xref: /openbmc/linux/net/tls/tls_sw.c (revision 78e3dbc1)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46 
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54 
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57 
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67 
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70 
71                 WARN_ON(start > offset + len);
72 
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86 
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90 
91                         WARN_ON(start > offset + len);
92 
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114 
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122 
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125 	struct aead_request *aead_req = (struct aead_request *)req;
126 	struct scatterlist *sgout = aead_req->dst;
127 	struct tls_sw_context_rx *ctx;
128 	struct tls_context *tls_ctx;
129 	struct scatterlist *sg;
130 	struct sk_buff *skb;
131 	unsigned int pages;
132 	int pending;
133 
134 	skb = (struct sk_buff *)req->data;
135 	tls_ctx = tls_get_ctx(skb->sk);
136 	ctx = tls_sw_ctx_rx(tls_ctx);
137 	pending = atomic_dec_return(&ctx->decrypt_pending);
138 
139 	/* Propagate if there was an err */
140 	if (err) {
141 		ctx->async_wait.err = err;
142 		tls_err_abort(skb->sk, err);
143 	}
144 
145 	/* After using skb->sk to propagate sk through crypto async callback
146 	 * we need to NULL it again.
147 	 */
148 	skb->sk = NULL;
149 
150 	/* Release the skb, pages and memory allocated for crypto req */
151 	kfree_skb(skb);
152 
153 	/* Skip the first S/G entry as it points to AAD */
154 	for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155 		if (!sg)
156 			break;
157 		put_page(sg_page(sg));
158 	}
159 
160 	kfree(aead_req);
161 
162 	if (!pending && READ_ONCE(ctx->async_notify))
163 		complete(&ctx->async_wait.completion);
164 }
165 
166 static int tls_do_decryption(struct sock *sk,
167 			     struct sk_buff *skb,
168 			     struct scatterlist *sgin,
169 			     struct scatterlist *sgout,
170 			     char *iv_recv,
171 			     size_t data_len,
172 			     struct aead_request *aead_req,
173 			     bool async)
174 {
175 	struct tls_context *tls_ctx = tls_get_ctx(sk);
176 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177 	int ret;
178 
179 	aead_request_set_tfm(aead_req, ctx->aead_recv);
180 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181 	aead_request_set_crypt(aead_req, sgin, sgout,
182 			       data_len + tls_ctx->rx.tag_size,
183 			       (u8 *)iv_recv);
184 
185 	if (async) {
186 		/* Using skb->sk to push sk through to crypto async callback
187 		 * handler. This allows propagating errors up to the socket
188 		 * if needed. It _must_ be cleared in the async handler
189 		 * before kfree_skb is called. We _know_ skb->sk is NULL
190 		 * because it is a clone from strparser.
191 		 */
192 		skb->sk = sk;
193 		aead_request_set_callback(aead_req,
194 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
195 					  tls_decrypt_done, skb);
196 		atomic_inc(&ctx->decrypt_pending);
197 	} else {
198 		aead_request_set_callback(aead_req,
199 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
200 					  crypto_req_done, &ctx->async_wait);
201 	}
202 
203 	ret = crypto_aead_decrypt(aead_req);
204 	if (ret == -EINPROGRESS) {
205 		if (async)
206 			return ret;
207 
208 		ret = crypto_wait_req(ret, &ctx->async_wait);
209 	}
210 
211 	if (async)
212 		atomic_dec(&ctx->decrypt_pending);
213 
214 	return ret;
215 }
216 
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219 	struct tls_context *tls_ctx = tls_get_ctx(sk);
220 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221 	struct tls_rec *rec = ctx->open_rec;
222 
223 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224 	if (target_size > 0)
225 		target_size += tls_ctx->tx.overhead_size;
226 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228 
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231 	struct tls_context *tls_ctx = tls_get_ctx(sk);
232 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233 	struct tls_rec *rec = ctx->open_rec;
234 	struct sk_msg *msg_en = &rec->msg_encrypted;
235 
236 	return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238 
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243 	struct tls_rec *rec = ctx->open_rec;
244 	struct sk_msg *msg_pl = &rec->msg_plaintext;
245 	struct sk_msg *msg_en = &rec->msg_encrypted;
246 	int skip, len;
247 
248 	/* We add page references worth len bytes from encrypted sg
249 	 * at the end of plaintext sg. It is guaranteed that msg_en
250 	 * has enough required room (ensured by caller).
251 	 */
252 	len = required - msg_pl->sg.size;
253 
254 	/* Skip initial bytes in msg_en's data to be able to use
255 	 * same offset of both plain and encrypted data.
256 	 */
257 	skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258 
259 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261 
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264 	struct tls_context *tls_ctx = tls_get_ctx(sk);
265 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266 	struct sk_msg *msg_pl, *msg_en;
267 	struct tls_rec *rec;
268 	int mem_size;
269 
270 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271 
272 	rec = kzalloc(mem_size, sk->sk_allocation);
273 	if (!rec)
274 		return NULL;
275 
276 	msg_pl = &rec->msg_plaintext;
277 	msg_en = &rec->msg_encrypted;
278 
279 	sk_msg_init(msg_pl);
280 	sk_msg_init(msg_en);
281 
282 	sg_init_table(rec->sg_aead_in, 2);
283 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284 		   sizeof(rec->aad_space));
285 	sg_unmark_end(&rec->sg_aead_in[1]);
286 
287 	sg_init_table(rec->sg_aead_out, 2);
288 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289 		   sizeof(rec->aad_space));
290 	sg_unmark_end(&rec->sg_aead_out[1]);
291 
292 	return rec;
293 }
294 
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297 	sk_msg_free(sk, &rec->msg_encrypted);
298 	sk_msg_free(sk, &rec->msg_plaintext);
299 	kfree(rec);
300 }
301 
302 static void tls_free_open_rec(struct sock *sk)
303 {
304 	struct tls_context *tls_ctx = tls_get_ctx(sk);
305 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306 	struct tls_rec *rec = ctx->open_rec;
307 
308 	if (rec) {
309 		tls_free_rec(sk, rec);
310 		ctx->open_rec = NULL;
311 	}
312 }
313 
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316 	struct tls_context *tls_ctx = tls_get_ctx(sk);
317 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318 	struct tls_rec *rec, *tmp;
319 	struct sk_msg *msg_en;
320 	int tx_flags, rc = 0;
321 
322 	if (tls_is_partially_sent_record(tls_ctx)) {
323 		rec = list_first_entry(&ctx->tx_list,
324 				       struct tls_rec, list);
325 
326 		if (flags == -1)
327 			tx_flags = rec->tx_flags;
328 		else
329 			tx_flags = flags;
330 
331 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332 		if (rc)
333 			goto tx_err;
334 
335 		/* Full record has been transmitted.
336 		 * Remove the head of tx_list
337 		 */
338 		list_del(&rec->list);
339 		sk_msg_free(sk, &rec->msg_plaintext);
340 		kfree(rec);
341 	}
342 
343 	/* Tx all ready records */
344 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345 		if (READ_ONCE(rec->tx_ready)) {
346 			if (flags == -1)
347 				tx_flags = rec->tx_flags;
348 			else
349 				tx_flags = flags;
350 
351 			msg_en = &rec->msg_encrypted;
352 			rc = tls_push_sg(sk, tls_ctx,
353 					 &msg_en->sg.data[msg_en->sg.curr],
354 					 0, tx_flags);
355 			if (rc)
356 				goto tx_err;
357 
358 			list_del(&rec->list);
359 			sk_msg_free(sk, &rec->msg_plaintext);
360 			kfree(rec);
361 		} else {
362 			break;
363 		}
364 	}
365 
366 tx_err:
367 	if (rc < 0 && rc != -EAGAIN)
368 		tls_err_abort(sk, EBADMSG);
369 
370 	return rc;
371 }
372 
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375 	struct aead_request *aead_req = (struct aead_request *)req;
376 	struct sock *sk = req->data;
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct scatterlist *sge;
380 	struct sk_msg *msg_en;
381 	struct tls_rec *rec;
382 	bool ready = false;
383 	int pending;
384 
385 	rec = container_of(aead_req, struct tls_rec, aead_req);
386 	msg_en = &rec->msg_encrypted;
387 
388 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389 	sge->offset -= tls_ctx->tx.prepend_size;
390 	sge->length += tls_ctx->tx.prepend_size;
391 
392 	/* Check if error is previously set on socket */
393 	if (err || sk->sk_err) {
394 		rec = NULL;
395 
396 		/* If err is already set on socket, return the same code */
397 		if (sk->sk_err) {
398 			ctx->async_wait.err = sk->sk_err;
399 		} else {
400 			ctx->async_wait.err = err;
401 			tls_err_abort(sk, err);
402 		}
403 	}
404 
405 	if (rec) {
406 		struct tls_rec *first_rec;
407 
408 		/* Mark the record as ready for transmission */
409 		smp_store_mb(rec->tx_ready, true);
410 
411 		/* If received record is at head of tx_list, schedule tx */
412 		first_rec = list_first_entry(&ctx->tx_list,
413 					     struct tls_rec, list);
414 		if (rec == first_rec)
415 			ready = true;
416 	}
417 
418 	pending = atomic_dec_return(&ctx->encrypt_pending);
419 
420 	if (!pending && READ_ONCE(ctx->async_notify))
421 		complete(&ctx->async_wait.completion);
422 
423 	if (!ready)
424 		return;
425 
426 	/* Schedule the transmission */
427 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428 		schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430 
431 static int tls_do_encryption(struct sock *sk,
432 			     struct tls_context *tls_ctx,
433 			     struct tls_sw_context_tx *ctx,
434 			     struct aead_request *aead_req,
435 			     size_t data_len, u32 start)
436 {
437 	struct tls_rec *rec = ctx->open_rec;
438 	struct sk_msg *msg_en = &rec->msg_encrypted;
439 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
440 	int rc;
441 
442 	sge->offset += tls_ctx->tx.prepend_size;
443 	sge->length -= tls_ctx->tx.prepend_size;
444 
445 	msg_en->sg.curr = start;
446 
447 	aead_request_set_tfm(aead_req, ctx->aead_send);
448 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
449 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
450 			       rec->sg_aead_out,
451 			       data_len, tls_ctx->tx.iv);
452 
453 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
454 				  tls_encrypt_done, sk);
455 
456 	/* Add the record in tx_list */
457 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
458 	atomic_inc(&ctx->encrypt_pending);
459 
460 	rc = crypto_aead_encrypt(aead_req);
461 	if (!rc || rc != -EINPROGRESS) {
462 		atomic_dec(&ctx->encrypt_pending);
463 		sge->offset -= tls_ctx->tx.prepend_size;
464 		sge->length += tls_ctx->tx.prepend_size;
465 	}
466 
467 	if (!rc) {
468 		WRITE_ONCE(rec->tx_ready, true);
469 	} else if (rc != -EINPROGRESS) {
470 		list_del(&rec->list);
471 		return rc;
472 	}
473 
474 	/* Unhook the record from context if encryption is not failure */
475 	ctx->open_rec = NULL;
476 	tls_advance_record_sn(sk, &tls_ctx->tx);
477 	return rc;
478 }
479 
480 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
481 				 struct tls_rec **to, struct sk_msg *msg_opl,
482 				 struct sk_msg *msg_oen, u32 split_point,
483 				 u32 tx_overhead_size, u32 *orig_end)
484 {
485 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
486 	struct scatterlist *sge, *osge, *nsge;
487 	u32 orig_size = msg_opl->sg.size;
488 	struct scatterlist tmp = { };
489 	struct sk_msg *msg_npl;
490 	struct tls_rec *new;
491 	int ret;
492 
493 	new = tls_get_rec(sk);
494 	if (!new)
495 		return -ENOMEM;
496 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
497 			   tx_overhead_size, 0);
498 	if (ret < 0) {
499 		tls_free_rec(sk, new);
500 		return ret;
501 	}
502 
503 	*orig_end = msg_opl->sg.end;
504 	i = msg_opl->sg.start;
505 	sge = sk_msg_elem(msg_opl, i);
506 	while (apply && sge->length) {
507 		if (sge->length > apply) {
508 			u32 len = sge->length - apply;
509 
510 			get_page(sg_page(sge));
511 			sg_set_page(&tmp, sg_page(sge), len,
512 				    sge->offset + apply);
513 			sge->length = apply;
514 			bytes += apply;
515 			apply = 0;
516 		} else {
517 			apply -= sge->length;
518 			bytes += sge->length;
519 		}
520 
521 		sk_msg_iter_var_next(i);
522 		if (i == msg_opl->sg.end)
523 			break;
524 		sge = sk_msg_elem(msg_opl, i);
525 	}
526 
527 	msg_opl->sg.end = i;
528 	msg_opl->sg.curr = i;
529 	msg_opl->sg.copybreak = 0;
530 	msg_opl->apply_bytes = 0;
531 	msg_opl->sg.size = bytes;
532 
533 	msg_npl = &new->msg_plaintext;
534 	msg_npl->apply_bytes = apply;
535 	msg_npl->sg.size = orig_size - bytes;
536 
537 	j = msg_npl->sg.start;
538 	nsge = sk_msg_elem(msg_npl, j);
539 	if (tmp.length) {
540 		memcpy(nsge, &tmp, sizeof(*nsge));
541 		sk_msg_iter_var_next(j);
542 		nsge = sk_msg_elem(msg_npl, j);
543 	}
544 
545 	osge = sk_msg_elem(msg_opl, i);
546 	while (osge->length) {
547 		memcpy(nsge, osge, sizeof(*nsge));
548 		sg_unmark_end(nsge);
549 		sk_msg_iter_var_next(i);
550 		sk_msg_iter_var_next(j);
551 		if (i == *orig_end)
552 			break;
553 		osge = sk_msg_elem(msg_opl, i);
554 		nsge = sk_msg_elem(msg_npl, j);
555 	}
556 
557 	msg_npl->sg.end = j;
558 	msg_npl->sg.curr = j;
559 	msg_npl->sg.copybreak = 0;
560 
561 	*to = new;
562 	return 0;
563 }
564 
565 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
566 				  struct tls_rec *from, u32 orig_end)
567 {
568 	struct sk_msg *msg_npl = &from->msg_plaintext;
569 	struct sk_msg *msg_opl = &to->msg_plaintext;
570 	struct scatterlist *osge, *nsge;
571 	u32 i, j;
572 
573 	i = msg_opl->sg.end;
574 	sk_msg_iter_var_prev(i);
575 	j = msg_npl->sg.start;
576 
577 	osge = sk_msg_elem(msg_opl, i);
578 	nsge = sk_msg_elem(msg_npl, j);
579 
580 	if (sg_page(osge) == sg_page(nsge) &&
581 	    osge->offset + osge->length == nsge->offset) {
582 		osge->length += nsge->length;
583 		put_page(sg_page(nsge));
584 	}
585 
586 	msg_opl->sg.end = orig_end;
587 	msg_opl->sg.curr = orig_end;
588 	msg_opl->sg.copybreak = 0;
589 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
590 	msg_opl->sg.size += msg_npl->sg.size;
591 
592 	sk_msg_free(sk, &to->msg_encrypted);
593 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
594 
595 	kfree(from);
596 }
597 
598 static int tls_push_record(struct sock *sk, int flags,
599 			   unsigned char record_type)
600 {
601 	struct tls_context *tls_ctx = tls_get_ctx(sk);
602 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
603 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
604 	u32 i, split_point, uninitialized_var(orig_end);
605 	struct sk_msg *msg_pl, *msg_en;
606 	struct aead_request *req;
607 	bool split;
608 	int rc;
609 
610 	if (!rec)
611 		return 0;
612 
613 	msg_pl = &rec->msg_plaintext;
614 	msg_en = &rec->msg_encrypted;
615 
616 	split_point = msg_pl->apply_bytes;
617 	split = split_point && split_point < msg_pl->sg.size;
618 	if (split) {
619 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
620 					   split_point, tls_ctx->tx.overhead_size,
621 					   &orig_end);
622 		if (rc < 0)
623 			return rc;
624 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
625 			    tls_ctx->tx.overhead_size);
626 	}
627 
628 	rec->tx_flags = flags;
629 	req = &rec->aead_req;
630 
631 	i = msg_pl->sg.end;
632 	sk_msg_iter_var_prev(i);
633 	sg_mark_end(sk_msg_elem(msg_pl, i));
634 
635 	i = msg_pl->sg.start;
636 	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
637 		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
638 
639 	i = msg_en->sg.end;
640 	sk_msg_iter_var_prev(i);
641 	sg_mark_end(sk_msg_elem(msg_en, i));
642 
643 	i = msg_en->sg.start;
644 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
645 
646 	tls_make_aad(rec->aad_space, msg_pl->sg.size,
647 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
648 		     record_type);
649 
650 	tls_fill_prepend(tls_ctx,
651 			 page_address(sg_page(&msg_en->sg.data[i])) +
652 			 msg_en->sg.data[i].offset, msg_pl->sg.size,
653 			 record_type);
654 
655 	tls_ctx->pending_open_record_frags = false;
656 
657 	rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
658 	if (rc < 0) {
659 		if (rc != -EINPROGRESS) {
660 			tls_err_abort(sk, EBADMSG);
661 			if (split) {
662 				tls_ctx->pending_open_record_frags = true;
663 				tls_merge_open_record(sk, rec, tmp, orig_end);
664 			}
665 		}
666 		return rc;
667 	} else if (split) {
668 		msg_pl = &tmp->msg_plaintext;
669 		msg_en = &tmp->msg_encrypted;
670 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
671 			    tls_ctx->tx.overhead_size);
672 		tls_ctx->pending_open_record_frags = true;
673 		ctx->open_rec = tmp;
674 	}
675 
676 	return tls_tx_records(sk, flags);
677 }
678 
679 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
680 			       bool full_record, u8 record_type,
681 			       size_t *copied, int flags)
682 {
683 	struct tls_context *tls_ctx = tls_get_ctx(sk);
684 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
685 	struct sk_msg msg_redir = { };
686 	struct sk_psock *psock;
687 	struct sock *sk_redir;
688 	struct tls_rec *rec;
689 	int err = 0, send;
690 	bool enospc;
691 
692 	psock = sk_psock_get(sk);
693 	if (!psock)
694 		return tls_push_record(sk, flags, record_type);
695 more_data:
696 	enospc = sk_msg_full(msg);
697 	if (psock->eval == __SK_NONE)
698 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
699 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
700 	    !enospc && !full_record) {
701 		err = -ENOSPC;
702 		goto out_err;
703 	}
704 	msg->cork_bytes = 0;
705 	send = msg->sg.size;
706 	if (msg->apply_bytes && msg->apply_bytes < send)
707 		send = msg->apply_bytes;
708 
709 	switch (psock->eval) {
710 	case __SK_PASS:
711 		err = tls_push_record(sk, flags, record_type);
712 		if (err < 0) {
713 			*copied -= sk_msg_free(sk, msg);
714 			tls_free_open_rec(sk);
715 			goto out_err;
716 		}
717 		break;
718 	case __SK_REDIRECT:
719 		sk_redir = psock->sk_redir;
720 		memcpy(&msg_redir, msg, sizeof(*msg));
721 		if (msg->apply_bytes < send)
722 			msg->apply_bytes = 0;
723 		else
724 			msg->apply_bytes -= send;
725 		sk_msg_return_zero(sk, msg, send);
726 		msg->sg.size -= send;
727 		release_sock(sk);
728 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
729 		lock_sock(sk);
730 		if (err < 0) {
731 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
732 			msg->sg.size = 0;
733 		}
734 		if (msg->sg.size == 0)
735 			tls_free_open_rec(sk);
736 		break;
737 	case __SK_DROP:
738 	default:
739 		sk_msg_free_partial(sk, msg, send);
740 		if (msg->apply_bytes < send)
741 			msg->apply_bytes = 0;
742 		else
743 			msg->apply_bytes -= send;
744 		if (msg->sg.size == 0)
745 			tls_free_open_rec(sk);
746 		*copied -= send;
747 		err = -EACCES;
748 	}
749 
750 	if (likely(!err)) {
751 		bool reset_eval = !ctx->open_rec;
752 
753 		rec = ctx->open_rec;
754 		if (rec) {
755 			msg = &rec->msg_plaintext;
756 			if (!msg->apply_bytes)
757 				reset_eval = true;
758 		}
759 		if (reset_eval) {
760 			psock->eval = __SK_NONE;
761 			if (psock->sk_redir) {
762 				sock_put(psock->sk_redir);
763 				psock->sk_redir = NULL;
764 			}
765 		}
766 		if (rec)
767 			goto more_data;
768 	}
769  out_err:
770 	sk_psock_put(sk, psock);
771 	return err;
772 }
773 
774 static int tls_sw_push_pending_record(struct sock *sk, int flags)
775 {
776 	struct tls_context *tls_ctx = tls_get_ctx(sk);
777 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
778 	struct tls_rec *rec = ctx->open_rec;
779 	struct sk_msg *msg_pl;
780 	size_t copied;
781 
782 	if (!rec)
783 		return 0;
784 
785 	msg_pl = &rec->msg_plaintext;
786 	copied = msg_pl->sg.size;
787 	if (!copied)
788 		return 0;
789 
790 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
791 				   &copied, flags);
792 }
793 
794 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
795 {
796 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
797 	struct tls_context *tls_ctx = tls_get_ctx(sk);
798 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
799 	struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
800 	bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
801 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
802 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
803 	bool eor = !(msg->msg_flags & MSG_MORE);
804 	size_t try_to_copy, copied = 0;
805 	struct sk_msg *msg_pl, *msg_en;
806 	struct tls_rec *rec;
807 	int required_size;
808 	int num_async = 0;
809 	bool full_record;
810 	int record_room;
811 	int num_zc = 0;
812 	int orig_size;
813 	int ret = 0;
814 
815 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
816 		return -ENOTSUPP;
817 
818 	lock_sock(sk);
819 
820 	/* Wait till there is any pending write on socket */
821 	if (unlikely(sk->sk_write_pending)) {
822 		ret = wait_on_pending_writer(sk, &timeo);
823 		if (unlikely(ret))
824 			goto send_end;
825 	}
826 
827 	if (unlikely(msg->msg_controllen)) {
828 		ret = tls_proccess_cmsg(sk, msg, &record_type);
829 		if (ret) {
830 			if (ret == -EINPROGRESS)
831 				num_async++;
832 			else if (ret != -EAGAIN)
833 				goto send_end;
834 		}
835 	}
836 
837 	while (msg_data_left(msg)) {
838 		if (sk->sk_err) {
839 			ret = -sk->sk_err;
840 			goto send_end;
841 		}
842 
843 		if (ctx->open_rec)
844 			rec = ctx->open_rec;
845 		else
846 			rec = ctx->open_rec = tls_get_rec(sk);
847 		if (!rec) {
848 			ret = -ENOMEM;
849 			goto send_end;
850 		}
851 
852 		msg_pl = &rec->msg_plaintext;
853 		msg_en = &rec->msg_encrypted;
854 
855 		orig_size = msg_pl->sg.size;
856 		full_record = false;
857 		try_to_copy = msg_data_left(msg);
858 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
859 		if (try_to_copy >= record_room) {
860 			try_to_copy = record_room;
861 			full_record = true;
862 		}
863 
864 		required_size = msg_pl->sg.size + try_to_copy +
865 				tls_ctx->tx.overhead_size;
866 
867 		if (!sk_stream_memory_free(sk))
868 			goto wait_for_sndbuf;
869 
870 alloc_encrypted:
871 		ret = tls_alloc_encrypted_msg(sk, required_size);
872 		if (ret) {
873 			if (ret != -ENOSPC)
874 				goto wait_for_memory;
875 
876 			/* Adjust try_to_copy according to the amount that was
877 			 * actually allocated. The difference is due
878 			 * to max sg elements limit
879 			 */
880 			try_to_copy -= required_size - msg_en->sg.size;
881 			full_record = true;
882 		}
883 
884 		if (!is_kvec && (full_record || eor) && !async_capable) {
885 			u32 first = msg_pl->sg.end;
886 
887 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
888 							msg_pl, try_to_copy);
889 			if (ret)
890 				goto fallback_to_reg_send;
891 
892 			rec->inplace_crypto = 0;
893 
894 			num_zc++;
895 			copied += try_to_copy;
896 
897 			sk_msg_sg_copy_set(msg_pl, first);
898 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
899 						  record_type, &copied,
900 						  msg->msg_flags);
901 			if (ret) {
902 				if (ret == -EINPROGRESS)
903 					num_async++;
904 				else if (ret == -ENOMEM)
905 					goto wait_for_memory;
906 				else if (ret == -ENOSPC)
907 					goto rollback_iter;
908 				else if (ret != -EAGAIN)
909 					goto send_end;
910 			}
911 			continue;
912 rollback_iter:
913 			copied -= try_to_copy;
914 			sk_msg_sg_copy_clear(msg_pl, first);
915 			iov_iter_revert(&msg->msg_iter,
916 					msg_pl->sg.size - orig_size);
917 fallback_to_reg_send:
918 			sk_msg_trim(sk, msg_pl, orig_size);
919 		}
920 
921 		required_size = msg_pl->sg.size + try_to_copy;
922 
923 		ret = tls_clone_plaintext_msg(sk, required_size);
924 		if (ret) {
925 			if (ret != -ENOSPC)
926 				goto send_end;
927 
928 			/* Adjust try_to_copy according to the amount that was
929 			 * actually allocated. The difference is due
930 			 * to max sg elements limit
931 			 */
932 			try_to_copy -= required_size - msg_pl->sg.size;
933 			full_record = true;
934 			sk_msg_trim(sk, msg_en, msg_pl->sg.size +
935 				    tls_ctx->tx.overhead_size);
936 		}
937 
938 		if (try_to_copy) {
939 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
940 						       msg_pl, try_to_copy);
941 			if (ret < 0)
942 				goto trim_sgl;
943 		}
944 
945 		/* Open records defined only if successfully copied, otherwise
946 		 * we would trim the sg but not reset the open record frags.
947 		 */
948 		tls_ctx->pending_open_record_frags = true;
949 		copied += try_to_copy;
950 		if (full_record || eor) {
951 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
952 						  record_type, &copied,
953 						  msg->msg_flags);
954 			if (ret) {
955 				if (ret == -EINPROGRESS)
956 					num_async++;
957 				else if (ret == -ENOMEM)
958 					goto wait_for_memory;
959 				else if (ret != -EAGAIN) {
960 					if (ret == -ENOSPC)
961 						ret = 0;
962 					goto send_end;
963 				}
964 			}
965 		}
966 
967 		continue;
968 
969 wait_for_sndbuf:
970 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
971 wait_for_memory:
972 		ret = sk_stream_wait_memory(sk, &timeo);
973 		if (ret) {
974 trim_sgl:
975 			tls_trim_both_msgs(sk, orig_size);
976 			goto send_end;
977 		}
978 
979 		if (msg_en->sg.size < required_size)
980 			goto alloc_encrypted;
981 	}
982 
983 	if (!num_async) {
984 		goto send_end;
985 	} else if (num_zc) {
986 		/* Wait for pending encryptions to get completed */
987 		smp_store_mb(ctx->async_notify, true);
988 
989 		if (atomic_read(&ctx->encrypt_pending))
990 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
991 		else
992 			reinit_completion(&ctx->async_wait.completion);
993 
994 		WRITE_ONCE(ctx->async_notify, false);
995 
996 		if (ctx->async_wait.err) {
997 			ret = ctx->async_wait.err;
998 			copied = 0;
999 		}
1000 	}
1001 
1002 	/* Transmit if any encryptions have completed */
1003 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1004 		cancel_delayed_work(&ctx->tx_work.work);
1005 		tls_tx_records(sk, msg->msg_flags);
1006 	}
1007 
1008 send_end:
1009 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1010 
1011 	release_sock(sk);
1012 	return copied ? copied : ret;
1013 }
1014 
1015 int tls_sw_sendpage(struct sock *sk, struct page *page,
1016 		    int offset, size_t size, int flags)
1017 {
1018 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1019 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1020 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1021 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1022 	struct sk_msg *msg_pl;
1023 	struct tls_rec *rec;
1024 	int num_async = 0;
1025 	size_t copied = 0;
1026 	bool full_record;
1027 	int record_room;
1028 	int ret = 0;
1029 	bool eor;
1030 
1031 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1032 		      MSG_SENDPAGE_NOTLAST))
1033 		return -ENOTSUPP;
1034 
1035 	/* No MSG_EOR from splice, only look at MSG_MORE */
1036 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1037 
1038 	lock_sock(sk);
1039 
1040 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1041 
1042 	/* Wait till there is any pending write on socket */
1043 	if (unlikely(sk->sk_write_pending)) {
1044 		ret = wait_on_pending_writer(sk, &timeo);
1045 		if (unlikely(ret))
1046 			goto sendpage_end;
1047 	}
1048 
1049 	/* Call the sk_stream functions to manage the sndbuf mem. */
1050 	while (size > 0) {
1051 		size_t copy, required_size;
1052 
1053 		if (sk->sk_err) {
1054 			ret = -sk->sk_err;
1055 			goto sendpage_end;
1056 		}
1057 
1058 		if (ctx->open_rec)
1059 			rec = ctx->open_rec;
1060 		else
1061 			rec = ctx->open_rec = tls_get_rec(sk);
1062 		if (!rec) {
1063 			ret = -ENOMEM;
1064 			goto sendpage_end;
1065 		}
1066 
1067 		msg_pl = &rec->msg_plaintext;
1068 
1069 		full_record = false;
1070 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1071 		copied = 0;
1072 		copy = size;
1073 		if (copy >= record_room) {
1074 			copy = record_room;
1075 			full_record = true;
1076 		}
1077 
1078 		required_size = msg_pl->sg.size + copy +
1079 				tls_ctx->tx.overhead_size;
1080 
1081 		if (!sk_stream_memory_free(sk))
1082 			goto wait_for_sndbuf;
1083 alloc_payload:
1084 		ret = tls_alloc_encrypted_msg(sk, required_size);
1085 		if (ret) {
1086 			if (ret != -ENOSPC)
1087 				goto wait_for_memory;
1088 
1089 			/* Adjust copy according to the amount that was
1090 			 * actually allocated. The difference is due
1091 			 * to max sg elements limit
1092 			 */
1093 			copy -= required_size - msg_pl->sg.size;
1094 			full_record = true;
1095 		}
1096 
1097 		sk_msg_page_add(msg_pl, page, copy, offset);
1098 		sk_mem_charge(sk, copy);
1099 
1100 		offset += copy;
1101 		size -= copy;
1102 		copied += copy;
1103 
1104 		tls_ctx->pending_open_record_frags = true;
1105 		if (full_record || eor || sk_msg_full(msg_pl)) {
1106 			rec->inplace_crypto = 0;
1107 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1108 						  record_type, &copied, flags);
1109 			if (ret) {
1110 				if (ret == -EINPROGRESS)
1111 					num_async++;
1112 				else if (ret == -ENOMEM)
1113 					goto wait_for_memory;
1114 				else if (ret != -EAGAIN) {
1115 					if (ret == -ENOSPC)
1116 						ret = 0;
1117 					goto sendpage_end;
1118 				}
1119 			}
1120 		}
1121 		continue;
1122 wait_for_sndbuf:
1123 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1124 wait_for_memory:
1125 		ret = sk_stream_wait_memory(sk, &timeo);
1126 		if (ret) {
1127 			tls_trim_both_msgs(sk, msg_pl->sg.size);
1128 			goto sendpage_end;
1129 		}
1130 
1131 		goto alloc_payload;
1132 	}
1133 
1134 	if (num_async) {
1135 		/* Transmit if any encryptions have completed */
1136 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1137 			cancel_delayed_work(&ctx->tx_work.work);
1138 			tls_tx_records(sk, flags);
1139 		}
1140 	}
1141 sendpage_end:
1142 	ret = sk_stream_error(sk, flags, ret);
1143 	release_sock(sk);
1144 	return copied ? copied : ret;
1145 }
1146 
1147 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1148 				     int flags, long timeo, int *err)
1149 {
1150 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1151 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1152 	struct sk_buff *skb;
1153 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1154 
1155 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1156 		if (sk->sk_err) {
1157 			*err = sock_error(sk);
1158 			return NULL;
1159 		}
1160 
1161 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1162 			return NULL;
1163 
1164 		if (sock_flag(sk, SOCK_DONE))
1165 			return NULL;
1166 
1167 		if ((flags & MSG_DONTWAIT) || !timeo) {
1168 			*err = -EAGAIN;
1169 			return NULL;
1170 		}
1171 
1172 		add_wait_queue(sk_sleep(sk), &wait);
1173 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1174 		sk_wait_event(sk, &timeo,
1175 			      ctx->recv_pkt != skb ||
1176 			      !sk_psock_queue_empty(psock),
1177 			      &wait);
1178 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1179 		remove_wait_queue(sk_sleep(sk), &wait);
1180 
1181 		/* Handle signals */
1182 		if (signal_pending(current)) {
1183 			*err = sock_intr_errno(timeo);
1184 			return NULL;
1185 		}
1186 	}
1187 
1188 	return skb;
1189 }
1190 
1191 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1192 			       int length, int *pages_used,
1193 			       unsigned int *size_used,
1194 			       struct scatterlist *to,
1195 			       int to_max_pages)
1196 {
1197 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1198 	struct page *pages[MAX_SKB_FRAGS];
1199 	unsigned int size = *size_used;
1200 	ssize_t copied, use;
1201 	size_t offset;
1202 
1203 	while (length > 0) {
1204 		i = 0;
1205 		maxpages = to_max_pages - num_elem;
1206 		if (maxpages == 0) {
1207 			rc = -EFAULT;
1208 			goto out;
1209 		}
1210 		copied = iov_iter_get_pages(from, pages,
1211 					    length,
1212 					    maxpages, &offset);
1213 		if (copied <= 0) {
1214 			rc = -EFAULT;
1215 			goto out;
1216 		}
1217 
1218 		iov_iter_advance(from, copied);
1219 
1220 		length -= copied;
1221 		size += copied;
1222 		while (copied) {
1223 			use = min_t(int, copied, PAGE_SIZE - offset);
1224 
1225 			sg_set_page(&to[num_elem],
1226 				    pages[i], use, offset);
1227 			sg_unmark_end(&to[num_elem]);
1228 			/* We do not uncharge memory from this API */
1229 
1230 			offset = 0;
1231 			copied -= use;
1232 
1233 			i++;
1234 			num_elem++;
1235 		}
1236 	}
1237 	/* Mark the end in the last sg entry if newly added */
1238 	if (num_elem > *pages_used)
1239 		sg_mark_end(&to[num_elem - 1]);
1240 out:
1241 	if (rc)
1242 		iov_iter_revert(from, size - *size_used);
1243 	*size_used = size;
1244 	*pages_used = num_elem;
1245 
1246 	return rc;
1247 }
1248 
1249 /* This function decrypts the input skb into either out_iov or in out_sg
1250  * or in skb buffers itself. The input parameter 'zc' indicates if
1251  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1252  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1253  * NULL, then the decryption happens inside skb buffers itself, i.e.
1254  * zero-copy gets disabled and 'zc' is updated.
1255  */
1256 
1257 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1258 			    struct iov_iter *out_iov,
1259 			    struct scatterlist *out_sg,
1260 			    int *chunk, bool *zc)
1261 {
1262 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1263 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1264 	struct strp_msg *rxm = strp_msg(skb);
1265 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1266 	struct aead_request *aead_req;
1267 	struct sk_buff *unused;
1268 	u8 *aad, *iv, *mem = NULL;
1269 	struct scatterlist *sgin = NULL;
1270 	struct scatterlist *sgout = NULL;
1271 	const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1272 
1273 	if (*zc && (out_iov || out_sg)) {
1274 		if (out_iov)
1275 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1276 		else
1277 			n_sgout = sg_nents(out_sg);
1278 		n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1279 				 rxm->full_len - tls_ctx->rx.prepend_size);
1280 	} else {
1281 		n_sgout = 0;
1282 		*zc = false;
1283 		n_sgin = skb_cow_data(skb, 0, &unused);
1284 	}
1285 
1286 	if (n_sgin < 1)
1287 		return -EBADMSG;
1288 
1289 	/* Increment to accommodate AAD */
1290 	n_sgin = n_sgin + 1;
1291 
1292 	nsg = n_sgin + n_sgout;
1293 
1294 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1295 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1296 	mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1297 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1298 
1299 	/* Allocate a single block of memory which contains
1300 	 * aead_req || sgin[] || sgout[] || aad || iv.
1301 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1302 	 */
1303 	mem = kmalloc(mem_size, sk->sk_allocation);
1304 	if (!mem)
1305 		return -ENOMEM;
1306 
1307 	/* Segment the allocated memory */
1308 	aead_req = (struct aead_request *)mem;
1309 	sgin = (struct scatterlist *)(mem + aead_size);
1310 	sgout = sgin + n_sgin;
1311 	aad = (u8 *)(sgout + n_sgout);
1312 	iv = aad + TLS_AAD_SPACE_SIZE;
1313 
1314 	/* Prepare IV */
1315 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1316 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1317 			    tls_ctx->rx.iv_size);
1318 	if (err < 0) {
1319 		kfree(mem);
1320 		return err;
1321 	}
1322 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1323 
1324 	/* Prepare AAD */
1325 	tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1326 		     tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1327 		     ctx->control);
1328 
1329 	/* Prepare sgin */
1330 	sg_init_table(sgin, n_sgin);
1331 	sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1332 	err = skb_to_sgvec(skb, &sgin[1],
1333 			   rxm->offset + tls_ctx->rx.prepend_size,
1334 			   rxm->full_len - tls_ctx->rx.prepend_size);
1335 	if (err < 0) {
1336 		kfree(mem);
1337 		return err;
1338 	}
1339 
1340 	if (n_sgout) {
1341 		if (out_iov) {
1342 			sg_init_table(sgout, n_sgout);
1343 			sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1344 
1345 			*chunk = 0;
1346 			err = tls_setup_from_iter(sk, out_iov, data_len,
1347 						  &pages, chunk, &sgout[1],
1348 						  (n_sgout - 1));
1349 			if (err < 0)
1350 				goto fallback_to_reg_recv;
1351 		} else if (out_sg) {
1352 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1353 		} else {
1354 			goto fallback_to_reg_recv;
1355 		}
1356 	} else {
1357 fallback_to_reg_recv:
1358 		sgout = sgin;
1359 		pages = 0;
1360 		*chunk = 0;
1361 		*zc = false;
1362 	}
1363 
1364 	/* Prepare and submit AEAD request */
1365 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1366 				data_len, aead_req, *zc);
1367 	if (err == -EINPROGRESS)
1368 		return err;
1369 
1370 	/* Release the pages in case iov was mapped to pages */
1371 	for (; pages > 0; pages--)
1372 		put_page(sg_page(&sgout[pages]));
1373 
1374 	kfree(mem);
1375 	return err;
1376 }
1377 
1378 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1379 			      struct iov_iter *dest, int *chunk, bool *zc)
1380 {
1381 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1382 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1383 	struct strp_msg *rxm = strp_msg(skb);
1384 	int err = 0;
1385 
1386 #ifdef CONFIG_TLS_DEVICE
1387 	err = tls_device_decrypted(sk, skb);
1388 	if (err < 0)
1389 		return err;
1390 #endif
1391 	if (!ctx->decrypted) {
1392 		err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1393 		if (err < 0) {
1394 			if (err == -EINPROGRESS)
1395 				tls_advance_record_sn(sk, &tls_ctx->rx);
1396 
1397 			return err;
1398 		}
1399 	} else {
1400 		*zc = false;
1401 	}
1402 
1403 	rxm->offset += tls_ctx->rx.prepend_size;
1404 	rxm->full_len -= tls_ctx->rx.overhead_size;
1405 	tls_advance_record_sn(sk, &tls_ctx->rx);
1406 	ctx->decrypted = true;
1407 	ctx->saved_data_ready(sk);
1408 
1409 	return err;
1410 }
1411 
1412 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1413 		struct scatterlist *sgout)
1414 {
1415 	bool zc = true;
1416 	int chunk;
1417 
1418 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1419 }
1420 
1421 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1422 			       unsigned int len)
1423 {
1424 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1425 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1426 
1427 	if (skb) {
1428 		struct strp_msg *rxm = strp_msg(skb);
1429 
1430 		if (len < rxm->full_len) {
1431 			rxm->offset += len;
1432 			rxm->full_len -= len;
1433 			return false;
1434 		}
1435 		kfree_skb(skb);
1436 	}
1437 
1438 	/* Finished with message */
1439 	ctx->recv_pkt = NULL;
1440 	__strp_unpause(&ctx->strp);
1441 
1442 	return true;
1443 }
1444 
1445 int tls_sw_recvmsg(struct sock *sk,
1446 		   struct msghdr *msg,
1447 		   size_t len,
1448 		   int nonblock,
1449 		   int flags,
1450 		   int *addr_len)
1451 {
1452 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1453 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1454 	struct sk_psock *psock;
1455 	unsigned char control;
1456 	struct strp_msg *rxm;
1457 	struct sk_buff *skb;
1458 	ssize_t copied = 0;
1459 	bool cmsg = false;
1460 	int target, err = 0;
1461 	long timeo;
1462 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1463 	int num_async = 0;
1464 
1465 	flags |= nonblock;
1466 
1467 	if (unlikely(flags & MSG_ERRQUEUE))
1468 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1469 
1470 	psock = sk_psock_get(sk);
1471 	lock_sock(sk);
1472 
1473 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1474 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1475 	do {
1476 		bool zc = false;
1477 		bool async = false;
1478 		int chunk = 0;
1479 
1480 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1481 		if (!skb) {
1482 			if (psock) {
1483 				int ret = __tcp_bpf_recvmsg(sk, psock,
1484 							    msg, len, flags);
1485 
1486 				if (ret > 0) {
1487 					copied += ret;
1488 					len -= ret;
1489 					continue;
1490 				}
1491 			}
1492 			goto recv_end;
1493 		}
1494 
1495 		rxm = strp_msg(skb);
1496 
1497 		if (!cmsg) {
1498 			int cerr;
1499 
1500 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1501 					sizeof(ctx->control), &ctx->control);
1502 			cmsg = true;
1503 			control = ctx->control;
1504 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
1505 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1506 					err = -EIO;
1507 					goto recv_end;
1508 				}
1509 			}
1510 		} else if (control != ctx->control) {
1511 			goto recv_end;
1512 		}
1513 
1514 		if (!ctx->decrypted) {
1515 			int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1516 
1517 			if (!is_kvec && to_copy <= len &&
1518 			    likely(!(flags & MSG_PEEK)))
1519 				zc = true;
1520 
1521 			err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1522 						 &chunk, &zc);
1523 			if (err < 0 && err != -EINPROGRESS) {
1524 				tls_err_abort(sk, EBADMSG);
1525 				goto recv_end;
1526 			}
1527 
1528 			if (err == -EINPROGRESS) {
1529 				async = true;
1530 				num_async++;
1531 				goto pick_next_record;
1532 			}
1533 
1534 			ctx->decrypted = true;
1535 		}
1536 
1537 		if (!zc) {
1538 			chunk = min_t(unsigned int, rxm->full_len, len);
1539 
1540 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1541 						    chunk);
1542 			if (err < 0)
1543 				goto recv_end;
1544 		}
1545 
1546 pick_next_record:
1547 		copied += chunk;
1548 		len -= chunk;
1549 		if (likely(!(flags & MSG_PEEK))) {
1550 			u8 control = ctx->control;
1551 
1552 			/* For async, drop current skb reference */
1553 			if (async)
1554 				skb = NULL;
1555 
1556 			if (tls_sw_advance_skb(sk, skb, chunk)) {
1557 				/* Return full control message to
1558 				 * userspace before trying to parse
1559 				 * another message type
1560 				 */
1561 				msg->msg_flags |= MSG_EOR;
1562 				if (control != TLS_RECORD_TYPE_DATA)
1563 					goto recv_end;
1564 			} else {
1565 				break;
1566 			}
1567 		} else {
1568 			/* MSG_PEEK right now cannot look beyond current skb
1569 			 * from strparser, meaning we cannot advance skb here
1570 			 * and thus unpause strparser since we'd loose original
1571 			 * one.
1572 			 */
1573 			break;
1574 		}
1575 
1576 		/* If we have a new message from strparser, continue now. */
1577 		if (copied >= target && !ctx->recv_pkt)
1578 			break;
1579 	} while (len);
1580 
1581 recv_end:
1582 	if (num_async) {
1583 		/* Wait for all previously submitted records to be decrypted */
1584 		smp_store_mb(ctx->async_notify, true);
1585 		if (atomic_read(&ctx->decrypt_pending)) {
1586 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1587 			if (err) {
1588 				/* one of async decrypt failed */
1589 				tls_err_abort(sk, err);
1590 				copied = 0;
1591 			}
1592 		} else {
1593 			reinit_completion(&ctx->async_wait.completion);
1594 		}
1595 		WRITE_ONCE(ctx->async_notify, false);
1596 	}
1597 
1598 	release_sock(sk);
1599 	if (psock)
1600 		sk_psock_put(sk, psock);
1601 	return copied ? : err;
1602 }
1603 
1604 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1605 			   struct pipe_inode_info *pipe,
1606 			   size_t len, unsigned int flags)
1607 {
1608 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1609 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1610 	struct strp_msg *rxm = NULL;
1611 	struct sock *sk = sock->sk;
1612 	struct sk_buff *skb;
1613 	ssize_t copied = 0;
1614 	int err = 0;
1615 	long timeo;
1616 	int chunk;
1617 	bool zc = false;
1618 
1619 	lock_sock(sk);
1620 
1621 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1622 
1623 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1624 	if (!skb)
1625 		goto splice_read_end;
1626 
1627 	/* splice does not support reading control messages */
1628 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
1629 		err = -ENOTSUPP;
1630 		goto splice_read_end;
1631 	}
1632 
1633 	if (!ctx->decrypted) {
1634 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1635 
1636 		if (err < 0) {
1637 			tls_err_abort(sk, EBADMSG);
1638 			goto splice_read_end;
1639 		}
1640 		ctx->decrypted = true;
1641 	}
1642 	rxm = strp_msg(skb);
1643 
1644 	chunk = min_t(unsigned int, rxm->full_len, len);
1645 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1646 	if (copied < 0)
1647 		goto splice_read_end;
1648 
1649 	if (likely(!(flags & MSG_PEEK)))
1650 		tls_sw_advance_skb(sk, skb, copied);
1651 
1652 splice_read_end:
1653 	release_sock(sk);
1654 	return copied ? : err;
1655 }
1656 
1657 bool tls_sw_stream_read(const struct sock *sk)
1658 {
1659 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1660 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1661 	bool ingress_empty = true;
1662 	struct sk_psock *psock;
1663 
1664 	rcu_read_lock();
1665 	psock = sk_psock(sk);
1666 	if (psock)
1667 		ingress_empty = list_empty(&psock->ingress_msg);
1668 	rcu_read_unlock();
1669 
1670 	return !ingress_empty || ctx->recv_pkt;
1671 }
1672 
1673 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1674 {
1675 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1676 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1677 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1678 	struct strp_msg *rxm = strp_msg(skb);
1679 	size_t cipher_overhead;
1680 	size_t data_len = 0;
1681 	int ret;
1682 
1683 	/* Verify that we have a full TLS header, or wait for more data */
1684 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1685 		return 0;
1686 
1687 	/* Sanity-check size of on-stack buffer. */
1688 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1689 		ret = -EINVAL;
1690 		goto read_failure;
1691 	}
1692 
1693 	/* Linearize header to local buffer */
1694 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1695 
1696 	if (ret < 0)
1697 		goto read_failure;
1698 
1699 	ctx->control = header[0];
1700 
1701 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1702 
1703 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1704 
1705 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1706 		ret = -EMSGSIZE;
1707 		goto read_failure;
1708 	}
1709 	if (data_len < cipher_overhead) {
1710 		ret = -EBADMSG;
1711 		goto read_failure;
1712 	}
1713 
1714 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1715 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1716 		ret = -EINVAL;
1717 		goto read_failure;
1718 	}
1719 
1720 #ifdef CONFIG_TLS_DEVICE
1721 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1722 			     *(u64*)tls_ctx->rx.rec_seq);
1723 #endif
1724 	return data_len + TLS_HEADER_SIZE;
1725 
1726 read_failure:
1727 	tls_err_abort(strp->sk, ret);
1728 
1729 	return ret;
1730 }
1731 
1732 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1733 {
1734 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1735 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1736 
1737 	ctx->decrypted = false;
1738 
1739 	ctx->recv_pkt = skb;
1740 	strp_pause(strp);
1741 
1742 	ctx->saved_data_ready(strp->sk);
1743 }
1744 
1745 static void tls_data_ready(struct sock *sk)
1746 {
1747 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1748 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1749 	struct sk_psock *psock;
1750 
1751 	strp_data_ready(&ctx->strp);
1752 
1753 	psock = sk_psock_get(sk);
1754 	if (psock && !list_empty(&psock->ingress_msg)) {
1755 		ctx->saved_data_ready(sk);
1756 		sk_psock_put(sk, psock);
1757 	}
1758 }
1759 
1760 void tls_sw_free_resources_tx(struct sock *sk)
1761 {
1762 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1763 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1764 	struct tls_rec *rec, *tmp;
1765 
1766 	/* Wait for any pending async encryptions to complete */
1767 	smp_store_mb(ctx->async_notify, true);
1768 	if (atomic_read(&ctx->encrypt_pending))
1769 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1770 
1771 	cancel_delayed_work_sync(&ctx->tx_work.work);
1772 
1773 	/* Tx whatever records we can transmit and abandon the rest */
1774 	tls_tx_records(sk, -1);
1775 
1776 	/* Free up un-sent records in tx_list. First, free
1777 	 * the partially sent record if any at head of tx_list.
1778 	 */
1779 	if (tls_ctx->partially_sent_record) {
1780 		struct scatterlist *sg = tls_ctx->partially_sent_record;
1781 
1782 		while (1) {
1783 			put_page(sg_page(sg));
1784 			sk_mem_uncharge(sk, sg->length);
1785 
1786 			if (sg_is_last(sg))
1787 				break;
1788 			sg++;
1789 		}
1790 
1791 		tls_ctx->partially_sent_record = NULL;
1792 
1793 		rec = list_first_entry(&ctx->tx_list,
1794 				       struct tls_rec, list);
1795 		list_del(&rec->list);
1796 		sk_msg_free(sk, &rec->msg_plaintext);
1797 		kfree(rec);
1798 	}
1799 
1800 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1801 		list_del(&rec->list);
1802 		sk_msg_free(sk, &rec->msg_encrypted);
1803 		sk_msg_free(sk, &rec->msg_plaintext);
1804 		kfree(rec);
1805 	}
1806 
1807 	crypto_free_aead(ctx->aead_send);
1808 	tls_free_open_rec(sk);
1809 
1810 	kfree(ctx);
1811 }
1812 
1813 void tls_sw_release_resources_rx(struct sock *sk)
1814 {
1815 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1816 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1817 
1818 	if (ctx->aead_recv) {
1819 		kfree_skb(ctx->recv_pkt);
1820 		ctx->recv_pkt = NULL;
1821 		crypto_free_aead(ctx->aead_recv);
1822 		strp_stop(&ctx->strp);
1823 		write_lock_bh(&sk->sk_callback_lock);
1824 		sk->sk_data_ready = ctx->saved_data_ready;
1825 		write_unlock_bh(&sk->sk_callback_lock);
1826 		release_sock(sk);
1827 		strp_done(&ctx->strp);
1828 		lock_sock(sk);
1829 	}
1830 }
1831 
1832 void tls_sw_free_resources_rx(struct sock *sk)
1833 {
1834 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1835 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1836 
1837 	tls_sw_release_resources_rx(sk);
1838 
1839 	kfree(ctx);
1840 }
1841 
1842 /* The work handler to transmitt the encrypted records in tx_list */
1843 static void tx_work_handler(struct work_struct *work)
1844 {
1845 	struct delayed_work *delayed_work = to_delayed_work(work);
1846 	struct tx_work *tx_work = container_of(delayed_work,
1847 					       struct tx_work, work);
1848 	struct sock *sk = tx_work->sk;
1849 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1850 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1851 
1852 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1853 		return;
1854 
1855 	lock_sock(sk);
1856 	tls_tx_records(sk, -1);
1857 	release_sock(sk);
1858 }
1859 
1860 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1861 {
1862 	struct tls_crypto_info *crypto_info;
1863 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1864 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
1865 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
1866 	struct cipher_context *cctx;
1867 	struct crypto_aead **aead;
1868 	struct strp_callbacks cb;
1869 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1870 	char *iv, *rec_seq;
1871 	int rc = 0;
1872 
1873 	if (!ctx) {
1874 		rc = -EINVAL;
1875 		goto out;
1876 	}
1877 
1878 	if (tx) {
1879 		if (!ctx->priv_ctx_tx) {
1880 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1881 			if (!sw_ctx_tx) {
1882 				rc = -ENOMEM;
1883 				goto out;
1884 			}
1885 			ctx->priv_ctx_tx = sw_ctx_tx;
1886 		} else {
1887 			sw_ctx_tx =
1888 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1889 		}
1890 	} else {
1891 		if (!ctx->priv_ctx_rx) {
1892 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1893 			if (!sw_ctx_rx) {
1894 				rc = -ENOMEM;
1895 				goto out;
1896 			}
1897 			ctx->priv_ctx_rx = sw_ctx_rx;
1898 		} else {
1899 			sw_ctx_rx =
1900 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1901 		}
1902 	}
1903 
1904 	if (tx) {
1905 		crypto_init_wait(&sw_ctx_tx->async_wait);
1906 		crypto_info = &ctx->crypto_send.info;
1907 		cctx = &ctx->tx;
1908 		aead = &sw_ctx_tx->aead_send;
1909 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1910 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1911 		sw_ctx_tx->tx_work.sk = sk;
1912 	} else {
1913 		crypto_init_wait(&sw_ctx_rx->async_wait);
1914 		crypto_info = &ctx->crypto_recv.info;
1915 		cctx = &ctx->rx;
1916 		aead = &sw_ctx_rx->aead_recv;
1917 	}
1918 
1919 	switch (crypto_info->cipher_type) {
1920 	case TLS_CIPHER_AES_GCM_128: {
1921 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1922 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1923 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1924 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1925 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1926 		rec_seq =
1927 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1928 		gcm_128_info =
1929 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1930 		break;
1931 	}
1932 	default:
1933 		rc = -EINVAL;
1934 		goto free_priv;
1935 	}
1936 
1937 	/* Sanity-check the IV size for stack allocations. */
1938 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1939 		rc = -EINVAL;
1940 		goto free_priv;
1941 	}
1942 
1943 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1944 	cctx->tag_size = tag_size;
1945 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1946 	cctx->iv_size = iv_size;
1947 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1948 			   GFP_KERNEL);
1949 	if (!cctx->iv) {
1950 		rc = -ENOMEM;
1951 		goto free_priv;
1952 	}
1953 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1954 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1955 	cctx->rec_seq_size = rec_seq_size;
1956 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1957 	if (!cctx->rec_seq) {
1958 		rc = -ENOMEM;
1959 		goto free_iv;
1960 	}
1961 
1962 	if (!*aead) {
1963 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1964 		if (IS_ERR(*aead)) {
1965 			rc = PTR_ERR(*aead);
1966 			*aead = NULL;
1967 			goto free_rec_seq;
1968 		}
1969 	}
1970 
1971 	ctx->push_pending_record = tls_sw_push_pending_record;
1972 
1973 	rc = crypto_aead_setkey(*aead, gcm_128_info->key,
1974 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1975 	if (rc)
1976 		goto free_aead;
1977 
1978 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1979 	if (rc)
1980 		goto free_aead;
1981 
1982 	if (sw_ctx_rx) {
1983 		/* Set up strparser */
1984 		memset(&cb, 0, sizeof(cb));
1985 		cb.rcv_msg = tls_queue;
1986 		cb.parse_msg = tls_read_size;
1987 
1988 		strp_init(&sw_ctx_rx->strp, sk, &cb);
1989 
1990 		write_lock_bh(&sk->sk_callback_lock);
1991 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1992 		sk->sk_data_ready = tls_data_ready;
1993 		write_unlock_bh(&sk->sk_callback_lock);
1994 
1995 		strp_check_rcv(&sw_ctx_rx->strp);
1996 	}
1997 
1998 	goto out;
1999 
2000 free_aead:
2001 	crypto_free_aead(*aead);
2002 	*aead = NULL;
2003 free_rec_seq:
2004 	kfree(cctx->rec_seq);
2005 	cctx->rec_seq = NULL;
2006 free_iv:
2007 	kfree(cctx->iv);
2008 	cctx->iv = NULL;
2009 free_priv:
2010 	if (tx) {
2011 		kfree(ctx->priv_ctx_tx);
2012 		ctx->priv_ctx_tx = NULL;
2013 	} else {
2014 		kfree(ctx->priv_ctx_rx);
2015 		ctx->priv_ctx_rx = NULL;
2016 	}
2017 out:
2018 	return rc;
2019 }
2020