &rec->msg_encrypted;
496 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
497 	int rc, iv_offset = 0;
498 
499 	/* For CCM based ciphers, first byte of IV is a constant */
500 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
501 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
502 		iv_offset = 1;
503 	}
504 
505 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506 	       prot->iv_size + prot->salt_size);
507 
508 	xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
509 
510 	sge->offset += prot->prepend_size;
511 	sge->length -= prot->prepend_size;
512 
513 	msg_en->sg.curr = start;
514 
515 	aead_request_set_tfm(aead_req, ctx->aead_send);
516 	aead_request_set_ad(aead_req, prot->aad_size);
517 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
518 			       rec->sg_aead_out,
519 			       data_len, rec->iv_data);
520 
521 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
522 				  tls_encrypt_done, sk);
523 
524 	/* Add the record in tx_list */
525 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
526 	atomic_inc(&ctx->encrypt_pending);
527 
528 	rc = crypto_aead_encrypt(aead_req);
529 	if (!rc || rc != -EINPROGRESS) {
530 		atomic_dec(&ctx->encrypt_pending);
531 		sge->offset -= prot->prepend_size;
532 		sge->length += prot->prepend_size;
533 	}
534 
535 	if (!rc) {
536 		WRITE_ONCE(rec->tx_ready, true);
537 	} else if (rc != -EINPROGRESS) {
538 		list_del(&rec->list);
539 		return rc;
540 	}
541 
542 	/* Unhook the record from context if encryption is not failure */
543 	ctx->open_rec = NULL;
544 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
545 	return rc;
546 }
547 
548 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
549 				 struct tls_rec **to, struct sk_msg *msg_opl,
550 				 struct sk_msg *msg_oen, u32 split_point,
551 				 u32 tx_overhead_size, u32 *orig_end)
552 {
553 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
554 	struct scatterlist *sge, *osge, *nsge;
555 	u32 orig_size = msg_opl->sg.size;
556 	struct scatterlist tmp = { };
557 	struct sk_msg *msg_npl;
558 	struct tls_rec *new;
559 	int ret;
560 
561 	new = tls_get_rec(sk);
562 	if (!new)
563 		return -ENOMEM;
564 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
565 			   tx_overhead_size, 0);
566 	if (ret < 0) {
567 		tls_free_rec(sk, new);
568 		return ret;
569 	}
570 
571 	*orig_end = msg_opl->sg.end;
572 	i = msg_opl->sg.start;
573 	sge = sk_msg_elem(msg_opl, i);
574 	while (apply && sge->length) {
575 		if (sge->length > apply) {
576 			u32 len = sge->length - apply;
577 
578 			get_page(sg_page(sge));
579 			sg_set_page(&tmp, sg_page(sge), len,
580 				    sge->offset + apply);
581 			sge->length = apply;
582 			bytes += apply;
583 			apply = 0;
584 		} else {
585 			apply -= sge->length;
586 			bytes += sge->length;
587 		}
588 
589 		sk_msg_iter_var_next(i);
590 		if (i == msg_opl->sg.end)
591 			break;
592 		sge = sk_msg_elem(msg_opl, i);
593 	}
594 
595 	msg_opl->sg.end = i;
596 	msg_opl->sg.curr = i;
597 	msg_opl->sg.copybreak = 0;
598 	msg_opl->apply_bytes = 0;
599 	msg_opl->sg.size = bytes;
600 
601 	msg_npl = &new->msg_plaintext;
602 	msg_npl->apply_bytes = apply;
603 	msg_npl->sg.size = orig_size - bytes;
604 
605 	j = msg_npl->sg.start;
606 	nsge = sk_msg_elem(msg_npl, j);
607 	if (tmp.length) {
608 		memcpy(nsge, &tmp, sizeof(*nsge));
609 		sk_msg_iter_var_next(j);
610 		nsge = sk_msg_elem(msg_npl, j);
611 	}
612 
613 	osge = sk_msg_elem(msg_opl, i);
614 	while (osge->length) {
615 		memcpy(nsge, osge, sizeof(*nsge));
616 		sg_unmark_end(nsge);
617 		sk_msg_iter_var_next(i);
618 		sk_msg_iter_var_next(j);
619 		if (i == *orig_end)
620 			break;
621 		osge = sk_msg_elem(msg_opl, i);
622 		nsge = sk_msg_elem(msg_npl, j);
623 	}
624 
625 	msg_npl->sg.end = j;
626 	msg_npl->sg.curr = j;
627 	msg_npl->sg.copybreak = 0;
628 
629 	*to = new;
630 	return 0;
631 }
632 
633 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
634 				  struct tls_rec *from, u32 orig_end)
635 {
636 	struct sk_msg *msg_npl = &from->msg_plaintext;
637 	struct sk_msg *msg_opl = &to->msg_plaintext;
638 	struct scatterlist *osge, *nsge;
639 	u32 i, j;
640 
641 	i = msg_opl->sg.end;
642 	sk_msg_iter_var_prev(i);
643 	j = msg_npl->sg.start;
644 
645 	osge = sk_msg_elem(msg_opl, i);
646 	nsge = sk_msg_elem(msg_npl, j);
647 
648 	if (sg_page(osge) == sg_page(nsge) &&
649 	    osge->offset + osge->length == nsge->offset) {
650 		osge->length += nsge->length;
651 		put_page(sg_page(nsge));
652 	}
653 
654 	msg_opl->sg.end = orig_end;
655 	msg_opl->sg.curr = orig_end;
656 	msg_opl->sg.copybreak = 0;
657 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
658 	msg_opl->sg.size += msg_npl->sg.size;
659 
660 	sk_msg_free(sk, &to->msg_encrypted);
661 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
662 
663 	kfree(from);
664 }
665 
666 static int tls_push_record(struct sock *sk, int flags,
667 			   unsigned char record_type)
668 {
669 	struct tls_context *tls_ctx = tls_get_ctx(sk);
670 	struct tls_prot_info *prot = &tls_ctx->prot_info;
671 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
672 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
673 	u32 i, split_point, orig_end;
674 	struct sk_msg *msg_pl, *msg_en;
675 	struct aead_request *req;
676 	bool split;
677 	int rc;
678 
679 	if (!rec)
680 		return 0;
681 
682 	msg_pl = &rec->msg_plaintext;
683 	msg_en = &rec->msg_encrypted;
684 
685 	split_point = msg_pl->apply_bytes;
686 	split = split_point && split_point < msg_pl->sg.size;
687 	if (unlikely((!split &&
688 		      msg_pl->sg.size +
689 		      prot->overhead_size > msg_en->sg.size) ||
690 		     (split &&
691 		      split_point +
692 		      prot->overhead_size > msg_en->sg.size))) {
693 		split = true;
694 		split_point = msg_en->sg.size;
695 	}
696 	if (split) {
697 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
698 					   split_point, prot->overhead_size,
699 					   &orig_end);
700 		if (rc < 0)
701 			return rc;
702 		/* This can happen if above tls_split_open_record allocates
703 		 * a single large encryption buffer instead of two smaller
704 		 * ones. In this case adjust pointers and continue without
705 		 * split.
706 		 */
707 		if (!msg_pl->sg.size) {
708 			tls_merge_open_record(sk, rec, tmp, orig_end);
709 			msg_pl = &rec->msg_plaintext;
710 			msg_en = &rec->msg_encrypted;
711 			split = false;
712 		}
713 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
714 			    prot->overhead_size);
715 	}
716 
717 	rec->tx_flags = flags;
718 	req = &rec->aead_req;
719 
720 	i = msg_pl->sg.end;
721 	sk_msg_iter_var_prev(i);
722 
723 	rec->content_type = record_type;
724 	if (prot->version == TLS_1_3_VERSION) {
725 		/* Add content type to end of message.  No padding added */
726 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
727 		sg_mark_end(&rec->sg_content_type);
728 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
729 			 &rec->sg_content_type);
730 	} else {
731 		sg_mark_end(sk_msg_elem(msg_pl, i));
732 	}
733 
734 	if (msg_pl->sg.end < msg_pl->sg.start) {
735 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
736 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
737 			 msg_pl->sg.data);
738 	}
739 
740 	i = msg_pl->sg.start;
741 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
742 
743 	i = msg_en->sg.end;
744 	sk_msg_iter_var_prev(i);
745 	sg_mark_end(sk_msg_elem(msg_en, i));
746 
747 	i = msg_en->sg.start;
748 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
749 
750 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
751 		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
752 		     record_type, prot->version);
753 
754 	tls_fill_prepend(tls_ctx,
755 			 page_address(sg_page(&msg_en->sg.data[i])) +
756 			 msg_en->sg.data[i].offset,
757 			 msg_pl->sg.size + prot->tail_size,
758 			 record_type, prot->version);
759 
760 	tls_ctx->pending_open_record_frags = false;
761 
762 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763 			       msg_pl->sg.size + prot->tail_size, i);
764 	if (rc < 0) {
765 		if (rc != -EINPROGRESS) {
766 			tls_err_abort(sk, EBADMSG);
767 			if (split) {
768 				tls_ctx->pending_open_record_frags = true;
769 				tls_merge_open_record(sk, rec, tmp, orig_end);
770 			}
771 		}
772 		ctx->async_capable = 1;
773 		return rc;
774 	} else if (split) {
775 		msg_pl = &tmp->msg_plaintext;
776 		msg_en = &tmp->msg_encrypted;
777 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778 		tls_ctx->pending_open_record_frags = true;
779 		ctx->open_rec = tmp;
780 	}
781 
782 	return tls_tx_records(sk, flags);
783 }
784 
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786 			       bool full_record, u8 record_type,
787 			       ssize_t *copied, int flags)
788 {
789 	struct tls_context *tls_ctx = tls_get_ctx(sk);
790 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791 	struct sk_msg msg_redir = { };
792 	struct sk_psock *psock;
793 	struct sock *sk_redir;
794 	struct tls_rec *rec;
795 	bool enospc, policy;
796 	int err = 0, send;
797 	u32 delta = 0;
798 
799 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800 	psock = sk_psock_get(sk);
801 	if (!psock || !policy) {
802 		err = tls_push_record(sk, flags, record_type);
803 		if (err && sk->sk_err == EBADMSG) {
804 			*copied -= sk_msg_free(sk, msg);
805 			tls_free_open_rec(sk);
806 			err = -sk->sk_err;
807 		}
808 		if (psock)
809 			sk_psock_put(sk, psock);
810 		return err;
811 	}
812 more_data:
813 	enospc = sk_msg_full(msg);
814 	if (psock->eval == __SK_NONE) {
815 		delta = msg->sg.size;
816 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817 		delta -= msg->sg.size;
818 	}
819 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820 	    !enospc && !full_record) {
821 		err = -ENOSPC;
822 		goto out_err;
823 	}
824 	msg->cork_bytes = 0;
825 	send = msg->sg.size;
826 	if (msg->apply_bytes && msg->apply_bytes < send)
827 		send = msg->apply_bytes;
828 
829 	switch (psock->eval) {
830 	case __SK_PASS:
831 		err = tls_push_record(sk, flags, record_type);
832 		if (err && sk->sk_err == EBADMSG) {
833 			*copied -= sk_msg_free(sk, msg);
834 			tls_free_open_rec(sk);
835 			err = -sk->sk_err;
836 			goto out_err;
837 		}
838 		break;
839 	case __SK_REDIRECT:
840 		sk_redir = psock->sk_redir;
841 		memcpy(&msg_redir, msg, sizeof(*msg));
842 		if (msg->apply_bytes < send)
843 			msg->apply_bytes = 0;
844 		else
845 			msg->apply_bytes -= send;
846 		sk_msg_return_zero(sk, msg, send);
847 		msg->sg.size -= send;
848 		release_sock(sk);
849 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850 		lock_sock(sk);
851 		if (err < 0) {
852 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
853 			msg->sg.size = 0;
854 		}
855 		if (msg->sg.size == 0)
856 			tls_free_open_rec(sk);
857 		break;
858 	case __SK_DROP:
859 	default:
860 		sk_msg_free_partial(sk, msg, send);
861 		if (msg->apply_bytes < send)
862 			msg->apply_bytes = 0;
863 		else
864 			msg->apply_bytes -= send;
865 		if (msg->sg.size == 0)
866 			tls_free_open_rec(sk);
867 		*copied -= (send + delta);
868 		err = -EACCES;
869 	}
870 
871 	if (likely(!err)) {
872 		bool reset_eval = !ctx->open_rec;
873 
874 		rec = ctx->open_rec;
875 		if (rec) {
876 			msg = &rec->msg_plaintext;
877 			if (!msg->apply_bytes)
878 				reset_eval = true;
879 		}
880 		if (reset_eval) {
881 			psock->eval = __SK_NONE;
882 			if (psock->sk_redir) {
883 				sock_put(psock->sk_redir);
884 				psock->sk_redir = NULL;
885 			}
886 		}
887 		if (rec)
888 			goto more_data;
889 	}
890  out_err:
891 	sk_psock_put(sk, psock);
892 	return err;
893 }
894 
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897 	struct tls_context *tls_ctx = tls_get_ctx(sk);
898 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899 	struct tls_rec *rec = ctx->open_rec;
900 	struct sk_msg *msg_pl;
901 	size_t copied;
902 
903 	if (!rec)
904 		return 0;
905 
906 	msg_pl = &rec->msg_plaintext;
907 	copied = msg_pl->sg.size;
908 	if (!copied)
909 		return 0;
910 
911 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912 				   &copied, flags);
913 }
914 
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918 	struct tls_context *tls_ctx = tls_get_ctx(sk);
919 	struct tls_prot_info *prot = &tls_ctx->prot_info;
920 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921 	bool async_capable = ctx->async_capable;
922 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
923 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924 	bool eor = !(msg->msg_flags & MSG_MORE);
925 	size_t try_to_copy;
926 	ssize_t copied = 0;
927 	struct sk_msg *msg_pl, *msg_en;
928 	struct tls_rec *rec;
929 	int required_size;
930 	int num_async = 0;
931 	bool full_record;
932 	int record_room;
933 	int num_zc = 0;
934 	int orig_size;
935 	int ret = 0;
936 	int pending;
937 
938 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939 			       MSG_CMSG_COMPAT))
940 		return -EOPNOTSUPP;
941 
942 	mutex_lock(&tls_ctx->tx_lock);
943 	lock_sock(sk);
944 
945 	if (unlikely(msg->msg_controllen)) {
946 		ret = tls_proccess_cmsg(sk, msg, &record_type);
947 		if (ret) {
948 			if (ret == -EINPROGRESS)
949 				num_async++;
950 			else if (ret != -EAGAIN)
951 				goto send_end;
952 		}
953 	}
954 
955 	while (msg_data_left(msg)) {
956 		if (sk->sk_err) {
957 			ret = -sk->sk_err;
958 			goto send_end;
959 		}
960 
961 		if (ctx->open_rec)
962 			rec = ctx->open_rec;
963 		else
964 			rec = ctx->open_rec = tls_get_rec(sk);
965 		if (!rec) {
966 			ret = -ENOMEM;
967 			goto send_end;
968 		}
969 
970 		msg_pl = &rec->msg_plaintext;
971 		msg_en = &rec->msg_encrypted;
972 
973 		orig_size = msg_pl->sg.size;
974 		full_record = false;
975 		try_to_copy = msg_data_left(msg);
976 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977 		if (try_to_copy >= record_room) {
978 			try_to_copy = record_room;
979 			full_record = true;
980 		}
981 
982 		required_size = msg_pl->sg.size + try_to_copy +
983 				prot->overhead_size;
984 
985 		if (!sk_stream_memory_free(sk))
986 			goto wait_for_sndbuf;
987 
988 alloc_encrypted:
989 		ret = tls_alloc_encrypted_msg(sk, required_size);
990 		if (ret) {
991 			if (ret != -ENOSPC)
992 				goto wait_for_memory;
993 
994 			/* Adjust try_to_copy according to the amount that was
995 			 * actually allocated. The difference is due
996 			 * to max sg elements limit
997 			 */
998 			try_to_copy -= required_size - msg_en->sg.size;
999 			full_record = true;
1000 		}
1001 
1002 		if (!is_kvec && (full_record || eor) && !async_capable) {
1003 			u32 first = msg_pl->sg.end;
1004 
1005 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006 							msg_pl, try_to_copy);
1007 			if (ret)
1008 				goto fallback_to_reg_send;
1009 
1010 			num_zc++;
1011 			copied += try_to_copy;
1012 
1013 			sk_msg_sg_copy_set(msg_pl, first);
1014 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015 						  record_type, &copied,
1016 						  msg->msg_flags);
1017 			if (ret) {
1018 				if (ret == -EINPROGRESS)
1019 					num_async++;
1020 				else if (ret == -ENOMEM)
1021 					goto wait_for_memory;
1022 				else if (ctx->open_rec && ret == -ENOSPC)
1023 					goto rollback_iter;
1024 				else if (ret != -EAGAIN)
1025 					goto send_end;
1026 			}
1027 			continue;
1028 rollback_iter:
1029 			copied -= try_to_copy;
1030 			sk_msg_sg_copy_clear(msg_pl, first);
1031 			iov_iter_revert(&msg->msg_iter,
1032 					msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034 			sk_msg_trim(sk, msg_pl, orig_size);
1035 		}
1036 
1037 		required_size = msg_pl->sg.size + try_to_copy;
1038 
1039 		ret = tls_clone_plaintext_msg(sk, required_size);
1040 		if (ret) {
1041 			if (ret != -ENOSPC)
1042 				goto send_end;
1043 
1044 			/* Adjust try_to_copy according to the amount that was
1045 			 * actually allocated. The difference is due
1046 			 * to max sg elements limit
1047 			 */
1048 			try_to_copy -= required_size - msg_pl->sg.size;
1049 			full_record = true;
1050 			sk_msg_trim(sk, msg_en,
1051 				    msg_pl->sg.size + prot->overhead_size);
1052 		}
1053 
1054 		if (try_to_copy) {
1055 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056 						       msg_pl, try_to_copy);
1057 			if (ret < 0)
1058 				goto trim_sgl;
1059 		}
1060 
1061 		/* Open records defined only if successfully copied, otherwise
1062 		 * we would trim the sg but not reset the open record frags.
1063 		 */
1064 		tls_ctx->pending_open_record_frags = true;
1065 		copied += try_to_copy;
1066 		if (full_record || eor) {
1067 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068 						  record_type, &copied,
1069 						  msg->msg_flags);
1070 			if (ret) {
1071 				if (ret == -EINPROGRESS)
1072 					num_async++;
1073 				else if (ret == -ENOMEM)
1074 					goto wait_for_memory;
1075 				else if (ret != -EAGAIN) {
1076 					if (ret == -ENOSPC)
1077 						ret = 0;
1078 					goto send_end;
1079 				}
1080 			}
1081 		}
1082 
1083 		continue;
1084 
1085 wait_for_sndbuf:
1086 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088 		ret = sk_stream_wait_memory(sk, &timeo);
1089 		if (ret) {
1090 trim_sgl:
1091 			if (ctx->open_rec)
1092 				tls_trim_both_msgs(sk, orig_size);
1093 			goto send_end;
1094 		}
1095 
1096 		if (ctx->open_rec && msg_en->sg.size < required_size)
1097 			goto alloc_encrypted;
1098 	}
1099 
1100 	if (!num_async) {
1101 		goto send_end;
1102 	} else if (num_zc) {
1103 		/* Wait for pending encryptions to get completed */
1104 		spin_lock_bh(&ctx->encrypt_compl_lock);
1105 		ctx->async_notify = true;
1106 
1107 		pending = atomic_read(&ctx->encrypt_pending);
1108 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1109 		if (pending)
1110 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111 		else
1112 			reinit_completion(&ctx->async_wait.completion);
1113 
1114 		/* There can be no concurrent accesses, since we have no
1115 		 * pending encrypt operations
1116 		 */
1117 		WRITE_ONCE(ctx->async_notify, false);
1118 
1119 		if (ctx->async_wait.err) {
1120 			ret = ctx->async_wait.err;
1121 			copied = 0;
1122 		}
1123 	}
1124 
1125 	/* Transmit if any encryptions have completed */
1126 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127 		cancel_delayed_work(&ctx->tx_work.work);
1128 		tls_tx_records(sk, msg->msg_flags);
1129 	}
1130 
1131 send_end:
1132 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1133 
1134 	release_sock(sk);
1135 	mutex_unlock(&tls_ctx->tx_lock);
1136 	return copied > 0 ? copied : ret;
1137 }
1138 
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140 			      int offset, size_t size, int flags)
1141 {
1142 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1144 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1146 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147 	struct sk_msg *msg_pl;
1148 	struct tls_rec *rec;
1149 	int num_async = 0;
1150 	ssize_t copied = 0;
1151 	bool full_record;
1152 	int record_room;
1153 	int ret = 0;
1154 	bool eor;
1155 
1156 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1157 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158 
1159 	/* Call the sk_stream functions to manage the sndbuf mem. */
1160 	while (size > 0) {
1161 		size_t copy, required_size;
1162 
1163 		if (sk->sk_err) {
1164 			ret = -sk->sk_err;
1165 			goto sendpage_end;
1166 		}
1167 
1168 		if (ctx->open_rec)
1169 			rec = ctx->open_rec;
1170 		else
1171 			rec = ctx->open_rec = tls_get_rec(sk);
1172 		if (!rec) {
1173 			ret = -ENOMEM;
1174 			goto sendpage_end;
1175 		}
1176 
1177 		msg_pl = &rec->msg_plaintext;
1178 
1179 		full_record = false;
1180 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181 		copy = size;
1182 		if (copy >= record_room) {
1183 			copy = record_room;
1184 			full_record = true;
1185 		}
1186 
1187 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188 
1189 		if (!sk_stream_memory_free(sk))
1190 			goto wait_for_sndbuf;
1191 alloc_payload:
1192 		ret = tls_alloc_encrypted_msg(sk, required_size);
1193 		if (ret) {
1194 			if (ret != -ENOSPC)
1195 				goto wait_for_memory;
1196 
1197 			/* Adjust copy according to the amount that was
1198 			 * actually allocated. The difference is due
1199 			 * to max sg elements limit
1200 			 */
1201 			copy -= required_size - msg_pl->sg.size;
1202 			full_record = true;
1203 		}
1204 
1205 		sk_msg_page_add(msg_pl, page, copy, offset);
1206 		sk_mem_charge(sk, copy);
1207 
1208 		offset += copy;
1209 		size -= copy;
1210 		copied += copy;
1211 
1212 		tls_ctx->pending_open_record_frags = true;
1213 		if (full_record || eor || sk_msg_full(msg_pl)) {
1214 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215 						  record_type, &copied, flags);
1216 			if (ret) {
1217 				if (ret == -EINPROGRESS)
1218 					num_async++;
1219 				else if (ret == -ENOMEM)
1220 					goto wait_for_memory;
1221 				else if (ret != -EAGAIN) {
1222 					if (ret == -ENOSPC)
1223 						ret = 0;
1224 					goto sendpage_end;
1225 				}
1226 			}
1227 		}
1228 		continue;
1229 wait_for_sndbuf:
1230 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232 		ret = sk_stream_wait_memory(sk, &timeo);
1233 		if (ret) {
1234 			if (ctx->open_rec)
1235 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1236 			goto sendpage_end;
1237 		}
1238 
1239 		if (ctx->open_rec)
1240 			goto alloc_payload;
1241 	}
1242 
1243 	if (num_async) {
1244 		/* Transmit if any encryptions have completed */
1245 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246 			cancel_delayed_work(&ctx->tx_work.work);
1247 			tls_tx_records(sk, flags);
1248 		}
1249 	}
1250 sendpage_end:
1251 	ret = sk_stream_error(sk, flags, ret);
1252 	return copied > 0 ? copied : ret;
1253 }
1254 
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256 			   int offset, size_t size, int flags)
1257 {
1258 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260 		      MSG_NO_SHARED_FRAGS))
1261 		return -EOPNOTSUPP;
1262 
1263 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265 
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267 		    int offset, size_t size, int flags)
1268 {
1269 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1270 	int ret;
1271 
1272 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274 		return -EOPNOTSUPP;
1275 
1276 	mutex_lock(&tls_ctx->tx_lock);
1277 	lock_sock(sk);
1278 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279 	release_sock(sk);
1280 	mutex_unlock(&tls_ctx->tx_lock);
1281 	return ret;
1282 }
1283 
1284 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285 				     int flags, long timeo, int *err)
1286 {
1287 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1288 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289 	struct sk_buff *skb;
1290 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291 
1292 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293 		if (sk->sk_err) {
1294 			*err = sock_error(sk);
1295 			return NULL;
1296 		}
1297 
1298 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1299 			return NULL;
1300 
1301 		if (sock_flag(sk, SOCK_DONE))
1302 			return NULL;
1303 
1304 		if ((flags & MSG_DONTWAIT) || !timeo) {
1305 			*err = -EAGAIN;
1306 			return NULL;
1307 		}
1308 
1309 		add_wait_queue(sk_sleep(sk), &wait);
1310 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1311 		sk_wait_event(sk, &timeo,
1312 			      ctx->recv_pkt != skb ||
1313 			      !sk_psock_queue_empty(psock),
1314 			      &wait);
1315 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316 		remove_wait_queue(sk_sleep(sk), &wait);
1317 
1318 		/* Handle signals */
1319 		if (signal_pending(current)) {
1320 			*err = sock_intr_errno(timeo);
1321 			return NULL;
1322 		}
1323 	}
1324 
1325 	return skb;
1326 }
1327 
1328 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1329 			       int length, int *pages_used,
1330 			       unsigned int *size_used,
1331 			       struct scatterlist *to,
1332 			       int to_max_pages)
1333 {
1334 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1335 	struct page *pages[MAX_SKB_FRAGS];
1336 	unsigned int size = *size_used;
1337 	ssize_t copied, use;
1338 	size_t offset;
1339 
1340 	while (length > 0) {
1341 		i = 0;
1342 		maxpages = to_max_pages - num_elem;
1343 		if (maxpages == 0) {
1344 			rc = -EFAULT;
1345 			goto out;
1346 		}
1347 		copied = iov_iter_get_pages(from, pages,
1348 					    length,
1349 					    maxpages, &offset);
1350 		if (copied <= 0) {
1351 			rc = -EFAULT;
1352 			goto out;
1353 		}
1354 
1355 		iov_iter_advance(from, copied);
1356 
1357 		length -= copied;
1358 		size += copied;
1359 		while (copied) {
1360 			use = min_t(int, copied, PAGE_SIZE - offset);
1361 
1362 			sg_set_page(&to[num_elem],
1363 				    pages[i], use, offset);
1364 			sg_unmark_end(&to[num_elem]);
1365 			/* We do not uncharge memory from this API */
1366 
1367 			offset = 0;
1368 			copied -= use;
1369 
1370 			i++;
1371 			num_elem++;
1372 		}
1373 	}
1374 	/* Mark the end in the last sg entry if newly added */
1375 	if (num_elem > *pages_used)
1376 		sg_mark_end(&to[num_elem - 1]);
1377 out:
1378 	if (rc)
1379 		iov_iter_revert(from, size - *size_used);
1380 	*size_used = size;
1381 	*pages_used = num_elem;
1382 
1383 	return rc;
1384 }
1385 
1386 /* This function decrypts the input skb into either out_iov or in out_sg
1387  * or in skb buffers itself. The input parameter 'zc' indicates if
1388  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1389  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1390  * NULL, then the decryption happens inside skb buffers itself, i.e.
1391  * zero-copy gets disabled and 'zc' is updated.
1392  */
1393 
1394 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1395 			    struct iov_iter *out_iov,
1396 			    struct scatterlist *out_sg,
1397 			    int *chunk, bool *zc, bool async)
1398 {
1399 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1400 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1401 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1402 	struct strp_msg *rxm = strp_msg(skb);
1403 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1404 	struct aead_request *aead_req;
1405 	struct sk_buff *unused;
1406 	u8 *aad, *iv, *mem = NULL;
1407 	struct scatterlist *sgin = NULL;
1408 	struct scatterlist *sgout = NULL;
1409 	const int data_len = rxm->full_len - prot->overhead_size +
1410 			     prot->tail_size;
1411 	int iv_offset = 0;
1412 
1413 	if (*zc && (out_iov || out_sg)) {
1414 		if (out_iov)
1415 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1416 		else
1417 			n_sgout = sg_nents(out_sg);
1418 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1419 				 rxm->full_len - prot->prepend_size);
1420 	} else {
1421 		n_sgout = 0;
1422 		*zc = false;
1423 		n_sgin = skb_cow_data(skb, 0, &unused);
1424 	}
1425 
1426 	if (n_sgin < 1)
1427 		return -EBADMSG;
1428 
1429 	/* Increment to accommodate AAD */
1430 	n_sgin = n_sgin + 1;
1431 
1432 	nsg = n_sgin + n_sgout;
1433 
1434 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1435 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1436 	mem_size = mem_size + prot->aad_size;
1437 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1438 
1439 	/* Allocate a single block of memory which contains
1440 	 * aead_req || sgin[] || sgout[] || aad || iv.
1441 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1442 	 */
1443 	mem = kmalloc(mem_size, sk->sk_allocation);
1444 	if (!mem)
1445 		return -ENOMEM;
1446 
1447 	/* Segment the allocated memory */
1448 	aead_req = (struct aead_request *)mem;
1449 	sgin = (struct scatterlist *)(mem + aead_size);
1450 	sgout = sgin + n_sgin;
1451 	aad = (u8 *)(sgout + n_sgout);
1452 	iv = aad + prot->aad_size;
1453 
1454 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1455 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1456 		iv[0] = 2;
1457 		iv_offset = 1;
1458 	}
1459 
1460 	/* Prepare IV */
1461 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1462 			    iv + iv_offset + prot->salt_size,
1463 			    prot->iv_size);
1464 	if (err < 0) {
1465 		kfree(mem);
1466 		return err;
1467 	}
1468 	if (prot->version == TLS_1_3_VERSION)
1469 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1470 		       crypto_aead_ivsize(ctx->aead_recv));
1471 	else
1472 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1473 
1474 	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1475 
1476 	/* Prepare AAD */
1477 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1478 		     prot->tail_size,
1479 		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1480 		     ctx->control, prot->version);
1481 
1482 	/* Prepare sgin */
1483 	sg_init_table(sgin, n_sgin);
1484 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1485 	err = skb_to_sgvec(skb, &sgin[1],
1486 			   rxm->offset + prot->prepend_size,
1487 			   rxm->full_len - prot->prepend_size);
1488 	if (err < 0) {
1489 		kfree(mem);
1490 		return err;
1491 	}
1492 
1493 	if (n_sgout) {
1494 		if (out_iov) {
1495 			sg_init_table(sgout, n_sgout);
1496 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1497 
1498 			*chunk = 0;
1499 			err = tls_setup_from_iter(sk, out_iov, data_len,
1500 						  &pages, chunk, &sgout[1],
1501 						  (n_sgout - 1));
1502 			if (err < 0)
1503 				goto fallback_to_reg_recv;
1504 		} else if (out_sg) {
1505 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1506 		} else {
1507 			goto fallback_to_reg_recv;
1508 		}
1509 	} else {
1510 fallback_to_reg_recv:
1511 		sgout = sgin;
1512 		pages = 0;
1513 		*chunk = data_len;
1514 		*zc = false;
1515 	}
1516 
1517 	/* Prepare and submit AEAD request */
1518 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1519 				data_len, aead_req, async);
1520 	if (err == -EINPROGRESS)
1521 		return err;
1522 
1523 	/* Release the pages in case iov was mapped to pages */
1524 	for (; pages > 0; pages--)
1525 		put_page(sg_page(&sgout[pages]));
1526 
1527 	kfree(mem);
1528 	return err;
1529 }
1530 
1531 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1532 			      struct iov_iter *dest, int *chunk, bool *zc,
1533 			      bool async)
1534 {
1535 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1536 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1537 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1538 	struct strp_msg *rxm = strp_msg(skb);
1539 	int pad, err = 0;
1540 
1541 	if (!ctx->decrypted) {
1542 		if (tls_ctx->rx_conf == TLS_HW) {
1543 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1544 			if (err < 0)
1545 				return err;
1546 		}
1547 
1548 		/* Still not decrypted after tls_device */
1549 		if (!ctx->decrypted) {
1550 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1551 					       async);
1552 			if (err < 0) {
1553 				if (err == -EINPROGRESS)
1554 					tls_advance_record_sn(sk, prot,
1555 							      &tls_ctx->rx);
1556 				else if (err == -EBADMSG)
1557 					TLS_INC_STATS(sock_net(sk),
1558 						      LINUX_MIB_TLSDECRYPTERROR);
1559 				return err;
1560 			}
1561 		} else {
1562 			*zc = false;
1563 		}
1564 
1565 		pad = padding_length(ctx, prot, skb);
1566 		if (pad < 0)
1567 			return pad;
1568 
1569 		rxm->full_len -= pad;
1570 		rxm->offset += prot->prepend_size;
1571 		rxm->full_len -= prot->overhead_size;
1572 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1573 		ctx->decrypted = 1;
1574 		ctx->saved_data_ready(sk);
1575 	} else {
1576 		*zc = false;
1577 	}
1578 
1579 	return err;
1580 }
1581 
1582 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1583 		struct scatterlist *sgout)
1584 {
1585 	bool zc = true;
1586 	int chunk;
1587 
1588 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1589 }
1590 
1591 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1592 			       unsigned int len)
1593 {
1594 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1595 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1596 
1597 	if (skb) {
1598 		struct strp_msg *rxm = strp_msg(skb);
1599 
1600 		if (len < rxm->full_len) {
1601 			rxm->offset += len;
1602 			rxm->full_len -= len;
1603 			return false;
1604 		}
1605 		consume_skb(skb);
1606 	}
1607 
1608 	/* Finished with message */
1609 	ctx->recv_pkt = NULL;
1610 	__strp_unpause(&ctx->strp);
1611 
1612 	return true;
1613 }
1614 
1615 /* This function traverses the rx_list in tls receive context to copies the
1616  * decrypted records into the buffer provided by caller zero copy is not
1617  * true. Further, the records are removed from the rx_list if it is not a peek
1618  * case and the record has been consumed completely.
1619  */
1620 static int process_rx_list(struct tls_sw_context_rx *ctx,
1621 			   struct msghdr *msg,
1622 			   u8 *control,
1623 			   bool *cmsg,
1624 			   size_t skip,
1625 			   size_t len,
1626 			   bool zc,
1627 			   bool is_peek)
1628 {
1629 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1630 	u8 ctrl = *control;
1631 	u8 msgc = *cmsg;
1632 	struct tls_msg *tlm;
1633 	ssize_t copied = 0;
1634 
1635 	/* Set the record type in 'control' if caller didn't pass it */
1636 	if (!ctrl && skb) {
1637 		tlm = tls_msg(skb);
1638 		ctrl = tlm->control;
1639 	}
1640 
1641 	while (skip && skb) {
1642 		struct strp_msg *rxm = strp_msg(skb);
1643 		tlm = tls_msg(skb);
1644 
1645 		/* Cannot process a record of different type */
1646 		if (ctrl != tlm->control)
1647 			return 0;
1648 
1649 		if (skip < rxm->full_len)
1650 			break;
1651 
1652 		skip = skip - rxm->full_len;
1653 		skb = skb_peek_next(skb, &ctx->rx_list);
1654 	}
1655 
1656 	while (len && skb) {
1657 		struct sk_buff *next_skb;
1658 		struct strp_msg *rxm = strp_msg(skb);
1659 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1660 
1661 		tlm = tls_msg(skb);
1662 
1663 		/* Cannot process a record of different type */
1664 		if (ctrl != tlm->control)
1665 			return 0;
1666 
1667 		/* Set record type if not already done. For a non-data record,
1668 		 * do not proceed if record type could not be copied.
1669 		 */
1670 		if (!msgc) {
1671 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1672 					    sizeof(ctrl), &ctrl);
1673 			msgc = true;
1674 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1675 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1676 					return -EIO;
1677 
1678 				*cmsg = msgc;
1679 			}
1680 		}
1681 
1682 		if (!zc || (rxm->full_len - skip) > len) {
1683 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1684 						    msg, chunk);
1685 			if (err < 0)
1686 				return err;
1687 		}
1688 
1689 		len = len - chunk;
1690 		copied = copied + chunk;
1691 
1692 		/* Consume the data from record if it is non-peek case*/
1693 		if (!is_peek) {
1694 			rxm->offset = rxm->offset + chunk;
1695 			rxm->full_len = rxm->full_len - chunk;
1696 
1697 			/* Return if there is unconsumed data in the record */
1698 			if (rxm->full_len - skip)
1699 				break;
1700 		}
1701 
1702 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1703 		 * So from the 2nd record, 'skip' should be 0.
1704 		 */
1705 		skip = 0;
1706 
1707 		if (msg)
1708 			msg->msg_flags |= MSG_EOR;
1709 
1710 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1711 
1712 		if (!is_peek) {
1713 			skb_unlink(skb, &ctx->rx_list);
1714 			consume_skb(skb);
1715 		}
1716 
1717 		skb = next_skb;
1718 	}
1719 
1720 	*control = ctrl;
1721 	return copied;
1722 }
1723 
1724 int tls_sw_recvmsg(struct sock *sk,
1725 		   struct msghdr *msg,
1726 		   size_t len,
1727 		   int nonblock,
1728 		   int flags,
1729 		   int *addr_len)
1730 {
1731 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1732 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1733 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1734 	struct sk_psock *psock;
1735 	unsigned char control = 0;
1736 	ssize_t decrypted = 0;
1737 	struct strp_msg *rxm;
1738 	struct tls_msg *tlm;
1739 	struct sk_buff *skb;
1740 	ssize_t copied = 0;
1741 	bool cmsg = false;
1742 	int target, err = 0;
1743 	long timeo;
1744 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1745 	bool is_peek = flags & MSG_PEEK;
1746 	bool bpf_strp_enabled;
1747 	int num_async = 0;
1748 	int pending;
1749 
1750 	flags |= nonblock;
1751 
1752 	if (unlikely(flags & MSG_ERRQUEUE))
1753 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1754 
1755 	psock = sk_psock_get(sk);
1756 	lock_sock(sk);
1757 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1758 
1759 	/* Process pending decrypted records. It must be non-zero-copy */
1760 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1761 			      is_peek);
1762 	if (err < 0) {
1763 		tls_err_abort(sk, err);
1764 		goto end;
1765 	} else {
1766 		copied = err;
1767 	}
1768 
1769 	if (len <= copied)
1770 		goto recv_end;
1771 
1772 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1773 	len = len - copied;
1774 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1775 
1776 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1777 		bool retain_skb = false;
1778 		bool zc = false;
1779 		int to_decrypt;
1780 		int chunk = 0;
1781 		bool async_capable;
1782 		bool async = false;
1783 
1784 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1785 		if (!skb) {
1786 			if (psock) {
1787 				int ret = __tcp_bpf_recvmsg(sk, psock,
1788 							    msg, len, flags);
1789 
1790 				if (ret > 0) {
1791 					decrypted += ret;
1792 					len -= ret;
1793 					continue;
1794 				}
1795 			}
1796 			goto recv_end;
1797 		} else {
1798 			tlm = tls_msg(skb);
1799 			if (prot->version == TLS_1_3_VERSION)
1800 				tlm->control = 0;
1801 			else
1802 				tlm->control = ctx->control;
1803 		}
1804 
1805 		rxm = strp_msg(skb);
1806 
1807 		to_decrypt = rxm->full_len - prot->overhead_size;
1808 
1809 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1810 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1811 		    prot->version != TLS_1_3_VERSION &&
1812 		    !bpf_strp_enabled)
1813 			zc = true;
1814 
1815 		/* Do not use async mode if record is non-data */
1816 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1817 			async_capable = ctx->async_capable;
1818 		else
1819 			async_capable = false;
1820 
1821 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1822 					 &chunk, &zc, async_capable);
1823 		if (err < 0 && err != -EINPROGRESS) {
1824 			tls_err_abort(sk, EBADMSG);
1825 			goto recv_end;
1826 		}
1827 
1828 		if (err == -EINPROGRESS) {
1829 			async = true;
1830 			num_async++;
1831 		} else if (prot->version == TLS_1_3_VERSION) {
1832 			tlm->control = ctx->control;
1833 		}
1834 
1835 		/* If the type of records being processed is not known yet,
1836 		 * set it to record type just dequeued. If it is already known,
1837 		 * but does not match the record type just dequeued, go to end.
1838 		 * We always get record type here since for tls1.2, record type
1839 		 * is known just after record is dequeued from stream parser.
1840 		 * For tls1.3, we disable async.
1841 		 */
1842 
1843 		if (!control)
1844 			control = tlm->control;
1845 		else if (control != tlm->control)
1846 			goto recv_end;
1847 
1848 		if (!cmsg) {
1849 			int cerr;
1850 
1851 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1852 					sizeof(control), &control);
1853 			cmsg = true;
1854 			if (control != TLS_RECORD_TYPE_DATA) {
1855 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1856 					err = -EIO;
1857 					goto recv_end;
1858 				}
1859 			}
1860 		}
1861 
1862 		if (async)
1863 			goto pick_next_record;
1864 
1865 		if (!zc) {
1866 			if (bpf_strp_enabled) {
1867 				err = sk_psock_tls_strp_read(psock, skb);
1868 				if (err != __SK_PASS) {
1869 					rxm->offset = rxm->offset + rxm->full_len;
1870 					rxm->full_len = 0;
1871 					if (err == __SK_DROP)
1872 						consume_skb(skb);
1873 					ctx->recv_pkt = NULL;
1874 					__strp_unpause(&ctx->strp);
1875 					continue;
1876 				}
1877 			}
1878 
1879 			if (rxm->full_len > len) {
1880 				retain_skb = true;
1881 				chunk = len;
1882 			} else {
1883 				chunk = rxm->full_len;
1884 			}
1885 
1886 			err = skb_copy_datagram_msg(skb, rxm->offset,
1887 						    msg, chunk);
1888 			if (err < 0)
1889 				goto recv_end;
1890 
1891 			if (!is_peek) {
1892 				rxm->offset = rxm->offset + chunk;
1893 				rxm->full_len = rxm->full_len - chunk;
1894 			}
1895 		}
1896 
1897 pick_next_record:
1898 		if (chunk > len)
1899 			chunk = len;
1900 
1901 		decrypted += chunk;
1902 		len -= chunk;
1903 
1904 		/* For async or peek case, queue the current skb */
1905 		if (async || is_peek || retain_skb) {
1906 			skb_queue_tail(&ctx->rx_list, skb);
1907 			skb = NULL;
1908 		}
1909 
1910 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1911 			/* Return full control message to
1912 			 * userspace before trying to parse
1913 			 * another message type
1914 			 */
1915 			msg->msg_flags |= MSG_EOR;
1916 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1917 				goto recv_end;
1918 		} else {
1919 			break;
1920 		}
1921 	}
1922 
1923 recv_end:
1924 	if (num_async) {
1925 		/* Wait for all previously submitted records to be decrypted */
1926 		spin_lock_bh(&ctx->decrypt_compl_lock);
1927 		ctx->async_notify = true;
1928 		pending = atomic_read(&ctx->decrypt_pending);
1929 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1930 		if (pending) {
1931 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1932 			if (err) {
1933 				/* one of async decrypt failed */
1934 				tls_err_abort(sk, err);
1935 				copied = 0;
1936 				decrypted = 0;
1937 				goto end;
1938 			}
1939 		} else {
1940 			reinit_completion(&ctx->async_wait.completion);
1941 		}
1942 
1943 		/* There can be no concurrent accesses, since we have no
1944 		 * pending decrypt operations
1945 		 */
1946 		WRITE_ONCE(ctx->async_notify, false);
1947 
1948 		/* Drain records from the rx_list & copy if required */
1949 		if (is_peek || is_kvec)
1950 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1951 					      decrypted, false, is_peek);
1952 		else
1953 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1954 					      decrypted, true, is_peek);
1955 		if (err < 0) {
1956 			tls_err_abort(sk, err);
1957 			copied = 0;
1958 			goto end;
1959 		}
1960 	}
1961 
1962 	copied += decrypted;
1963 
1964 end:
1965 	release_sock(sk);
1966 	if (psock)
1967 		sk_psock_put(sk, psock);
1968 	return copied ? : err;
1969 }
1970 
1971 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1972 			   struct pipe_inode_info *pipe,
1973 			   size_t len, unsigned int flags)
1974 {
1975 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1976 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1977 	struct strp_msg *rxm = NULL;
1978 	struct sock *sk = sock->sk;
1979 	struct sk_buff *skb;
1980 	ssize_t copied = 0;
1981 	int err = 0;
1982 	long timeo;
1983 	int chunk;
1984 	bool zc = false;
1985 
1986 	lock_sock(sk);
1987 
1988 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1989 
1990 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1991 	if (!skb)
1992 		goto splice_read_end;
1993 
1994 	if (!ctx->decrypted) {
1995 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1996 
1997 		/* splice does not support reading control messages */
1998 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1999 			err = -EINVAL;
2000 			goto splice_read_end;
2001 		}
2002 
2003 		if (err < 0) {
2004 			tls_err_abort(sk, EBADMSG);
2005 			goto splice_read_end;
2006 		}
2007 		ctx->decrypted = 1;
2008 	}
2009 	rxm = strp_msg(skb);
2010 
2011 	chunk = min_t(unsigned int, rxm->full_len, len);
2012 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2013 	if (copied < 0)
2014 		goto splice_read_end;
2015 
2016 	if (likely(!(flags & MSG_PEEK)))
2017 		tls_sw_advance_skb(sk, skb, copied);
2018 
2019 splice_read_end:
2020 	release_sock(sk);
2021 	return copied ? : err;
2022 }
2023 
2024 bool tls_sw_stream_read(const struct sock *sk)
2025 {
2026 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2027 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2028 	bool ingress_empty = true;
2029 	struct sk_psock *psock;
2030 
2031 	rcu_read_lock();
2032 	psock = sk_psock(sk);
2033 	if (psock)
2034 		ingress_empty = list_empty(&psock->ingress_msg);
2035 	rcu_read_unlock();
2036 
2037 	return !ingress_empty || ctx->recv_pkt ||
2038 		!skb_queue_empty(&ctx->rx_list);
2039 }
2040 
2041 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2042 {
2043 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2044 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2046 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2047 	struct strp_msg *rxm = strp_msg(skb);
2048 	size_t cipher_overhead;
2049 	size_t data_len = 0;
2050 	int ret;
2051 
2052 	/* Verify that we have a full TLS header, or wait for more data */
2053 	if (rxm->offset + prot->prepend_size > skb->len)
2054 		return 0;
2055 
2056 	/* Sanity-check size of on-stack buffer. */
2057 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2058 		ret = -EINVAL;
2059 		goto read_failure;
2060 	}
2061 
2062 	/* Linearize header to local buffer */
2063 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2064 
2065 	if (ret < 0)
2066 		goto read_failure;
2067 
2068 	ctx->control = header[0];
2069 
2070 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2071 
2072 	cipher_overhead = prot->tag_size;
2073 	if (prot->version != TLS_1_3_VERSION)
2074 		cipher_overhead += prot->iv_size;
2075 
2076 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2077 	    prot->tail_size) {
2078 		ret = -EMSGSIZE;
2079 		goto read_failure;
2080 	}
2081 	if (data_len < cipher_overhead) {
2082 		ret = -EBADMSG;
2083 		goto read_failure;
2084 	}
2085 
2086 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2087 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2088 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2089 		ret = -EINVAL;
2090 		goto read_failure;
2091 	}
2092 
2093 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2094 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2095 	return data_len + TLS_HEADER_SIZE;
2096 
2097 read_failure:
2098 	tls_err_abort(strp->sk, ret);
2099 
2100 	return ret;
2101 }
2102 
2103 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2104 {
2105 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2106 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2107 
2108 	ctx->decrypted = 0;
2109 
2110 	ctx->recv_pkt = skb;
2111 	strp_pause(strp);
2112 
2113 	ctx->saved_data_ready(strp->sk);
2114 }
2115 
2116 static void tls_data_ready(struct sock *sk)
2117 {
2118 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2119 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120 	struct sk_psock *psock;
2121 
2122 	strp_data_ready(&ctx->strp);
2123 
2124 	psock = sk_psock_get(sk);
2125 	if (psock) {
2126 		if (!list_empty(&psock->ingress_msg))
2127 			ctx->saved_data_ready(sk);
2128 		sk_psock_put(sk, psock);
2129 	}
2130 }
2131 
2132 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2133 {
2134 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2135 
2136 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2137 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2138 	cancel_delayed_work_sync(&ctx->tx_work.work);
2139 }
2140 
2141 void tls_sw_release_resources_tx(struct sock *sk)
2142 {
2143 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2144 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2145 	struct tls_rec *rec, *tmp;
2146 	int pending;
2147 
2148 	/* Wait for any pending async encryptions to complete */
2149 	spin_lock_bh(&ctx->encrypt_compl_lock);
2150 	ctx->async_notify = true;
2151 	pending = atomic_read(&ctx->encrypt_pending);
2152 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2153 
2154 	if (pending)
2155 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2156 
2157 	tls_tx_records(sk, -1);
2158 
2159 	/* Free up un-sent records in tx_list. First, free
2160 	 * the partially sent record if any at head of tx_list.
2161 	 */
2162 	if (tls_ctx->partially_sent_record) {
2163 		tls_free_partial_record(sk, tls_ctx);
2164 		rec = list_first_entry(&ctx->tx_list,
2165 				       struct tls_rec, list);
2166 		list_del(&rec->list);
2167 		sk_msg_free(sk, &rec->msg_plaintext);
2168 		kfree(rec);
2169 	}
2170 
2171 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2172 		list_del(&rec->list);
2173 		sk_msg_free(sk, &rec->msg_encrypted);
2174 		sk_msg_free(sk, &rec->msg_plaintext);
2175 		kfree(rec);
2176 	}
2177 
2178 	crypto_free_aead(ctx->aead_send);
2179 	tls_free_open_rec(sk);
2180 }
2181 
2182 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2183 {
2184 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2185 
2186 	kfree(ctx);
2187 }
2188 
2189 void tls_sw_release_resources_rx(struct sock *sk)
2190 {
2191 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2192 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2193 
2194 	kfree(tls_ctx->rx.rec_seq);
2195 	kfree(tls_ctx->rx.iv);
2196 
2197 	if (ctx->aead_recv) {
2198 		kfree_skb(ctx->recv_pkt);
2199 		ctx->recv_pkt = NULL;
2200 		skb_queue_purge(&ctx->rx_list);
2201 		crypto_free_aead(ctx->aead_recv);
2202 		strp_stop(&ctx->strp);
2203 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2204 		 * we still want to strp_stop(), but sk->sk_data_ready was
2205 		 * never swapped.
2206 		 */
2207 		if (ctx->saved_data_ready) {
2208 			write_lock_bh(&sk->sk_callback_lock);
2209 			sk->sk_data_ready = ctx->saved_data_ready;
2210 			write_unlock_bh(&sk->sk_callback_lock);
2211 		}
2212 	}
2213 }
2214 
2215 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2216 {
2217 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2218 
2219 	strp_done(&ctx->strp);
2220 }
2221 
2222 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2223 {
2224 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2225 
2226 	kfree(ctx);
2227 }
2228 
2229 void tls_sw_free_resources_rx(struct sock *sk)
2230 {
2231 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2232 
2233 	tls_sw_release_resources_rx(sk);
2234 	tls_sw_free_ctx_rx(tls_ctx);
2235 }
2236 
2237 /* The work handler to transmitt the encrypted records in tx_list */
2238 static void tx_work_handler(struct work_struct *work)
2239 {
2240 	struct delayed_work *delayed_work = to_delayed_work(work);
2241 	struct tx_work *tx_work = container_of(delayed_work,
2242 					       struct tx_work, work);
2243 	struct sock *sk = tx_work->sk;
2244 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2245 	struct tls_sw_context_tx *ctx;
2246 
2247 	if (unlikely(!tls_ctx))
2248 		return;
2249 
2250 	ctx = tls_sw_ctx_tx(tls_ctx);
2251 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2252 		return;
2253 
2254 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2255 		return;
2256 	mutex_lock(&tls_ctx->tx_lock);
2257 	lock_sock(sk);
2258 	tls_tx_records(sk, -1);
2259 	release_sock(sk);
2260 	mutex_unlock(&tls_ctx->tx_lock);
2261 }
2262 
2263 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2264 {
2265 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2266 
2267 	/* Schedule the transmission if tx list is ready */
2268 	if (is_tx_ready(tx_ctx) &&
2269 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2270 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2271 }
2272 
2273 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2274 {
2275 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2276 
2277 	write_lock_bh(&sk->sk_callback_lock);
2278 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2279 	sk->sk_data_ready = tls_data_ready;
2280 	write_unlock_bh(&sk->sk_callback_lock);
2281 
2282 	strp_check_rcv(&rx_ctx->strp);
2283 }
2284 
2285 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2286 {
2287 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2288 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2289 	struct tls_crypto_info *crypto_info;
2290 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2291 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2292 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2293 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2294 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2295 	struct cipher_context *cctx;
2296 	struct crypto_aead **aead;
2297 	struct strp_callbacks cb;
2298 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2299 	struct crypto_tfm *tfm;
2300 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2301 	size_t keysize;
2302 	int rc = 0;
2303 
2304 	if (!ctx) {
2305 		rc = -EINVAL;
2306 		goto out;
2307 	}
2308 
2309 	if (tx) {
2310 		if (!ctx->priv_ctx_tx) {
2311 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2312 			if (!sw_ctx_tx) {
2313 				rc = -ENOMEM;
2314 				goto out;
2315 			}
2316 			ctx->priv_ctx_tx = sw_ctx_tx;
2317 		} else {
2318 			sw_ctx_tx =
2319 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2320 		}
2321 	} else {
2322 		if (!ctx->priv_ctx_rx) {
2323 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2324 			if (!sw_ctx_rx) {
2325 				rc = -ENOMEM;
2326 				goto out;
2327 			}
2328 			ctx->priv_ctx_rx = sw_ctx_rx;
2329 		} else {
2330 			sw_ctx_rx =
2331 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2332 		}
2333 	}
2334 
2335 	if (tx) {
2336 		crypto_init_wait(&sw_ctx_tx->async_wait);
2337 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2338 		crypto_info = &ctx->crypto_send.info;
2339 		cctx = &ctx->tx;
2340 		aead = &sw_ctx_tx->aead_send;
2341 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2342 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2343 		sw_ctx_tx->tx_work.sk = sk;
2344 	} else {
2345 		crypto_init_wait(&sw_ctx_rx->async_wait);
2346 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2347 		crypto_info = &ctx->crypto_recv.info;
2348 		cctx = &ctx->rx;
2349 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2350 		aead = &sw_ctx_rx->aead_recv;
2351 	}
2352 
2353 	switch (crypto_info->cipher_type) {
2354 	case TLS_CIPHER_AES_GCM_128: {
2355 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2356 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2357 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2358 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2359 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2360 		rec_seq =
2361 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2362 		gcm_128_info =
2363 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2364 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2365 		key = gcm_128_info->key;
2366 		salt = gcm_128_info->salt;
2367 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2368 		cipher_name = "gcm(aes)";
2369 		break;
2370 	}
2371 	case TLS_CIPHER_AES_GCM_256: {
2372 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2373 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2374 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2375 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2376 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2377 		rec_seq =
2378 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2379 		gcm_256_info =
2380 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2381 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2382 		key = gcm_256_info->key;
2383 		salt = gcm_256_info->salt;
2384 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2385 		cipher_name = "gcm(aes)";
2386 		break;
2387 	}
2388 	case TLS_CIPHER_AES_CCM_128: {
2389 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2390 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2391 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2392 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2393 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2394 		rec_seq =
2395 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2396 		ccm_128_info =
2397 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2398 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2399 		key = ccm_128_info->key;
2400 		salt = ccm_128_info->salt;
2401 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2402 		cipher_name = "ccm(aes)";
2403 		break;
2404 	}
2405 	default:
2406 		rc = -EINVAL;
2407 		goto free_priv;
2408 	}
2409 
2410 	/* Sanity-check the sizes for stack allocations. */
2411 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2412 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2413 		rc = -EINVAL;
2414 		goto free_priv;
2415 	}
2416 
2417 	if (crypto_info->version == TLS_1_3_VERSION) {
2418 		nonce_size = 0;
2419 		prot->aad_size = TLS_HEADER_SIZE;
2420 		prot->tail_size = 1;
2421 	} else {
2422 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2423 		prot->tail_size = 0;
2424 	}
2425 
2426 	prot->version = crypto_info->version;
2427 	prot->cipher_type = crypto_info->cipher_type;
2428 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2429 	prot->tag_size = tag_size;
2430 	prot->overhead_size = prot->prepend_size +
2431 			      prot->tag_size + prot->tail_size;
2432 	prot->iv_size = iv_size;
2433 	prot->salt_size = salt_size;
2434 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2435 	if (!cctx->iv) {
2436 		rc = -ENOMEM;
2437 		goto free_priv;
2438 	}
2439 	/* Note: 128 & 256 bit salt are the same size */
2440 	prot->rec_seq_size = rec_seq_size;
2441 	memcpy(cctx->iv, salt, salt_size);
2442 	memcpy(cctx->iv + salt_size, iv, iv_size);
2443 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2444 	if (!cctx->rec_seq) {
2445 		rc = -ENOMEM;
2446 		goto free_iv;
2447 	}
2448 
2449 	if (!*aead) {
2450 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2451 		if (IS_ERR(*aead)) {
2452 			rc = PTR_ERR(*aead);
2453 			*aead = NULL;
2454 			goto free_rec_seq;
2455 		}
2456 	}
2457 
2458 	ctx->push_pending_record = tls_sw_push_pending_record;
2459 
2460 	rc = crypto_aead_setkey(*aead, key, keysize);
2461 
2462 	if (rc)
2463 		goto free_aead;
2464 
2465 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2466 	if (rc)
2467 		goto free_aead;
2468 
2469 	if (sw_ctx_rx) {
2470 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2471 
2472 		if (crypto_info->version == TLS_1_3_VERSION)
2473 			sw_ctx_rx->async_capable = 0;
2474 		else
2475 			sw_ctx_rx->async_capable =
2476 				!!(tfm->__crt_alg->cra_flags &
2477 				   CRYPTO_ALG_ASYNC);
2478 
2479 		/* Set up strparser */
2480 		memset(&cb, 0, sizeof(cb));
2481 		cb.rcv_msg = tls_queue;
2482 		cb.parse_msg = tls_read_size;
2483 
2484 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2485 	}
2486 
2487 	goto out;
2488 
2489 free_aead:
2490 	crypto_free_aead(*aead);
2491 	*aead = NULL;
2492 free_rec_seq:
2493 	kfree(cctx->rec_seq);
2494 	cctx->rec_seq = NULL;
2495 free_iv:
2496 	kfree(cctx->iv);
2497 	cctx->iv = NULL;
2498 free_priv:
2499 	if (tx) {
2500 		kfree(ctx->priv_ctx_tx);
2501 		ctx->priv_ctx_tx = NULL;
2502 	} else {
2503 		kfree(ctx->priv_ctx_rx);
2504 		ctx->priv_ctx_rx = NULL;
2505 	}
2506 out:
2507 	return rc;
2508 }
2509