1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/sched/signal.h> 39 #include <linux/module.h> 40 #include <crypto/aead.h> 41 42 #include <net/strparser.h> 43 #include <net/tls.h> 44 45 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE 46 47 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 48 unsigned int recursion_level) 49 { 50 int start = skb_headlen(skb); 51 int i, chunk = start - offset; 52 struct sk_buff *frag_iter; 53 int elt = 0; 54 55 if (unlikely(recursion_level >= 24)) 56 return -EMSGSIZE; 57 58 if (chunk > 0) { 59 if (chunk > len) 60 chunk = len; 61 elt++; 62 len -= chunk; 63 if (len == 0) 64 return elt; 65 offset += chunk; 66 } 67 68 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 69 int end; 70 71 WARN_ON(start > offset + len); 72 73 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 74 chunk = end - offset; 75 if (chunk > 0) { 76 if (chunk > len) 77 chunk = len; 78 elt++; 79 len -= chunk; 80 if (len == 0) 81 return elt; 82 offset += chunk; 83 } 84 start = end; 85 } 86 87 if (unlikely(skb_has_frag_list(skb))) { 88 skb_walk_frags(skb, frag_iter) { 89 int end, ret; 90 91 WARN_ON(start > offset + len); 92 93 end = start + frag_iter->len; 94 chunk = end - offset; 95 if (chunk > 0) { 96 if (chunk > len) 97 chunk = len; 98 ret = __skb_nsg(frag_iter, offset - start, chunk, 99 recursion_level + 1); 100 if (unlikely(ret < 0)) 101 return ret; 102 elt += ret; 103 len -= chunk; 104 if (len == 0) 105 return elt; 106 offset += chunk; 107 } 108 start = end; 109 } 110 } 111 BUG_ON(len); 112 return elt; 113 } 114 115 /* Return the number of scatterlist elements required to completely map the 116 * skb, or -EMSGSIZE if the recursion depth is exceeded. 117 */ 118 static int skb_nsg(struct sk_buff *skb, int offset, int len) 119 { 120 return __skb_nsg(skb, offset, len, 0); 121 } 122 123 static int padding_length(struct tls_sw_context_rx *ctx, 124 struct tls_context *tls_ctx, struct sk_buff *skb) 125 { 126 struct strp_msg *rxm = strp_msg(skb); 127 int sub = 0; 128 129 /* Determine zero-padding length */ 130 if (tls_ctx->prot_info.version == TLS_1_3_VERSION) { 131 char content_type = 0; 132 int err; 133 int back = 17; 134 135 while (content_type == 0) { 136 if (back > rxm->full_len) 137 return -EBADMSG; 138 err = skb_copy_bits(skb, 139 rxm->offset + rxm->full_len - back, 140 &content_type, 1); 141 if (content_type) 142 break; 143 sub++; 144 back++; 145 } 146 ctx->control = content_type; 147 } 148 return sub; 149 } 150 151 static void tls_decrypt_done(struct crypto_async_request *req, int err) 152 { 153 struct aead_request *aead_req = (struct aead_request *)req; 154 struct scatterlist *sgout = aead_req->dst; 155 struct scatterlist *sgin = aead_req->src; 156 struct tls_sw_context_rx *ctx; 157 struct tls_context *tls_ctx; 158 struct tls_prot_info *prot; 159 struct scatterlist *sg; 160 struct sk_buff *skb; 161 unsigned int pages; 162 int pending; 163 164 skb = (struct sk_buff *)req->data; 165 tls_ctx = tls_get_ctx(skb->sk); 166 ctx = tls_sw_ctx_rx(tls_ctx); 167 prot = &tls_ctx->prot_info; 168 169 /* Propagate if there was an err */ 170 if (err) { 171 ctx->async_wait.err = err; 172 tls_err_abort(skb->sk, err); 173 } else { 174 struct strp_msg *rxm = strp_msg(skb); 175 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 176 rxm->offset += prot->prepend_size; 177 rxm->full_len -= prot->overhead_size; 178 } 179 180 /* After using skb->sk to propagate sk through crypto async callback 181 * we need to NULL it again. 182 */ 183 skb->sk = NULL; 184 185 186 /* Free the destination pages if skb was not decrypted inplace */ 187 if (sgout != sgin) { 188 /* Skip the first S/G entry as it points to AAD */ 189 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 190 if (!sg) 191 break; 192 put_page(sg_page(sg)); 193 } 194 } 195 196 kfree(aead_req); 197 198 pending = atomic_dec_return(&ctx->decrypt_pending); 199 200 if (!pending && READ_ONCE(ctx->async_notify)) 201 complete(&ctx->async_wait.completion); 202 } 203 204 static int tls_do_decryption(struct sock *sk, 205 struct sk_buff *skb, 206 struct scatterlist *sgin, 207 struct scatterlist *sgout, 208 char *iv_recv, 209 size_t data_len, 210 struct aead_request *aead_req, 211 bool async) 212 { 213 struct tls_context *tls_ctx = tls_get_ctx(sk); 214 struct tls_prot_info *prot = &tls_ctx->prot_info; 215 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 216 int ret; 217 218 aead_request_set_tfm(aead_req, ctx->aead_recv); 219 aead_request_set_ad(aead_req, prot->aad_size); 220 aead_request_set_crypt(aead_req, sgin, sgout, 221 data_len + prot->tag_size, 222 (u8 *)iv_recv); 223 224 if (async) { 225 /* Using skb->sk to push sk through to crypto async callback 226 * handler. This allows propagating errors up to the socket 227 * if needed. It _must_ be cleared in the async handler 228 * before kfree_skb is called. We _know_ skb->sk is NULL 229 * because it is a clone from strparser. 230 */ 231 skb->sk = sk; 232 aead_request_set_callback(aead_req, 233 CRYPTO_TFM_REQ_MAY_BACKLOG, 234 tls_decrypt_done, skb); 235 atomic_inc(&ctx->decrypt_pending); 236 } else { 237 aead_request_set_callback(aead_req, 238 CRYPTO_TFM_REQ_MAY_BACKLOG, 239 crypto_req_done, &ctx->async_wait); 240 } 241 242 ret = crypto_aead_decrypt(aead_req); 243 if (ret == -EINPROGRESS) { 244 if (async) 245 return ret; 246 247 ret = crypto_wait_req(ret, &ctx->async_wait); 248 } 249 250 if (async) 251 atomic_dec(&ctx->decrypt_pending); 252 253 return ret; 254 } 255 256 static void tls_trim_both_msgs(struct sock *sk, int target_size) 257 { 258 struct tls_context *tls_ctx = tls_get_ctx(sk); 259 struct tls_prot_info *prot = &tls_ctx->prot_info; 260 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 261 struct tls_rec *rec = ctx->open_rec; 262 263 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 264 if (target_size > 0) 265 target_size += prot->overhead_size; 266 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 267 } 268 269 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 270 { 271 struct tls_context *tls_ctx = tls_get_ctx(sk); 272 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 273 struct tls_rec *rec = ctx->open_rec; 274 struct sk_msg *msg_en = &rec->msg_encrypted; 275 276 return sk_msg_alloc(sk, msg_en, len, 0); 277 } 278 279 static int tls_clone_plaintext_msg(struct sock *sk, int required) 280 { 281 struct tls_context *tls_ctx = tls_get_ctx(sk); 282 struct tls_prot_info *prot = &tls_ctx->prot_info; 283 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 284 struct tls_rec *rec = ctx->open_rec; 285 struct sk_msg *msg_pl = &rec->msg_plaintext; 286 struct sk_msg *msg_en = &rec->msg_encrypted; 287 int skip, len; 288 289 /* We add page references worth len bytes from encrypted sg 290 * at the end of plaintext sg. It is guaranteed that msg_en 291 * has enough required room (ensured by caller). 292 */ 293 len = required - msg_pl->sg.size; 294 295 /* Skip initial bytes in msg_en's data to be able to use 296 * same offset of both plain and encrypted data. 297 */ 298 skip = prot->prepend_size + msg_pl->sg.size; 299 300 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 301 } 302 303 static struct tls_rec *tls_get_rec(struct sock *sk) 304 { 305 struct tls_context *tls_ctx = tls_get_ctx(sk); 306 struct tls_prot_info *prot = &tls_ctx->prot_info; 307 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 308 struct sk_msg *msg_pl, *msg_en; 309 struct tls_rec *rec; 310 int mem_size; 311 312 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 313 314 rec = kzalloc(mem_size, sk->sk_allocation); 315 if (!rec) 316 return NULL; 317 318 msg_pl = &rec->msg_plaintext; 319 msg_en = &rec->msg_encrypted; 320 321 sk_msg_init(msg_pl); 322 sk_msg_init(msg_en); 323 324 sg_init_table(rec->sg_aead_in, 2); 325 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 326 sg_unmark_end(&rec->sg_aead_in[1]); 327 328 sg_init_table(rec->sg_aead_out, 2); 329 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 330 sg_unmark_end(&rec->sg_aead_out[1]); 331 332 return rec; 333 } 334 335 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 336 { 337 sk_msg_free(sk, &rec->msg_encrypted); 338 sk_msg_free(sk, &rec->msg_plaintext); 339 kfree(rec); 340 } 341 342 static void tls_free_open_rec(struct sock *sk) 343 { 344 struct tls_context *tls_ctx = tls_get_ctx(sk); 345 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 346 struct tls_rec *rec = ctx->open_rec; 347 348 if (rec) { 349 tls_free_rec(sk, rec); 350 ctx->open_rec = NULL; 351 } 352 } 353 354 int tls_tx_records(struct sock *sk, int flags) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 358 struct tls_rec *rec, *tmp; 359 struct sk_msg *msg_en; 360 int tx_flags, rc = 0; 361 362 if (tls_is_partially_sent_record(tls_ctx)) { 363 rec = list_first_entry(&ctx->tx_list, 364 struct tls_rec, list); 365 366 if (flags == -1) 367 tx_flags = rec->tx_flags; 368 else 369 tx_flags = flags; 370 371 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 372 if (rc) 373 goto tx_err; 374 375 /* Full record has been transmitted. 376 * Remove the head of tx_list 377 */ 378 list_del(&rec->list); 379 sk_msg_free(sk, &rec->msg_plaintext); 380 kfree(rec); 381 } 382 383 /* Tx all ready records */ 384 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 385 if (READ_ONCE(rec->tx_ready)) { 386 if (flags == -1) 387 tx_flags = rec->tx_flags; 388 else 389 tx_flags = flags; 390 391 msg_en = &rec->msg_encrypted; 392 rc = tls_push_sg(sk, tls_ctx, 393 &msg_en->sg.data[msg_en->sg.curr], 394 0, tx_flags); 395 if (rc) 396 goto tx_err; 397 398 list_del(&rec->list); 399 sk_msg_free(sk, &rec->msg_plaintext); 400 kfree(rec); 401 } else { 402 break; 403 } 404 } 405 406 tx_err: 407 if (rc < 0 && rc != -EAGAIN) 408 tls_err_abort(sk, EBADMSG); 409 410 return rc; 411 } 412 413 static void tls_encrypt_done(struct crypto_async_request *req, int err) 414 { 415 struct aead_request *aead_req = (struct aead_request *)req; 416 struct sock *sk = req->data; 417 struct tls_context *tls_ctx = tls_get_ctx(sk); 418 struct tls_prot_info *prot = &tls_ctx->prot_info; 419 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 420 struct scatterlist *sge; 421 struct sk_msg *msg_en; 422 struct tls_rec *rec; 423 bool ready = false; 424 int pending; 425 426 rec = container_of(aead_req, struct tls_rec, aead_req); 427 msg_en = &rec->msg_encrypted; 428 429 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 430 sge->offset -= prot->prepend_size; 431 sge->length += prot->prepend_size; 432 433 /* Check if error is previously set on socket */ 434 if (err || sk->sk_err) { 435 rec = NULL; 436 437 /* If err is already set on socket, return the same code */ 438 if (sk->sk_err) { 439 ctx->async_wait.err = sk->sk_err; 440 } else { 441 ctx->async_wait.err = err; 442 tls_err_abort(sk, err); 443 } 444 } 445 446 if (rec) { 447 struct tls_rec *first_rec; 448 449 /* Mark the record as ready for transmission */ 450 smp_store_mb(rec->tx_ready, true); 451 452 /* If received record is at head of tx_list, schedule tx */ 453 first_rec = list_first_entry(&ctx->tx_list, 454 struct tls_rec, list); 455 if (rec == first_rec) 456 ready = true; 457 } 458 459 pending = atomic_dec_return(&ctx->encrypt_pending); 460 461 if (!pending && READ_ONCE(ctx->async_notify)) 462 complete(&ctx->async_wait.completion); 463 464 if (!ready) 465 return; 466 467 /* Schedule the transmission */ 468 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 469 schedule_delayed_work(&ctx->tx_work.work, 1); 470 } 471 472 static int tls_do_encryption(struct sock *sk, 473 struct tls_context *tls_ctx, 474 struct tls_sw_context_tx *ctx, 475 struct aead_request *aead_req, 476 size_t data_len, u32 start) 477 { 478 struct tls_prot_info *prot = &tls_ctx->prot_info; 479 struct tls_rec *rec = ctx->open_rec; 480 struct sk_msg *msg_en = &rec->msg_encrypted; 481 struct scatterlist *sge = sk_msg_elem(msg_en, start); 482 int rc; 483 484 memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data)); 485 xor_iv_with_seq(prot->version, rec->iv_data, 486 tls_ctx->tx.rec_seq); 487 488 sge->offset += prot->prepend_size; 489 sge->length -= prot->prepend_size; 490 491 msg_en->sg.curr = start; 492 493 aead_request_set_tfm(aead_req, ctx->aead_send); 494 aead_request_set_ad(aead_req, prot->aad_size); 495 aead_request_set_crypt(aead_req, rec->sg_aead_in, 496 rec->sg_aead_out, 497 data_len, rec->iv_data); 498 499 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 500 tls_encrypt_done, sk); 501 502 /* Add the record in tx_list */ 503 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 504 atomic_inc(&ctx->encrypt_pending); 505 506 rc = crypto_aead_encrypt(aead_req); 507 if (!rc || rc != -EINPROGRESS) { 508 atomic_dec(&ctx->encrypt_pending); 509 sge->offset -= prot->prepend_size; 510 sge->length += prot->prepend_size; 511 } 512 513 if (!rc) { 514 WRITE_ONCE(rec->tx_ready, true); 515 } else if (rc != -EINPROGRESS) { 516 list_del(&rec->list); 517 return rc; 518 } 519 520 /* Unhook the record from context if encryption is not failure */ 521 ctx->open_rec = NULL; 522 tls_advance_record_sn(sk, &tls_ctx->tx, prot->version); 523 return rc; 524 } 525 526 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 527 struct tls_rec **to, struct sk_msg *msg_opl, 528 struct sk_msg *msg_oen, u32 split_point, 529 u32 tx_overhead_size, u32 *orig_end) 530 { 531 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 532 struct scatterlist *sge, *osge, *nsge; 533 u32 orig_size = msg_opl->sg.size; 534 struct scatterlist tmp = { }; 535 struct sk_msg *msg_npl; 536 struct tls_rec *new; 537 int ret; 538 539 new = tls_get_rec(sk); 540 if (!new) 541 return -ENOMEM; 542 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 543 tx_overhead_size, 0); 544 if (ret < 0) { 545 tls_free_rec(sk, new); 546 return ret; 547 } 548 549 *orig_end = msg_opl->sg.end; 550 i = msg_opl->sg.start; 551 sge = sk_msg_elem(msg_opl, i); 552 while (apply && sge->length) { 553 if (sge->length > apply) { 554 u32 len = sge->length - apply; 555 556 get_page(sg_page(sge)); 557 sg_set_page(&tmp, sg_page(sge), len, 558 sge->offset + apply); 559 sge->length = apply; 560 bytes += apply; 561 apply = 0; 562 } else { 563 apply -= sge->length; 564 bytes += sge->length; 565 } 566 567 sk_msg_iter_var_next(i); 568 if (i == msg_opl->sg.end) 569 break; 570 sge = sk_msg_elem(msg_opl, i); 571 } 572 573 msg_opl->sg.end = i; 574 msg_opl->sg.curr = i; 575 msg_opl->sg.copybreak = 0; 576 msg_opl->apply_bytes = 0; 577 msg_opl->sg.size = bytes; 578 579 msg_npl = &new->msg_plaintext; 580 msg_npl->apply_bytes = apply; 581 msg_npl->sg.size = orig_size - bytes; 582 583 j = msg_npl->sg.start; 584 nsge = sk_msg_elem(msg_npl, j); 585 if (tmp.length) { 586 memcpy(nsge, &tmp, sizeof(*nsge)); 587 sk_msg_iter_var_next(j); 588 nsge = sk_msg_elem(msg_npl, j); 589 } 590 591 osge = sk_msg_elem(msg_opl, i); 592 while (osge->length) { 593 memcpy(nsge, osge, sizeof(*nsge)); 594 sg_unmark_end(nsge); 595 sk_msg_iter_var_next(i); 596 sk_msg_iter_var_next(j); 597 if (i == *orig_end) 598 break; 599 osge = sk_msg_elem(msg_opl, i); 600 nsge = sk_msg_elem(msg_npl, j); 601 } 602 603 msg_npl->sg.end = j; 604 msg_npl->sg.curr = j; 605 msg_npl->sg.copybreak = 0; 606 607 *to = new; 608 return 0; 609 } 610 611 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 612 struct tls_rec *from, u32 orig_end) 613 { 614 struct sk_msg *msg_npl = &from->msg_plaintext; 615 struct sk_msg *msg_opl = &to->msg_plaintext; 616 struct scatterlist *osge, *nsge; 617 u32 i, j; 618 619 i = msg_opl->sg.end; 620 sk_msg_iter_var_prev(i); 621 j = msg_npl->sg.start; 622 623 osge = sk_msg_elem(msg_opl, i); 624 nsge = sk_msg_elem(msg_npl, j); 625 626 if (sg_page(osge) == sg_page(nsge) && 627 osge->offset + osge->length == nsge->offset) { 628 osge->length += nsge->length; 629 put_page(sg_page(nsge)); 630 } 631 632 msg_opl->sg.end = orig_end; 633 msg_opl->sg.curr = orig_end; 634 msg_opl->sg.copybreak = 0; 635 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 636 msg_opl->sg.size += msg_npl->sg.size; 637 638 sk_msg_free(sk, &to->msg_encrypted); 639 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 640 641 kfree(from); 642 } 643 644 static int tls_push_record(struct sock *sk, int flags, 645 unsigned char record_type) 646 { 647 struct tls_context *tls_ctx = tls_get_ctx(sk); 648 struct tls_prot_info *prot = &tls_ctx->prot_info; 649 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 650 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 651 u32 i, split_point, uninitialized_var(orig_end); 652 struct sk_msg *msg_pl, *msg_en; 653 struct aead_request *req; 654 bool split; 655 int rc; 656 657 if (!rec) 658 return 0; 659 660 msg_pl = &rec->msg_plaintext; 661 msg_en = &rec->msg_encrypted; 662 663 split_point = msg_pl->apply_bytes; 664 split = split_point && split_point < msg_pl->sg.size; 665 if (split) { 666 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 667 split_point, prot->overhead_size, 668 &orig_end); 669 if (rc < 0) 670 return rc; 671 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 672 prot->overhead_size); 673 } 674 675 rec->tx_flags = flags; 676 req = &rec->aead_req; 677 678 i = msg_pl->sg.end; 679 sk_msg_iter_var_prev(i); 680 681 rec->content_type = record_type; 682 if (prot->version == TLS_1_3_VERSION) { 683 /* Add content type to end of message. No padding added */ 684 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 685 sg_mark_end(&rec->sg_content_type); 686 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 687 &rec->sg_content_type); 688 } else { 689 sg_mark_end(sk_msg_elem(msg_pl, i)); 690 } 691 692 i = msg_pl->sg.start; 693 sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ? 694 &msg_en->sg.data[i] : &msg_pl->sg.data[i]); 695 696 i = msg_en->sg.end; 697 sk_msg_iter_var_prev(i); 698 sg_mark_end(sk_msg_elem(msg_en, i)); 699 700 i = msg_en->sg.start; 701 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 702 703 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 704 tls_ctx->tx.rec_seq, prot->rec_seq_size, 705 record_type, prot->version); 706 707 tls_fill_prepend(tls_ctx, 708 page_address(sg_page(&msg_en->sg.data[i])) + 709 msg_en->sg.data[i].offset, 710 msg_pl->sg.size + prot->tail_size, 711 record_type, prot->version); 712 713 tls_ctx->pending_open_record_frags = false; 714 715 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 716 msg_pl->sg.size + prot->tail_size, i); 717 if (rc < 0) { 718 if (rc != -EINPROGRESS) { 719 tls_err_abort(sk, EBADMSG); 720 if (split) { 721 tls_ctx->pending_open_record_frags = true; 722 tls_merge_open_record(sk, rec, tmp, orig_end); 723 } 724 } 725 ctx->async_capable = 1; 726 return rc; 727 } else if (split) { 728 msg_pl = &tmp->msg_plaintext; 729 msg_en = &tmp->msg_encrypted; 730 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 731 tls_ctx->pending_open_record_frags = true; 732 ctx->open_rec = tmp; 733 } 734 735 return tls_tx_records(sk, flags); 736 } 737 738 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 739 bool full_record, u8 record_type, 740 size_t *copied, int flags) 741 { 742 struct tls_context *tls_ctx = tls_get_ctx(sk); 743 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 744 struct sk_msg msg_redir = { }; 745 struct sk_psock *psock; 746 struct sock *sk_redir; 747 struct tls_rec *rec; 748 bool enospc, policy; 749 int err = 0, send; 750 u32 delta = 0; 751 752 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 753 psock = sk_psock_get(sk); 754 if (!psock || !policy) 755 return tls_push_record(sk, flags, record_type); 756 more_data: 757 enospc = sk_msg_full(msg); 758 if (psock->eval == __SK_NONE) { 759 delta = msg->sg.size; 760 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 761 if (delta < msg->sg.size) 762 delta -= msg->sg.size; 763 else 764 delta = 0; 765 } 766 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 767 !enospc && !full_record) { 768 err = -ENOSPC; 769 goto out_err; 770 } 771 msg->cork_bytes = 0; 772 send = msg->sg.size; 773 if (msg->apply_bytes && msg->apply_bytes < send) 774 send = msg->apply_bytes; 775 776 switch (psock->eval) { 777 case __SK_PASS: 778 err = tls_push_record(sk, flags, record_type); 779 if (err < 0) { 780 *copied -= sk_msg_free(sk, msg); 781 tls_free_open_rec(sk); 782 goto out_err; 783 } 784 break; 785 case __SK_REDIRECT: 786 sk_redir = psock->sk_redir; 787 memcpy(&msg_redir, msg, sizeof(*msg)); 788 if (msg->apply_bytes < send) 789 msg->apply_bytes = 0; 790 else 791 msg->apply_bytes -= send; 792 sk_msg_return_zero(sk, msg, send); 793 msg->sg.size -= send; 794 release_sock(sk); 795 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags); 796 lock_sock(sk); 797 if (err < 0) { 798 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 799 msg->sg.size = 0; 800 } 801 if (msg->sg.size == 0) 802 tls_free_open_rec(sk); 803 break; 804 case __SK_DROP: 805 default: 806 sk_msg_free_partial(sk, msg, send); 807 if (msg->apply_bytes < send) 808 msg->apply_bytes = 0; 809 else 810 msg->apply_bytes -= send; 811 if (msg->sg.size == 0) 812 tls_free_open_rec(sk); 813 *copied -= (send + delta); 814 err = -EACCES; 815 } 816 817 if (likely(!err)) { 818 bool reset_eval = !ctx->open_rec; 819 820 rec = ctx->open_rec; 821 if (rec) { 822 msg = &rec->msg_plaintext; 823 if (!msg->apply_bytes) 824 reset_eval = true; 825 } 826 if (reset_eval) { 827 psock->eval = __SK_NONE; 828 if (psock->sk_redir) { 829 sock_put(psock->sk_redir); 830 psock->sk_redir = NULL; 831 } 832 } 833 if (rec) 834 goto more_data; 835 } 836 out_err: 837 sk_psock_put(sk, psock); 838 return err; 839 } 840 841 static int tls_sw_push_pending_record(struct sock *sk, int flags) 842 { 843 struct tls_context *tls_ctx = tls_get_ctx(sk); 844 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 845 struct tls_rec *rec = ctx->open_rec; 846 struct sk_msg *msg_pl; 847 size_t copied; 848 849 if (!rec) 850 return 0; 851 852 msg_pl = &rec->msg_plaintext; 853 copied = msg_pl->sg.size; 854 if (!copied) 855 return 0; 856 857 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 858 &copied, flags); 859 } 860 861 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 862 { 863 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 864 struct tls_context *tls_ctx = tls_get_ctx(sk); 865 struct tls_prot_info *prot = &tls_ctx->prot_info; 866 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 867 bool async_capable = ctx->async_capable; 868 unsigned char record_type = TLS_RECORD_TYPE_DATA; 869 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 870 bool eor = !(msg->msg_flags & MSG_MORE); 871 size_t try_to_copy, copied = 0; 872 struct sk_msg *msg_pl, *msg_en; 873 struct tls_rec *rec; 874 int required_size; 875 int num_async = 0; 876 bool full_record; 877 int record_room; 878 int num_zc = 0; 879 int orig_size; 880 int ret = 0; 881 882 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 883 return -ENOTSUPP; 884 885 lock_sock(sk); 886 887 /* Wait till there is any pending write on socket */ 888 if (unlikely(sk->sk_write_pending)) { 889 ret = wait_on_pending_writer(sk, &timeo); 890 if (unlikely(ret)) 891 goto send_end; 892 } 893 894 if (unlikely(msg->msg_controllen)) { 895 ret = tls_proccess_cmsg(sk, msg, &record_type); 896 if (ret) { 897 if (ret == -EINPROGRESS) 898 num_async++; 899 else if (ret != -EAGAIN) 900 goto send_end; 901 } 902 } 903 904 while (msg_data_left(msg)) { 905 if (sk->sk_err) { 906 ret = -sk->sk_err; 907 goto send_end; 908 } 909 910 if (ctx->open_rec) 911 rec = ctx->open_rec; 912 else 913 rec = ctx->open_rec = tls_get_rec(sk); 914 if (!rec) { 915 ret = -ENOMEM; 916 goto send_end; 917 } 918 919 msg_pl = &rec->msg_plaintext; 920 msg_en = &rec->msg_encrypted; 921 922 orig_size = msg_pl->sg.size; 923 full_record = false; 924 try_to_copy = msg_data_left(msg); 925 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 926 if (try_to_copy >= record_room) { 927 try_to_copy = record_room; 928 full_record = true; 929 } 930 931 required_size = msg_pl->sg.size + try_to_copy + 932 prot->overhead_size; 933 934 if (!sk_stream_memory_free(sk)) 935 goto wait_for_sndbuf; 936 937 alloc_encrypted: 938 ret = tls_alloc_encrypted_msg(sk, required_size); 939 if (ret) { 940 if (ret != -ENOSPC) 941 goto wait_for_memory; 942 943 /* Adjust try_to_copy according to the amount that was 944 * actually allocated. The difference is due 945 * to max sg elements limit 946 */ 947 try_to_copy -= required_size - msg_en->sg.size; 948 full_record = true; 949 } 950 951 if (!is_kvec && (full_record || eor) && !async_capable) { 952 u32 first = msg_pl->sg.end; 953 954 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 955 msg_pl, try_to_copy); 956 if (ret) 957 goto fallback_to_reg_send; 958 959 rec->inplace_crypto = 0; 960 961 num_zc++; 962 copied += try_to_copy; 963 964 sk_msg_sg_copy_set(msg_pl, first); 965 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 966 record_type, &copied, 967 msg->msg_flags); 968 if (ret) { 969 if (ret == -EINPROGRESS) 970 num_async++; 971 else if (ret == -ENOMEM) 972 goto wait_for_memory; 973 else if (ret == -ENOSPC) 974 goto rollback_iter; 975 else if (ret != -EAGAIN) 976 goto send_end; 977 } 978 continue; 979 rollback_iter: 980 copied -= try_to_copy; 981 sk_msg_sg_copy_clear(msg_pl, first); 982 iov_iter_revert(&msg->msg_iter, 983 msg_pl->sg.size - orig_size); 984 fallback_to_reg_send: 985 sk_msg_trim(sk, msg_pl, orig_size); 986 } 987 988 required_size = msg_pl->sg.size + try_to_copy; 989 990 ret = tls_clone_plaintext_msg(sk, required_size); 991 if (ret) { 992 if (ret != -ENOSPC) 993 goto send_end; 994 995 /* Adjust try_to_copy according to the amount that was 996 * actually allocated. The difference is due 997 * to max sg elements limit 998 */ 999 try_to_copy -= required_size - msg_pl->sg.size; 1000 full_record = true; 1001 sk_msg_trim(sk, msg_en, 1002 msg_pl->sg.size + prot->overhead_size); 1003 } 1004 1005 if (try_to_copy) { 1006 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1007 msg_pl, try_to_copy); 1008 if (ret < 0) 1009 goto trim_sgl; 1010 } 1011 1012 /* Open records defined only if successfully copied, otherwise 1013 * we would trim the sg but not reset the open record frags. 1014 */ 1015 tls_ctx->pending_open_record_frags = true; 1016 copied += try_to_copy; 1017 if (full_record || eor) { 1018 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1019 record_type, &copied, 1020 msg->msg_flags); 1021 if (ret) { 1022 if (ret == -EINPROGRESS) 1023 num_async++; 1024 else if (ret == -ENOMEM) 1025 goto wait_for_memory; 1026 else if (ret != -EAGAIN) { 1027 if (ret == -ENOSPC) 1028 ret = 0; 1029 goto send_end; 1030 } 1031 } 1032 } 1033 1034 continue; 1035 1036 wait_for_sndbuf: 1037 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1038 wait_for_memory: 1039 ret = sk_stream_wait_memory(sk, &timeo); 1040 if (ret) { 1041 trim_sgl: 1042 tls_trim_both_msgs(sk, orig_size); 1043 goto send_end; 1044 } 1045 1046 if (msg_en->sg.size < required_size) 1047 goto alloc_encrypted; 1048 } 1049 1050 if (!num_async) { 1051 goto send_end; 1052 } else if (num_zc) { 1053 /* Wait for pending encryptions to get completed */ 1054 smp_store_mb(ctx->async_notify, true); 1055 1056 if (atomic_read(&ctx->encrypt_pending)) 1057 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1058 else 1059 reinit_completion(&ctx->async_wait.completion); 1060 1061 WRITE_ONCE(ctx->async_notify, false); 1062 1063 if (ctx->async_wait.err) { 1064 ret = ctx->async_wait.err; 1065 copied = 0; 1066 } 1067 } 1068 1069 /* Transmit if any encryptions have completed */ 1070 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1071 cancel_delayed_work(&ctx->tx_work.work); 1072 tls_tx_records(sk, msg->msg_flags); 1073 } 1074 1075 send_end: 1076 ret = sk_stream_error(sk, msg->msg_flags, ret); 1077 1078 release_sock(sk); 1079 return copied ? copied : ret; 1080 } 1081 1082 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1083 int offset, size_t size, int flags) 1084 { 1085 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1086 struct tls_context *tls_ctx = tls_get_ctx(sk); 1087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1088 struct tls_prot_info *prot = &tls_ctx->prot_info; 1089 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1090 struct sk_msg *msg_pl; 1091 struct tls_rec *rec; 1092 int num_async = 0; 1093 size_t copied = 0; 1094 bool full_record; 1095 int record_room; 1096 int ret = 0; 1097 bool eor; 1098 1099 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); 1100 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1101 1102 /* Wait till there is any pending write on socket */ 1103 if (unlikely(sk->sk_write_pending)) { 1104 ret = wait_on_pending_writer(sk, &timeo); 1105 if (unlikely(ret)) 1106 goto sendpage_end; 1107 } 1108 1109 /* Call the sk_stream functions to manage the sndbuf mem. */ 1110 while (size > 0) { 1111 size_t copy, required_size; 1112 1113 if (sk->sk_err) { 1114 ret = -sk->sk_err; 1115 goto sendpage_end; 1116 } 1117 1118 if (ctx->open_rec) 1119 rec = ctx->open_rec; 1120 else 1121 rec = ctx->open_rec = tls_get_rec(sk); 1122 if (!rec) { 1123 ret = -ENOMEM; 1124 goto sendpage_end; 1125 } 1126 1127 msg_pl = &rec->msg_plaintext; 1128 1129 full_record = false; 1130 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1131 copied = 0; 1132 copy = size; 1133 if (copy >= record_room) { 1134 copy = record_room; 1135 full_record = true; 1136 } 1137 1138 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1139 1140 if (!sk_stream_memory_free(sk)) 1141 goto wait_for_sndbuf; 1142 alloc_payload: 1143 ret = tls_alloc_encrypted_msg(sk, required_size); 1144 if (ret) { 1145 if (ret != -ENOSPC) 1146 goto wait_for_memory; 1147 1148 /* Adjust copy according to the amount that was 1149 * actually allocated. The difference is due 1150 * to max sg elements limit 1151 */ 1152 copy -= required_size - msg_pl->sg.size; 1153 full_record = true; 1154 } 1155 1156 sk_msg_page_add(msg_pl, page, copy, offset); 1157 sk_mem_charge(sk, copy); 1158 1159 offset += copy; 1160 size -= copy; 1161 copied += copy; 1162 1163 tls_ctx->pending_open_record_frags = true; 1164 if (full_record || eor || sk_msg_full(msg_pl)) { 1165 rec->inplace_crypto = 0; 1166 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1167 record_type, &copied, flags); 1168 if (ret) { 1169 if (ret == -EINPROGRESS) 1170 num_async++; 1171 else if (ret == -ENOMEM) 1172 goto wait_for_memory; 1173 else if (ret != -EAGAIN) { 1174 if (ret == -ENOSPC) 1175 ret = 0; 1176 goto sendpage_end; 1177 } 1178 } 1179 } 1180 continue; 1181 wait_for_sndbuf: 1182 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1183 wait_for_memory: 1184 ret = sk_stream_wait_memory(sk, &timeo); 1185 if (ret) { 1186 tls_trim_both_msgs(sk, msg_pl->sg.size); 1187 goto sendpage_end; 1188 } 1189 1190 goto alloc_payload; 1191 } 1192 1193 if (num_async) { 1194 /* Transmit if any encryptions have completed */ 1195 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1196 cancel_delayed_work(&ctx->tx_work.work); 1197 tls_tx_records(sk, flags); 1198 } 1199 } 1200 sendpage_end: 1201 ret = sk_stream_error(sk, flags, ret); 1202 return copied ? copied : ret; 1203 } 1204 1205 int tls_sw_sendpage(struct sock *sk, struct page *page, 1206 int offset, size_t size, int flags) 1207 { 1208 int ret; 1209 1210 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1211 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1212 return -ENOTSUPP; 1213 1214 lock_sock(sk); 1215 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1216 release_sock(sk); 1217 return ret; 1218 } 1219 1220 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock, 1221 int flags, long timeo, int *err) 1222 { 1223 struct tls_context *tls_ctx = tls_get_ctx(sk); 1224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1225 struct sk_buff *skb; 1226 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1227 1228 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) { 1229 if (sk->sk_err) { 1230 *err = sock_error(sk); 1231 return NULL; 1232 } 1233 1234 if (sk->sk_shutdown & RCV_SHUTDOWN) 1235 return NULL; 1236 1237 if (sock_flag(sk, SOCK_DONE)) 1238 return NULL; 1239 1240 if ((flags & MSG_DONTWAIT) || !timeo) { 1241 *err = -EAGAIN; 1242 return NULL; 1243 } 1244 1245 add_wait_queue(sk_sleep(sk), &wait); 1246 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1247 sk_wait_event(sk, &timeo, 1248 ctx->recv_pkt != skb || 1249 !sk_psock_queue_empty(psock), 1250 &wait); 1251 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1252 remove_wait_queue(sk_sleep(sk), &wait); 1253 1254 /* Handle signals */ 1255 if (signal_pending(current)) { 1256 *err = sock_intr_errno(timeo); 1257 return NULL; 1258 } 1259 } 1260 1261 return skb; 1262 } 1263 1264 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from, 1265 int length, int *pages_used, 1266 unsigned int *size_used, 1267 struct scatterlist *to, 1268 int to_max_pages) 1269 { 1270 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1271 struct page *pages[MAX_SKB_FRAGS]; 1272 unsigned int size = *size_used; 1273 ssize_t copied, use; 1274 size_t offset; 1275 1276 while (length > 0) { 1277 i = 0; 1278 maxpages = to_max_pages - num_elem; 1279 if (maxpages == 0) { 1280 rc = -EFAULT; 1281 goto out; 1282 } 1283 copied = iov_iter_get_pages(from, pages, 1284 length, 1285 maxpages, &offset); 1286 if (copied <= 0) { 1287 rc = -EFAULT; 1288 goto out; 1289 } 1290 1291 iov_iter_advance(from, copied); 1292 1293 length -= copied; 1294 size += copied; 1295 while (copied) { 1296 use = min_t(int, copied, PAGE_SIZE - offset); 1297 1298 sg_set_page(&to[num_elem], 1299 pages[i], use, offset); 1300 sg_unmark_end(&to[num_elem]); 1301 /* We do not uncharge memory from this API */ 1302 1303 offset = 0; 1304 copied -= use; 1305 1306 i++; 1307 num_elem++; 1308 } 1309 } 1310 /* Mark the end in the last sg entry if newly added */ 1311 if (num_elem > *pages_used) 1312 sg_mark_end(&to[num_elem - 1]); 1313 out: 1314 if (rc) 1315 iov_iter_revert(from, size - *size_used); 1316 *size_used = size; 1317 *pages_used = num_elem; 1318 1319 return rc; 1320 } 1321 1322 /* This function decrypts the input skb into either out_iov or in out_sg 1323 * or in skb buffers itself. The input parameter 'zc' indicates if 1324 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1325 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1326 * NULL, then the decryption happens inside skb buffers itself, i.e. 1327 * zero-copy gets disabled and 'zc' is updated. 1328 */ 1329 1330 static int decrypt_internal(struct sock *sk, struct sk_buff *skb, 1331 struct iov_iter *out_iov, 1332 struct scatterlist *out_sg, 1333 int *chunk, bool *zc, bool async) 1334 { 1335 struct tls_context *tls_ctx = tls_get_ctx(sk); 1336 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1337 struct tls_prot_info *prot = &tls_ctx->prot_info; 1338 struct strp_msg *rxm = strp_msg(skb); 1339 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0; 1340 struct aead_request *aead_req; 1341 struct sk_buff *unused; 1342 u8 *aad, *iv, *mem = NULL; 1343 struct scatterlist *sgin = NULL; 1344 struct scatterlist *sgout = NULL; 1345 const int data_len = rxm->full_len - prot->overhead_size + 1346 prot->tail_size; 1347 1348 if (*zc && (out_iov || out_sg)) { 1349 if (out_iov) 1350 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1; 1351 else 1352 n_sgout = sg_nents(out_sg); 1353 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1354 rxm->full_len - prot->prepend_size); 1355 } else { 1356 n_sgout = 0; 1357 *zc = false; 1358 n_sgin = skb_cow_data(skb, 0, &unused); 1359 } 1360 1361 if (n_sgin < 1) 1362 return -EBADMSG; 1363 1364 /* Increment to accommodate AAD */ 1365 n_sgin = n_sgin + 1; 1366 1367 nsg = n_sgin + n_sgout; 1368 1369 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1370 mem_size = aead_size + (nsg * sizeof(struct scatterlist)); 1371 mem_size = mem_size + prot->aad_size; 1372 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv); 1373 1374 /* Allocate a single block of memory which contains 1375 * aead_req || sgin[] || sgout[] || aad || iv. 1376 * This order achieves correct alignment for aead_req, sgin, sgout. 1377 */ 1378 mem = kmalloc(mem_size, sk->sk_allocation); 1379 if (!mem) 1380 return -ENOMEM; 1381 1382 /* Segment the allocated memory */ 1383 aead_req = (struct aead_request *)mem; 1384 sgin = (struct scatterlist *)(mem + aead_size); 1385 sgout = sgin + n_sgin; 1386 aad = (u8 *)(sgout + n_sgout); 1387 iv = aad + prot->aad_size; 1388 1389 /* Prepare IV */ 1390 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1391 iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 1392 prot->iv_size); 1393 if (err < 0) { 1394 kfree(mem); 1395 return err; 1396 } 1397 if (prot->version == TLS_1_3_VERSION) 1398 memcpy(iv, tls_ctx->rx.iv, crypto_aead_ivsize(ctx->aead_recv)); 1399 else 1400 memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 1401 1402 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq); 1403 1404 /* Prepare AAD */ 1405 tls_make_aad(aad, rxm->full_len - prot->overhead_size + 1406 prot->tail_size, 1407 tls_ctx->rx.rec_seq, prot->rec_seq_size, 1408 ctx->control, prot->version); 1409 1410 /* Prepare sgin */ 1411 sg_init_table(sgin, n_sgin); 1412 sg_set_buf(&sgin[0], aad, prot->aad_size); 1413 err = skb_to_sgvec(skb, &sgin[1], 1414 rxm->offset + prot->prepend_size, 1415 rxm->full_len - prot->prepend_size); 1416 if (err < 0) { 1417 kfree(mem); 1418 return err; 1419 } 1420 1421 if (n_sgout) { 1422 if (out_iov) { 1423 sg_init_table(sgout, n_sgout); 1424 sg_set_buf(&sgout[0], aad, prot->aad_size); 1425 1426 *chunk = 0; 1427 err = tls_setup_from_iter(sk, out_iov, data_len, 1428 &pages, chunk, &sgout[1], 1429 (n_sgout - 1)); 1430 if (err < 0) 1431 goto fallback_to_reg_recv; 1432 } else if (out_sg) { 1433 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1434 } else { 1435 goto fallback_to_reg_recv; 1436 } 1437 } else { 1438 fallback_to_reg_recv: 1439 sgout = sgin; 1440 pages = 0; 1441 *chunk = data_len; 1442 *zc = false; 1443 } 1444 1445 /* Prepare and submit AEAD request */ 1446 err = tls_do_decryption(sk, skb, sgin, sgout, iv, 1447 data_len, aead_req, async); 1448 if (err == -EINPROGRESS) 1449 return err; 1450 1451 /* Release the pages in case iov was mapped to pages */ 1452 for (; pages > 0; pages--) 1453 put_page(sg_page(&sgout[pages])); 1454 1455 kfree(mem); 1456 return err; 1457 } 1458 1459 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb, 1460 struct iov_iter *dest, int *chunk, bool *zc, 1461 bool async) 1462 { 1463 struct tls_context *tls_ctx = tls_get_ctx(sk); 1464 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1465 struct tls_prot_info *prot = &tls_ctx->prot_info; 1466 int version = prot->version; 1467 struct strp_msg *rxm = strp_msg(skb); 1468 int err = 0; 1469 1470 if (!ctx->decrypted) { 1471 #ifdef CONFIG_TLS_DEVICE 1472 err = tls_device_decrypted(sk, skb); 1473 if (err < 0) 1474 return err; 1475 #endif 1476 /* Still not decrypted after tls_device */ 1477 if (!ctx->decrypted) { 1478 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc, 1479 async); 1480 if (err < 0) { 1481 if (err == -EINPROGRESS) 1482 tls_advance_record_sn(sk, &tls_ctx->rx, 1483 version); 1484 1485 return err; 1486 } 1487 } else { 1488 *zc = false; 1489 } 1490 1491 rxm->full_len -= padding_length(ctx, tls_ctx, skb); 1492 rxm->offset += prot->prepend_size; 1493 rxm->full_len -= prot->overhead_size; 1494 tls_advance_record_sn(sk, &tls_ctx->rx, version); 1495 ctx->decrypted = true; 1496 ctx->saved_data_ready(sk); 1497 } else { 1498 *zc = false; 1499 } 1500 1501 return err; 1502 } 1503 1504 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 1505 struct scatterlist *sgout) 1506 { 1507 bool zc = true; 1508 int chunk; 1509 1510 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false); 1511 } 1512 1513 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, 1514 unsigned int len) 1515 { 1516 struct tls_context *tls_ctx = tls_get_ctx(sk); 1517 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1518 1519 if (skb) { 1520 struct strp_msg *rxm = strp_msg(skb); 1521 1522 if (len < rxm->full_len) { 1523 rxm->offset += len; 1524 rxm->full_len -= len; 1525 return false; 1526 } 1527 kfree_skb(skb); 1528 } 1529 1530 /* Finished with message */ 1531 ctx->recv_pkt = NULL; 1532 __strp_unpause(&ctx->strp); 1533 1534 return true; 1535 } 1536 1537 /* This function traverses the rx_list in tls receive context to copies the 1538 * decrypted records into the buffer provided by caller zero copy is not 1539 * true. Further, the records are removed from the rx_list if it is not a peek 1540 * case and the record has been consumed completely. 1541 */ 1542 static int process_rx_list(struct tls_sw_context_rx *ctx, 1543 struct msghdr *msg, 1544 u8 *control, 1545 bool *cmsg, 1546 size_t skip, 1547 size_t len, 1548 bool zc, 1549 bool is_peek) 1550 { 1551 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1552 u8 ctrl = *control; 1553 u8 msgc = *cmsg; 1554 struct tls_msg *tlm; 1555 ssize_t copied = 0; 1556 1557 /* Set the record type in 'control' if caller didn't pass it */ 1558 if (!ctrl && skb) { 1559 tlm = tls_msg(skb); 1560 ctrl = tlm->control; 1561 } 1562 1563 while (skip && skb) { 1564 struct strp_msg *rxm = strp_msg(skb); 1565 tlm = tls_msg(skb); 1566 1567 /* Cannot process a record of different type */ 1568 if (ctrl != tlm->control) 1569 return 0; 1570 1571 if (skip < rxm->full_len) 1572 break; 1573 1574 skip = skip - rxm->full_len; 1575 skb = skb_peek_next(skb, &ctx->rx_list); 1576 } 1577 1578 while (len && skb) { 1579 struct sk_buff *next_skb; 1580 struct strp_msg *rxm = strp_msg(skb); 1581 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1582 1583 tlm = tls_msg(skb); 1584 1585 /* Cannot process a record of different type */ 1586 if (ctrl != tlm->control) 1587 return 0; 1588 1589 /* Set record type if not already done. For a non-data record, 1590 * do not proceed if record type could not be copied. 1591 */ 1592 if (!msgc) { 1593 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1594 sizeof(ctrl), &ctrl); 1595 msgc = true; 1596 if (ctrl != TLS_RECORD_TYPE_DATA) { 1597 if (cerr || msg->msg_flags & MSG_CTRUNC) 1598 return -EIO; 1599 1600 *cmsg = msgc; 1601 } 1602 } 1603 1604 if (!zc || (rxm->full_len - skip) > len) { 1605 int err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1606 msg, chunk); 1607 if (err < 0) 1608 return err; 1609 } 1610 1611 len = len - chunk; 1612 copied = copied + chunk; 1613 1614 /* Consume the data from record if it is non-peek case*/ 1615 if (!is_peek) { 1616 rxm->offset = rxm->offset + chunk; 1617 rxm->full_len = rxm->full_len - chunk; 1618 1619 /* Return if there is unconsumed data in the record */ 1620 if (rxm->full_len - skip) 1621 break; 1622 } 1623 1624 /* The remaining skip-bytes must lie in 1st record in rx_list. 1625 * So from the 2nd record, 'skip' should be 0. 1626 */ 1627 skip = 0; 1628 1629 if (msg) 1630 msg->msg_flags |= MSG_EOR; 1631 1632 next_skb = skb_peek_next(skb, &ctx->rx_list); 1633 1634 if (!is_peek) { 1635 skb_unlink(skb, &ctx->rx_list); 1636 kfree_skb(skb); 1637 } 1638 1639 skb = next_skb; 1640 } 1641 1642 *control = ctrl; 1643 return copied; 1644 } 1645 1646 int tls_sw_recvmsg(struct sock *sk, 1647 struct msghdr *msg, 1648 size_t len, 1649 int nonblock, 1650 int flags, 1651 int *addr_len) 1652 { 1653 struct tls_context *tls_ctx = tls_get_ctx(sk); 1654 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1655 struct tls_prot_info *prot = &tls_ctx->prot_info; 1656 struct sk_psock *psock; 1657 unsigned char control = 0; 1658 ssize_t decrypted = 0; 1659 struct strp_msg *rxm; 1660 struct tls_msg *tlm; 1661 struct sk_buff *skb; 1662 ssize_t copied = 0; 1663 bool cmsg = false; 1664 int target, err = 0; 1665 long timeo; 1666 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1667 bool is_peek = flags & MSG_PEEK; 1668 int num_async = 0; 1669 1670 flags |= nonblock; 1671 1672 if (unlikely(flags & MSG_ERRQUEUE)) 1673 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1674 1675 psock = sk_psock_get(sk); 1676 lock_sock(sk); 1677 1678 /* Process pending decrypted records. It must be non-zero-copy */ 1679 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false, 1680 is_peek); 1681 if (err < 0) { 1682 tls_err_abort(sk, err); 1683 goto end; 1684 } else { 1685 copied = err; 1686 } 1687 1688 len = len - copied; 1689 if (len) { 1690 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1691 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1692 } else { 1693 goto recv_end; 1694 } 1695 1696 do { 1697 bool retain_skb = false; 1698 bool zc = false; 1699 int to_decrypt; 1700 int chunk = 0; 1701 bool async_capable; 1702 bool async = false; 1703 1704 skb = tls_wait_data(sk, psock, flags, timeo, &err); 1705 if (!skb) { 1706 if (psock) { 1707 int ret = __tcp_bpf_recvmsg(sk, psock, 1708 msg, len, flags); 1709 1710 if (ret > 0) { 1711 decrypted += ret; 1712 len -= ret; 1713 continue; 1714 } 1715 } 1716 goto recv_end; 1717 } else { 1718 tlm = tls_msg(skb); 1719 if (prot->version == TLS_1_3_VERSION) 1720 tlm->control = 0; 1721 else 1722 tlm->control = ctx->control; 1723 } 1724 1725 rxm = strp_msg(skb); 1726 1727 to_decrypt = rxm->full_len - prot->overhead_size; 1728 1729 if (to_decrypt <= len && !is_kvec && !is_peek && 1730 ctx->control == TLS_RECORD_TYPE_DATA && 1731 prot->version != TLS_1_3_VERSION) 1732 zc = true; 1733 1734 /* Do not use async mode if record is non-data */ 1735 if (ctx->control == TLS_RECORD_TYPE_DATA) 1736 async_capable = ctx->async_capable; 1737 else 1738 async_capable = false; 1739 1740 err = decrypt_skb_update(sk, skb, &msg->msg_iter, 1741 &chunk, &zc, async_capable); 1742 if (err < 0 && err != -EINPROGRESS) { 1743 tls_err_abort(sk, EBADMSG); 1744 goto recv_end; 1745 } 1746 1747 if (err == -EINPROGRESS) { 1748 async = true; 1749 num_async++; 1750 } else if (prot->version == TLS_1_3_VERSION) { 1751 tlm->control = ctx->control; 1752 } 1753 1754 /* If the type of records being processed is not known yet, 1755 * set it to record type just dequeued. If it is already known, 1756 * but does not match the record type just dequeued, go to end. 1757 * We always get record type here since for tls1.2, record type 1758 * is known just after record is dequeued from stream parser. 1759 * For tls1.3, we disable async. 1760 */ 1761 1762 if (!control) 1763 control = tlm->control; 1764 else if (control != tlm->control) 1765 goto recv_end; 1766 1767 if (!cmsg) { 1768 int cerr; 1769 1770 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1771 sizeof(control), &control); 1772 cmsg = true; 1773 if (control != TLS_RECORD_TYPE_DATA) { 1774 if (cerr || msg->msg_flags & MSG_CTRUNC) { 1775 err = -EIO; 1776 goto recv_end; 1777 } 1778 } 1779 } 1780 1781 if (async) 1782 goto pick_next_record; 1783 1784 if (!zc) { 1785 if (rxm->full_len > len) { 1786 retain_skb = true; 1787 chunk = len; 1788 } else { 1789 chunk = rxm->full_len; 1790 } 1791 1792 err = skb_copy_datagram_msg(skb, rxm->offset, 1793 msg, chunk); 1794 if (err < 0) 1795 goto recv_end; 1796 1797 if (!is_peek) { 1798 rxm->offset = rxm->offset + chunk; 1799 rxm->full_len = rxm->full_len - chunk; 1800 } 1801 } 1802 1803 pick_next_record: 1804 if (chunk > len) 1805 chunk = len; 1806 1807 decrypted += chunk; 1808 len -= chunk; 1809 1810 /* For async or peek case, queue the current skb */ 1811 if (async || is_peek || retain_skb) { 1812 skb_queue_tail(&ctx->rx_list, skb); 1813 skb = NULL; 1814 } 1815 1816 if (tls_sw_advance_skb(sk, skb, chunk)) { 1817 /* Return full control message to 1818 * userspace before trying to parse 1819 * another message type 1820 */ 1821 msg->msg_flags |= MSG_EOR; 1822 if (ctx->control != TLS_RECORD_TYPE_DATA) 1823 goto recv_end; 1824 } else { 1825 break; 1826 } 1827 1828 /* If we have a new message from strparser, continue now. */ 1829 if (decrypted >= target && !ctx->recv_pkt) 1830 break; 1831 } while (len); 1832 1833 recv_end: 1834 if (num_async) { 1835 /* Wait for all previously submitted records to be decrypted */ 1836 smp_store_mb(ctx->async_notify, true); 1837 if (atomic_read(&ctx->decrypt_pending)) { 1838 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1839 if (err) { 1840 /* one of async decrypt failed */ 1841 tls_err_abort(sk, err); 1842 copied = 0; 1843 decrypted = 0; 1844 goto end; 1845 } 1846 } else { 1847 reinit_completion(&ctx->async_wait.completion); 1848 } 1849 WRITE_ONCE(ctx->async_notify, false); 1850 1851 /* Drain records from the rx_list & copy if required */ 1852 if (is_peek || is_kvec) 1853 err = process_rx_list(ctx, msg, &control, &cmsg, copied, 1854 decrypted, false, is_peek); 1855 else 1856 err = process_rx_list(ctx, msg, &control, &cmsg, 0, 1857 decrypted, true, is_peek); 1858 if (err < 0) { 1859 tls_err_abort(sk, err); 1860 copied = 0; 1861 goto end; 1862 } 1863 } 1864 1865 copied += decrypted; 1866 1867 end: 1868 release_sock(sk); 1869 if (psock) 1870 sk_psock_put(sk, psock); 1871 return copied ? : err; 1872 } 1873 1874 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 1875 struct pipe_inode_info *pipe, 1876 size_t len, unsigned int flags) 1877 { 1878 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 1879 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1880 struct strp_msg *rxm = NULL; 1881 struct sock *sk = sock->sk; 1882 struct sk_buff *skb; 1883 ssize_t copied = 0; 1884 int err = 0; 1885 long timeo; 1886 int chunk; 1887 bool zc = false; 1888 1889 lock_sock(sk); 1890 1891 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1892 1893 skb = tls_wait_data(sk, NULL, flags, timeo, &err); 1894 if (!skb) 1895 goto splice_read_end; 1896 1897 if (!ctx->decrypted) { 1898 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false); 1899 1900 /* splice does not support reading control messages */ 1901 if (ctx->control != TLS_RECORD_TYPE_DATA) { 1902 err = -ENOTSUPP; 1903 goto splice_read_end; 1904 } 1905 1906 if (err < 0) { 1907 tls_err_abort(sk, EBADMSG); 1908 goto splice_read_end; 1909 } 1910 ctx->decrypted = true; 1911 } 1912 rxm = strp_msg(skb); 1913 1914 chunk = min_t(unsigned int, rxm->full_len, len); 1915 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 1916 if (copied < 0) 1917 goto splice_read_end; 1918 1919 if (likely(!(flags & MSG_PEEK))) 1920 tls_sw_advance_skb(sk, skb, copied); 1921 1922 splice_read_end: 1923 release_sock(sk); 1924 return copied ? : err; 1925 } 1926 1927 bool tls_sw_stream_read(const struct sock *sk) 1928 { 1929 struct tls_context *tls_ctx = tls_get_ctx(sk); 1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1931 bool ingress_empty = true; 1932 struct sk_psock *psock; 1933 1934 rcu_read_lock(); 1935 psock = sk_psock(sk); 1936 if (psock) 1937 ingress_empty = list_empty(&psock->ingress_msg); 1938 rcu_read_unlock(); 1939 1940 return !ingress_empty || ctx->recv_pkt; 1941 } 1942 1943 static int tls_read_size(struct strparser *strp, struct sk_buff *skb) 1944 { 1945 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 1946 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1947 struct tls_prot_info *prot = &tls_ctx->prot_info; 1948 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 1949 struct strp_msg *rxm = strp_msg(skb); 1950 size_t cipher_overhead; 1951 size_t data_len = 0; 1952 int ret; 1953 1954 /* Verify that we have a full TLS header, or wait for more data */ 1955 if (rxm->offset + prot->prepend_size > skb->len) 1956 return 0; 1957 1958 /* Sanity-check size of on-stack buffer. */ 1959 if (WARN_ON(prot->prepend_size > sizeof(header))) { 1960 ret = -EINVAL; 1961 goto read_failure; 1962 } 1963 1964 /* Linearize header to local buffer */ 1965 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size); 1966 1967 if (ret < 0) 1968 goto read_failure; 1969 1970 ctx->control = header[0]; 1971 1972 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 1973 1974 cipher_overhead = prot->tag_size; 1975 if (prot->version != TLS_1_3_VERSION) 1976 cipher_overhead += prot->iv_size; 1977 1978 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 1979 prot->tail_size) { 1980 ret = -EMSGSIZE; 1981 goto read_failure; 1982 } 1983 if (data_len < cipher_overhead) { 1984 ret = -EBADMSG; 1985 goto read_failure; 1986 } 1987 1988 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 1989 if (header[1] != TLS_1_2_VERSION_MINOR || 1990 header[2] != TLS_1_2_VERSION_MAJOR) { 1991 ret = -EINVAL; 1992 goto read_failure; 1993 } 1994 #ifdef CONFIG_TLS_DEVICE 1995 handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset, 1996 *(u64*)tls_ctx->rx.rec_seq); 1997 #endif 1998 return data_len + TLS_HEADER_SIZE; 1999 2000 read_failure: 2001 tls_err_abort(strp->sk, ret); 2002 2003 return ret; 2004 } 2005 2006 static void tls_queue(struct strparser *strp, struct sk_buff *skb) 2007 { 2008 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2009 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2010 2011 ctx->decrypted = false; 2012 2013 ctx->recv_pkt = skb; 2014 strp_pause(strp); 2015 2016 ctx->saved_data_ready(strp->sk); 2017 } 2018 2019 static void tls_data_ready(struct sock *sk) 2020 { 2021 struct tls_context *tls_ctx = tls_get_ctx(sk); 2022 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2023 struct sk_psock *psock; 2024 2025 strp_data_ready(&ctx->strp); 2026 2027 psock = sk_psock_get(sk); 2028 if (psock && !list_empty(&psock->ingress_msg)) { 2029 ctx->saved_data_ready(sk); 2030 sk_psock_put(sk, psock); 2031 } 2032 } 2033 2034 void tls_sw_free_resources_tx(struct sock *sk) 2035 { 2036 struct tls_context *tls_ctx = tls_get_ctx(sk); 2037 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2038 struct tls_rec *rec, *tmp; 2039 2040 /* Wait for any pending async encryptions to complete */ 2041 smp_store_mb(ctx->async_notify, true); 2042 if (atomic_read(&ctx->encrypt_pending)) 2043 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2044 2045 release_sock(sk); 2046 cancel_delayed_work_sync(&ctx->tx_work.work); 2047 lock_sock(sk); 2048 2049 /* Tx whatever records we can transmit and abandon the rest */ 2050 tls_tx_records(sk, -1); 2051 2052 /* Free up un-sent records in tx_list. First, free 2053 * the partially sent record if any at head of tx_list. 2054 */ 2055 if (tls_free_partial_record(sk, tls_ctx)) { 2056 rec = list_first_entry(&ctx->tx_list, 2057 struct tls_rec, list); 2058 list_del(&rec->list); 2059 sk_msg_free(sk, &rec->msg_plaintext); 2060 kfree(rec); 2061 } 2062 2063 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2064 list_del(&rec->list); 2065 sk_msg_free(sk, &rec->msg_encrypted); 2066 sk_msg_free(sk, &rec->msg_plaintext); 2067 kfree(rec); 2068 } 2069 2070 crypto_free_aead(ctx->aead_send); 2071 tls_free_open_rec(sk); 2072 2073 kfree(ctx); 2074 } 2075 2076 void tls_sw_release_resources_rx(struct sock *sk) 2077 { 2078 struct tls_context *tls_ctx = tls_get_ctx(sk); 2079 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2080 2081 kfree(tls_ctx->rx.rec_seq); 2082 kfree(tls_ctx->rx.iv); 2083 2084 if (ctx->aead_recv) { 2085 kfree_skb(ctx->recv_pkt); 2086 ctx->recv_pkt = NULL; 2087 skb_queue_purge(&ctx->rx_list); 2088 crypto_free_aead(ctx->aead_recv); 2089 strp_stop(&ctx->strp); 2090 write_lock_bh(&sk->sk_callback_lock); 2091 sk->sk_data_ready = ctx->saved_data_ready; 2092 write_unlock_bh(&sk->sk_callback_lock); 2093 release_sock(sk); 2094 strp_done(&ctx->strp); 2095 lock_sock(sk); 2096 } 2097 } 2098 2099 void tls_sw_free_resources_rx(struct sock *sk) 2100 { 2101 struct tls_context *tls_ctx = tls_get_ctx(sk); 2102 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2103 2104 tls_sw_release_resources_rx(sk); 2105 2106 kfree(ctx); 2107 } 2108 2109 /* The work handler to transmitt the encrypted records in tx_list */ 2110 static void tx_work_handler(struct work_struct *work) 2111 { 2112 struct delayed_work *delayed_work = to_delayed_work(work); 2113 struct tx_work *tx_work = container_of(delayed_work, 2114 struct tx_work, work); 2115 struct sock *sk = tx_work->sk; 2116 struct tls_context *tls_ctx = tls_get_ctx(sk); 2117 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2118 2119 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2120 return; 2121 2122 lock_sock(sk); 2123 tls_tx_records(sk, -1); 2124 release_sock(sk); 2125 } 2126 2127 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2128 { 2129 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2130 2131 /* Schedule the transmission if tx list is ready */ 2132 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) { 2133 /* Schedule the transmission */ 2134 if (!test_and_set_bit(BIT_TX_SCHEDULED, 2135 &tx_ctx->tx_bitmask)) 2136 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2137 } 2138 } 2139 2140 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2141 { 2142 struct tls_context *tls_ctx = tls_get_ctx(sk); 2143 struct tls_prot_info *prot = &tls_ctx->prot_info; 2144 struct tls_crypto_info *crypto_info; 2145 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2146 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2147 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2148 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2149 struct cipher_context *cctx; 2150 struct crypto_aead **aead; 2151 struct strp_callbacks cb; 2152 u16 nonce_size, tag_size, iv_size, rec_seq_size; 2153 struct crypto_tfm *tfm; 2154 char *iv, *rec_seq, *key, *salt; 2155 size_t keysize; 2156 int rc = 0; 2157 2158 if (!ctx) { 2159 rc = -EINVAL; 2160 goto out; 2161 } 2162 2163 if (tx) { 2164 if (!ctx->priv_ctx_tx) { 2165 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2166 if (!sw_ctx_tx) { 2167 rc = -ENOMEM; 2168 goto out; 2169 } 2170 ctx->priv_ctx_tx = sw_ctx_tx; 2171 } else { 2172 sw_ctx_tx = 2173 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2174 } 2175 } else { 2176 if (!ctx->priv_ctx_rx) { 2177 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2178 if (!sw_ctx_rx) { 2179 rc = -ENOMEM; 2180 goto out; 2181 } 2182 ctx->priv_ctx_rx = sw_ctx_rx; 2183 } else { 2184 sw_ctx_rx = 2185 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2186 } 2187 } 2188 2189 if (tx) { 2190 crypto_init_wait(&sw_ctx_tx->async_wait); 2191 crypto_info = &ctx->crypto_send.info; 2192 cctx = &ctx->tx; 2193 aead = &sw_ctx_tx->aead_send; 2194 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2195 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2196 sw_ctx_tx->tx_work.sk = sk; 2197 } else { 2198 crypto_init_wait(&sw_ctx_rx->async_wait); 2199 crypto_info = &ctx->crypto_recv.info; 2200 cctx = &ctx->rx; 2201 skb_queue_head_init(&sw_ctx_rx->rx_list); 2202 aead = &sw_ctx_rx->aead_recv; 2203 } 2204 2205 switch (crypto_info->cipher_type) { 2206 case TLS_CIPHER_AES_GCM_128: { 2207 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2208 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2209 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2210 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; 2211 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2212 rec_seq = 2213 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; 2214 gcm_128_info = 2215 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; 2216 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2217 key = gcm_128_info->key; 2218 salt = gcm_128_info->salt; 2219 break; 2220 } 2221 case TLS_CIPHER_AES_GCM_256: { 2222 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2223 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2224 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2225 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; 2226 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2227 rec_seq = 2228 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; 2229 gcm_256_info = 2230 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info; 2231 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2232 key = gcm_256_info->key; 2233 salt = gcm_256_info->salt; 2234 break; 2235 } 2236 default: 2237 rc = -EINVAL; 2238 goto free_priv; 2239 } 2240 2241 /* Sanity-check the IV size for stack allocations. */ 2242 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) { 2243 rc = -EINVAL; 2244 goto free_priv; 2245 } 2246 2247 if (crypto_info->version == TLS_1_3_VERSION) { 2248 nonce_size = 0; 2249 prot->aad_size = TLS_HEADER_SIZE; 2250 prot->tail_size = 1; 2251 } else { 2252 prot->aad_size = TLS_AAD_SPACE_SIZE; 2253 prot->tail_size = 0; 2254 } 2255 2256 prot->version = crypto_info->version; 2257 prot->cipher_type = crypto_info->cipher_type; 2258 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2259 prot->tag_size = tag_size; 2260 prot->overhead_size = prot->prepend_size + 2261 prot->tag_size + prot->tail_size; 2262 prot->iv_size = iv_size; 2263 cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 2264 GFP_KERNEL); 2265 if (!cctx->iv) { 2266 rc = -ENOMEM; 2267 goto free_priv; 2268 } 2269 /* Note: 128 & 256 bit salt are the same size */ 2270 memcpy(cctx->iv, salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); 2271 memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); 2272 prot->rec_seq_size = rec_seq_size; 2273 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2274 if (!cctx->rec_seq) { 2275 rc = -ENOMEM; 2276 goto free_iv; 2277 } 2278 2279 if (!*aead) { 2280 *aead = crypto_alloc_aead("gcm(aes)", 0, 0); 2281 if (IS_ERR(*aead)) { 2282 rc = PTR_ERR(*aead); 2283 *aead = NULL; 2284 goto free_rec_seq; 2285 } 2286 } 2287 2288 ctx->push_pending_record = tls_sw_push_pending_record; 2289 2290 rc = crypto_aead_setkey(*aead, key, keysize); 2291 2292 if (rc) 2293 goto free_aead; 2294 2295 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2296 if (rc) 2297 goto free_aead; 2298 2299 if (sw_ctx_rx) { 2300 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2301 2302 if (crypto_info->version == TLS_1_3_VERSION) 2303 sw_ctx_rx->async_capable = false; 2304 else 2305 sw_ctx_rx->async_capable = 2306 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; 2307 2308 /* Set up strparser */ 2309 memset(&cb, 0, sizeof(cb)); 2310 cb.rcv_msg = tls_queue; 2311 cb.parse_msg = tls_read_size; 2312 2313 strp_init(&sw_ctx_rx->strp, sk, &cb); 2314 2315 write_lock_bh(&sk->sk_callback_lock); 2316 sw_ctx_rx->saved_data_ready = sk->sk_data_ready; 2317 sk->sk_data_ready = tls_data_ready; 2318 write_unlock_bh(&sk->sk_callback_lock); 2319 2320 strp_check_rcv(&sw_ctx_rx->strp); 2321 } 2322 2323 goto out; 2324 2325 free_aead: 2326 crypto_free_aead(*aead); 2327 *aead = NULL; 2328 free_rec_seq: 2329 kfree(cctx->rec_seq); 2330 cctx->rec_seq = NULL; 2331 free_iv: 2332 kfree(cctx->iv); 2333 cctx->iv = NULL; 2334 free_priv: 2335 if (tx) { 2336 kfree(ctx->priv_ctx_tx); 2337 ctx->priv_ctx_tx = NULL; 2338 } else { 2339 kfree(ctx->priv_ctx_rx); 2340 ctx->priv_ctx_rx = NULL; 2341 } 2342 out: 2343 return rc; 2344 } 2345