xref: /openbmc/linux/net/tls/tls_sw.c (revision 5ff32883)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46 
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54 
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57 
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67 
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70 
71                 WARN_ON(start > offset + len);
72 
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86 
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90 
91                         WARN_ON(start > offset + len);
92 
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114 
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122 
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125 	struct aead_request *aead_req = (struct aead_request *)req;
126 	struct scatterlist *sgout = aead_req->dst;
127 	struct tls_sw_context_rx *ctx;
128 	struct tls_context *tls_ctx;
129 	struct scatterlist *sg;
130 	struct sk_buff *skb;
131 	unsigned int pages;
132 	int pending;
133 
134 	skb = (struct sk_buff *)req->data;
135 	tls_ctx = tls_get_ctx(skb->sk);
136 	ctx = tls_sw_ctx_rx(tls_ctx);
137 	pending = atomic_dec_return(&ctx->decrypt_pending);
138 
139 	/* Propagate if there was an err */
140 	if (err) {
141 		ctx->async_wait.err = err;
142 		tls_err_abort(skb->sk, err);
143 	}
144 
145 	/* After using skb->sk to propagate sk through crypto async callback
146 	 * we need to NULL it again.
147 	 */
148 	skb->sk = NULL;
149 
150 	/* Release the skb, pages and memory allocated for crypto req */
151 	kfree_skb(skb);
152 
153 	/* Skip the first S/G entry as it points to AAD */
154 	for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155 		if (!sg)
156 			break;
157 		put_page(sg_page(sg));
158 	}
159 
160 	kfree(aead_req);
161 
162 	if (!pending && READ_ONCE(ctx->async_notify))
163 		complete(&ctx->async_wait.completion);
164 }
165 
166 static int tls_do_decryption(struct sock *sk,
167 			     struct sk_buff *skb,
168 			     struct scatterlist *sgin,
169 			     struct scatterlist *sgout,
170 			     char *iv_recv,
171 			     size_t data_len,
172 			     struct aead_request *aead_req,
173 			     bool async)
174 {
175 	struct tls_context *tls_ctx = tls_get_ctx(sk);
176 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177 	int ret;
178 
179 	aead_request_set_tfm(aead_req, ctx->aead_recv);
180 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181 	aead_request_set_crypt(aead_req, sgin, sgout,
182 			       data_len + tls_ctx->rx.tag_size,
183 			       (u8 *)iv_recv);
184 
185 	if (async) {
186 		/* Using skb->sk to push sk through to crypto async callback
187 		 * handler. This allows propagating errors up to the socket
188 		 * if needed. It _must_ be cleared in the async handler
189 		 * before kfree_skb is called. We _know_ skb->sk is NULL
190 		 * because it is a clone from strparser.
191 		 */
192 		skb->sk = sk;
193 		aead_request_set_callback(aead_req,
194 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
195 					  tls_decrypt_done, skb);
196 		atomic_inc(&ctx->decrypt_pending);
197 	} else {
198 		aead_request_set_callback(aead_req,
199 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
200 					  crypto_req_done, &ctx->async_wait);
201 	}
202 
203 	ret = crypto_aead_decrypt(aead_req);
204 	if (ret == -EINPROGRESS) {
205 		if (async)
206 			return ret;
207 
208 		ret = crypto_wait_req(ret, &ctx->async_wait);
209 	}
210 
211 	if (async)
212 		atomic_dec(&ctx->decrypt_pending);
213 
214 	return ret;
215 }
216 
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219 	struct tls_context *tls_ctx = tls_get_ctx(sk);
220 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221 	struct tls_rec *rec = ctx->open_rec;
222 
223 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224 	if (target_size > 0)
225 		target_size += tls_ctx->tx.overhead_size;
226 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228 
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231 	struct tls_context *tls_ctx = tls_get_ctx(sk);
232 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233 	struct tls_rec *rec = ctx->open_rec;
234 	struct sk_msg *msg_en = &rec->msg_encrypted;
235 
236 	return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238 
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243 	struct tls_rec *rec = ctx->open_rec;
244 	struct sk_msg *msg_pl = &rec->msg_plaintext;
245 	struct sk_msg *msg_en = &rec->msg_encrypted;
246 	int skip, len;
247 
248 	/* We add page references worth len bytes from encrypted sg
249 	 * at the end of plaintext sg. It is guaranteed that msg_en
250 	 * has enough required room (ensured by caller).
251 	 */
252 	len = required - msg_pl->sg.size;
253 
254 	/* Skip initial bytes in msg_en's data to be able to use
255 	 * same offset of both plain and encrypted data.
256 	 */
257 	skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258 
259 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261 
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264 	struct tls_context *tls_ctx = tls_get_ctx(sk);
265 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266 	struct sk_msg *msg_pl, *msg_en;
267 	struct tls_rec *rec;
268 	int mem_size;
269 
270 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271 
272 	rec = kzalloc(mem_size, sk->sk_allocation);
273 	if (!rec)
274 		return NULL;
275 
276 	msg_pl = &rec->msg_plaintext;
277 	msg_en = &rec->msg_encrypted;
278 
279 	sk_msg_init(msg_pl);
280 	sk_msg_init(msg_en);
281 
282 	sg_init_table(rec->sg_aead_in, 2);
283 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284 		   sizeof(rec->aad_space));
285 	sg_unmark_end(&rec->sg_aead_in[1]);
286 
287 	sg_init_table(rec->sg_aead_out, 2);
288 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289 		   sizeof(rec->aad_space));
290 	sg_unmark_end(&rec->sg_aead_out[1]);
291 
292 	return rec;
293 }
294 
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297 	sk_msg_free(sk, &rec->msg_encrypted);
298 	sk_msg_free(sk, &rec->msg_plaintext);
299 	kfree(rec);
300 }
301 
302 static void tls_free_open_rec(struct sock *sk)
303 {
304 	struct tls_context *tls_ctx = tls_get_ctx(sk);
305 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306 	struct tls_rec *rec = ctx->open_rec;
307 
308 	if (rec) {
309 		tls_free_rec(sk, rec);
310 		ctx->open_rec = NULL;
311 	}
312 }
313 
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316 	struct tls_context *tls_ctx = tls_get_ctx(sk);
317 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318 	struct tls_rec *rec, *tmp;
319 	struct sk_msg *msg_en;
320 	int tx_flags, rc = 0;
321 
322 	if (tls_is_partially_sent_record(tls_ctx)) {
323 		rec = list_first_entry(&ctx->tx_list,
324 				       struct tls_rec, list);
325 
326 		if (flags == -1)
327 			tx_flags = rec->tx_flags;
328 		else
329 			tx_flags = flags;
330 
331 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332 		if (rc)
333 			goto tx_err;
334 
335 		/* Full record has been transmitted.
336 		 * Remove the head of tx_list
337 		 */
338 		list_del(&rec->list);
339 		sk_msg_free(sk, &rec->msg_plaintext);
340 		kfree(rec);
341 	}
342 
343 	/* Tx all ready records */
344 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345 		if (READ_ONCE(rec->tx_ready)) {
346 			if (flags == -1)
347 				tx_flags = rec->tx_flags;
348 			else
349 				tx_flags = flags;
350 
351 			msg_en = &rec->msg_encrypted;
352 			rc = tls_push_sg(sk, tls_ctx,
353 					 &msg_en->sg.data[msg_en->sg.curr],
354 					 0, tx_flags);
355 			if (rc)
356 				goto tx_err;
357 
358 			list_del(&rec->list);
359 			sk_msg_free(sk, &rec->msg_plaintext);
360 			kfree(rec);
361 		} else {
362 			break;
363 		}
364 	}
365 
366 tx_err:
367 	if (rc < 0 && rc != -EAGAIN)
368 		tls_err_abort(sk, EBADMSG);
369 
370 	return rc;
371 }
372 
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375 	struct aead_request *aead_req = (struct aead_request *)req;
376 	struct sock *sk = req->data;
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct scatterlist *sge;
380 	struct sk_msg *msg_en;
381 	struct tls_rec *rec;
382 	bool ready = false;
383 	int pending;
384 
385 	rec = container_of(aead_req, struct tls_rec, aead_req);
386 	msg_en = &rec->msg_encrypted;
387 
388 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389 	sge->offset -= tls_ctx->tx.prepend_size;
390 	sge->length += tls_ctx->tx.prepend_size;
391 
392 	/* Check if error is previously set on socket */
393 	if (err || sk->sk_err) {
394 		rec = NULL;
395 
396 		/* If err is already set on socket, return the same code */
397 		if (sk->sk_err) {
398 			ctx->async_wait.err = sk->sk_err;
399 		} else {
400 			ctx->async_wait.err = err;
401 			tls_err_abort(sk, err);
402 		}
403 	}
404 
405 	if (rec) {
406 		struct tls_rec *first_rec;
407 
408 		/* Mark the record as ready for transmission */
409 		smp_store_mb(rec->tx_ready, true);
410 
411 		/* If received record is at head of tx_list, schedule tx */
412 		first_rec = list_first_entry(&ctx->tx_list,
413 					     struct tls_rec, list);
414 		if (rec == first_rec)
415 			ready = true;
416 	}
417 
418 	pending = atomic_dec_return(&ctx->encrypt_pending);
419 
420 	if (!pending && READ_ONCE(ctx->async_notify))
421 		complete(&ctx->async_wait.completion);
422 
423 	if (!ready)
424 		return;
425 
426 	/* Schedule the transmission */
427 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428 		schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430 
431 static int tls_do_encryption(struct sock *sk,
432 			     struct tls_context *tls_ctx,
433 			     struct tls_sw_context_tx *ctx,
434 			     struct aead_request *aead_req,
435 			     size_t data_len, u32 start)
436 {
437 	struct tls_rec *rec = ctx->open_rec;
438 	struct sk_msg *msg_en = &rec->msg_encrypted;
439 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
440 	int rc;
441 
442 	memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
443 
444 	sge->offset += tls_ctx->tx.prepend_size;
445 	sge->length -= tls_ctx->tx.prepend_size;
446 
447 	msg_en->sg.curr = start;
448 
449 	aead_request_set_tfm(aead_req, ctx->aead_send);
450 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
451 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
452 			       rec->sg_aead_out,
453 			       data_len, rec->iv_data);
454 
455 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
456 				  tls_encrypt_done, sk);
457 
458 	/* Add the record in tx_list */
459 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
460 	atomic_inc(&ctx->encrypt_pending);
461 
462 	rc = crypto_aead_encrypt(aead_req);
463 	if (!rc || rc != -EINPROGRESS) {
464 		atomic_dec(&ctx->encrypt_pending);
465 		sge->offset -= tls_ctx->tx.prepend_size;
466 		sge->length += tls_ctx->tx.prepend_size;
467 	}
468 
469 	if (!rc) {
470 		WRITE_ONCE(rec->tx_ready, true);
471 	} else if (rc != -EINPROGRESS) {
472 		list_del(&rec->list);
473 		return rc;
474 	}
475 
476 	/* Unhook the record from context if encryption is not failure */
477 	ctx->open_rec = NULL;
478 	tls_advance_record_sn(sk, &tls_ctx->tx);
479 	return rc;
480 }
481 
482 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
483 				 struct tls_rec **to, struct sk_msg *msg_opl,
484 				 struct sk_msg *msg_oen, u32 split_point,
485 				 u32 tx_overhead_size, u32 *orig_end)
486 {
487 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
488 	struct scatterlist *sge, *osge, *nsge;
489 	u32 orig_size = msg_opl->sg.size;
490 	struct scatterlist tmp = { };
491 	struct sk_msg *msg_npl;
492 	struct tls_rec *new;
493 	int ret;
494 
495 	new = tls_get_rec(sk);
496 	if (!new)
497 		return -ENOMEM;
498 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
499 			   tx_overhead_size, 0);
500 	if (ret < 0) {
501 		tls_free_rec(sk, new);
502 		return ret;
503 	}
504 
505 	*orig_end = msg_opl->sg.end;
506 	i = msg_opl->sg.start;
507 	sge = sk_msg_elem(msg_opl, i);
508 	while (apply && sge->length) {
509 		if (sge->length > apply) {
510 			u32 len = sge->length - apply;
511 
512 			get_page(sg_page(sge));
513 			sg_set_page(&tmp, sg_page(sge), len,
514 				    sge->offset + apply);
515 			sge->length = apply;
516 			bytes += apply;
517 			apply = 0;
518 		} else {
519 			apply -= sge->length;
520 			bytes += sge->length;
521 		}
522 
523 		sk_msg_iter_var_next(i);
524 		if (i == msg_opl->sg.end)
525 			break;
526 		sge = sk_msg_elem(msg_opl, i);
527 	}
528 
529 	msg_opl->sg.end = i;
530 	msg_opl->sg.curr = i;
531 	msg_opl->sg.copybreak = 0;
532 	msg_opl->apply_bytes = 0;
533 	msg_opl->sg.size = bytes;
534 
535 	msg_npl = &new->msg_plaintext;
536 	msg_npl->apply_bytes = apply;
537 	msg_npl->sg.size = orig_size - bytes;
538 
539 	j = msg_npl->sg.start;
540 	nsge = sk_msg_elem(msg_npl, j);
541 	if (tmp.length) {
542 		memcpy(nsge, &tmp, sizeof(*nsge));
543 		sk_msg_iter_var_next(j);
544 		nsge = sk_msg_elem(msg_npl, j);
545 	}
546 
547 	osge = sk_msg_elem(msg_opl, i);
548 	while (osge->length) {
549 		memcpy(nsge, osge, sizeof(*nsge));
550 		sg_unmark_end(nsge);
551 		sk_msg_iter_var_next(i);
552 		sk_msg_iter_var_next(j);
553 		if (i == *orig_end)
554 			break;
555 		osge = sk_msg_elem(msg_opl, i);
556 		nsge = sk_msg_elem(msg_npl, j);
557 	}
558 
559 	msg_npl->sg.end = j;
560 	msg_npl->sg.curr = j;
561 	msg_npl->sg.copybreak = 0;
562 
563 	*to = new;
564 	return 0;
565 }
566 
567 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
568 				  struct tls_rec *from, u32 orig_end)
569 {
570 	struct sk_msg *msg_npl = &from->msg_plaintext;
571 	struct sk_msg *msg_opl = &to->msg_plaintext;
572 	struct scatterlist *osge, *nsge;
573 	u32 i, j;
574 
575 	i = msg_opl->sg.end;
576 	sk_msg_iter_var_prev(i);
577 	j = msg_npl->sg.start;
578 
579 	osge = sk_msg_elem(msg_opl, i);
580 	nsge = sk_msg_elem(msg_npl, j);
581 
582 	if (sg_page(osge) == sg_page(nsge) &&
583 	    osge->offset + osge->length == nsge->offset) {
584 		osge->length += nsge->length;
585 		put_page(sg_page(nsge));
586 	}
587 
588 	msg_opl->sg.end = orig_end;
589 	msg_opl->sg.curr = orig_end;
590 	msg_opl->sg.copybreak = 0;
591 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
592 	msg_opl->sg.size += msg_npl->sg.size;
593 
594 	sk_msg_free(sk, &to->msg_encrypted);
595 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
596 
597 	kfree(from);
598 }
599 
600 static int tls_push_record(struct sock *sk, int flags,
601 			   unsigned char record_type)
602 {
603 	struct tls_context *tls_ctx = tls_get_ctx(sk);
604 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
605 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
606 	u32 i, split_point, uninitialized_var(orig_end);
607 	struct sk_msg *msg_pl, *msg_en;
608 	struct aead_request *req;
609 	bool split;
610 	int rc;
611 
612 	if (!rec)
613 		return 0;
614 
615 	msg_pl = &rec->msg_plaintext;
616 	msg_en = &rec->msg_encrypted;
617 
618 	split_point = msg_pl->apply_bytes;
619 	split = split_point && split_point < msg_pl->sg.size;
620 	if (split) {
621 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
622 					   split_point, tls_ctx->tx.overhead_size,
623 					   &orig_end);
624 		if (rc < 0)
625 			return rc;
626 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
627 			    tls_ctx->tx.overhead_size);
628 	}
629 
630 	rec->tx_flags = flags;
631 	req = &rec->aead_req;
632 
633 	i = msg_pl->sg.end;
634 	sk_msg_iter_var_prev(i);
635 	sg_mark_end(sk_msg_elem(msg_pl, i));
636 
637 	i = msg_pl->sg.start;
638 	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
639 		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
640 
641 	i = msg_en->sg.end;
642 	sk_msg_iter_var_prev(i);
643 	sg_mark_end(sk_msg_elem(msg_en, i));
644 
645 	i = msg_en->sg.start;
646 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
647 
648 	tls_make_aad(rec->aad_space, msg_pl->sg.size,
649 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
650 		     record_type);
651 
652 	tls_fill_prepend(tls_ctx,
653 			 page_address(sg_page(&msg_en->sg.data[i])) +
654 			 msg_en->sg.data[i].offset, msg_pl->sg.size,
655 			 record_type);
656 
657 	tls_ctx->pending_open_record_frags = false;
658 
659 	rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
660 	if (rc < 0) {
661 		if (rc != -EINPROGRESS) {
662 			tls_err_abort(sk, EBADMSG);
663 			if (split) {
664 				tls_ctx->pending_open_record_frags = true;
665 				tls_merge_open_record(sk, rec, tmp, orig_end);
666 			}
667 		}
668 		return rc;
669 	} else if (split) {
670 		msg_pl = &tmp->msg_plaintext;
671 		msg_en = &tmp->msg_encrypted;
672 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
673 			    tls_ctx->tx.overhead_size);
674 		tls_ctx->pending_open_record_frags = true;
675 		ctx->open_rec = tmp;
676 	}
677 
678 	return tls_tx_records(sk, flags);
679 }
680 
681 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
682 			       bool full_record, u8 record_type,
683 			       size_t *copied, int flags)
684 {
685 	struct tls_context *tls_ctx = tls_get_ctx(sk);
686 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
687 	struct sk_msg msg_redir = { };
688 	struct sk_psock *psock;
689 	struct sock *sk_redir;
690 	struct tls_rec *rec;
691 	bool enospc, policy;
692 	int err = 0, send;
693 	u32 delta = 0;
694 
695 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
696 	psock = sk_psock_get(sk);
697 	if (!psock || !policy)
698 		return tls_push_record(sk, flags, record_type);
699 more_data:
700 	enospc = sk_msg_full(msg);
701 	if (psock->eval == __SK_NONE) {
702 		delta = msg->sg.size;
703 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
704 		if (delta < msg->sg.size)
705 			delta -= msg->sg.size;
706 		else
707 			delta = 0;
708 	}
709 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
710 	    !enospc && !full_record) {
711 		err = -ENOSPC;
712 		goto out_err;
713 	}
714 	msg->cork_bytes = 0;
715 	send = msg->sg.size;
716 	if (msg->apply_bytes && msg->apply_bytes < send)
717 		send = msg->apply_bytes;
718 
719 	switch (psock->eval) {
720 	case __SK_PASS:
721 		err = tls_push_record(sk, flags, record_type);
722 		if (err < 0) {
723 			*copied -= sk_msg_free(sk, msg);
724 			tls_free_open_rec(sk);
725 			goto out_err;
726 		}
727 		break;
728 	case __SK_REDIRECT:
729 		sk_redir = psock->sk_redir;
730 		memcpy(&msg_redir, msg, sizeof(*msg));
731 		if (msg->apply_bytes < send)
732 			msg->apply_bytes = 0;
733 		else
734 			msg->apply_bytes -= send;
735 		sk_msg_return_zero(sk, msg, send);
736 		msg->sg.size -= send;
737 		release_sock(sk);
738 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
739 		lock_sock(sk);
740 		if (err < 0) {
741 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
742 			msg->sg.size = 0;
743 		}
744 		if (msg->sg.size == 0)
745 			tls_free_open_rec(sk);
746 		break;
747 	case __SK_DROP:
748 	default:
749 		sk_msg_free_partial(sk, msg, send);
750 		if (msg->apply_bytes < send)
751 			msg->apply_bytes = 0;
752 		else
753 			msg->apply_bytes -= send;
754 		if (msg->sg.size == 0)
755 			tls_free_open_rec(sk);
756 		*copied -= (send + delta);
757 		err = -EACCES;
758 	}
759 
760 	if (likely(!err)) {
761 		bool reset_eval = !ctx->open_rec;
762 
763 		rec = ctx->open_rec;
764 		if (rec) {
765 			msg = &rec->msg_plaintext;
766 			if (!msg->apply_bytes)
767 				reset_eval = true;
768 		}
769 		if (reset_eval) {
770 			psock->eval = __SK_NONE;
771 			if (psock->sk_redir) {
772 				sock_put(psock->sk_redir);
773 				psock->sk_redir = NULL;
774 			}
775 		}
776 		if (rec)
777 			goto more_data;
778 	}
779  out_err:
780 	sk_psock_put(sk, psock);
781 	return err;
782 }
783 
784 static int tls_sw_push_pending_record(struct sock *sk, int flags)
785 {
786 	struct tls_context *tls_ctx = tls_get_ctx(sk);
787 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
788 	struct tls_rec *rec = ctx->open_rec;
789 	struct sk_msg *msg_pl;
790 	size_t copied;
791 
792 	if (!rec)
793 		return 0;
794 
795 	msg_pl = &rec->msg_plaintext;
796 	copied = msg_pl->sg.size;
797 	if (!copied)
798 		return 0;
799 
800 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
801 				   &copied, flags);
802 }
803 
804 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
805 {
806 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
807 	struct tls_context *tls_ctx = tls_get_ctx(sk);
808 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
809 	struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
810 	bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
811 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
812 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
813 	bool eor = !(msg->msg_flags & MSG_MORE);
814 	size_t try_to_copy, copied = 0;
815 	struct sk_msg *msg_pl, *msg_en;
816 	struct tls_rec *rec;
817 	int required_size;
818 	int num_async = 0;
819 	bool full_record;
820 	int record_room;
821 	int num_zc = 0;
822 	int orig_size;
823 	int ret = 0;
824 
825 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
826 		return -ENOTSUPP;
827 
828 	lock_sock(sk);
829 
830 	/* Wait till there is any pending write on socket */
831 	if (unlikely(sk->sk_write_pending)) {
832 		ret = wait_on_pending_writer(sk, &timeo);
833 		if (unlikely(ret))
834 			goto send_end;
835 	}
836 
837 	if (unlikely(msg->msg_controllen)) {
838 		ret = tls_proccess_cmsg(sk, msg, &record_type);
839 		if (ret) {
840 			if (ret == -EINPROGRESS)
841 				num_async++;
842 			else if (ret != -EAGAIN)
843 				goto send_end;
844 		}
845 	}
846 
847 	while (msg_data_left(msg)) {
848 		if (sk->sk_err) {
849 			ret = -sk->sk_err;
850 			goto send_end;
851 		}
852 
853 		if (ctx->open_rec)
854 			rec = ctx->open_rec;
855 		else
856 			rec = ctx->open_rec = tls_get_rec(sk);
857 		if (!rec) {
858 			ret = -ENOMEM;
859 			goto send_end;
860 		}
861 
862 		msg_pl = &rec->msg_plaintext;
863 		msg_en = &rec->msg_encrypted;
864 
865 		orig_size = msg_pl->sg.size;
866 		full_record = false;
867 		try_to_copy = msg_data_left(msg);
868 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
869 		if (try_to_copy >= record_room) {
870 			try_to_copy = record_room;
871 			full_record = true;
872 		}
873 
874 		required_size = msg_pl->sg.size + try_to_copy +
875 				tls_ctx->tx.overhead_size;
876 
877 		if (!sk_stream_memory_free(sk))
878 			goto wait_for_sndbuf;
879 
880 alloc_encrypted:
881 		ret = tls_alloc_encrypted_msg(sk, required_size);
882 		if (ret) {
883 			if (ret != -ENOSPC)
884 				goto wait_for_memory;
885 
886 			/* Adjust try_to_copy according to the amount that was
887 			 * actually allocated. The difference is due
888 			 * to max sg elements limit
889 			 */
890 			try_to_copy -= required_size - msg_en->sg.size;
891 			full_record = true;
892 		}
893 
894 		if (!is_kvec && (full_record || eor) && !async_capable) {
895 			u32 first = msg_pl->sg.end;
896 
897 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
898 							msg_pl, try_to_copy);
899 			if (ret)
900 				goto fallback_to_reg_send;
901 
902 			rec->inplace_crypto = 0;
903 
904 			num_zc++;
905 			copied += try_to_copy;
906 
907 			sk_msg_sg_copy_set(msg_pl, first);
908 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
909 						  record_type, &copied,
910 						  msg->msg_flags);
911 			if (ret) {
912 				if (ret == -EINPROGRESS)
913 					num_async++;
914 				else if (ret == -ENOMEM)
915 					goto wait_for_memory;
916 				else if (ret == -ENOSPC)
917 					goto rollback_iter;
918 				else if (ret != -EAGAIN)
919 					goto send_end;
920 			}
921 			continue;
922 rollback_iter:
923 			copied -= try_to_copy;
924 			sk_msg_sg_copy_clear(msg_pl, first);
925 			iov_iter_revert(&msg->msg_iter,
926 					msg_pl->sg.size - orig_size);
927 fallback_to_reg_send:
928 			sk_msg_trim(sk, msg_pl, orig_size);
929 		}
930 
931 		required_size = msg_pl->sg.size + try_to_copy;
932 
933 		ret = tls_clone_plaintext_msg(sk, required_size);
934 		if (ret) {
935 			if (ret != -ENOSPC)
936 				goto send_end;
937 
938 			/* Adjust try_to_copy according to the amount that was
939 			 * actually allocated. The difference is due
940 			 * to max sg elements limit
941 			 */
942 			try_to_copy -= required_size - msg_pl->sg.size;
943 			full_record = true;
944 			sk_msg_trim(sk, msg_en, msg_pl->sg.size +
945 				    tls_ctx->tx.overhead_size);
946 		}
947 
948 		if (try_to_copy) {
949 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
950 						       msg_pl, try_to_copy);
951 			if (ret < 0)
952 				goto trim_sgl;
953 		}
954 
955 		/* Open records defined only if successfully copied, otherwise
956 		 * we would trim the sg but not reset the open record frags.
957 		 */
958 		tls_ctx->pending_open_record_frags = true;
959 		copied += try_to_copy;
960 		if (full_record || eor) {
961 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
962 						  record_type, &copied,
963 						  msg->msg_flags);
964 			if (ret) {
965 				if (ret == -EINPROGRESS)
966 					num_async++;
967 				else if (ret == -ENOMEM)
968 					goto wait_for_memory;
969 				else if (ret != -EAGAIN) {
970 					if (ret == -ENOSPC)
971 						ret = 0;
972 					goto send_end;
973 				}
974 			}
975 		}
976 
977 		continue;
978 
979 wait_for_sndbuf:
980 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
981 wait_for_memory:
982 		ret = sk_stream_wait_memory(sk, &timeo);
983 		if (ret) {
984 trim_sgl:
985 			tls_trim_both_msgs(sk, orig_size);
986 			goto send_end;
987 		}
988 
989 		if (msg_en->sg.size < required_size)
990 			goto alloc_encrypted;
991 	}
992 
993 	if (!num_async) {
994 		goto send_end;
995 	} else if (num_zc) {
996 		/* Wait for pending encryptions to get completed */
997 		smp_store_mb(ctx->async_notify, true);
998 
999 		if (atomic_read(&ctx->encrypt_pending))
1000 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1001 		else
1002 			reinit_completion(&ctx->async_wait.completion);
1003 
1004 		WRITE_ONCE(ctx->async_notify, false);
1005 
1006 		if (ctx->async_wait.err) {
1007 			ret = ctx->async_wait.err;
1008 			copied = 0;
1009 		}
1010 	}
1011 
1012 	/* Transmit if any encryptions have completed */
1013 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1014 		cancel_delayed_work(&ctx->tx_work.work);
1015 		tls_tx_records(sk, msg->msg_flags);
1016 	}
1017 
1018 send_end:
1019 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1020 
1021 	release_sock(sk);
1022 	return copied ? copied : ret;
1023 }
1024 
1025 int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1026 		       int offset, size_t size, int flags)
1027 {
1028 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1029 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1030 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1031 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1032 	struct sk_msg *msg_pl;
1033 	struct tls_rec *rec;
1034 	int num_async = 0;
1035 	size_t copied = 0;
1036 	bool full_record;
1037 	int record_room;
1038 	int ret = 0;
1039 	bool eor;
1040 
1041 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1042 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1043 
1044 	/* Wait till there is any pending write on socket */
1045 	if (unlikely(sk->sk_write_pending)) {
1046 		ret = wait_on_pending_writer(sk, &timeo);
1047 		if (unlikely(ret))
1048 			goto sendpage_end;
1049 	}
1050 
1051 	/* Call the sk_stream functions to manage the sndbuf mem. */
1052 	while (size > 0) {
1053 		size_t copy, required_size;
1054 
1055 		if (sk->sk_err) {
1056 			ret = -sk->sk_err;
1057 			goto sendpage_end;
1058 		}
1059 
1060 		if (ctx->open_rec)
1061 			rec = ctx->open_rec;
1062 		else
1063 			rec = ctx->open_rec = tls_get_rec(sk);
1064 		if (!rec) {
1065 			ret = -ENOMEM;
1066 			goto sendpage_end;
1067 		}
1068 
1069 		msg_pl = &rec->msg_plaintext;
1070 
1071 		full_record = false;
1072 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1073 		copied = 0;
1074 		copy = size;
1075 		if (copy >= record_room) {
1076 			copy = record_room;
1077 			full_record = true;
1078 		}
1079 
1080 		required_size = msg_pl->sg.size + copy +
1081 				tls_ctx->tx.overhead_size;
1082 
1083 		if (!sk_stream_memory_free(sk))
1084 			goto wait_for_sndbuf;
1085 alloc_payload:
1086 		ret = tls_alloc_encrypted_msg(sk, required_size);
1087 		if (ret) {
1088 			if (ret != -ENOSPC)
1089 				goto wait_for_memory;
1090 
1091 			/* Adjust copy according to the amount that was
1092 			 * actually allocated. The difference is due
1093 			 * to max sg elements limit
1094 			 */
1095 			copy -= required_size - msg_pl->sg.size;
1096 			full_record = true;
1097 		}
1098 
1099 		sk_msg_page_add(msg_pl, page, copy, offset);
1100 		sk_mem_charge(sk, copy);
1101 
1102 		offset += copy;
1103 		size -= copy;
1104 		copied += copy;
1105 
1106 		tls_ctx->pending_open_record_frags = true;
1107 		if (full_record || eor || sk_msg_full(msg_pl)) {
1108 			rec->inplace_crypto = 0;
1109 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1110 						  record_type, &copied, flags);
1111 			if (ret) {
1112 				if (ret == -EINPROGRESS)
1113 					num_async++;
1114 				else if (ret == -ENOMEM)
1115 					goto wait_for_memory;
1116 				else if (ret != -EAGAIN) {
1117 					if (ret == -ENOSPC)
1118 						ret = 0;
1119 					goto sendpage_end;
1120 				}
1121 			}
1122 		}
1123 		continue;
1124 wait_for_sndbuf:
1125 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1126 wait_for_memory:
1127 		ret = sk_stream_wait_memory(sk, &timeo);
1128 		if (ret) {
1129 			tls_trim_both_msgs(sk, msg_pl->sg.size);
1130 			goto sendpage_end;
1131 		}
1132 
1133 		goto alloc_payload;
1134 	}
1135 
1136 	if (num_async) {
1137 		/* Transmit if any encryptions have completed */
1138 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1139 			cancel_delayed_work(&ctx->tx_work.work);
1140 			tls_tx_records(sk, flags);
1141 		}
1142 	}
1143 sendpage_end:
1144 	ret = sk_stream_error(sk, flags, ret);
1145 	return copied ? copied : ret;
1146 }
1147 
1148 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1149 			   int offset, size_t size, int flags)
1150 {
1151 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1152 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1153 		return -ENOTSUPP;
1154 
1155 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1156 }
1157 
1158 int tls_sw_sendpage(struct sock *sk, struct page *page,
1159 		    int offset, size_t size, int flags)
1160 {
1161 	int ret;
1162 
1163 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1164 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1165 		return -ENOTSUPP;
1166 
1167 	lock_sock(sk);
1168 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1169 	release_sock(sk);
1170 	return ret;
1171 }
1172 
1173 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1174 				     int flags, long timeo, int *err)
1175 {
1176 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1177 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1178 	struct sk_buff *skb;
1179 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1180 
1181 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1182 		if (sk->sk_err) {
1183 			*err = sock_error(sk);
1184 			return NULL;
1185 		}
1186 
1187 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1188 			return NULL;
1189 
1190 		if (sock_flag(sk, SOCK_DONE))
1191 			return NULL;
1192 
1193 		if ((flags & MSG_DONTWAIT) || !timeo) {
1194 			*err = -EAGAIN;
1195 			return NULL;
1196 		}
1197 
1198 		add_wait_queue(sk_sleep(sk), &wait);
1199 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1200 		sk_wait_event(sk, &timeo,
1201 			      ctx->recv_pkt != skb ||
1202 			      !sk_psock_queue_empty(psock),
1203 			      &wait);
1204 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1205 		remove_wait_queue(sk_sleep(sk), &wait);
1206 
1207 		/* Handle signals */
1208 		if (signal_pending(current)) {
1209 			*err = sock_intr_errno(timeo);
1210 			return NULL;
1211 		}
1212 	}
1213 
1214 	return skb;
1215 }
1216 
1217 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1218 			       int length, int *pages_used,
1219 			       unsigned int *size_used,
1220 			       struct scatterlist *to,
1221 			       int to_max_pages)
1222 {
1223 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1224 	struct page *pages[MAX_SKB_FRAGS];
1225 	unsigned int size = *size_used;
1226 	ssize_t copied, use;
1227 	size_t offset;
1228 
1229 	while (length > 0) {
1230 		i = 0;
1231 		maxpages = to_max_pages - num_elem;
1232 		if (maxpages == 0) {
1233 			rc = -EFAULT;
1234 			goto out;
1235 		}
1236 		copied = iov_iter_get_pages(from, pages,
1237 					    length,
1238 					    maxpages, &offset);
1239 		if (copied <= 0) {
1240 			rc = -EFAULT;
1241 			goto out;
1242 		}
1243 
1244 		iov_iter_advance(from, copied);
1245 
1246 		length -= copied;
1247 		size += copied;
1248 		while (copied) {
1249 			use = min_t(int, copied, PAGE_SIZE - offset);
1250 
1251 			sg_set_page(&to[num_elem],
1252 				    pages[i], use, offset);
1253 			sg_unmark_end(&to[num_elem]);
1254 			/* We do not uncharge memory from this API */
1255 
1256 			offset = 0;
1257 			copied -= use;
1258 
1259 			i++;
1260 			num_elem++;
1261 		}
1262 	}
1263 	/* Mark the end in the last sg entry if newly added */
1264 	if (num_elem > *pages_used)
1265 		sg_mark_end(&to[num_elem - 1]);
1266 out:
1267 	if (rc)
1268 		iov_iter_revert(from, size - *size_used);
1269 	*size_used = size;
1270 	*pages_used = num_elem;
1271 
1272 	return rc;
1273 }
1274 
1275 /* This function decrypts the input skb into either out_iov or in out_sg
1276  * or in skb buffers itself. The input parameter 'zc' indicates if
1277  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1278  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1279  * NULL, then the decryption happens inside skb buffers itself, i.e.
1280  * zero-copy gets disabled and 'zc' is updated.
1281  */
1282 
1283 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1284 			    struct iov_iter *out_iov,
1285 			    struct scatterlist *out_sg,
1286 			    int *chunk, bool *zc)
1287 {
1288 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1289 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290 	struct strp_msg *rxm = strp_msg(skb);
1291 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1292 	struct aead_request *aead_req;
1293 	struct sk_buff *unused;
1294 	u8 *aad, *iv, *mem = NULL;
1295 	struct scatterlist *sgin = NULL;
1296 	struct scatterlist *sgout = NULL;
1297 	const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1298 
1299 	if (*zc && (out_iov || out_sg)) {
1300 		if (out_iov)
1301 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1302 		else
1303 			n_sgout = sg_nents(out_sg);
1304 		n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1305 				 rxm->full_len - tls_ctx->rx.prepend_size);
1306 	} else {
1307 		n_sgout = 0;
1308 		*zc = false;
1309 		n_sgin = skb_cow_data(skb, 0, &unused);
1310 	}
1311 
1312 	if (n_sgin < 1)
1313 		return -EBADMSG;
1314 
1315 	/* Increment to accommodate AAD */
1316 	n_sgin = n_sgin + 1;
1317 
1318 	nsg = n_sgin + n_sgout;
1319 
1320 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1321 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1322 	mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1323 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1324 
1325 	/* Allocate a single block of memory which contains
1326 	 * aead_req || sgin[] || sgout[] || aad || iv.
1327 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1328 	 */
1329 	mem = kmalloc(mem_size, sk->sk_allocation);
1330 	if (!mem)
1331 		return -ENOMEM;
1332 
1333 	/* Segment the allocated memory */
1334 	aead_req = (struct aead_request *)mem;
1335 	sgin = (struct scatterlist *)(mem + aead_size);
1336 	sgout = sgin + n_sgin;
1337 	aad = (u8 *)(sgout + n_sgout);
1338 	iv = aad + TLS_AAD_SPACE_SIZE;
1339 
1340 	/* Prepare IV */
1341 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1342 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1343 			    tls_ctx->rx.iv_size);
1344 	if (err < 0) {
1345 		kfree(mem);
1346 		return err;
1347 	}
1348 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1349 
1350 	/* Prepare AAD */
1351 	tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1352 		     tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1353 		     ctx->control);
1354 
1355 	/* Prepare sgin */
1356 	sg_init_table(sgin, n_sgin);
1357 	sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1358 	err = skb_to_sgvec(skb, &sgin[1],
1359 			   rxm->offset + tls_ctx->rx.prepend_size,
1360 			   rxm->full_len - tls_ctx->rx.prepend_size);
1361 	if (err < 0) {
1362 		kfree(mem);
1363 		return err;
1364 	}
1365 
1366 	if (n_sgout) {
1367 		if (out_iov) {
1368 			sg_init_table(sgout, n_sgout);
1369 			sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1370 
1371 			*chunk = 0;
1372 			err = tls_setup_from_iter(sk, out_iov, data_len,
1373 						  &pages, chunk, &sgout[1],
1374 						  (n_sgout - 1));
1375 			if (err < 0)
1376 				goto fallback_to_reg_recv;
1377 		} else if (out_sg) {
1378 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1379 		} else {
1380 			goto fallback_to_reg_recv;
1381 		}
1382 	} else {
1383 fallback_to_reg_recv:
1384 		sgout = sgin;
1385 		pages = 0;
1386 		*chunk = 0;
1387 		*zc = false;
1388 	}
1389 
1390 	/* Prepare and submit AEAD request */
1391 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1392 				data_len, aead_req, *zc);
1393 	if (err == -EINPROGRESS)
1394 		return err;
1395 
1396 	/* Release the pages in case iov was mapped to pages */
1397 	for (; pages > 0; pages--)
1398 		put_page(sg_page(&sgout[pages]));
1399 
1400 	kfree(mem);
1401 	return err;
1402 }
1403 
1404 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1405 			      struct iov_iter *dest, int *chunk, bool *zc)
1406 {
1407 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1408 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1409 	struct strp_msg *rxm = strp_msg(skb);
1410 	int err = 0;
1411 
1412 #ifdef CONFIG_TLS_DEVICE
1413 	err = tls_device_decrypted(sk, skb);
1414 	if (err < 0)
1415 		return err;
1416 #endif
1417 	if (!ctx->decrypted) {
1418 		err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1419 		if (err < 0) {
1420 			if (err == -EINPROGRESS)
1421 				tls_advance_record_sn(sk, &tls_ctx->rx);
1422 
1423 			return err;
1424 		}
1425 	} else {
1426 		*zc = false;
1427 	}
1428 
1429 	rxm->offset += tls_ctx->rx.prepend_size;
1430 	rxm->full_len -= tls_ctx->rx.overhead_size;
1431 	tls_advance_record_sn(sk, &tls_ctx->rx);
1432 	ctx->decrypted = true;
1433 	ctx->saved_data_ready(sk);
1434 
1435 	return err;
1436 }
1437 
1438 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1439 		struct scatterlist *sgout)
1440 {
1441 	bool zc = true;
1442 	int chunk;
1443 
1444 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1445 }
1446 
1447 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1448 			       unsigned int len)
1449 {
1450 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1451 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1452 
1453 	if (skb) {
1454 		struct strp_msg *rxm = strp_msg(skb);
1455 
1456 		if (len < rxm->full_len) {
1457 			rxm->offset += len;
1458 			rxm->full_len -= len;
1459 			return false;
1460 		}
1461 		kfree_skb(skb);
1462 	}
1463 
1464 	/* Finished with message */
1465 	ctx->recv_pkt = NULL;
1466 	__strp_unpause(&ctx->strp);
1467 
1468 	return true;
1469 }
1470 
1471 int tls_sw_recvmsg(struct sock *sk,
1472 		   struct msghdr *msg,
1473 		   size_t len,
1474 		   int nonblock,
1475 		   int flags,
1476 		   int *addr_len)
1477 {
1478 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1479 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1480 	struct sk_psock *psock;
1481 	unsigned char control;
1482 	struct strp_msg *rxm;
1483 	struct sk_buff *skb;
1484 	ssize_t copied = 0;
1485 	bool cmsg = false;
1486 	int target, err = 0;
1487 	long timeo;
1488 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1489 	int num_async = 0;
1490 
1491 	flags |= nonblock;
1492 
1493 	if (unlikely(flags & MSG_ERRQUEUE))
1494 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1495 
1496 	psock = sk_psock_get(sk);
1497 	lock_sock(sk);
1498 
1499 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1500 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1501 	do {
1502 		bool zc = false;
1503 		bool async = false;
1504 		int chunk = 0;
1505 
1506 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1507 		if (!skb) {
1508 			if (psock) {
1509 				int ret = __tcp_bpf_recvmsg(sk, psock,
1510 							    msg, len, flags);
1511 
1512 				if (ret > 0) {
1513 					copied += ret;
1514 					len -= ret;
1515 					continue;
1516 				}
1517 			}
1518 			goto recv_end;
1519 		}
1520 
1521 		rxm = strp_msg(skb);
1522 
1523 		if (!cmsg) {
1524 			int cerr;
1525 
1526 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1527 					sizeof(ctx->control), &ctx->control);
1528 			cmsg = true;
1529 			control = ctx->control;
1530 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
1531 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1532 					err = -EIO;
1533 					goto recv_end;
1534 				}
1535 			}
1536 		} else if (control != ctx->control) {
1537 			goto recv_end;
1538 		}
1539 
1540 		if (!ctx->decrypted) {
1541 			int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1542 
1543 			if (!is_kvec && to_copy <= len &&
1544 			    likely(!(flags & MSG_PEEK)))
1545 				zc = true;
1546 
1547 			err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1548 						 &chunk, &zc);
1549 			if (err < 0 && err != -EINPROGRESS) {
1550 				tls_err_abort(sk, EBADMSG);
1551 				goto recv_end;
1552 			}
1553 
1554 			if (err == -EINPROGRESS) {
1555 				async = true;
1556 				num_async++;
1557 				goto pick_next_record;
1558 			}
1559 
1560 			ctx->decrypted = true;
1561 		}
1562 
1563 		if (!zc) {
1564 			chunk = min_t(unsigned int, rxm->full_len, len);
1565 
1566 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1567 						    chunk);
1568 			if (err < 0)
1569 				goto recv_end;
1570 		}
1571 
1572 pick_next_record:
1573 		copied += chunk;
1574 		len -= chunk;
1575 		if (likely(!(flags & MSG_PEEK))) {
1576 			u8 control = ctx->control;
1577 
1578 			/* For async, drop current skb reference */
1579 			if (async)
1580 				skb = NULL;
1581 
1582 			if (tls_sw_advance_skb(sk, skb, chunk)) {
1583 				/* Return full control message to
1584 				 * userspace before trying to parse
1585 				 * another message type
1586 				 */
1587 				msg->msg_flags |= MSG_EOR;
1588 				if (control != TLS_RECORD_TYPE_DATA)
1589 					goto recv_end;
1590 			} else {
1591 				break;
1592 			}
1593 		} else {
1594 			/* MSG_PEEK right now cannot look beyond current skb
1595 			 * from strparser, meaning we cannot advance skb here
1596 			 * and thus unpause strparser since we'd loose original
1597 			 * one.
1598 			 */
1599 			break;
1600 		}
1601 
1602 		/* If we have a new message from strparser, continue now. */
1603 		if (copied >= target && !ctx->recv_pkt)
1604 			break;
1605 	} while (len);
1606 
1607 recv_end:
1608 	if (num_async) {
1609 		/* Wait for all previously submitted records to be decrypted */
1610 		smp_store_mb(ctx->async_notify, true);
1611 		if (atomic_read(&ctx->decrypt_pending)) {
1612 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1613 			if (err) {
1614 				/* one of async decrypt failed */
1615 				tls_err_abort(sk, err);
1616 				copied = 0;
1617 			}
1618 		} else {
1619 			reinit_completion(&ctx->async_wait.completion);
1620 		}
1621 		WRITE_ONCE(ctx->async_notify, false);
1622 	}
1623 
1624 	release_sock(sk);
1625 	if (psock)
1626 		sk_psock_put(sk, psock);
1627 	return copied ? : err;
1628 }
1629 
1630 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1631 			   struct pipe_inode_info *pipe,
1632 			   size_t len, unsigned int flags)
1633 {
1634 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1635 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1636 	struct strp_msg *rxm = NULL;
1637 	struct sock *sk = sock->sk;
1638 	struct sk_buff *skb;
1639 	ssize_t copied = 0;
1640 	int err = 0;
1641 	long timeo;
1642 	int chunk;
1643 	bool zc = false;
1644 
1645 	lock_sock(sk);
1646 
1647 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1648 
1649 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1650 	if (!skb)
1651 		goto splice_read_end;
1652 
1653 	/* splice does not support reading control messages */
1654 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
1655 		err = -ENOTSUPP;
1656 		goto splice_read_end;
1657 	}
1658 
1659 	if (!ctx->decrypted) {
1660 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1661 
1662 		if (err < 0) {
1663 			tls_err_abort(sk, EBADMSG);
1664 			goto splice_read_end;
1665 		}
1666 		ctx->decrypted = true;
1667 	}
1668 	rxm = strp_msg(skb);
1669 
1670 	chunk = min_t(unsigned int, rxm->full_len, len);
1671 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1672 	if (copied < 0)
1673 		goto splice_read_end;
1674 
1675 	if (likely(!(flags & MSG_PEEK)))
1676 		tls_sw_advance_skb(sk, skb, copied);
1677 
1678 splice_read_end:
1679 	release_sock(sk);
1680 	return copied ? : err;
1681 }
1682 
1683 bool tls_sw_stream_read(const struct sock *sk)
1684 {
1685 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1686 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1687 	bool ingress_empty = true;
1688 	struct sk_psock *psock;
1689 
1690 	rcu_read_lock();
1691 	psock = sk_psock(sk);
1692 	if (psock)
1693 		ingress_empty = list_empty(&psock->ingress_msg);
1694 	rcu_read_unlock();
1695 
1696 	return !ingress_empty || ctx->recv_pkt;
1697 }
1698 
1699 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1700 {
1701 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1702 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1703 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1704 	struct strp_msg *rxm = strp_msg(skb);
1705 	size_t cipher_overhead;
1706 	size_t data_len = 0;
1707 	int ret;
1708 
1709 	/* Verify that we have a full TLS header, or wait for more data */
1710 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1711 		return 0;
1712 
1713 	/* Sanity-check size of on-stack buffer. */
1714 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1715 		ret = -EINVAL;
1716 		goto read_failure;
1717 	}
1718 
1719 	/* Linearize header to local buffer */
1720 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1721 
1722 	if (ret < 0)
1723 		goto read_failure;
1724 
1725 	ctx->control = header[0];
1726 
1727 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1728 
1729 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1730 
1731 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1732 		ret = -EMSGSIZE;
1733 		goto read_failure;
1734 	}
1735 	if (data_len < cipher_overhead) {
1736 		ret = -EBADMSG;
1737 		goto read_failure;
1738 	}
1739 
1740 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1741 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1742 		ret = -EINVAL;
1743 		goto read_failure;
1744 	}
1745 
1746 #ifdef CONFIG_TLS_DEVICE
1747 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1748 			     *(u64*)tls_ctx->rx.rec_seq);
1749 #endif
1750 	return data_len + TLS_HEADER_SIZE;
1751 
1752 read_failure:
1753 	tls_err_abort(strp->sk, ret);
1754 
1755 	return ret;
1756 }
1757 
1758 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1759 {
1760 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1761 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1762 
1763 	ctx->decrypted = false;
1764 
1765 	ctx->recv_pkt = skb;
1766 	strp_pause(strp);
1767 
1768 	ctx->saved_data_ready(strp->sk);
1769 }
1770 
1771 static void tls_data_ready(struct sock *sk)
1772 {
1773 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1774 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1775 	struct sk_psock *psock;
1776 
1777 	strp_data_ready(&ctx->strp);
1778 
1779 	psock = sk_psock_get(sk);
1780 	if (psock && !list_empty(&psock->ingress_msg)) {
1781 		ctx->saved_data_ready(sk);
1782 		sk_psock_put(sk, psock);
1783 	}
1784 }
1785 
1786 void tls_sw_free_resources_tx(struct sock *sk)
1787 {
1788 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1789 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1790 	struct tls_rec *rec, *tmp;
1791 
1792 	/* Wait for any pending async encryptions to complete */
1793 	smp_store_mb(ctx->async_notify, true);
1794 	if (atomic_read(&ctx->encrypt_pending))
1795 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1796 
1797 	release_sock(sk);
1798 	cancel_delayed_work_sync(&ctx->tx_work.work);
1799 	lock_sock(sk);
1800 
1801 	/* Tx whatever records we can transmit and abandon the rest */
1802 	tls_tx_records(sk, -1);
1803 
1804 	/* Free up un-sent records in tx_list. First, free
1805 	 * the partially sent record if any at head of tx_list.
1806 	 */
1807 	if (tls_ctx->partially_sent_record) {
1808 		struct scatterlist *sg = tls_ctx->partially_sent_record;
1809 
1810 		while (1) {
1811 			put_page(sg_page(sg));
1812 			sk_mem_uncharge(sk, sg->length);
1813 
1814 			if (sg_is_last(sg))
1815 				break;
1816 			sg++;
1817 		}
1818 
1819 		tls_ctx->partially_sent_record = NULL;
1820 
1821 		rec = list_first_entry(&ctx->tx_list,
1822 				       struct tls_rec, list);
1823 		list_del(&rec->list);
1824 		sk_msg_free(sk, &rec->msg_plaintext);
1825 		kfree(rec);
1826 	}
1827 
1828 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1829 		list_del(&rec->list);
1830 		sk_msg_free(sk, &rec->msg_encrypted);
1831 		sk_msg_free(sk, &rec->msg_plaintext);
1832 		kfree(rec);
1833 	}
1834 
1835 	crypto_free_aead(ctx->aead_send);
1836 	tls_free_open_rec(sk);
1837 
1838 	kfree(ctx);
1839 }
1840 
1841 void tls_sw_release_resources_rx(struct sock *sk)
1842 {
1843 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1844 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1845 
1846 	if (ctx->aead_recv) {
1847 		kfree_skb(ctx->recv_pkt);
1848 		ctx->recv_pkt = NULL;
1849 		crypto_free_aead(ctx->aead_recv);
1850 		strp_stop(&ctx->strp);
1851 		write_lock_bh(&sk->sk_callback_lock);
1852 		sk->sk_data_ready = ctx->saved_data_ready;
1853 		write_unlock_bh(&sk->sk_callback_lock);
1854 		release_sock(sk);
1855 		strp_done(&ctx->strp);
1856 		lock_sock(sk);
1857 	}
1858 }
1859 
1860 void tls_sw_free_resources_rx(struct sock *sk)
1861 {
1862 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1863 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1864 
1865 	tls_sw_release_resources_rx(sk);
1866 
1867 	kfree(ctx);
1868 }
1869 
1870 /* The work handler to transmitt the encrypted records in tx_list */
1871 static void tx_work_handler(struct work_struct *work)
1872 {
1873 	struct delayed_work *delayed_work = to_delayed_work(work);
1874 	struct tx_work *tx_work = container_of(delayed_work,
1875 					       struct tx_work, work);
1876 	struct sock *sk = tx_work->sk;
1877 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1878 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1879 
1880 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1881 		return;
1882 
1883 	lock_sock(sk);
1884 	tls_tx_records(sk, -1);
1885 	release_sock(sk);
1886 }
1887 
1888 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1889 {
1890 	struct tls_crypto_info *crypto_info;
1891 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1892 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
1893 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
1894 	struct cipher_context *cctx;
1895 	struct crypto_aead **aead;
1896 	struct strp_callbacks cb;
1897 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1898 	char *iv, *rec_seq;
1899 	int rc = 0;
1900 
1901 	if (!ctx) {
1902 		rc = -EINVAL;
1903 		goto out;
1904 	}
1905 
1906 	if (tx) {
1907 		if (!ctx->priv_ctx_tx) {
1908 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1909 			if (!sw_ctx_tx) {
1910 				rc = -ENOMEM;
1911 				goto out;
1912 			}
1913 			ctx->priv_ctx_tx = sw_ctx_tx;
1914 		} else {
1915 			sw_ctx_tx =
1916 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1917 		}
1918 	} else {
1919 		if (!ctx->priv_ctx_rx) {
1920 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1921 			if (!sw_ctx_rx) {
1922 				rc = -ENOMEM;
1923 				goto out;
1924 			}
1925 			ctx->priv_ctx_rx = sw_ctx_rx;
1926 		} else {
1927 			sw_ctx_rx =
1928 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1929 		}
1930 	}
1931 
1932 	if (tx) {
1933 		crypto_init_wait(&sw_ctx_tx->async_wait);
1934 		crypto_info = &ctx->crypto_send.info;
1935 		cctx = &ctx->tx;
1936 		aead = &sw_ctx_tx->aead_send;
1937 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1938 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1939 		sw_ctx_tx->tx_work.sk = sk;
1940 	} else {
1941 		crypto_init_wait(&sw_ctx_rx->async_wait);
1942 		crypto_info = &ctx->crypto_recv.info;
1943 		cctx = &ctx->rx;
1944 		aead = &sw_ctx_rx->aead_recv;
1945 	}
1946 
1947 	switch (crypto_info->cipher_type) {
1948 	case TLS_CIPHER_AES_GCM_128: {
1949 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1950 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1951 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1952 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1953 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1954 		rec_seq =
1955 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1956 		gcm_128_info =
1957 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1958 		break;
1959 	}
1960 	default:
1961 		rc = -EINVAL;
1962 		goto free_priv;
1963 	}
1964 
1965 	/* Sanity-check the IV size for stack allocations. */
1966 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1967 		rc = -EINVAL;
1968 		goto free_priv;
1969 	}
1970 
1971 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1972 	cctx->tag_size = tag_size;
1973 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1974 	cctx->iv_size = iv_size;
1975 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1976 			   GFP_KERNEL);
1977 	if (!cctx->iv) {
1978 		rc = -ENOMEM;
1979 		goto free_priv;
1980 	}
1981 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1982 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1983 	cctx->rec_seq_size = rec_seq_size;
1984 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1985 	if (!cctx->rec_seq) {
1986 		rc = -ENOMEM;
1987 		goto free_iv;
1988 	}
1989 
1990 	if (!*aead) {
1991 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1992 		if (IS_ERR(*aead)) {
1993 			rc = PTR_ERR(*aead);
1994 			*aead = NULL;
1995 			goto free_rec_seq;
1996 		}
1997 	}
1998 
1999 	ctx->push_pending_record = tls_sw_push_pending_record;
2000 
2001 	rc = crypto_aead_setkey(*aead, gcm_128_info->key,
2002 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
2003 	if (rc)
2004 		goto free_aead;
2005 
2006 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
2007 	if (rc)
2008 		goto free_aead;
2009 
2010 	if (sw_ctx_rx) {
2011 		/* Set up strparser */
2012 		memset(&cb, 0, sizeof(cb));
2013 		cb.rcv_msg = tls_queue;
2014 		cb.parse_msg = tls_read_size;
2015 
2016 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2017 
2018 		write_lock_bh(&sk->sk_callback_lock);
2019 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2020 		sk->sk_data_ready = tls_data_ready;
2021 		write_unlock_bh(&sk->sk_callback_lock);
2022 
2023 		strp_check_rcv(&sw_ctx_rx->strp);
2024 	}
2025 
2026 	goto out;
2027 
2028 free_aead:
2029 	crypto_free_aead(*aead);
2030 	*aead = NULL;
2031 free_rec_seq:
2032 	kfree(cctx->rec_seq);
2033 	cctx->rec_seq = NULL;
2034 free_iv:
2035 	kfree(cctx->iv);
2036 	cctx->iv = NULL;
2037 free_priv:
2038 	if (tx) {
2039 		kfree(ctx->priv_ctx_tx);
2040 		ctx->priv_ctx_tx = NULL;
2041 	} else {
2042 		kfree(ctx->priv_ctx_rx);
2043 		ctx->priv_ctx_rx = NULL;
2044 	}
2045 out:
2046 	return rc;
2047 }
2048