xref: /openbmc/linux/net/tls/tls_sw.c (revision 67dffd3d)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43 
44 #include <net/strparser.h>
45 #include <net/tls.h>
46 
47 struct tls_decrypt_arg {
48 	bool zc;
49 	bool async;
50 	u8 tail;
51 };
52 
53 noinline void tls_err_abort(struct sock *sk, int err)
54 {
55 	WARN_ON_ONCE(err >= 0);
56 	/* sk->sk_err should contain a positive error code. */
57 	sk->sk_err = -err;
58 	sk_error_report(sk);
59 }
60 
61 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
62                      unsigned int recursion_level)
63 {
64         int start = skb_headlen(skb);
65         int i, chunk = start - offset;
66         struct sk_buff *frag_iter;
67         int elt = 0;
68 
69         if (unlikely(recursion_level >= 24))
70                 return -EMSGSIZE;
71 
72         if (chunk > 0) {
73                 if (chunk > len)
74                         chunk = len;
75                 elt++;
76                 len -= chunk;
77                 if (len == 0)
78                         return elt;
79                 offset += chunk;
80         }
81 
82         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
83                 int end;
84 
85                 WARN_ON(start > offset + len);
86 
87                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
88                 chunk = end - offset;
89                 if (chunk > 0) {
90                         if (chunk > len)
91                                 chunk = len;
92                         elt++;
93                         len -= chunk;
94                         if (len == 0)
95                                 return elt;
96                         offset += chunk;
97                 }
98                 start = end;
99         }
100 
101         if (unlikely(skb_has_frag_list(skb))) {
102                 skb_walk_frags(skb, frag_iter) {
103                         int end, ret;
104 
105                         WARN_ON(start > offset + len);
106 
107                         end = start + frag_iter->len;
108                         chunk = end - offset;
109                         if (chunk > 0) {
110                                 if (chunk > len)
111                                         chunk = len;
112                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
113                                                 recursion_level + 1);
114                                 if (unlikely(ret < 0))
115                                         return ret;
116                                 elt += ret;
117                                 len -= chunk;
118                                 if (len == 0)
119                                         return elt;
120                                 offset += chunk;
121                         }
122                         start = end;
123                 }
124         }
125         BUG_ON(len);
126         return elt;
127 }
128 
129 /* Return the number of scatterlist elements required to completely map the
130  * skb, or -EMSGSIZE if the recursion depth is exceeded.
131  */
132 static int skb_nsg(struct sk_buff *skb, int offset, int len)
133 {
134         return __skb_nsg(skb, offset, len, 0);
135 }
136 
137 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
138 			      struct tls_decrypt_arg *darg)
139 {
140 	struct strp_msg *rxm = strp_msg(skb);
141 	struct tls_msg *tlm = tls_msg(skb);
142 	int sub = 0;
143 
144 	/* Determine zero-padding length */
145 	if (prot->version == TLS_1_3_VERSION) {
146 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
147 		char content_type = darg->zc ? darg->tail : 0;
148 		int err;
149 
150 		while (content_type == 0) {
151 			if (offset < prot->prepend_size)
152 				return -EBADMSG;
153 			err = skb_copy_bits(skb, rxm->offset + offset,
154 					    &content_type, 1);
155 			if (err)
156 				return err;
157 			if (content_type)
158 				break;
159 			sub++;
160 			offset--;
161 		}
162 		tlm->control = content_type;
163 	}
164 	return sub;
165 }
166 
167 static void tls_decrypt_done(struct crypto_async_request *req, int err)
168 {
169 	struct aead_request *aead_req = (struct aead_request *)req;
170 	struct scatterlist *sgout = aead_req->dst;
171 	struct scatterlist *sgin = aead_req->src;
172 	struct tls_sw_context_rx *ctx;
173 	struct tls_context *tls_ctx;
174 	struct tls_prot_info *prot;
175 	struct scatterlist *sg;
176 	struct sk_buff *skb;
177 	unsigned int pages;
178 
179 	skb = (struct sk_buff *)req->data;
180 	tls_ctx = tls_get_ctx(skb->sk);
181 	ctx = tls_sw_ctx_rx(tls_ctx);
182 	prot = &tls_ctx->prot_info;
183 
184 	/* Propagate if there was an err */
185 	if (err) {
186 		if (err == -EBADMSG)
187 			TLS_INC_STATS(sock_net(skb->sk),
188 				      LINUX_MIB_TLSDECRYPTERROR);
189 		ctx->async_wait.err = err;
190 		tls_err_abort(skb->sk, err);
191 	} else {
192 		struct strp_msg *rxm = strp_msg(skb);
193 
194 		/* No TLS 1.3 support with async crypto */
195 		WARN_ON(prot->tail_size);
196 
197 		rxm->offset += prot->prepend_size;
198 		rxm->full_len -= prot->overhead_size;
199 	}
200 
201 	/* After using skb->sk to propagate sk through crypto async callback
202 	 * we need to NULL it again.
203 	 */
204 	skb->sk = NULL;
205 
206 
207 	/* Free the destination pages if skb was not decrypted inplace */
208 	if (sgout != sgin) {
209 		/* Skip the first S/G entry as it points to AAD */
210 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 			if (!sg)
212 				break;
213 			put_page(sg_page(sg));
214 		}
215 	}
216 
217 	kfree(aead_req);
218 
219 	spin_lock_bh(&ctx->decrypt_compl_lock);
220 	if (!atomic_dec_return(&ctx->decrypt_pending))
221 		complete(&ctx->async_wait.completion);
222 	spin_unlock_bh(&ctx->decrypt_compl_lock);
223 }
224 
225 static int tls_do_decryption(struct sock *sk,
226 			     struct sk_buff *skb,
227 			     struct scatterlist *sgin,
228 			     struct scatterlist *sgout,
229 			     char *iv_recv,
230 			     size_t data_len,
231 			     struct aead_request *aead_req,
232 			     struct tls_decrypt_arg *darg)
233 {
234 	struct tls_context *tls_ctx = tls_get_ctx(sk);
235 	struct tls_prot_info *prot = &tls_ctx->prot_info;
236 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
237 	int ret;
238 
239 	aead_request_set_tfm(aead_req, ctx->aead_recv);
240 	aead_request_set_ad(aead_req, prot->aad_size);
241 	aead_request_set_crypt(aead_req, sgin, sgout,
242 			       data_len + prot->tag_size,
243 			       (u8 *)iv_recv);
244 
245 	if (darg->async) {
246 		/* Using skb->sk to push sk through to crypto async callback
247 		 * handler. This allows propagating errors up to the socket
248 		 * if needed. It _must_ be cleared in the async handler
249 		 * before consume_skb is called. We _know_ skb->sk is NULL
250 		 * because it is a clone from strparser.
251 		 */
252 		skb->sk = sk;
253 		aead_request_set_callback(aead_req,
254 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
255 					  tls_decrypt_done, skb);
256 		atomic_inc(&ctx->decrypt_pending);
257 	} else {
258 		aead_request_set_callback(aead_req,
259 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
260 					  crypto_req_done, &ctx->async_wait);
261 	}
262 
263 	ret = crypto_aead_decrypt(aead_req);
264 	if (ret == -EINPROGRESS) {
265 		if (darg->async)
266 			return 0;
267 
268 		ret = crypto_wait_req(ret, &ctx->async_wait);
269 	}
270 	darg->async = false;
271 
272 	if (ret == -EBADMSG)
273 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
274 
275 	return ret;
276 }
277 
278 static void tls_trim_both_msgs(struct sock *sk, int target_size)
279 {
280 	struct tls_context *tls_ctx = tls_get_ctx(sk);
281 	struct tls_prot_info *prot = &tls_ctx->prot_info;
282 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
283 	struct tls_rec *rec = ctx->open_rec;
284 
285 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
286 	if (target_size > 0)
287 		target_size += prot->overhead_size;
288 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
289 }
290 
291 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
292 {
293 	struct tls_context *tls_ctx = tls_get_ctx(sk);
294 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
295 	struct tls_rec *rec = ctx->open_rec;
296 	struct sk_msg *msg_en = &rec->msg_encrypted;
297 
298 	return sk_msg_alloc(sk, msg_en, len, 0);
299 }
300 
301 static int tls_clone_plaintext_msg(struct sock *sk, int required)
302 {
303 	struct tls_context *tls_ctx = tls_get_ctx(sk);
304 	struct tls_prot_info *prot = &tls_ctx->prot_info;
305 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306 	struct tls_rec *rec = ctx->open_rec;
307 	struct sk_msg *msg_pl = &rec->msg_plaintext;
308 	struct sk_msg *msg_en = &rec->msg_encrypted;
309 	int skip, len;
310 
311 	/* We add page references worth len bytes from encrypted sg
312 	 * at the end of plaintext sg. It is guaranteed that msg_en
313 	 * has enough required room (ensured by caller).
314 	 */
315 	len = required - msg_pl->sg.size;
316 
317 	/* Skip initial bytes in msg_en's data to be able to use
318 	 * same offset of both plain and encrypted data.
319 	 */
320 	skip = prot->prepend_size + msg_pl->sg.size;
321 
322 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
323 }
324 
325 static struct tls_rec *tls_get_rec(struct sock *sk)
326 {
327 	struct tls_context *tls_ctx = tls_get_ctx(sk);
328 	struct tls_prot_info *prot = &tls_ctx->prot_info;
329 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
330 	struct sk_msg *msg_pl, *msg_en;
331 	struct tls_rec *rec;
332 	int mem_size;
333 
334 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
335 
336 	rec = kzalloc(mem_size, sk->sk_allocation);
337 	if (!rec)
338 		return NULL;
339 
340 	msg_pl = &rec->msg_plaintext;
341 	msg_en = &rec->msg_encrypted;
342 
343 	sk_msg_init(msg_pl);
344 	sk_msg_init(msg_en);
345 
346 	sg_init_table(rec->sg_aead_in, 2);
347 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
348 	sg_unmark_end(&rec->sg_aead_in[1]);
349 
350 	sg_init_table(rec->sg_aead_out, 2);
351 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
352 	sg_unmark_end(&rec->sg_aead_out[1]);
353 
354 	return rec;
355 }
356 
357 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
358 {
359 	sk_msg_free(sk, &rec->msg_encrypted);
360 	sk_msg_free(sk, &rec->msg_plaintext);
361 	kfree(rec);
362 }
363 
364 static void tls_free_open_rec(struct sock *sk)
365 {
366 	struct tls_context *tls_ctx = tls_get_ctx(sk);
367 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
368 	struct tls_rec *rec = ctx->open_rec;
369 
370 	if (rec) {
371 		tls_free_rec(sk, rec);
372 		ctx->open_rec = NULL;
373 	}
374 }
375 
376 int tls_tx_records(struct sock *sk, int flags)
377 {
378 	struct tls_context *tls_ctx = tls_get_ctx(sk);
379 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
380 	struct tls_rec *rec, *tmp;
381 	struct sk_msg *msg_en;
382 	int tx_flags, rc = 0;
383 
384 	if (tls_is_partially_sent_record(tls_ctx)) {
385 		rec = list_first_entry(&ctx->tx_list,
386 				       struct tls_rec, list);
387 
388 		if (flags == -1)
389 			tx_flags = rec->tx_flags;
390 		else
391 			tx_flags = flags;
392 
393 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
394 		if (rc)
395 			goto tx_err;
396 
397 		/* Full record has been transmitted.
398 		 * Remove the head of tx_list
399 		 */
400 		list_del(&rec->list);
401 		sk_msg_free(sk, &rec->msg_plaintext);
402 		kfree(rec);
403 	}
404 
405 	/* Tx all ready records */
406 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
407 		if (READ_ONCE(rec->tx_ready)) {
408 			if (flags == -1)
409 				tx_flags = rec->tx_flags;
410 			else
411 				tx_flags = flags;
412 
413 			msg_en = &rec->msg_encrypted;
414 			rc = tls_push_sg(sk, tls_ctx,
415 					 &msg_en->sg.data[msg_en->sg.curr],
416 					 0, tx_flags);
417 			if (rc)
418 				goto tx_err;
419 
420 			list_del(&rec->list);
421 			sk_msg_free(sk, &rec->msg_plaintext);
422 			kfree(rec);
423 		} else {
424 			break;
425 		}
426 	}
427 
428 tx_err:
429 	if (rc < 0 && rc != -EAGAIN)
430 		tls_err_abort(sk, -EBADMSG);
431 
432 	return rc;
433 }
434 
435 static void tls_encrypt_done(struct crypto_async_request *req, int err)
436 {
437 	struct aead_request *aead_req = (struct aead_request *)req;
438 	struct sock *sk = req->data;
439 	struct tls_context *tls_ctx = tls_get_ctx(sk);
440 	struct tls_prot_info *prot = &tls_ctx->prot_info;
441 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
442 	struct scatterlist *sge;
443 	struct sk_msg *msg_en;
444 	struct tls_rec *rec;
445 	bool ready = false;
446 	int pending;
447 
448 	rec = container_of(aead_req, struct tls_rec, aead_req);
449 	msg_en = &rec->msg_encrypted;
450 
451 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
452 	sge->offset -= prot->prepend_size;
453 	sge->length += prot->prepend_size;
454 
455 	/* Check if error is previously set on socket */
456 	if (err || sk->sk_err) {
457 		rec = NULL;
458 
459 		/* If err is already set on socket, return the same code */
460 		if (sk->sk_err) {
461 			ctx->async_wait.err = -sk->sk_err;
462 		} else {
463 			ctx->async_wait.err = err;
464 			tls_err_abort(sk, err);
465 		}
466 	}
467 
468 	if (rec) {
469 		struct tls_rec *first_rec;
470 
471 		/* Mark the record as ready for transmission */
472 		smp_store_mb(rec->tx_ready, true);
473 
474 		/* If received record is at head of tx_list, schedule tx */
475 		first_rec = list_first_entry(&ctx->tx_list,
476 					     struct tls_rec, list);
477 		if (rec == first_rec)
478 			ready = true;
479 	}
480 
481 	spin_lock_bh(&ctx->encrypt_compl_lock);
482 	pending = atomic_dec_return(&ctx->encrypt_pending);
483 
484 	if (!pending && ctx->async_notify)
485 		complete(&ctx->async_wait.completion);
486 	spin_unlock_bh(&ctx->encrypt_compl_lock);
487 
488 	if (!ready)
489 		return;
490 
491 	/* Schedule the transmission */
492 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
493 		schedule_delayed_work(&ctx->tx_work.work, 1);
494 }
495 
496 static int tls_do_encryption(struct sock *sk,
497 			     struct tls_context *tls_ctx,
498 			     struct tls_sw_context_tx *ctx,
499 			     struct aead_request *aead_req,
500 			     size_t data_len, u32 start)
501 {
502 	struct tls_prot_info *prot = &tls_ctx->prot_info;
503 	struct tls_rec *rec = ctx->open_rec;
504 	struct sk_msg *msg_en = &rec->msg_encrypted;
505 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
506 	int rc, iv_offset = 0;
507 
508 	/* For CCM based ciphers, first byte of IV is a constant */
509 	switch (prot->cipher_type) {
510 	case TLS_CIPHER_AES_CCM_128:
511 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512 		iv_offset = 1;
513 		break;
514 	case TLS_CIPHER_SM4_CCM:
515 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
516 		iv_offset = 1;
517 		break;
518 	}
519 
520 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
521 	       prot->iv_size + prot->salt_size);
522 
523 	xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
524 
525 	sge->offset += prot->prepend_size;
526 	sge->length -= prot->prepend_size;
527 
528 	msg_en->sg.curr = start;
529 
530 	aead_request_set_tfm(aead_req, ctx->aead_send);
531 	aead_request_set_ad(aead_req, prot->aad_size);
532 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
533 			       rec->sg_aead_out,
534 			       data_len, rec->iv_data);
535 
536 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
537 				  tls_encrypt_done, sk);
538 
539 	/* Add the record in tx_list */
540 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
541 	atomic_inc(&ctx->encrypt_pending);
542 
543 	rc = crypto_aead_encrypt(aead_req);
544 	if (!rc || rc != -EINPROGRESS) {
545 		atomic_dec(&ctx->encrypt_pending);
546 		sge->offset -= prot->prepend_size;
547 		sge->length += prot->prepend_size;
548 	}
549 
550 	if (!rc) {
551 		WRITE_ONCE(rec->tx_ready, true);
552 	} else if (rc != -EINPROGRESS) {
553 		list_del(&rec->list);
554 		return rc;
555 	}
556 
557 	/* Unhook the record from context if encryption is not failure */
558 	ctx->open_rec = NULL;
559 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
560 	return rc;
561 }
562 
563 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
564 				 struct tls_rec **to, struct sk_msg *msg_opl,
565 				 struct sk_msg *msg_oen, u32 split_point,
566 				 u32 tx_overhead_size, u32 *orig_end)
567 {
568 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
569 	struct scatterlist *sge, *osge, *nsge;
570 	u32 orig_size = msg_opl->sg.size;
571 	struct scatterlist tmp = { };
572 	struct sk_msg *msg_npl;
573 	struct tls_rec *new;
574 	int ret;
575 
576 	new = tls_get_rec(sk);
577 	if (!new)
578 		return -ENOMEM;
579 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
580 			   tx_overhead_size, 0);
581 	if (ret < 0) {
582 		tls_free_rec(sk, new);
583 		return ret;
584 	}
585 
586 	*orig_end = msg_opl->sg.end;
587 	i = msg_opl->sg.start;
588 	sge = sk_msg_elem(msg_opl, i);
589 	while (apply && sge->length) {
590 		if (sge->length > apply) {
591 			u32 len = sge->length - apply;
592 
593 			get_page(sg_page(sge));
594 			sg_set_page(&tmp, sg_page(sge), len,
595 				    sge->offset + apply);
596 			sge->length = apply;
597 			bytes += apply;
598 			apply = 0;
599 		} else {
600 			apply -= sge->length;
601 			bytes += sge->length;
602 		}
603 
604 		sk_msg_iter_var_next(i);
605 		if (i == msg_opl->sg.end)
606 			break;
607 		sge = sk_msg_elem(msg_opl, i);
608 	}
609 
610 	msg_opl->sg.end = i;
611 	msg_opl->sg.curr = i;
612 	msg_opl->sg.copybreak = 0;
613 	msg_opl->apply_bytes = 0;
614 	msg_opl->sg.size = bytes;
615 
616 	msg_npl = &new->msg_plaintext;
617 	msg_npl->apply_bytes = apply;
618 	msg_npl->sg.size = orig_size - bytes;
619 
620 	j = msg_npl->sg.start;
621 	nsge = sk_msg_elem(msg_npl, j);
622 	if (tmp.length) {
623 		memcpy(nsge, &tmp, sizeof(*nsge));
624 		sk_msg_iter_var_next(j);
625 		nsge = sk_msg_elem(msg_npl, j);
626 	}
627 
628 	osge = sk_msg_elem(msg_opl, i);
629 	while (osge->length) {
630 		memcpy(nsge, osge, sizeof(*nsge));
631 		sg_unmark_end(nsge);
632 		sk_msg_iter_var_next(i);
633 		sk_msg_iter_var_next(j);
634 		if (i == *orig_end)
635 			break;
636 		osge = sk_msg_elem(msg_opl, i);
637 		nsge = sk_msg_elem(msg_npl, j);
638 	}
639 
640 	msg_npl->sg.end = j;
641 	msg_npl->sg.curr = j;
642 	msg_npl->sg.copybreak = 0;
643 
644 	*to = new;
645 	return 0;
646 }
647 
648 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
649 				  struct tls_rec *from, u32 orig_end)
650 {
651 	struct sk_msg *msg_npl = &from->msg_plaintext;
652 	struct sk_msg *msg_opl = &to->msg_plaintext;
653 	struct scatterlist *osge, *nsge;
654 	u32 i, j;
655 
656 	i = msg_opl->sg.end;
657 	sk_msg_iter_var_prev(i);
658 	j = msg_npl->sg.start;
659 
660 	osge = sk_msg_elem(msg_opl, i);
661 	nsge = sk_msg_elem(msg_npl, j);
662 
663 	if (sg_page(osge) == sg_page(nsge) &&
664 	    osge->offset + osge->length == nsge->offset) {
665 		osge->length += nsge->length;
666 		put_page(sg_page(nsge));
667 	}
668 
669 	msg_opl->sg.end = orig_end;
670 	msg_opl->sg.curr = orig_end;
671 	msg_opl->sg.copybreak = 0;
672 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
673 	msg_opl->sg.size += msg_npl->sg.size;
674 
675 	sk_msg_free(sk, &to->msg_encrypted);
676 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
677 
678 	kfree(from);
679 }
680 
681 static int tls_push_record(struct sock *sk, int flags,
682 			   unsigned char record_type)
683 {
684 	struct tls_context *tls_ctx = tls_get_ctx(sk);
685 	struct tls_prot_info *prot = &tls_ctx->prot_info;
686 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
687 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
688 	u32 i, split_point, orig_end;
689 	struct sk_msg *msg_pl, *msg_en;
690 	struct aead_request *req;
691 	bool split;
692 	int rc;
693 
694 	if (!rec)
695 		return 0;
696 
697 	msg_pl = &rec->msg_plaintext;
698 	msg_en = &rec->msg_encrypted;
699 
700 	split_point = msg_pl->apply_bytes;
701 	split = split_point && split_point < msg_pl->sg.size;
702 	if (unlikely((!split &&
703 		      msg_pl->sg.size +
704 		      prot->overhead_size > msg_en->sg.size) ||
705 		     (split &&
706 		      split_point +
707 		      prot->overhead_size > msg_en->sg.size))) {
708 		split = true;
709 		split_point = msg_en->sg.size;
710 	}
711 	if (split) {
712 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
713 					   split_point, prot->overhead_size,
714 					   &orig_end);
715 		if (rc < 0)
716 			return rc;
717 		/* This can happen if above tls_split_open_record allocates
718 		 * a single large encryption buffer instead of two smaller
719 		 * ones. In this case adjust pointers and continue without
720 		 * split.
721 		 */
722 		if (!msg_pl->sg.size) {
723 			tls_merge_open_record(sk, rec, tmp, orig_end);
724 			msg_pl = &rec->msg_plaintext;
725 			msg_en = &rec->msg_encrypted;
726 			split = false;
727 		}
728 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
729 			    prot->overhead_size);
730 	}
731 
732 	rec->tx_flags = flags;
733 	req = &rec->aead_req;
734 
735 	i = msg_pl->sg.end;
736 	sk_msg_iter_var_prev(i);
737 
738 	rec->content_type = record_type;
739 	if (prot->version == TLS_1_3_VERSION) {
740 		/* Add content type to end of message.  No padding added */
741 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
742 		sg_mark_end(&rec->sg_content_type);
743 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
744 			 &rec->sg_content_type);
745 	} else {
746 		sg_mark_end(sk_msg_elem(msg_pl, i));
747 	}
748 
749 	if (msg_pl->sg.end < msg_pl->sg.start) {
750 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
751 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
752 			 msg_pl->sg.data);
753 	}
754 
755 	i = msg_pl->sg.start;
756 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
757 
758 	i = msg_en->sg.end;
759 	sk_msg_iter_var_prev(i);
760 	sg_mark_end(sk_msg_elem(msg_en, i));
761 
762 	i = msg_en->sg.start;
763 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
764 
765 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
766 		     tls_ctx->tx.rec_seq, record_type, prot);
767 
768 	tls_fill_prepend(tls_ctx,
769 			 page_address(sg_page(&msg_en->sg.data[i])) +
770 			 msg_en->sg.data[i].offset,
771 			 msg_pl->sg.size + prot->tail_size,
772 			 record_type);
773 
774 	tls_ctx->pending_open_record_frags = false;
775 
776 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
777 			       msg_pl->sg.size + prot->tail_size, i);
778 	if (rc < 0) {
779 		if (rc != -EINPROGRESS) {
780 			tls_err_abort(sk, -EBADMSG);
781 			if (split) {
782 				tls_ctx->pending_open_record_frags = true;
783 				tls_merge_open_record(sk, rec, tmp, orig_end);
784 			}
785 		}
786 		ctx->async_capable = 1;
787 		return rc;
788 	} else if (split) {
789 		msg_pl = &tmp->msg_plaintext;
790 		msg_en = &tmp->msg_encrypted;
791 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
792 		tls_ctx->pending_open_record_frags = true;
793 		ctx->open_rec = tmp;
794 	}
795 
796 	return tls_tx_records(sk, flags);
797 }
798 
799 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
800 			       bool full_record, u8 record_type,
801 			       ssize_t *copied, int flags)
802 {
803 	struct tls_context *tls_ctx = tls_get_ctx(sk);
804 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
805 	struct sk_msg msg_redir = { };
806 	struct sk_psock *psock;
807 	struct sock *sk_redir;
808 	struct tls_rec *rec;
809 	bool enospc, policy;
810 	int err = 0, send;
811 	u32 delta = 0;
812 
813 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
814 	psock = sk_psock_get(sk);
815 	if (!psock || !policy) {
816 		err = tls_push_record(sk, flags, record_type);
817 		if (err && sk->sk_err == EBADMSG) {
818 			*copied -= sk_msg_free(sk, msg);
819 			tls_free_open_rec(sk);
820 			err = -sk->sk_err;
821 		}
822 		if (psock)
823 			sk_psock_put(sk, psock);
824 		return err;
825 	}
826 more_data:
827 	enospc = sk_msg_full(msg);
828 	if (psock->eval == __SK_NONE) {
829 		delta = msg->sg.size;
830 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
831 		delta -= msg->sg.size;
832 	}
833 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
834 	    !enospc && !full_record) {
835 		err = -ENOSPC;
836 		goto out_err;
837 	}
838 	msg->cork_bytes = 0;
839 	send = msg->sg.size;
840 	if (msg->apply_bytes && msg->apply_bytes < send)
841 		send = msg->apply_bytes;
842 
843 	switch (psock->eval) {
844 	case __SK_PASS:
845 		err = tls_push_record(sk, flags, record_type);
846 		if (err && sk->sk_err == EBADMSG) {
847 			*copied -= sk_msg_free(sk, msg);
848 			tls_free_open_rec(sk);
849 			err = -sk->sk_err;
850 			goto out_err;
851 		}
852 		break;
853 	case __SK_REDIRECT:
854 		sk_redir = psock->sk_redir;
855 		memcpy(&msg_redir, msg, sizeof(*msg));
856 		if (msg->apply_bytes < send)
857 			msg->apply_bytes = 0;
858 		else
859 			msg->apply_bytes -= send;
860 		sk_msg_return_zero(sk, msg, send);
861 		msg->sg.size -= send;
862 		release_sock(sk);
863 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
864 		lock_sock(sk);
865 		if (err < 0) {
866 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
867 			msg->sg.size = 0;
868 		}
869 		if (msg->sg.size == 0)
870 			tls_free_open_rec(sk);
871 		break;
872 	case __SK_DROP:
873 	default:
874 		sk_msg_free_partial(sk, msg, send);
875 		if (msg->apply_bytes < send)
876 			msg->apply_bytes = 0;
877 		else
878 			msg->apply_bytes -= send;
879 		if (msg->sg.size == 0)
880 			tls_free_open_rec(sk);
881 		*copied -= (send + delta);
882 		err = -EACCES;
883 	}
884 
885 	if (likely(!err)) {
886 		bool reset_eval = !ctx->open_rec;
887 
888 		rec = ctx->open_rec;
889 		if (rec) {
890 			msg = &rec->msg_plaintext;
891 			if (!msg->apply_bytes)
892 				reset_eval = true;
893 		}
894 		if (reset_eval) {
895 			psock->eval = __SK_NONE;
896 			if (psock->sk_redir) {
897 				sock_put(psock->sk_redir);
898 				psock->sk_redir = NULL;
899 			}
900 		}
901 		if (rec)
902 			goto more_data;
903 	}
904  out_err:
905 	sk_psock_put(sk, psock);
906 	return err;
907 }
908 
909 static int tls_sw_push_pending_record(struct sock *sk, int flags)
910 {
911 	struct tls_context *tls_ctx = tls_get_ctx(sk);
912 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
913 	struct tls_rec *rec = ctx->open_rec;
914 	struct sk_msg *msg_pl;
915 	size_t copied;
916 
917 	if (!rec)
918 		return 0;
919 
920 	msg_pl = &rec->msg_plaintext;
921 	copied = msg_pl->sg.size;
922 	if (!copied)
923 		return 0;
924 
925 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
926 				   &copied, flags);
927 }
928 
929 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
930 {
931 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
932 	struct tls_context *tls_ctx = tls_get_ctx(sk);
933 	struct tls_prot_info *prot = &tls_ctx->prot_info;
934 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
935 	bool async_capable = ctx->async_capable;
936 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
937 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
938 	bool eor = !(msg->msg_flags & MSG_MORE);
939 	size_t try_to_copy;
940 	ssize_t copied = 0;
941 	struct sk_msg *msg_pl, *msg_en;
942 	struct tls_rec *rec;
943 	int required_size;
944 	int num_async = 0;
945 	bool full_record;
946 	int record_room;
947 	int num_zc = 0;
948 	int orig_size;
949 	int ret = 0;
950 	int pending;
951 
952 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
953 			       MSG_CMSG_COMPAT))
954 		return -EOPNOTSUPP;
955 
956 	mutex_lock(&tls_ctx->tx_lock);
957 	lock_sock(sk);
958 
959 	if (unlikely(msg->msg_controllen)) {
960 		ret = tls_proccess_cmsg(sk, msg, &record_type);
961 		if (ret) {
962 			if (ret == -EINPROGRESS)
963 				num_async++;
964 			else if (ret != -EAGAIN)
965 				goto send_end;
966 		}
967 	}
968 
969 	while (msg_data_left(msg)) {
970 		if (sk->sk_err) {
971 			ret = -sk->sk_err;
972 			goto send_end;
973 		}
974 
975 		if (ctx->open_rec)
976 			rec = ctx->open_rec;
977 		else
978 			rec = ctx->open_rec = tls_get_rec(sk);
979 		if (!rec) {
980 			ret = -ENOMEM;
981 			goto send_end;
982 		}
983 
984 		msg_pl = &rec->msg_plaintext;
985 		msg_en = &rec->msg_encrypted;
986 
987 		orig_size = msg_pl->sg.size;
988 		full_record = false;
989 		try_to_copy = msg_data_left(msg);
990 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
991 		if (try_to_copy >= record_room) {
992 			try_to_copy = record_room;
993 			full_record = true;
994 		}
995 
996 		required_size = msg_pl->sg.size + try_to_copy +
997 				prot->overhead_size;
998 
999 		if (!sk_stream_memory_free(sk))
1000 			goto wait_for_sndbuf;
1001 
1002 alloc_encrypted:
1003 		ret = tls_alloc_encrypted_msg(sk, required_size);
1004 		if (ret) {
1005 			if (ret != -ENOSPC)
1006 				goto wait_for_memory;
1007 
1008 			/* Adjust try_to_copy according to the amount that was
1009 			 * actually allocated. The difference is due
1010 			 * to max sg elements limit
1011 			 */
1012 			try_to_copy -= required_size - msg_en->sg.size;
1013 			full_record = true;
1014 		}
1015 
1016 		if (!is_kvec && (full_record || eor) && !async_capable) {
1017 			u32 first = msg_pl->sg.end;
1018 
1019 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1020 							msg_pl, try_to_copy);
1021 			if (ret)
1022 				goto fallback_to_reg_send;
1023 
1024 			num_zc++;
1025 			copied += try_to_copy;
1026 
1027 			sk_msg_sg_copy_set(msg_pl, first);
1028 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1029 						  record_type, &copied,
1030 						  msg->msg_flags);
1031 			if (ret) {
1032 				if (ret == -EINPROGRESS)
1033 					num_async++;
1034 				else if (ret == -ENOMEM)
1035 					goto wait_for_memory;
1036 				else if (ctx->open_rec && ret == -ENOSPC)
1037 					goto rollback_iter;
1038 				else if (ret != -EAGAIN)
1039 					goto send_end;
1040 			}
1041 			continue;
1042 rollback_iter:
1043 			copied -= try_to_copy;
1044 			sk_msg_sg_copy_clear(msg_pl, first);
1045 			iov_iter_revert(&msg->msg_iter,
1046 					msg_pl->sg.size - orig_size);
1047 fallback_to_reg_send:
1048 			sk_msg_trim(sk, msg_pl, orig_size);
1049 		}
1050 
1051 		required_size = msg_pl->sg.size + try_to_copy;
1052 
1053 		ret = tls_clone_plaintext_msg(sk, required_size);
1054 		if (ret) {
1055 			if (ret != -ENOSPC)
1056 				goto send_end;
1057 
1058 			/* Adjust try_to_copy according to the amount that was
1059 			 * actually allocated. The difference is due
1060 			 * to max sg elements limit
1061 			 */
1062 			try_to_copy -= required_size - msg_pl->sg.size;
1063 			full_record = true;
1064 			sk_msg_trim(sk, msg_en,
1065 				    msg_pl->sg.size + prot->overhead_size);
1066 		}
1067 
1068 		if (try_to_copy) {
1069 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1070 						       msg_pl, try_to_copy);
1071 			if (ret < 0)
1072 				goto trim_sgl;
1073 		}
1074 
1075 		/* Open records defined only if successfully copied, otherwise
1076 		 * we would trim the sg but not reset the open record frags.
1077 		 */
1078 		tls_ctx->pending_open_record_frags = true;
1079 		copied += try_to_copy;
1080 		if (full_record || eor) {
1081 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1082 						  record_type, &copied,
1083 						  msg->msg_flags);
1084 			if (ret) {
1085 				if (ret == -EINPROGRESS)
1086 					num_async++;
1087 				else if (ret == -ENOMEM)
1088 					goto wait_for_memory;
1089 				else if (ret != -EAGAIN) {
1090 					if (ret == -ENOSPC)
1091 						ret = 0;
1092 					goto send_end;
1093 				}
1094 			}
1095 		}
1096 
1097 		continue;
1098 
1099 wait_for_sndbuf:
1100 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1101 wait_for_memory:
1102 		ret = sk_stream_wait_memory(sk, &timeo);
1103 		if (ret) {
1104 trim_sgl:
1105 			if (ctx->open_rec)
1106 				tls_trim_both_msgs(sk, orig_size);
1107 			goto send_end;
1108 		}
1109 
1110 		if (ctx->open_rec && msg_en->sg.size < required_size)
1111 			goto alloc_encrypted;
1112 	}
1113 
1114 	if (!num_async) {
1115 		goto send_end;
1116 	} else if (num_zc) {
1117 		/* Wait for pending encryptions to get completed */
1118 		spin_lock_bh(&ctx->encrypt_compl_lock);
1119 		ctx->async_notify = true;
1120 
1121 		pending = atomic_read(&ctx->encrypt_pending);
1122 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1123 		if (pending)
1124 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1125 		else
1126 			reinit_completion(&ctx->async_wait.completion);
1127 
1128 		/* There can be no concurrent accesses, since we have no
1129 		 * pending encrypt operations
1130 		 */
1131 		WRITE_ONCE(ctx->async_notify, false);
1132 
1133 		if (ctx->async_wait.err) {
1134 			ret = ctx->async_wait.err;
1135 			copied = 0;
1136 		}
1137 	}
1138 
1139 	/* Transmit if any encryptions have completed */
1140 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1141 		cancel_delayed_work(&ctx->tx_work.work);
1142 		tls_tx_records(sk, msg->msg_flags);
1143 	}
1144 
1145 send_end:
1146 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1147 
1148 	release_sock(sk);
1149 	mutex_unlock(&tls_ctx->tx_lock);
1150 	return copied > 0 ? copied : ret;
1151 }
1152 
1153 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1154 			      int offset, size_t size, int flags)
1155 {
1156 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1157 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1158 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1159 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1160 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1161 	struct sk_msg *msg_pl;
1162 	struct tls_rec *rec;
1163 	int num_async = 0;
1164 	ssize_t copied = 0;
1165 	bool full_record;
1166 	int record_room;
1167 	int ret = 0;
1168 	bool eor;
1169 
1170 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1171 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1172 
1173 	/* Call the sk_stream functions to manage the sndbuf mem. */
1174 	while (size > 0) {
1175 		size_t copy, required_size;
1176 
1177 		if (sk->sk_err) {
1178 			ret = -sk->sk_err;
1179 			goto sendpage_end;
1180 		}
1181 
1182 		if (ctx->open_rec)
1183 			rec = ctx->open_rec;
1184 		else
1185 			rec = ctx->open_rec = tls_get_rec(sk);
1186 		if (!rec) {
1187 			ret = -ENOMEM;
1188 			goto sendpage_end;
1189 		}
1190 
1191 		msg_pl = &rec->msg_plaintext;
1192 
1193 		full_record = false;
1194 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1195 		copy = size;
1196 		if (copy >= record_room) {
1197 			copy = record_room;
1198 			full_record = true;
1199 		}
1200 
1201 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1202 
1203 		if (!sk_stream_memory_free(sk))
1204 			goto wait_for_sndbuf;
1205 alloc_payload:
1206 		ret = tls_alloc_encrypted_msg(sk, required_size);
1207 		if (ret) {
1208 			if (ret != -ENOSPC)
1209 				goto wait_for_memory;
1210 
1211 			/* Adjust copy according to the amount that was
1212 			 * actually allocated. The difference is due
1213 			 * to max sg elements limit
1214 			 */
1215 			copy -= required_size - msg_pl->sg.size;
1216 			full_record = true;
1217 		}
1218 
1219 		sk_msg_page_add(msg_pl, page, copy, offset);
1220 		sk_mem_charge(sk, copy);
1221 
1222 		offset += copy;
1223 		size -= copy;
1224 		copied += copy;
1225 
1226 		tls_ctx->pending_open_record_frags = true;
1227 		if (full_record || eor || sk_msg_full(msg_pl)) {
1228 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1229 						  record_type, &copied, flags);
1230 			if (ret) {
1231 				if (ret == -EINPROGRESS)
1232 					num_async++;
1233 				else if (ret == -ENOMEM)
1234 					goto wait_for_memory;
1235 				else if (ret != -EAGAIN) {
1236 					if (ret == -ENOSPC)
1237 						ret = 0;
1238 					goto sendpage_end;
1239 				}
1240 			}
1241 		}
1242 		continue;
1243 wait_for_sndbuf:
1244 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1245 wait_for_memory:
1246 		ret = sk_stream_wait_memory(sk, &timeo);
1247 		if (ret) {
1248 			if (ctx->open_rec)
1249 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1250 			goto sendpage_end;
1251 		}
1252 
1253 		if (ctx->open_rec)
1254 			goto alloc_payload;
1255 	}
1256 
1257 	if (num_async) {
1258 		/* Transmit if any encryptions have completed */
1259 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1260 			cancel_delayed_work(&ctx->tx_work.work);
1261 			tls_tx_records(sk, flags);
1262 		}
1263 	}
1264 sendpage_end:
1265 	ret = sk_stream_error(sk, flags, ret);
1266 	return copied > 0 ? copied : ret;
1267 }
1268 
1269 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1270 			   int offset, size_t size, int flags)
1271 {
1272 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1274 		      MSG_NO_SHARED_FRAGS))
1275 		return -EOPNOTSUPP;
1276 
1277 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1278 }
1279 
1280 int tls_sw_sendpage(struct sock *sk, struct page *page,
1281 		    int offset, size_t size, int flags)
1282 {
1283 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1284 	int ret;
1285 
1286 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1287 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1288 		return -EOPNOTSUPP;
1289 
1290 	mutex_lock(&tls_ctx->tx_lock);
1291 	lock_sock(sk);
1292 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1293 	release_sock(sk);
1294 	mutex_unlock(&tls_ctx->tx_lock);
1295 	return ret;
1296 }
1297 
1298 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1299 				     bool nonblock, long timeo, int *err)
1300 {
1301 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1302 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1303 	struct sk_buff *skb;
1304 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1305 
1306 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1307 		if (sk->sk_err) {
1308 			*err = sock_error(sk);
1309 			return NULL;
1310 		}
1311 
1312 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1313 			__strp_unpause(&ctx->strp);
1314 			if (ctx->recv_pkt)
1315 				return ctx->recv_pkt;
1316 		}
1317 
1318 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1319 			return NULL;
1320 
1321 		if (sock_flag(sk, SOCK_DONE))
1322 			return NULL;
1323 
1324 		if (nonblock || !timeo) {
1325 			*err = -EAGAIN;
1326 			return NULL;
1327 		}
1328 
1329 		add_wait_queue(sk_sleep(sk), &wait);
1330 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331 		sk_wait_event(sk, &timeo,
1332 			      ctx->recv_pkt != skb ||
1333 			      !sk_psock_queue_empty(psock),
1334 			      &wait);
1335 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1336 		remove_wait_queue(sk_sleep(sk), &wait);
1337 
1338 		/* Handle signals */
1339 		if (signal_pending(current)) {
1340 			*err = sock_intr_errno(timeo);
1341 			return NULL;
1342 		}
1343 	}
1344 
1345 	return skb;
1346 }
1347 
1348 static int tls_setup_from_iter(struct iov_iter *from,
1349 			       int length, int *pages_used,
1350 			       struct scatterlist *to,
1351 			       int to_max_pages)
1352 {
1353 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1354 	struct page *pages[MAX_SKB_FRAGS];
1355 	unsigned int size = 0;
1356 	ssize_t copied, use;
1357 	size_t offset;
1358 
1359 	while (length > 0) {
1360 		i = 0;
1361 		maxpages = to_max_pages - num_elem;
1362 		if (maxpages == 0) {
1363 			rc = -EFAULT;
1364 			goto out;
1365 		}
1366 		copied = iov_iter_get_pages(from, pages,
1367 					    length,
1368 					    maxpages, &offset);
1369 		if (copied <= 0) {
1370 			rc = -EFAULT;
1371 			goto out;
1372 		}
1373 
1374 		iov_iter_advance(from, copied);
1375 
1376 		length -= copied;
1377 		size += copied;
1378 		while (copied) {
1379 			use = min_t(int, copied, PAGE_SIZE - offset);
1380 
1381 			sg_set_page(&to[num_elem],
1382 				    pages[i], use, offset);
1383 			sg_unmark_end(&to[num_elem]);
1384 			/* We do not uncharge memory from this API */
1385 
1386 			offset = 0;
1387 			copied -= use;
1388 
1389 			i++;
1390 			num_elem++;
1391 		}
1392 	}
1393 	/* Mark the end in the last sg entry if newly added */
1394 	if (num_elem > *pages_used)
1395 		sg_mark_end(&to[num_elem - 1]);
1396 out:
1397 	if (rc)
1398 		iov_iter_revert(from, size);
1399 	*pages_used = num_elem;
1400 
1401 	return rc;
1402 }
1403 
1404 /* This function decrypts the input skb into either out_iov or in out_sg
1405  * or in skb buffers itself. The input parameter 'zc' indicates if
1406  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1407  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1408  * NULL, then the decryption happens inside skb buffers itself, i.e.
1409  * zero-copy gets disabled and 'zc' is updated.
1410  */
1411 
1412 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1413 			    struct iov_iter *out_iov,
1414 			    struct scatterlist *out_sg,
1415 			    struct tls_decrypt_arg *darg)
1416 {
1417 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1418 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1419 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1420 	struct strp_msg *rxm = strp_msg(skb);
1421 	struct tls_msg *tlm = tls_msg(skb);
1422 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1423 	u8 *aad, *iv, *tail, *mem = NULL;
1424 	struct aead_request *aead_req;
1425 	struct sk_buff *unused;
1426 	struct scatterlist *sgin = NULL;
1427 	struct scatterlist *sgout = NULL;
1428 	const int data_len = rxm->full_len - prot->overhead_size;
1429 	int tail_pages = !!prot->tail_size;
1430 	int iv_offset = 0;
1431 
1432 	if (darg->zc && (out_iov || out_sg)) {
1433 		if (out_iov)
1434 			n_sgout = 1 + tail_pages +
1435 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1436 		else
1437 			n_sgout = sg_nents(out_sg);
1438 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1439 				 rxm->full_len - prot->prepend_size);
1440 	} else {
1441 		n_sgout = 0;
1442 		darg->zc = false;
1443 		n_sgin = skb_cow_data(skb, 0, &unused);
1444 	}
1445 
1446 	if (n_sgin < 1)
1447 		return -EBADMSG;
1448 
1449 	/* Increment to accommodate AAD */
1450 	n_sgin = n_sgin + 1;
1451 
1452 	nsg = n_sgin + n_sgout;
1453 
1454 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1455 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1456 	mem_size = mem_size + prot->aad_size;
1457 	mem_size = mem_size + MAX_IV_SIZE;
1458 	mem_size = mem_size + prot->tail_size;
1459 
1460 	/* Allocate a single block of memory which contains
1461 	 * aead_req || sgin[] || sgout[] || aad || iv || tail.
1462 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1463 	 */
1464 	mem = kmalloc(mem_size, sk->sk_allocation);
1465 	if (!mem)
1466 		return -ENOMEM;
1467 
1468 	/* Segment the allocated memory */
1469 	aead_req = (struct aead_request *)mem;
1470 	sgin = (struct scatterlist *)(mem + aead_size);
1471 	sgout = sgin + n_sgin;
1472 	aad = (u8 *)(sgout + n_sgout);
1473 	iv = aad + prot->aad_size;
1474 	tail = iv + MAX_IV_SIZE;
1475 
1476 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1477 	switch (prot->cipher_type) {
1478 	case TLS_CIPHER_AES_CCM_128:
1479 		iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1480 		iv_offset = 1;
1481 		break;
1482 	case TLS_CIPHER_SM4_CCM:
1483 		iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1484 		iv_offset = 1;
1485 		break;
1486 	}
1487 
1488 	/* Prepare IV */
1489 	if (prot->version == TLS_1_3_VERSION ||
1490 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1491 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1492 		       prot->iv_size + prot->salt_size);
1493 	} else {
1494 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1495 				    iv + iv_offset + prot->salt_size,
1496 				    prot->iv_size);
1497 		if (err < 0) {
1498 			kfree(mem);
1499 			return err;
1500 		}
1501 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1502 	}
1503 	xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1504 
1505 	/* Prepare AAD */
1506 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1507 		     prot->tail_size,
1508 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1509 
1510 	/* Prepare sgin */
1511 	sg_init_table(sgin, n_sgin);
1512 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1513 	err = skb_to_sgvec(skb, &sgin[1],
1514 			   rxm->offset + prot->prepend_size,
1515 			   rxm->full_len - prot->prepend_size);
1516 	if (err < 0) {
1517 		kfree(mem);
1518 		return err;
1519 	}
1520 
1521 	if (n_sgout) {
1522 		if (out_iov) {
1523 			sg_init_table(sgout, n_sgout);
1524 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1525 
1526 			err = tls_setup_from_iter(out_iov, data_len,
1527 						  &pages, &sgout[1],
1528 						  (n_sgout - 1 - tail_pages));
1529 			if (err < 0)
1530 				goto fallback_to_reg_recv;
1531 
1532 			if (prot->tail_size) {
1533 				sg_unmark_end(&sgout[pages]);
1534 				sg_set_buf(&sgout[pages + 1], tail,
1535 					   prot->tail_size);
1536 				sg_mark_end(&sgout[pages + 1]);
1537 			}
1538 		} else if (out_sg) {
1539 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1540 		} else {
1541 			goto fallback_to_reg_recv;
1542 		}
1543 	} else {
1544 fallback_to_reg_recv:
1545 		sgout = sgin;
1546 		pages = 0;
1547 		darg->zc = false;
1548 	}
1549 
1550 	/* Prepare and submit AEAD request */
1551 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1552 				data_len + prot->tail_size, aead_req, darg);
1553 	if (darg->async)
1554 		return 0;
1555 
1556 	if (prot->tail_size)
1557 		darg->tail = *tail;
1558 
1559 	/* Release the pages in case iov was mapped to pages */
1560 	for (; pages > 0; pages--)
1561 		put_page(sg_page(&sgout[pages]));
1562 
1563 	kfree(mem);
1564 	return err;
1565 }
1566 
1567 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1568 			      struct iov_iter *dest,
1569 			      struct tls_decrypt_arg *darg)
1570 {
1571 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1572 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1573 	struct strp_msg *rxm = strp_msg(skb);
1574 	struct tls_msg *tlm = tls_msg(skb);
1575 	int pad, err;
1576 
1577 	if (tlm->decrypted) {
1578 		darg->zc = false;
1579 		darg->async = false;
1580 		return 0;
1581 	}
1582 
1583 	if (tls_ctx->rx_conf == TLS_HW) {
1584 		err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1585 		if (err < 0)
1586 			return err;
1587 		if (err > 0) {
1588 			tlm->decrypted = 1;
1589 			darg->zc = false;
1590 			darg->async = false;
1591 			goto decrypt_done;
1592 		}
1593 	}
1594 
1595 	err = decrypt_internal(sk, skb, dest, NULL, darg);
1596 	if (err < 0)
1597 		return err;
1598 	if (darg->async)
1599 		goto decrypt_next;
1600 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1601 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1602 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1603 		darg->zc = false;
1604 		TLS_INC_STATS(sock_net(sk), LINUX_MIN_TLSDECRYPTRETRY);
1605 		return decrypt_skb_update(sk, skb, dest, darg);
1606 	}
1607 
1608 decrypt_done:
1609 	pad = tls_padding_length(prot, skb, darg);
1610 	if (pad < 0)
1611 		return pad;
1612 
1613 	rxm->full_len -= pad;
1614 	rxm->offset += prot->prepend_size;
1615 	rxm->full_len -= prot->overhead_size;
1616 	tlm->decrypted = 1;
1617 decrypt_next:
1618 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1619 
1620 	return 0;
1621 }
1622 
1623 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1624 		struct scatterlist *sgout)
1625 {
1626 	struct tls_decrypt_arg darg = { .zc = true, };
1627 
1628 	return decrypt_internal(sk, skb, NULL, sgout, &darg);
1629 }
1630 
1631 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1632 				   u8 *control)
1633 {
1634 	int err;
1635 
1636 	if (!*control) {
1637 		*control = tlm->control;
1638 		if (!*control)
1639 			return -EBADMSG;
1640 
1641 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1642 			       sizeof(*control), control);
1643 		if (*control != TLS_RECORD_TYPE_DATA) {
1644 			if (err || msg->msg_flags & MSG_CTRUNC)
1645 				return -EIO;
1646 		}
1647 	} else if (*control != tlm->control) {
1648 		return 0;
1649 	}
1650 
1651 	return 1;
1652 }
1653 
1654 /* This function traverses the rx_list in tls receive context to copies the
1655  * decrypted records into the buffer provided by caller zero copy is not
1656  * true. Further, the records are removed from the rx_list if it is not a peek
1657  * case and the record has been consumed completely.
1658  */
1659 static int process_rx_list(struct tls_sw_context_rx *ctx,
1660 			   struct msghdr *msg,
1661 			   u8 *control,
1662 			   size_t skip,
1663 			   size_t len,
1664 			   bool zc,
1665 			   bool is_peek)
1666 {
1667 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1668 	struct tls_msg *tlm;
1669 	ssize_t copied = 0;
1670 	int err;
1671 
1672 	while (skip && skb) {
1673 		struct strp_msg *rxm = strp_msg(skb);
1674 		tlm = tls_msg(skb);
1675 
1676 		err = tls_record_content_type(msg, tlm, control);
1677 		if (err <= 0)
1678 			goto out;
1679 
1680 		if (skip < rxm->full_len)
1681 			break;
1682 
1683 		skip = skip - rxm->full_len;
1684 		skb = skb_peek_next(skb, &ctx->rx_list);
1685 	}
1686 
1687 	while (len && skb) {
1688 		struct sk_buff *next_skb;
1689 		struct strp_msg *rxm = strp_msg(skb);
1690 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1691 
1692 		tlm = tls_msg(skb);
1693 
1694 		err = tls_record_content_type(msg, tlm, control);
1695 		if (err <= 0)
1696 			goto out;
1697 
1698 		if (!zc || (rxm->full_len - skip) > len) {
1699 			err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1700 						    msg, chunk);
1701 			if (err < 0)
1702 				goto out;
1703 		}
1704 
1705 		len = len - chunk;
1706 		copied = copied + chunk;
1707 
1708 		/* Consume the data from record if it is non-peek case*/
1709 		if (!is_peek) {
1710 			rxm->offset = rxm->offset + chunk;
1711 			rxm->full_len = rxm->full_len - chunk;
1712 
1713 			/* Return if there is unconsumed data in the record */
1714 			if (rxm->full_len - skip)
1715 				break;
1716 		}
1717 
1718 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1719 		 * So from the 2nd record, 'skip' should be 0.
1720 		 */
1721 		skip = 0;
1722 
1723 		if (msg)
1724 			msg->msg_flags |= MSG_EOR;
1725 
1726 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1727 
1728 		if (!is_peek) {
1729 			__skb_unlink(skb, &ctx->rx_list);
1730 			consume_skb(skb);
1731 		}
1732 
1733 		skb = next_skb;
1734 	}
1735 	err = 0;
1736 
1737 out:
1738 	return copied ? : err;
1739 }
1740 
1741 static void
1742 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1743 		       size_t len_left, size_t decrypted, ssize_t done,
1744 		       size_t *flushed_at)
1745 {
1746 	size_t max_rec;
1747 
1748 	if (len_left <= decrypted)
1749 		return;
1750 
1751 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1752 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1753 		return;
1754 
1755 	*flushed_at = done;
1756 	sk_flush_backlog(sk);
1757 }
1758 
1759 int tls_sw_recvmsg(struct sock *sk,
1760 		   struct msghdr *msg,
1761 		   size_t len,
1762 		   int flags,
1763 		   int *addr_len)
1764 {
1765 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1766 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1767 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1768 	struct sk_psock *psock;
1769 	unsigned char control = 0;
1770 	ssize_t decrypted = 0;
1771 	size_t flushed_at = 0;
1772 	struct strp_msg *rxm;
1773 	struct tls_msg *tlm;
1774 	struct sk_buff *skb;
1775 	ssize_t copied = 0;
1776 	bool async = false;
1777 	int target, err = 0;
1778 	long timeo;
1779 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1780 	bool is_peek = flags & MSG_PEEK;
1781 	bool bpf_strp_enabled;
1782 	bool zc_capable;
1783 
1784 	if (unlikely(flags & MSG_ERRQUEUE))
1785 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1786 
1787 	psock = sk_psock_get(sk);
1788 	lock_sock(sk);
1789 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1790 
1791 	/* If crypto failed the connection is broken */
1792 	err = ctx->async_wait.err;
1793 	if (err)
1794 		goto end;
1795 
1796 	/* Process pending decrypted records. It must be non-zero-copy */
1797 	err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
1798 	if (err < 0)
1799 		goto end;
1800 
1801 	copied = err;
1802 	if (len <= copied)
1803 		goto end;
1804 
1805 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1806 	len = len - copied;
1807 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1808 
1809 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1810 		ctx->zc_capable;
1811 	decrypted = 0;
1812 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1813 		struct tls_decrypt_arg darg = {};
1814 		int to_decrypt, chunk;
1815 
1816 		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1817 		if (!skb) {
1818 			if (psock) {
1819 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
1820 						       flags);
1821 				if (chunk > 0)
1822 					goto leave_on_list;
1823 			}
1824 			goto recv_end;
1825 		}
1826 
1827 		rxm = strp_msg(skb);
1828 		tlm = tls_msg(skb);
1829 
1830 		to_decrypt = rxm->full_len - prot->overhead_size;
1831 
1832 		if (zc_capable && to_decrypt <= len &&
1833 		    tlm->control == TLS_RECORD_TYPE_DATA)
1834 			darg.zc = true;
1835 
1836 		/* Do not use async mode if record is non-data */
1837 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1838 			darg.async = ctx->async_capable;
1839 		else
1840 			darg.async = false;
1841 
1842 		err = decrypt_skb_update(sk, skb, &msg->msg_iter, &darg);
1843 		if (err < 0) {
1844 			tls_err_abort(sk, -EBADMSG);
1845 			goto recv_end;
1846 		}
1847 
1848 		async |= darg.async;
1849 
1850 		/* If the type of records being processed is not known yet,
1851 		 * set it to record type just dequeued. If it is already known,
1852 		 * but does not match the record type just dequeued, go to end.
1853 		 * We always get record type here since for tls1.2, record type
1854 		 * is known just after record is dequeued from stream parser.
1855 		 * For tls1.3, we disable async.
1856 		 */
1857 		err = tls_record_content_type(msg, tlm, &control);
1858 		if (err <= 0)
1859 			goto recv_end;
1860 
1861 		/* periodically flush backlog, and feed strparser */
1862 		tls_read_flush_backlog(sk, prot, len, to_decrypt,
1863 				       decrypted + copied, &flushed_at);
1864 
1865 		ctx->recv_pkt = NULL;
1866 		__strp_unpause(&ctx->strp);
1867 		__skb_queue_tail(&ctx->rx_list, skb);
1868 
1869 		if (async) {
1870 			/* TLS 1.2-only, to_decrypt must be text length */
1871 			chunk = min_t(int, to_decrypt, len);
1872 leave_on_list:
1873 			decrypted += chunk;
1874 			len -= chunk;
1875 			continue;
1876 		}
1877 		/* TLS 1.3 may have updated the length by more than overhead */
1878 		chunk = rxm->full_len;
1879 
1880 		if (!darg.zc) {
1881 			bool partially_consumed = chunk > len;
1882 
1883 			if (bpf_strp_enabled) {
1884 				/* BPF may try to queue the skb */
1885 				__skb_unlink(skb, &ctx->rx_list);
1886 				err = sk_psock_tls_strp_read(psock, skb);
1887 				if (err != __SK_PASS) {
1888 					rxm->offset = rxm->offset + rxm->full_len;
1889 					rxm->full_len = 0;
1890 					if (err == __SK_DROP)
1891 						consume_skb(skb);
1892 					continue;
1893 				}
1894 				__skb_queue_tail(&ctx->rx_list, skb);
1895 			}
1896 
1897 			if (partially_consumed)
1898 				chunk = len;
1899 
1900 			err = skb_copy_datagram_msg(skb, rxm->offset,
1901 						    msg, chunk);
1902 			if (err < 0)
1903 				goto recv_end;
1904 
1905 			if (is_peek)
1906 				goto leave_on_list;
1907 
1908 			if (partially_consumed) {
1909 				rxm->offset += chunk;
1910 				rxm->full_len -= chunk;
1911 				goto leave_on_list;
1912 			}
1913 		}
1914 
1915 		decrypted += chunk;
1916 		len -= chunk;
1917 
1918 		__skb_unlink(skb, &ctx->rx_list);
1919 		consume_skb(skb);
1920 
1921 		/* Return full control message to userspace before trying
1922 		 * to parse another message type
1923 		 */
1924 		msg->msg_flags |= MSG_EOR;
1925 		if (control != TLS_RECORD_TYPE_DATA)
1926 			break;
1927 	}
1928 
1929 recv_end:
1930 	if (async) {
1931 		int ret, pending;
1932 
1933 		/* Wait for all previously submitted records to be decrypted */
1934 		spin_lock_bh(&ctx->decrypt_compl_lock);
1935 		reinit_completion(&ctx->async_wait.completion);
1936 		pending = atomic_read(&ctx->decrypt_pending);
1937 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1938 		if (pending) {
1939 			ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1940 			if (ret) {
1941 				if (err >= 0 || err == -EINPROGRESS)
1942 					err = ret;
1943 				decrypted = 0;
1944 				goto end;
1945 			}
1946 		}
1947 
1948 		/* Drain records from the rx_list & copy if required */
1949 		if (is_peek || is_kvec)
1950 			err = process_rx_list(ctx, msg, &control, copied,
1951 					      decrypted, false, is_peek);
1952 		else
1953 			err = process_rx_list(ctx, msg, &control, 0,
1954 					      decrypted, true, is_peek);
1955 		decrypted = max(err, 0);
1956 	}
1957 
1958 	copied += decrypted;
1959 
1960 end:
1961 	release_sock(sk);
1962 	if (psock)
1963 		sk_psock_put(sk, psock);
1964 	return copied ? : err;
1965 }
1966 
1967 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1968 			   struct pipe_inode_info *pipe,
1969 			   size_t len, unsigned int flags)
1970 {
1971 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1972 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1973 	struct strp_msg *rxm = NULL;
1974 	struct sock *sk = sock->sk;
1975 	struct tls_msg *tlm;
1976 	struct sk_buff *skb;
1977 	ssize_t copied = 0;
1978 	bool from_queue;
1979 	int err = 0;
1980 	long timeo;
1981 	int chunk;
1982 
1983 	lock_sock(sk);
1984 
1985 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1986 
1987 	from_queue = !skb_queue_empty(&ctx->rx_list);
1988 	if (from_queue) {
1989 		skb = __skb_dequeue(&ctx->rx_list);
1990 	} else {
1991 		struct tls_decrypt_arg darg = {};
1992 
1993 		skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
1994 				    &err);
1995 		if (!skb)
1996 			goto splice_read_end;
1997 
1998 		err = decrypt_skb_update(sk, skb, NULL, &darg);
1999 		if (err < 0) {
2000 			tls_err_abort(sk, -EBADMSG);
2001 			goto splice_read_end;
2002 		}
2003 	}
2004 
2005 	rxm = strp_msg(skb);
2006 	tlm = tls_msg(skb);
2007 
2008 	/* splice does not support reading control messages */
2009 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2010 		err = -EINVAL;
2011 		goto splice_read_end;
2012 	}
2013 
2014 	chunk = min_t(unsigned int, rxm->full_len, len);
2015 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2016 	if (copied < 0)
2017 		goto splice_read_end;
2018 
2019 	if (!from_queue) {
2020 		ctx->recv_pkt = NULL;
2021 		__strp_unpause(&ctx->strp);
2022 	}
2023 	if (chunk < rxm->full_len) {
2024 		__skb_queue_head(&ctx->rx_list, skb);
2025 		rxm->offset += len;
2026 		rxm->full_len -= len;
2027 	} else {
2028 		consume_skb(skb);
2029 	}
2030 
2031 splice_read_end:
2032 	release_sock(sk);
2033 	return copied ? : err;
2034 }
2035 
2036 bool tls_sw_sock_is_readable(struct sock *sk)
2037 {
2038 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2039 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2040 	bool ingress_empty = true;
2041 	struct sk_psock *psock;
2042 
2043 	rcu_read_lock();
2044 	psock = sk_psock(sk);
2045 	if (psock)
2046 		ingress_empty = list_empty(&psock->ingress_msg);
2047 	rcu_read_unlock();
2048 
2049 	return !ingress_empty || ctx->recv_pkt ||
2050 		!skb_queue_empty(&ctx->rx_list);
2051 }
2052 
2053 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2054 {
2055 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2056 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2057 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2058 	struct strp_msg *rxm = strp_msg(skb);
2059 	struct tls_msg *tlm = tls_msg(skb);
2060 	size_t cipher_overhead;
2061 	size_t data_len = 0;
2062 	int ret;
2063 
2064 	/* Verify that we have a full TLS header, or wait for more data */
2065 	if (rxm->offset + prot->prepend_size > skb->len)
2066 		return 0;
2067 
2068 	/* Sanity-check size of on-stack buffer. */
2069 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2070 		ret = -EINVAL;
2071 		goto read_failure;
2072 	}
2073 
2074 	/* Linearize header to local buffer */
2075 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2076 	if (ret < 0)
2077 		goto read_failure;
2078 
2079 	tlm->decrypted = 0;
2080 	tlm->control = header[0];
2081 
2082 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2083 
2084 	cipher_overhead = prot->tag_size;
2085 	if (prot->version != TLS_1_3_VERSION &&
2086 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2087 		cipher_overhead += prot->iv_size;
2088 
2089 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2090 	    prot->tail_size) {
2091 		ret = -EMSGSIZE;
2092 		goto read_failure;
2093 	}
2094 	if (data_len < cipher_overhead) {
2095 		ret = -EBADMSG;
2096 		goto read_failure;
2097 	}
2098 
2099 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2100 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2101 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2102 		ret = -EINVAL;
2103 		goto read_failure;
2104 	}
2105 
2106 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2107 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2108 	return data_len + TLS_HEADER_SIZE;
2109 
2110 read_failure:
2111 	tls_err_abort(strp->sk, ret);
2112 
2113 	return ret;
2114 }
2115 
2116 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2117 {
2118 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2119 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2120 
2121 	ctx->recv_pkt = skb;
2122 	strp_pause(strp);
2123 
2124 	ctx->saved_data_ready(strp->sk);
2125 }
2126 
2127 static void tls_data_ready(struct sock *sk)
2128 {
2129 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2130 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131 	struct sk_psock *psock;
2132 
2133 	strp_data_ready(&ctx->strp);
2134 
2135 	psock = sk_psock_get(sk);
2136 	if (psock) {
2137 		if (!list_empty(&psock->ingress_msg))
2138 			ctx->saved_data_ready(sk);
2139 		sk_psock_put(sk, psock);
2140 	}
2141 }
2142 
2143 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2144 {
2145 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2146 
2147 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2148 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2149 	cancel_delayed_work_sync(&ctx->tx_work.work);
2150 }
2151 
2152 void tls_sw_release_resources_tx(struct sock *sk)
2153 {
2154 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2155 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2156 	struct tls_rec *rec, *tmp;
2157 	int pending;
2158 
2159 	/* Wait for any pending async encryptions to complete */
2160 	spin_lock_bh(&ctx->encrypt_compl_lock);
2161 	ctx->async_notify = true;
2162 	pending = atomic_read(&ctx->encrypt_pending);
2163 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2164 
2165 	if (pending)
2166 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2167 
2168 	tls_tx_records(sk, -1);
2169 
2170 	/* Free up un-sent records in tx_list. First, free
2171 	 * the partially sent record if any at head of tx_list.
2172 	 */
2173 	if (tls_ctx->partially_sent_record) {
2174 		tls_free_partial_record(sk, tls_ctx);
2175 		rec = list_first_entry(&ctx->tx_list,
2176 				       struct tls_rec, list);
2177 		list_del(&rec->list);
2178 		sk_msg_free(sk, &rec->msg_plaintext);
2179 		kfree(rec);
2180 	}
2181 
2182 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2183 		list_del(&rec->list);
2184 		sk_msg_free(sk, &rec->msg_encrypted);
2185 		sk_msg_free(sk, &rec->msg_plaintext);
2186 		kfree(rec);
2187 	}
2188 
2189 	crypto_free_aead(ctx->aead_send);
2190 	tls_free_open_rec(sk);
2191 }
2192 
2193 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2194 {
2195 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2196 
2197 	kfree(ctx);
2198 }
2199 
2200 void tls_sw_release_resources_rx(struct sock *sk)
2201 {
2202 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2203 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2204 
2205 	kfree(tls_ctx->rx.rec_seq);
2206 	kfree(tls_ctx->rx.iv);
2207 
2208 	if (ctx->aead_recv) {
2209 		kfree_skb(ctx->recv_pkt);
2210 		ctx->recv_pkt = NULL;
2211 		__skb_queue_purge(&ctx->rx_list);
2212 		crypto_free_aead(ctx->aead_recv);
2213 		strp_stop(&ctx->strp);
2214 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2215 		 * we still want to strp_stop(), but sk->sk_data_ready was
2216 		 * never swapped.
2217 		 */
2218 		if (ctx->saved_data_ready) {
2219 			write_lock_bh(&sk->sk_callback_lock);
2220 			sk->sk_data_ready = ctx->saved_data_ready;
2221 			write_unlock_bh(&sk->sk_callback_lock);
2222 		}
2223 	}
2224 }
2225 
2226 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2227 {
2228 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2229 
2230 	strp_done(&ctx->strp);
2231 }
2232 
2233 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2234 {
2235 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2236 
2237 	kfree(ctx);
2238 }
2239 
2240 void tls_sw_free_resources_rx(struct sock *sk)
2241 {
2242 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2243 
2244 	tls_sw_release_resources_rx(sk);
2245 	tls_sw_free_ctx_rx(tls_ctx);
2246 }
2247 
2248 /* The work handler to transmitt the encrypted records in tx_list */
2249 static void tx_work_handler(struct work_struct *work)
2250 {
2251 	struct delayed_work *delayed_work = to_delayed_work(work);
2252 	struct tx_work *tx_work = container_of(delayed_work,
2253 					       struct tx_work, work);
2254 	struct sock *sk = tx_work->sk;
2255 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2256 	struct tls_sw_context_tx *ctx;
2257 
2258 	if (unlikely(!tls_ctx))
2259 		return;
2260 
2261 	ctx = tls_sw_ctx_tx(tls_ctx);
2262 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2263 		return;
2264 
2265 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2266 		return;
2267 	mutex_lock(&tls_ctx->tx_lock);
2268 	lock_sock(sk);
2269 	tls_tx_records(sk, -1);
2270 	release_sock(sk);
2271 	mutex_unlock(&tls_ctx->tx_lock);
2272 }
2273 
2274 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2275 {
2276 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2277 
2278 	/* Schedule the transmission if tx list is ready */
2279 	if (is_tx_ready(tx_ctx) &&
2280 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2281 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2282 }
2283 
2284 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2285 {
2286 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2287 
2288 	write_lock_bh(&sk->sk_callback_lock);
2289 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2290 	sk->sk_data_ready = tls_data_ready;
2291 	write_unlock_bh(&sk->sk_callback_lock);
2292 
2293 	strp_check_rcv(&rx_ctx->strp);
2294 }
2295 
2296 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2297 {
2298 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2299 
2300 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2301 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2302 }
2303 
2304 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2305 {
2306 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2307 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2308 	struct tls_crypto_info *crypto_info;
2309 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2310 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2311 	struct cipher_context *cctx;
2312 	struct crypto_aead **aead;
2313 	struct strp_callbacks cb;
2314 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2315 	struct crypto_tfm *tfm;
2316 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2317 	size_t keysize;
2318 	int rc = 0;
2319 
2320 	if (!ctx) {
2321 		rc = -EINVAL;
2322 		goto out;
2323 	}
2324 
2325 	if (tx) {
2326 		if (!ctx->priv_ctx_tx) {
2327 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2328 			if (!sw_ctx_tx) {
2329 				rc = -ENOMEM;
2330 				goto out;
2331 			}
2332 			ctx->priv_ctx_tx = sw_ctx_tx;
2333 		} else {
2334 			sw_ctx_tx =
2335 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2336 		}
2337 	} else {
2338 		if (!ctx->priv_ctx_rx) {
2339 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2340 			if (!sw_ctx_rx) {
2341 				rc = -ENOMEM;
2342 				goto out;
2343 			}
2344 			ctx->priv_ctx_rx = sw_ctx_rx;
2345 		} else {
2346 			sw_ctx_rx =
2347 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2348 		}
2349 	}
2350 
2351 	if (tx) {
2352 		crypto_init_wait(&sw_ctx_tx->async_wait);
2353 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2354 		crypto_info = &ctx->crypto_send.info;
2355 		cctx = &ctx->tx;
2356 		aead = &sw_ctx_tx->aead_send;
2357 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2358 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2359 		sw_ctx_tx->tx_work.sk = sk;
2360 	} else {
2361 		crypto_init_wait(&sw_ctx_rx->async_wait);
2362 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2363 		crypto_info = &ctx->crypto_recv.info;
2364 		cctx = &ctx->rx;
2365 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2366 		aead = &sw_ctx_rx->aead_recv;
2367 	}
2368 
2369 	switch (crypto_info->cipher_type) {
2370 	case TLS_CIPHER_AES_GCM_128: {
2371 		struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2372 
2373 		gcm_128_info = (void *)crypto_info;
2374 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2375 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2376 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2377 		iv = gcm_128_info->iv;
2378 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2379 		rec_seq = gcm_128_info->rec_seq;
2380 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2381 		key = gcm_128_info->key;
2382 		salt = gcm_128_info->salt;
2383 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2384 		cipher_name = "gcm(aes)";
2385 		break;
2386 	}
2387 	case TLS_CIPHER_AES_GCM_256: {
2388 		struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2389 
2390 		gcm_256_info = (void *)crypto_info;
2391 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2392 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2393 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2394 		iv = gcm_256_info->iv;
2395 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2396 		rec_seq = gcm_256_info->rec_seq;
2397 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2398 		key = gcm_256_info->key;
2399 		salt = gcm_256_info->salt;
2400 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2401 		cipher_name = "gcm(aes)";
2402 		break;
2403 	}
2404 	case TLS_CIPHER_AES_CCM_128: {
2405 		struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2406 
2407 		ccm_128_info = (void *)crypto_info;
2408 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2409 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2410 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2411 		iv = ccm_128_info->iv;
2412 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2413 		rec_seq = ccm_128_info->rec_seq;
2414 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2415 		key = ccm_128_info->key;
2416 		salt = ccm_128_info->salt;
2417 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2418 		cipher_name = "ccm(aes)";
2419 		break;
2420 	}
2421 	case TLS_CIPHER_CHACHA20_POLY1305: {
2422 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2423 
2424 		chacha20_poly1305_info = (void *)crypto_info;
2425 		nonce_size = 0;
2426 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2427 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2428 		iv = chacha20_poly1305_info->iv;
2429 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2430 		rec_seq = chacha20_poly1305_info->rec_seq;
2431 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2432 		key = chacha20_poly1305_info->key;
2433 		salt = chacha20_poly1305_info->salt;
2434 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2435 		cipher_name = "rfc7539(chacha20,poly1305)";
2436 		break;
2437 	}
2438 	case TLS_CIPHER_SM4_GCM: {
2439 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2440 
2441 		sm4_gcm_info = (void *)crypto_info;
2442 		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2443 		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2444 		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2445 		iv = sm4_gcm_info->iv;
2446 		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2447 		rec_seq = sm4_gcm_info->rec_seq;
2448 		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2449 		key = sm4_gcm_info->key;
2450 		salt = sm4_gcm_info->salt;
2451 		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2452 		cipher_name = "gcm(sm4)";
2453 		break;
2454 	}
2455 	case TLS_CIPHER_SM4_CCM: {
2456 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2457 
2458 		sm4_ccm_info = (void *)crypto_info;
2459 		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2460 		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2461 		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2462 		iv = sm4_ccm_info->iv;
2463 		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2464 		rec_seq = sm4_ccm_info->rec_seq;
2465 		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2466 		key = sm4_ccm_info->key;
2467 		salt = sm4_ccm_info->salt;
2468 		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2469 		cipher_name = "ccm(sm4)";
2470 		break;
2471 	}
2472 	default:
2473 		rc = -EINVAL;
2474 		goto free_priv;
2475 	}
2476 
2477 	/* Sanity-check the sizes for stack allocations. */
2478 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2479 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE) {
2480 		rc = -EINVAL;
2481 		goto free_priv;
2482 	}
2483 
2484 	if (crypto_info->version == TLS_1_3_VERSION) {
2485 		nonce_size = 0;
2486 		prot->aad_size = TLS_HEADER_SIZE;
2487 		prot->tail_size = 1;
2488 	} else {
2489 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2490 		prot->tail_size = 0;
2491 	}
2492 
2493 	prot->version = crypto_info->version;
2494 	prot->cipher_type = crypto_info->cipher_type;
2495 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2496 	prot->tag_size = tag_size;
2497 	prot->overhead_size = prot->prepend_size +
2498 			      prot->tag_size + prot->tail_size;
2499 	prot->iv_size = iv_size;
2500 	prot->salt_size = salt_size;
2501 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2502 	if (!cctx->iv) {
2503 		rc = -ENOMEM;
2504 		goto free_priv;
2505 	}
2506 	/* Note: 128 & 256 bit salt are the same size */
2507 	prot->rec_seq_size = rec_seq_size;
2508 	memcpy(cctx->iv, salt, salt_size);
2509 	memcpy(cctx->iv + salt_size, iv, iv_size);
2510 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2511 	if (!cctx->rec_seq) {
2512 		rc = -ENOMEM;
2513 		goto free_iv;
2514 	}
2515 
2516 	if (!*aead) {
2517 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2518 		if (IS_ERR(*aead)) {
2519 			rc = PTR_ERR(*aead);
2520 			*aead = NULL;
2521 			goto free_rec_seq;
2522 		}
2523 	}
2524 
2525 	ctx->push_pending_record = tls_sw_push_pending_record;
2526 
2527 	rc = crypto_aead_setkey(*aead, key, keysize);
2528 
2529 	if (rc)
2530 		goto free_aead;
2531 
2532 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2533 	if (rc)
2534 		goto free_aead;
2535 
2536 	if (sw_ctx_rx) {
2537 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2538 
2539 		tls_update_rx_zc_capable(ctx);
2540 		sw_ctx_rx->async_capable =
2541 			crypto_info->version != TLS_1_3_VERSION &&
2542 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2543 
2544 		/* Set up strparser */
2545 		memset(&cb, 0, sizeof(cb));
2546 		cb.rcv_msg = tls_queue;
2547 		cb.parse_msg = tls_read_size;
2548 
2549 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2550 	}
2551 
2552 	goto out;
2553 
2554 free_aead:
2555 	crypto_free_aead(*aead);
2556 	*aead = NULL;
2557 free_rec_seq:
2558 	kfree(cctx->rec_seq);
2559 	cctx->rec_seq = NULL;
2560 free_iv:
2561 	kfree(cctx->iv);
2562 	cctx->iv = NULL;
2563 free_priv:
2564 	if (tx) {
2565 		kfree(ctx->priv_ctx_tx);
2566 		ctx->priv_ctx_tx = NULL;
2567 	} else {
2568 		kfree(ctx->priv_ctx_rx);
2569 		ctx->priv_ctx_rx = NULL;
2570 	}
2571 out:
2572 	return rc;
2573 }
2574