xref: /openbmc/linux/net/tls/tls_sw.c (revision 584eab291c67894cb17cc87544b9d086228ea70f)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
45 #define MAX_IV_SIZE	TLS_CIPHER_AES_GCM_128_IV_SIZE
46 
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54 
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57 
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67 
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70 
71                 WARN_ON(start > offset + len);
72 
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86 
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90 
91                         WARN_ON(start > offset + len);
92 
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114 
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122 
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125 	struct aead_request *aead_req = (struct aead_request *)req;
126 	struct scatterlist *sgout = aead_req->dst;
127 	struct tls_sw_context_rx *ctx;
128 	struct tls_context *tls_ctx;
129 	struct scatterlist *sg;
130 	struct sk_buff *skb;
131 	unsigned int pages;
132 	int pending;
133 
134 	skb = (struct sk_buff *)req->data;
135 	tls_ctx = tls_get_ctx(skb->sk);
136 	ctx = tls_sw_ctx_rx(tls_ctx);
137 	pending = atomic_dec_return(&ctx->decrypt_pending);
138 
139 	/* Propagate if there was an err */
140 	if (err) {
141 		ctx->async_wait.err = err;
142 		tls_err_abort(skb->sk, err);
143 	}
144 
145 	/* After using skb->sk to propagate sk through crypto async callback
146 	 * we need to NULL it again.
147 	 */
148 	skb->sk = NULL;
149 
150 	/* Release the skb, pages and memory allocated for crypto req */
151 	kfree_skb(skb);
152 
153 	/* Skip the first S/G entry as it points to AAD */
154 	for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155 		if (!sg)
156 			break;
157 		put_page(sg_page(sg));
158 	}
159 
160 	kfree(aead_req);
161 
162 	if (!pending && READ_ONCE(ctx->async_notify))
163 		complete(&ctx->async_wait.completion);
164 }
165 
166 static int tls_do_decryption(struct sock *sk,
167 			     struct sk_buff *skb,
168 			     struct scatterlist *sgin,
169 			     struct scatterlist *sgout,
170 			     char *iv_recv,
171 			     size_t data_len,
172 			     struct aead_request *aead_req,
173 			     bool async)
174 {
175 	struct tls_context *tls_ctx = tls_get_ctx(sk);
176 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177 	int ret;
178 
179 	aead_request_set_tfm(aead_req, ctx->aead_recv);
180 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181 	aead_request_set_crypt(aead_req, sgin, sgout,
182 			       data_len + tls_ctx->rx.tag_size,
183 			       (u8 *)iv_recv);
184 
185 	if (async) {
186 		/* Using skb->sk to push sk through to crypto async callback
187 		 * handler. This allows propagating errors up to the socket
188 		 * if needed. It _must_ be cleared in the async handler
189 		 * before kfree_skb is called. We _know_ skb->sk is NULL
190 		 * because it is a clone from strparser.
191 		 */
192 		skb->sk = sk;
193 		aead_request_set_callback(aead_req,
194 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
195 					  tls_decrypt_done, skb);
196 		atomic_inc(&ctx->decrypt_pending);
197 	} else {
198 		aead_request_set_callback(aead_req,
199 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
200 					  crypto_req_done, &ctx->async_wait);
201 	}
202 
203 	ret = crypto_aead_decrypt(aead_req);
204 	if (ret == -EINPROGRESS) {
205 		if (async)
206 			return ret;
207 
208 		ret = crypto_wait_req(ret, &ctx->async_wait);
209 	}
210 
211 	if (async)
212 		atomic_dec(&ctx->decrypt_pending);
213 
214 	return ret;
215 }
216 
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219 	struct tls_context *tls_ctx = tls_get_ctx(sk);
220 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221 	struct tls_rec *rec = ctx->open_rec;
222 
223 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224 	if (target_size > 0)
225 		target_size += tls_ctx->tx.overhead_size;
226 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228 
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231 	struct tls_context *tls_ctx = tls_get_ctx(sk);
232 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233 	struct tls_rec *rec = ctx->open_rec;
234 	struct sk_msg *msg_en = &rec->msg_encrypted;
235 
236 	return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238 
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243 	struct tls_rec *rec = ctx->open_rec;
244 	struct sk_msg *msg_pl = &rec->msg_plaintext;
245 	struct sk_msg *msg_en = &rec->msg_encrypted;
246 	int skip, len;
247 
248 	/* We add page references worth len bytes from encrypted sg
249 	 * at the end of plaintext sg. It is guaranteed that msg_en
250 	 * has enough required room (ensured by caller).
251 	 */
252 	len = required - msg_pl->sg.size;
253 
254 	/* Skip initial bytes in msg_en's data to be able to use
255 	 * same offset of both plain and encrypted data.
256 	 */
257 	skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258 
259 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261 
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264 	struct tls_context *tls_ctx = tls_get_ctx(sk);
265 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266 	struct sk_msg *msg_pl, *msg_en;
267 	struct tls_rec *rec;
268 	int mem_size;
269 
270 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271 
272 	rec = kzalloc(mem_size, sk->sk_allocation);
273 	if (!rec)
274 		return NULL;
275 
276 	msg_pl = &rec->msg_plaintext;
277 	msg_en = &rec->msg_encrypted;
278 
279 	sk_msg_init(msg_pl);
280 	sk_msg_init(msg_en);
281 
282 	sg_init_table(rec->sg_aead_in, 2);
283 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284 		   sizeof(rec->aad_space));
285 	sg_unmark_end(&rec->sg_aead_in[1]);
286 
287 	sg_init_table(rec->sg_aead_out, 2);
288 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289 		   sizeof(rec->aad_space));
290 	sg_unmark_end(&rec->sg_aead_out[1]);
291 
292 	return rec;
293 }
294 
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297 	sk_msg_free(sk, &rec->msg_encrypted);
298 	sk_msg_free(sk, &rec->msg_plaintext);
299 	kfree(rec);
300 }
301 
302 static void tls_free_open_rec(struct sock *sk)
303 {
304 	struct tls_context *tls_ctx = tls_get_ctx(sk);
305 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306 	struct tls_rec *rec = ctx->open_rec;
307 
308 	if (rec) {
309 		tls_free_rec(sk, rec);
310 		ctx->open_rec = NULL;
311 	}
312 }
313 
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316 	struct tls_context *tls_ctx = tls_get_ctx(sk);
317 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318 	struct tls_rec *rec, *tmp;
319 	struct sk_msg *msg_en;
320 	int tx_flags, rc = 0;
321 
322 	if (tls_is_partially_sent_record(tls_ctx)) {
323 		rec = list_first_entry(&ctx->tx_list,
324 				       struct tls_rec, list);
325 
326 		if (flags == -1)
327 			tx_flags = rec->tx_flags;
328 		else
329 			tx_flags = flags;
330 
331 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332 		if (rc)
333 			goto tx_err;
334 
335 		/* Full record has been transmitted.
336 		 * Remove the head of tx_list
337 		 */
338 		list_del(&rec->list);
339 		sk_msg_free(sk, &rec->msg_plaintext);
340 		kfree(rec);
341 	}
342 
343 	/* Tx all ready records */
344 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345 		if (READ_ONCE(rec->tx_ready)) {
346 			if (flags == -1)
347 				tx_flags = rec->tx_flags;
348 			else
349 				tx_flags = flags;
350 
351 			msg_en = &rec->msg_encrypted;
352 			rc = tls_push_sg(sk, tls_ctx,
353 					 &msg_en->sg.data[msg_en->sg.curr],
354 					 0, tx_flags);
355 			if (rc)
356 				goto tx_err;
357 
358 			list_del(&rec->list);
359 			sk_msg_free(sk, &rec->msg_plaintext);
360 			kfree(rec);
361 		} else {
362 			break;
363 		}
364 	}
365 
366 tx_err:
367 	if (rc < 0 && rc != -EAGAIN)
368 		tls_err_abort(sk, EBADMSG);
369 
370 	return rc;
371 }
372 
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375 	struct aead_request *aead_req = (struct aead_request *)req;
376 	struct sock *sk = req->data;
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct scatterlist *sge;
380 	struct sk_msg *msg_en;
381 	struct tls_rec *rec;
382 	bool ready = false;
383 	int pending;
384 
385 	rec = container_of(aead_req, struct tls_rec, aead_req);
386 	msg_en = &rec->msg_encrypted;
387 
388 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389 	sge->offset -= tls_ctx->tx.prepend_size;
390 	sge->length += tls_ctx->tx.prepend_size;
391 
392 	/* Check if error is previously set on socket */
393 	if (err || sk->sk_err) {
394 		rec = NULL;
395 
396 		/* If err is already set on socket, return the same code */
397 		if (sk->sk_err) {
398 			ctx->async_wait.err = sk->sk_err;
399 		} else {
400 			ctx->async_wait.err = err;
401 			tls_err_abort(sk, err);
402 		}
403 	}
404 
405 	if (rec) {
406 		struct tls_rec *first_rec;
407 
408 		/* Mark the record as ready for transmission */
409 		smp_store_mb(rec->tx_ready, true);
410 
411 		/* If received record is at head of tx_list, schedule tx */
412 		first_rec = list_first_entry(&ctx->tx_list,
413 					     struct tls_rec, list);
414 		if (rec == first_rec)
415 			ready = true;
416 	}
417 
418 	pending = atomic_dec_return(&ctx->encrypt_pending);
419 
420 	if (!pending && READ_ONCE(ctx->async_notify))
421 		complete(&ctx->async_wait.completion);
422 
423 	if (!ready)
424 		return;
425 
426 	/* Schedule the transmission */
427 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428 		schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430 
431 static int tls_do_encryption(struct sock *sk,
432 			     struct tls_context *tls_ctx,
433 			     struct tls_sw_context_tx *ctx,
434 			     struct aead_request *aead_req,
435 			     size_t data_len, u32 start)
436 {
437 	struct tls_rec *rec = ctx->open_rec;
438 	struct sk_msg *msg_en = &rec->msg_encrypted;
439 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
440 	int rc;
441 
442 	sge->offset += tls_ctx->tx.prepend_size;
443 	sge->length -= tls_ctx->tx.prepend_size;
444 
445 	msg_en->sg.curr = start;
446 
447 	aead_request_set_tfm(aead_req, ctx->aead_send);
448 	aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
449 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
450 			       rec->sg_aead_out,
451 			       data_len, tls_ctx->tx.iv);
452 
453 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
454 				  tls_encrypt_done, sk);
455 
456 	/* Add the record in tx_list */
457 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
458 	atomic_inc(&ctx->encrypt_pending);
459 
460 	rc = crypto_aead_encrypt(aead_req);
461 	if (!rc || rc != -EINPROGRESS) {
462 		atomic_dec(&ctx->encrypt_pending);
463 		sge->offset -= tls_ctx->tx.prepend_size;
464 		sge->length += tls_ctx->tx.prepend_size;
465 	}
466 
467 	if (!rc) {
468 		WRITE_ONCE(rec->tx_ready, true);
469 	} else if (rc != -EINPROGRESS) {
470 		list_del(&rec->list);
471 		return rc;
472 	}
473 
474 	/* Unhook the record from context if encryption is not failure */
475 	ctx->open_rec = NULL;
476 	tls_advance_record_sn(sk, &tls_ctx->tx);
477 	return rc;
478 }
479 
480 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
481 				 struct tls_rec **to, struct sk_msg *msg_opl,
482 				 struct sk_msg *msg_oen, u32 split_point,
483 				 u32 tx_overhead_size, u32 *orig_end)
484 {
485 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
486 	struct scatterlist *sge, *osge, *nsge;
487 	u32 orig_size = msg_opl->sg.size;
488 	struct scatterlist tmp = { };
489 	struct sk_msg *msg_npl;
490 	struct tls_rec *new;
491 	int ret;
492 
493 	new = tls_get_rec(sk);
494 	if (!new)
495 		return -ENOMEM;
496 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
497 			   tx_overhead_size, 0);
498 	if (ret < 0) {
499 		tls_free_rec(sk, new);
500 		return ret;
501 	}
502 
503 	*orig_end = msg_opl->sg.end;
504 	i = msg_opl->sg.start;
505 	sge = sk_msg_elem(msg_opl, i);
506 	while (apply && sge->length) {
507 		if (sge->length > apply) {
508 			u32 len = sge->length - apply;
509 
510 			get_page(sg_page(sge));
511 			sg_set_page(&tmp, sg_page(sge), len,
512 				    sge->offset + apply);
513 			sge->length = apply;
514 			bytes += apply;
515 			apply = 0;
516 		} else {
517 			apply -= sge->length;
518 			bytes += sge->length;
519 		}
520 
521 		sk_msg_iter_var_next(i);
522 		if (i == msg_opl->sg.end)
523 			break;
524 		sge = sk_msg_elem(msg_opl, i);
525 	}
526 
527 	msg_opl->sg.end = i;
528 	msg_opl->sg.curr = i;
529 	msg_opl->sg.copybreak = 0;
530 	msg_opl->apply_bytes = 0;
531 	msg_opl->sg.size = bytes;
532 
533 	msg_npl = &new->msg_plaintext;
534 	msg_npl->apply_bytes = apply;
535 	msg_npl->sg.size = orig_size - bytes;
536 
537 	j = msg_npl->sg.start;
538 	nsge = sk_msg_elem(msg_npl, j);
539 	if (tmp.length) {
540 		memcpy(nsge, &tmp, sizeof(*nsge));
541 		sk_msg_iter_var_next(j);
542 		nsge = sk_msg_elem(msg_npl, j);
543 	}
544 
545 	osge = sk_msg_elem(msg_opl, i);
546 	while (osge->length) {
547 		memcpy(nsge, osge, sizeof(*nsge));
548 		sg_unmark_end(nsge);
549 		sk_msg_iter_var_next(i);
550 		sk_msg_iter_var_next(j);
551 		if (i == *orig_end)
552 			break;
553 		osge = sk_msg_elem(msg_opl, i);
554 		nsge = sk_msg_elem(msg_npl, j);
555 	}
556 
557 	msg_npl->sg.end = j;
558 	msg_npl->sg.curr = j;
559 	msg_npl->sg.copybreak = 0;
560 
561 	*to = new;
562 	return 0;
563 }
564 
565 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
566 				  struct tls_rec *from, u32 orig_end)
567 {
568 	struct sk_msg *msg_npl = &from->msg_plaintext;
569 	struct sk_msg *msg_opl = &to->msg_plaintext;
570 	struct scatterlist *osge, *nsge;
571 	u32 i, j;
572 
573 	i = msg_opl->sg.end;
574 	sk_msg_iter_var_prev(i);
575 	j = msg_npl->sg.start;
576 
577 	osge = sk_msg_elem(msg_opl, i);
578 	nsge = sk_msg_elem(msg_npl, j);
579 
580 	if (sg_page(osge) == sg_page(nsge) &&
581 	    osge->offset + osge->length == nsge->offset) {
582 		osge->length += nsge->length;
583 		put_page(sg_page(nsge));
584 	}
585 
586 	msg_opl->sg.end = orig_end;
587 	msg_opl->sg.curr = orig_end;
588 	msg_opl->sg.copybreak = 0;
589 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
590 	msg_opl->sg.size += msg_npl->sg.size;
591 
592 	sk_msg_free(sk, &to->msg_encrypted);
593 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
594 
595 	kfree(from);
596 }
597 
598 static int tls_push_record(struct sock *sk, int flags,
599 			   unsigned char record_type)
600 {
601 	struct tls_context *tls_ctx = tls_get_ctx(sk);
602 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
603 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
604 	u32 i, split_point, uninitialized_var(orig_end);
605 	struct sk_msg *msg_pl, *msg_en;
606 	struct aead_request *req;
607 	bool split;
608 	int rc;
609 
610 	if (!rec)
611 		return 0;
612 
613 	msg_pl = &rec->msg_plaintext;
614 	msg_en = &rec->msg_encrypted;
615 
616 	split_point = msg_pl->apply_bytes;
617 	split = split_point && split_point < msg_pl->sg.size;
618 	if (split) {
619 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
620 					   split_point, tls_ctx->tx.overhead_size,
621 					   &orig_end);
622 		if (rc < 0)
623 			return rc;
624 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
625 			    tls_ctx->tx.overhead_size);
626 	}
627 
628 	rec->tx_flags = flags;
629 	req = &rec->aead_req;
630 
631 	i = msg_pl->sg.end;
632 	sk_msg_iter_var_prev(i);
633 	sg_mark_end(sk_msg_elem(msg_pl, i));
634 
635 	i = msg_pl->sg.start;
636 	sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
637 		 &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
638 
639 	i = msg_en->sg.end;
640 	sk_msg_iter_var_prev(i);
641 	sg_mark_end(sk_msg_elem(msg_en, i));
642 
643 	i = msg_en->sg.start;
644 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
645 
646 	tls_make_aad(rec->aad_space, msg_pl->sg.size,
647 		     tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
648 		     record_type);
649 
650 	tls_fill_prepend(tls_ctx,
651 			 page_address(sg_page(&msg_en->sg.data[i])) +
652 			 msg_en->sg.data[i].offset, msg_pl->sg.size,
653 			 record_type);
654 
655 	tls_ctx->pending_open_record_frags = false;
656 
657 	rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
658 	if (rc < 0) {
659 		if (rc != -EINPROGRESS) {
660 			tls_err_abort(sk, EBADMSG);
661 			if (split) {
662 				tls_ctx->pending_open_record_frags = true;
663 				tls_merge_open_record(sk, rec, tmp, orig_end);
664 			}
665 		}
666 		return rc;
667 	} else if (split) {
668 		msg_pl = &tmp->msg_plaintext;
669 		msg_en = &tmp->msg_encrypted;
670 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
671 			    tls_ctx->tx.overhead_size);
672 		tls_ctx->pending_open_record_frags = true;
673 		ctx->open_rec = tmp;
674 	}
675 
676 	return tls_tx_records(sk, flags);
677 }
678 
679 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
680 			       bool full_record, u8 record_type,
681 			       size_t *copied, int flags)
682 {
683 	struct tls_context *tls_ctx = tls_get_ctx(sk);
684 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
685 	struct sk_msg msg_redir = { };
686 	struct sk_psock *psock;
687 	struct sock *sk_redir;
688 	struct tls_rec *rec;
689 	int err = 0, send;
690 	bool enospc;
691 
692 	psock = sk_psock_get(sk);
693 	if (!psock)
694 		return tls_push_record(sk, flags, record_type);
695 more_data:
696 	enospc = sk_msg_full(msg);
697 	if (psock->eval == __SK_NONE)
698 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
699 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
700 	    !enospc && !full_record) {
701 		err = -ENOSPC;
702 		goto out_err;
703 	}
704 	msg->cork_bytes = 0;
705 	send = msg->sg.size;
706 	if (msg->apply_bytes && msg->apply_bytes < send)
707 		send = msg->apply_bytes;
708 
709 	switch (psock->eval) {
710 	case __SK_PASS:
711 		err = tls_push_record(sk, flags, record_type);
712 		if (err < 0) {
713 			*copied -= sk_msg_free(sk, msg);
714 			tls_free_open_rec(sk);
715 			goto out_err;
716 		}
717 		break;
718 	case __SK_REDIRECT:
719 		sk_redir = psock->sk_redir;
720 		memcpy(&msg_redir, msg, sizeof(*msg));
721 		if (msg->apply_bytes < send)
722 			msg->apply_bytes = 0;
723 		else
724 			msg->apply_bytes -= send;
725 		sk_msg_return_zero(sk, msg, send);
726 		msg->sg.size -= send;
727 		release_sock(sk);
728 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
729 		lock_sock(sk);
730 		if (err < 0) {
731 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
732 			msg->sg.size = 0;
733 		}
734 		if (msg->sg.size == 0)
735 			tls_free_open_rec(sk);
736 		break;
737 	case __SK_DROP:
738 	default:
739 		sk_msg_free_partial(sk, msg, send);
740 		if (msg->apply_bytes < send)
741 			msg->apply_bytes = 0;
742 		else
743 			msg->apply_bytes -= send;
744 		if (msg->sg.size == 0)
745 			tls_free_open_rec(sk);
746 		*copied -= send;
747 		err = -EACCES;
748 	}
749 
750 	if (likely(!err)) {
751 		bool reset_eval = !ctx->open_rec;
752 
753 		rec = ctx->open_rec;
754 		if (rec) {
755 			msg = &rec->msg_plaintext;
756 			if (!msg->apply_bytes)
757 				reset_eval = true;
758 		}
759 		if (reset_eval) {
760 			psock->eval = __SK_NONE;
761 			if (psock->sk_redir) {
762 				sock_put(psock->sk_redir);
763 				psock->sk_redir = NULL;
764 			}
765 		}
766 		if (rec)
767 			goto more_data;
768 	}
769  out_err:
770 	sk_psock_put(sk, psock);
771 	return err;
772 }
773 
774 static int tls_sw_push_pending_record(struct sock *sk, int flags)
775 {
776 	struct tls_context *tls_ctx = tls_get_ctx(sk);
777 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
778 	struct tls_rec *rec = ctx->open_rec;
779 	struct sk_msg *msg_pl;
780 	size_t copied;
781 
782 	if (!rec)
783 		return 0;
784 
785 	msg_pl = &rec->msg_plaintext;
786 	copied = msg_pl->sg.size;
787 	if (!copied)
788 		return 0;
789 
790 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
791 				   &copied, flags);
792 }
793 
794 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
795 {
796 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
797 	struct tls_context *tls_ctx = tls_get_ctx(sk);
798 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
799 	struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
800 	bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
801 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
802 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
803 	bool eor = !(msg->msg_flags & MSG_MORE);
804 	size_t try_to_copy, copied = 0;
805 	struct sk_msg *msg_pl, *msg_en;
806 	struct tls_rec *rec;
807 	int required_size;
808 	int num_async = 0;
809 	bool full_record;
810 	int record_room;
811 	int num_zc = 0;
812 	int orig_size;
813 	int ret = 0;
814 
815 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
816 		return -ENOTSUPP;
817 
818 	lock_sock(sk);
819 
820 	/* Wait till there is any pending write on socket */
821 	if (unlikely(sk->sk_write_pending)) {
822 		ret = wait_on_pending_writer(sk, &timeo);
823 		if (unlikely(ret))
824 			goto send_end;
825 	}
826 
827 	if (unlikely(msg->msg_controllen)) {
828 		ret = tls_proccess_cmsg(sk, msg, &record_type);
829 		if (ret) {
830 			if (ret == -EINPROGRESS)
831 				num_async++;
832 			else if (ret != -EAGAIN)
833 				goto send_end;
834 		}
835 	}
836 
837 	while (msg_data_left(msg)) {
838 		if (sk->sk_err) {
839 			ret = -sk->sk_err;
840 			goto send_end;
841 		}
842 
843 		if (ctx->open_rec)
844 			rec = ctx->open_rec;
845 		else
846 			rec = ctx->open_rec = tls_get_rec(sk);
847 		if (!rec) {
848 			ret = -ENOMEM;
849 			goto send_end;
850 		}
851 
852 		msg_pl = &rec->msg_plaintext;
853 		msg_en = &rec->msg_encrypted;
854 
855 		orig_size = msg_pl->sg.size;
856 		full_record = false;
857 		try_to_copy = msg_data_left(msg);
858 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
859 		if (try_to_copy >= record_room) {
860 			try_to_copy = record_room;
861 			full_record = true;
862 		}
863 
864 		required_size = msg_pl->sg.size + try_to_copy +
865 				tls_ctx->tx.overhead_size;
866 
867 		if (!sk_stream_memory_free(sk))
868 			goto wait_for_sndbuf;
869 
870 alloc_encrypted:
871 		ret = tls_alloc_encrypted_msg(sk, required_size);
872 		if (ret) {
873 			if (ret != -ENOSPC)
874 				goto wait_for_memory;
875 
876 			/* Adjust try_to_copy according to the amount that was
877 			 * actually allocated. The difference is due
878 			 * to max sg elements limit
879 			 */
880 			try_to_copy -= required_size - msg_en->sg.size;
881 			full_record = true;
882 		}
883 
884 		if (!is_kvec && (full_record || eor) && !async_capable) {
885 			u32 first = msg_pl->sg.end;
886 
887 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
888 							msg_pl, try_to_copy);
889 			if (ret)
890 				goto fallback_to_reg_send;
891 
892 			rec->inplace_crypto = 0;
893 
894 			num_zc++;
895 			copied += try_to_copy;
896 
897 			sk_msg_sg_copy_set(msg_pl, first);
898 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
899 						  record_type, &copied,
900 						  msg->msg_flags);
901 			if (ret) {
902 				if (ret == -EINPROGRESS)
903 					num_async++;
904 				else if (ret == -ENOMEM)
905 					goto wait_for_memory;
906 				else if (ret == -ENOSPC)
907 					goto rollback_iter;
908 				else if (ret != -EAGAIN)
909 					goto send_end;
910 			}
911 			continue;
912 rollback_iter:
913 			copied -= try_to_copy;
914 			sk_msg_sg_copy_clear(msg_pl, first);
915 			iov_iter_revert(&msg->msg_iter,
916 					msg_pl->sg.size - orig_size);
917 fallback_to_reg_send:
918 			sk_msg_trim(sk, msg_pl, orig_size);
919 		}
920 
921 		required_size = msg_pl->sg.size + try_to_copy;
922 
923 		ret = tls_clone_plaintext_msg(sk, required_size);
924 		if (ret) {
925 			if (ret != -ENOSPC)
926 				goto send_end;
927 
928 			/* Adjust try_to_copy according to the amount that was
929 			 * actually allocated. The difference is due
930 			 * to max sg elements limit
931 			 */
932 			try_to_copy -= required_size - msg_pl->sg.size;
933 			full_record = true;
934 			sk_msg_trim(sk, msg_en, msg_pl->sg.size +
935 				    tls_ctx->tx.overhead_size);
936 		}
937 
938 		ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, msg_pl,
939 					       try_to_copy);
940 		if (ret < 0)
941 			goto trim_sgl;
942 
943 		/* Open records defined only if successfully copied, otherwise
944 		 * we would trim the sg but not reset the open record frags.
945 		 */
946 		tls_ctx->pending_open_record_frags = true;
947 		copied += try_to_copy;
948 		if (full_record || eor) {
949 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
950 						  record_type, &copied,
951 						  msg->msg_flags);
952 			if (ret) {
953 				if (ret == -EINPROGRESS)
954 					num_async++;
955 				else if (ret == -ENOMEM)
956 					goto wait_for_memory;
957 				else if (ret != -EAGAIN) {
958 					if (ret == -ENOSPC)
959 						ret = 0;
960 					goto send_end;
961 				}
962 			}
963 		}
964 
965 		continue;
966 
967 wait_for_sndbuf:
968 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
969 wait_for_memory:
970 		ret = sk_stream_wait_memory(sk, &timeo);
971 		if (ret) {
972 trim_sgl:
973 			tls_trim_both_msgs(sk, orig_size);
974 			goto send_end;
975 		}
976 
977 		if (msg_en->sg.size < required_size)
978 			goto alloc_encrypted;
979 	}
980 
981 	if (!num_async) {
982 		goto send_end;
983 	} else if (num_zc) {
984 		/* Wait for pending encryptions to get completed */
985 		smp_store_mb(ctx->async_notify, true);
986 
987 		if (atomic_read(&ctx->encrypt_pending))
988 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
989 		else
990 			reinit_completion(&ctx->async_wait.completion);
991 
992 		WRITE_ONCE(ctx->async_notify, false);
993 
994 		if (ctx->async_wait.err) {
995 			ret = ctx->async_wait.err;
996 			copied = 0;
997 		}
998 	}
999 
1000 	/* Transmit if any encryptions have completed */
1001 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1002 		cancel_delayed_work(&ctx->tx_work.work);
1003 		tls_tx_records(sk, msg->msg_flags);
1004 	}
1005 
1006 send_end:
1007 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1008 
1009 	release_sock(sk);
1010 	return copied ? copied : ret;
1011 }
1012 
1013 int tls_sw_sendpage(struct sock *sk, struct page *page,
1014 		    int offset, size_t size, int flags)
1015 {
1016 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1017 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1018 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1019 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1020 	struct sk_msg *msg_pl;
1021 	struct tls_rec *rec;
1022 	int num_async = 0;
1023 	size_t copied = 0;
1024 	bool full_record;
1025 	int record_room;
1026 	int ret = 0;
1027 	bool eor;
1028 
1029 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1030 		      MSG_SENDPAGE_NOTLAST))
1031 		return -ENOTSUPP;
1032 
1033 	/* No MSG_EOR from splice, only look at MSG_MORE */
1034 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1035 
1036 	lock_sock(sk);
1037 
1038 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1039 
1040 	/* Wait till there is any pending write on socket */
1041 	if (unlikely(sk->sk_write_pending)) {
1042 		ret = wait_on_pending_writer(sk, &timeo);
1043 		if (unlikely(ret))
1044 			goto sendpage_end;
1045 	}
1046 
1047 	/* Call the sk_stream functions to manage the sndbuf mem. */
1048 	while (size > 0) {
1049 		size_t copy, required_size;
1050 
1051 		if (sk->sk_err) {
1052 			ret = -sk->sk_err;
1053 			goto sendpage_end;
1054 		}
1055 
1056 		if (ctx->open_rec)
1057 			rec = ctx->open_rec;
1058 		else
1059 			rec = ctx->open_rec = tls_get_rec(sk);
1060 		if (!rec) {
1061 			ret = -ENOMEM;
1062 			goto sendpage_end;
1063 		}
1064 
1065 		msg_pl = &rec->msg_plaintext;
1066 
1067 		full_record = false;
1068 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1069 		copied = 0;
1070 		copy = size;
1071 		if (copy >= record_room) {
1072 			copy = record_room;
1073 			full_record = true;
1074 		}
1075 
1076 		required_size = msg_pl->sg.size + copy +
1077 				tls_ctx->tx.overhead_size;
1078 
1079 		if (!sk_stream_memory_free(sk))
1080 			goto wait_for_sndbuf;
1081 alloc_payload:
1082 		ret = tls_alloc_encrypted_msg(sk, required_size);
1083 		if (ret) {
1084 			if (ret != -ENOSPC)
1085 				goto wait_for_memory;
1086 
1087 			/* Adjust copy according to the amount that was
1088 			 * actually allocated. The difference is due
1089 			 * to max sg elements limit
1090 			 */
1091 			copy -= required_size - msg_pl->sg.size;
1092 			full_record = true;
1093 		}
1094 
1095 		sk_msg_page_add(msg_pl, page, copy, offset);
1096 		sk_mem_charge(sk, copy);
1097 
1098 		offset += copy;
1099 		size -= copy;
1100 		copied += copy;
1101 
1102 		tls_ctx->pending_open_record_frags = true;
1103 		if (full_record || eor || sk_msg_full(msg_pl)) {
1104 			rec->inplace_crypto = 0;
1105 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1106 						  record_type, &copied, flags);
1107 			if (ret) {
1108 				if (ret == -EINPROGRESS)
1109 					num_async++;
1110 				else if (ret == -ENOMEM)
1111 					goto wait_for_memory;
1112 				else if (ret != -EAGAIN) {
1113 					if (ret == -ENOSPC)
1114 						ret = 0;
1115 					goto sendpage_end;
1116 				}
1117 			}
1118 		}
1119 		continue;
1120 wait_for_sndbuf:
1121 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1122 wait_for_memory:
1123 		ret = sk_stream_wait_memory(sk, &timeo);
1124 		if (ret) {
1125 			tls_trim_both_msgs(sk, msg_pl->sg.size);
1126 			goto sendpage_end;
1127 		}
1128 
1129 		goto alloc_payload;
1130 	}
1131 
1132 	if (num_async) {
1133 		/* Transmit if any encryptions have completed */
1134 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1135 			cancel_delayed_work(&ctx->tx_work.work);
1136 			tls_tx_records(sk, flags);
1137 		}
1138 	}
1139 sendpage_end:
1140 	ret = sk_stream_error(sk, flags, ret);
1141 	release_sock(sk);
1142 	return copied ? copied : ret;
1143 }
1144 
1145 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1146 				     int flags, long timeo, int *err)
1147 {
1148 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1149 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1150 	struct sk_buff *skb;
1151 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1152 
1153 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1154 		if (sk->sk_err) {
1155 			*err = sock_error(sk);
1156 			return NULL;
1157 		}
1158 
1159 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1160 			return NULL;
1161 
1162 		if (sock_flag(sk, SOCK_DONE))
1163 			return NULL;
1164 
1165 		if ((flags & MSG_DONTWAIT) || !timeo) {
1166 			*err = -EAGAIN;
1167 			return NULL;
1168 		}
1169 
1170 		add_wait_queue(sk_sleep(sk), &wait);
1171 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1172 		sk_wait_event(sk, &timeo,
1173 			      ctx->recv_pkt != skb ||
1174 			      !sk_psock_queue_empty(psock),
1175 			      &wait);
1176 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1177 		remove_wait_queue(sk_sleep(sk), &wait);
1178 
1179 		/* Handle signals */
1180 		if (signal_pending(current)) {
1181 			*err = sock_intr_errno(timeo);
1182 			return NULL;
1183 		}
1184 	}
1185 
1186 	return skb;
1187 }
1188 
1189 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1190 			       int length, int *pages_used,
1191 			       unsigned int *size_used,
1192 			       struct scatterlist *to,
1193 			       int to_max_pages)
1194 {
1195 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1196 	struct page *pages[MAX_SKB_FRAGS];
1197 	unsigned int size = *size_used;
1198 	ssize_t copied, use;
1199 	size_t offset;
1200 
1201 	while (length > 0) {
1202 		i = 0;
1203 		maxpages = to_max_pages - num_elem;
1204 		if (maxpages == 0) {
1205 			rc = -EFAULT;
1206 			goto out;
1207 		}
1208 		copied = iov_iter_get_pages(from, pages,
1209 					    length,
1210 					    maxpages, &offset);
1211 		if (copied <= 0) {
1212 			rc = -EFAULT;
1213 			goto out;
1214 		}
1215 
1216 		iov_iter_advance(from, copied);
1217 
1218 		length -= copied;
1219 		size += copied;
1220 		while (copied) {
1221 			use = min_t(int, copied, PAGE_SIZE - offset);
1222 
1223 			sg_set_page(&to[num_elem],
1224 				    pages[i], use, offset);
1225 			sg_unmark_end(&to[num_elem]);
1226 			/* We do not uncharge memory from this API */
1227 
1228 			offset = 0;
1229 			copied -= use;
1230 
1231 			i++;
1232 			num_elem++;
1233 		}
1234 	}
1235 	/* Mark the end in the last sg entry if newly added */
1236 	if (num_elem > *pages_used)
1237 		sg_mark_end(&to[num_elem - 1]);
1238 out:
1239 	if (rc)
1240 		iov_iter_revert(from, size - *size_used);
1241 	*size_used = size;
1242 	*pages_used = num_elem;
1243 
1244 	return rc;
1245 }
1246 
1247 /* This function decrypts the input skb into either out_iov or in out_sg
1248  * or in skb buffers itself. The input parameter 'zc' indicates if
1249  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1250  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1251  * NULL, then the decryption happens inside skb buffers itself, i.e.
1252  * zero-copy gets disabled and 'zc' is updated.
1253  */
1254 
1255 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1256 			    struct iov_iter *out_iov,
1257 			    struct scatterlist *out_sg,
1258 			    int *chunk, bool *zc)
1259 {
1260 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1261 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1262 	struct strp_msg *rxm = strp_msg(skb);
1263 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1264 	struct aead_request *aead_req;
1265 	struct sk_buff *unused;
1266 	u8 *aad, *iv, *mem = NULL;
1267 	struct scatterlist *sgin = NULL;
1268 	struct scatterlist *sgout = NULL;
1269 	const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1270 
1271 	if (*zc && (out_iov || out_sg)) {
1272 		if (out_iov)
1273 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1274 		else
1275 			n_sgout = sg_nents(out_sg);
1276 		n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1277 				 rxm->full_len - tls_ctx->rx.prepend_size);
1278 	} else {
1279 		n_sgout = 0;
1280 		*zc = false;
1281 		n_sgin = skb_cow_data(skb, 0, &unused);
1282 	}
1283 
1284 	if (n_sgin < 1)
1285 		return -EBADMSG;
1286 
1287 	/* Increment to accommodate AAD */
1288 	n_sgin = n_sgin + 1;
1289 
1290 	nsg = n_sgin + n_sgout;
1291 
1292 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1293 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1294 	mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1295 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1296 
1297 	/* Allocate a single block of memory which contains
1298 	 * aead_req || sgin[] || sgout[] || aad || iv.
1299 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1300 	 */
1301 	mem = kmalloc(mem_size, sk->sk_allocation);
1302 	if (!mem)
1303 		return -ENOMEM;
1304 
1305 	/* Segment the allocated memory */
1306 	aead_req = (struct aead_request *)mem;
1307 	sgin = (struct scatterlist *)(mem + aead_size);
1308 	sgout = sgin + n_sgin;
1309 	aad = (u8 *)(sgout + n_sgout);
1310 	iv = aad + TLS_AAD_SPACE_SIZE;
1311 
1312 	/* Prepare IV */
1313 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1314 			    iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1315 			    tls_ctx->rx.iv_size);
1316 	if (err < 0) {
1317 		kfree(mem);
1318 		return err;
1319 	}
1320 	memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1321 
1322 	/* Prepare AAD */
1323 	tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1324 		     tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1325 		     ctx->control);
1326 
1327 	/* Prepare sgin */
1328 	sg_init_table(sgin, n_sgin);
1329 	sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1330 	err = skb_to_sgvec(skb, &sgin[1],
1331 			   rxm->offset + tls_ctx->rx.prepend_size,
1332 			   rxm->full_len - tls_ctx->rx.prepend_size);
1333 	if (err < 0) {
1334 		kfree(mem);
1335 		return err;
1336 	}
1337 
1338 	if (n_sgout) {
1339 		if (out_iov) {
1340 			sg_init_table(sgout, n_sgout);
1341 			sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1342 
1343 			*chunk = 0;
1344 			err = tls_setup_from_iter(sk, out_iov, data_len,
1345 						  &pages, chunk, &sgout[1],
1346 						  (n_sgout - 1));
1347 			if (err < 0)
1348 				goto fallback_to_reg_recv;
1349 		} else if (out_sg) {
1350 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1351 		} else {
1352 			goto fallback_to_reg_recv;
1353 		}
1354 	} else {
1355 fallback_to_reg_recv:
1356 		sgout = sgin;
1357 		pages = 0;
1358 		*chunk = 0;
1359 		*zc = false;
1360 	}
1361 
1362 	/* Prepare and submit AEAD request */
1363 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1364 				data_len, aead_req, *zc);
1365 	if (err == -EINPROGRESS)
1366 		return err;
1367 
1368 	/* Release the pages in case iov was mapped to pages */
1369 	for (; pages > 0; pages--)
1370 		put_page(sg_page(&sgout[pages]));
1371 
1372 	kfree(mem);
1373 	return err;
1374 }
1375 
1376 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1377 			      struct iov_iter *dest, int *chunk, bool *zc)
1378 {
1379 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1380 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1381 	struct strp_msg *rxm = strp_msg(skb);
1382 	int err = 0;
1383 
1384 #ifdef CONFIG_TLS_DEVICE
1385 	err = tls_device_decrypted(sk, skb);
1386 	if (err < 0)
1387 		return err;
1388 #endif
1389 	if (!ctx->decrypted) {
1390 		err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1391 		if (err < 0) {
1392 			if (err == -EINPROGRESS)
1393 				tls_advance_record_sn(sk, &tls_ctx->rx);
1394 
1395 			return err;
1396 		}
1397 	} else {
1398 		*zc = false;
1399 	}
1400 
1401 	rxm->offset += tls_ctx->rx.prepend_size;
1402 	rxm->full_len -= tls_ctx->rx.overhead_size;
1403 	tls_advance_record_sn(sk, &tls_ctx->rx);
1404 	ctx->decrypted = true;
1405 	ctx->saved_data_ready(sk);
1406 
1407 	return err;
1408 }
1409 
1410 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1411 		struct scatterlist *sgout)
1412 {
1413 	bool zc = true;
1414 	int chunk;
1415 
1416 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1417 }
1418 
1419 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1420 			       unsigned int len)
1421 {
1422 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1423 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1424 
1425 	if (skb) {
1426 		struct strp_msg *rxm = strp_msg(skb);
1427 
1428 		if (len < rxm->full_len) {
1429 			rxm->offset += len;
1430 			rxm->full_len -= len;
1431 			return false;
1432 		}
1433 		kfree_skb(skb);
1434 	}
1435 
1436 	/* Finished with message */
1437 	ctx->recv_pkt = NULL;
1438 	__strp_unpause(&ctx->strp);
1439 
1440 	return true;
1441 }
1442 
1443 int tls_sw_recvmsg(struct sock *sk,
1444 		   struct msghdr *msg,
1445 		   size_t len,
1446 		   int nonblock,
1447 		   int flags,
1448 		   int *addr_len)
1449 {
1450 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1451 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1452 	struct sk_psock *psock;
1453 	unsigned char control;
1454 	struct strp_msg *rxm;
1455 	struct sk_buff *skb;
1456 	ssize_t copied = 0;
1457 	bool cmsg = false;
1458 	int target, err = 0;
1459 	long timeo;
1460 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1461 	int num_async = 0;
1462 
1463 	flags |= nonblock;
1464 
1465 	if (unlikely(flags & MSG_ERRQUEUE))
1466 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1467 
1468 	psock = sk_psock_get(sk);
1469 	lock_sock(sk);
1470 
1471 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1472 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1473 	do {
1474 		bool zc = false;
1475 		bool async = false;
1476 		int chunk = 0;
1477 
1478 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1479 		if (!skb) {
1480 			if (psock) {
1481 				int ret = __tcp_bpf_recvmsg(sk, psock,
1482 							    msg, len, flags);
1483 
1484 				if (ret > 0) {
1485 					copied += ret;
1486 					len -= ret;
1487 					continue;
1488 				}
1489 			}
1490 			goto recv_end;
1491 		}
1492 
1493 		rxm = strp_msg(skb);
1494 
1495 		if (!cmsg) {
1496 			int cerr;
1497 
1498 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1499 					sizeof(ctx->control), &ctx->control);
1500 			cmsg = true;
1501 			control = ctx->control;
1502 			if (ctx->control != TLS_RECORD_TYPE_DATA) {
1503 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1504 					err = -EIO;
1505 					goto recv_end;
1506 				}
1507 			}
1508 		} else if (control != ctx->control) {
1509 			goto recv_end;
1510 		}
1511 
1512 		if (!ctx->decrypted) {
1513 			int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1514 
1515 			if (!is_kvec && to_copy <= len &&
1516 			    likely(!(flags & MSG_PEEK)))
1517 				zc = true;
1518 
1519 			err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1520 						 &chunk, &zc);
1521 			if (err < 0 && err != -EINPROGRESS) {
1522 				tls_err_abort(sk, EBADMSG);
1523 				goto recv_end;
1524 			}
1525 
1526 			if (err == -EINPROGRESS) {
1527 				async = true;
1528 				num_async++;
1529 				goto pick_next_record;
1530 			}
1531 
1532 			ctx->decrypted = true;
1533 		}
1534 
1535 		if (!zc) {
1536 			chunk = min_t(unsigned int, rxm->full_len, len);
1537 
1538 			err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1539 						    chunk);
1540 			if (err < 0)
1541 				goto recv_end;
1542 		}
1543 
1544 pick_next_record:
1545 		copied += chunk;
1546 		len -= chunk;
1547 		if (likely(!(flags & MSG_PEEK))) {
1548 			u8 control = ctx->control;
1549 
1550 			/* For async, drop current skb reference */
1551 			if (async)
1552 				skb = NULL;
1553 
1554 			if (tls_sw_advance_skb(sk, skb, chunk)) {
1555 				/* Return full control message to
1556 				 * userspace before trying to parse
1557 				 * another message type
1558 				 */
1559 				msg->msg_flags |= MSG_EOR;
1560 				if (control != TLS_RECORD_TYPE_DATA)
1561 					goto recv_end;
1562 			} else {
1563 				break;
1564 			}
1565 		} else {
1566 			/* MSG_PEEK right now cannot look beyond current skb
1567 			 * from strparser, meaning we cannot advance skb here
1568 			 * and thus unpause strparser since we'd loose original
1569 			 * one.
1570 			 */
1571 			break;
1572 		}
1573 
1574 		/* If we have a new message from strparser, continue now. */
1575 		if (copied >= target && !ctx->recv_pkt)
1576 			break;
1577 	} while (len);
1578 
1579 recv_end:
1580 	if (num_async) {
1581 		/* Wait for all previously submitted records to be decrypted */
1582 		smp_store_mb(ctx->async_notify, true);
1583 		if (atomic_read(&ctx->decrypt_pending)) {
1584 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1585 			if (err) {
1586 				/* one of async decrypt failed */
1587 				tls_err_abort(sk, err);
1588 				copied = 0;
1589 			}
1590 		} else {
1591 			reinit_completion(&ctx->async_wait.completion);
1592 		}
1593 		WRITE_ONCE(ctx->async_notify, false);
1594 	}
1595 
1596 	release_sock(sk);
1597 	if (psock)
1598 		sk_psock_put(sk, psock);
1599 	return copied ? : err;
1600 }
1601 
1602 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1603 			   struct pipe_inode_info *pipe,
1604 			   size_t len, unsigned int flags)
1605 {
1606 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1607 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1608 	struct strp_msg *rxm = NULL;
1609 	struct sock *sk = sock->sk;
1610 	struct sk_buff *skb;
1611 	ssize_t copied = 0;
1612 	int err = 0;
1613 	long timeo;
1614 	int chunk;
1615 	bool zc = false;
1616 
1617 	lock_sock(sk);
1618 
1619 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1620 
1621 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1622 	if (!skb)
1623 		goto splice_read_end;
1624 
1625 	/* splice does not support reading control messages */
1626 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
1627 		err = -ENOTSUPP;
1628 		goto splice_read_end;
1629 	}
1630 
1631 	if (!ctx->decrypted) {
1632 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1633 
1634 		if (err < 0) {
1635 			tls_err_abort(sk, EBADMSG);
1636 			goto splice_read_end;
1637 		}
1638 		ctx->decrypted = true;
1639 	}
1640 	rxm = strp_msg(skb);
1641 
1642 	chunk = min_t(unsigned int, rxm->full_len, len);
1643 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1644 	if (copied < 0)
1645 		goto splice_read_end;
1646 
1647 	if (likely(!(flags & MSG_PEEK)))
1648 		tls_sw_advance_skb(sk, skb, copied);
1649 
1650 splice_read_end:
1651 	release_sock(sk);
1652 	return copied ? : err;
1653 }
1654 
1655 bool tls_sw_stream_read(const struct sock *sk)
1656 {
1657 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1658 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1659 	bool ingress_empty = true;
1660 	struct sk_psock *psock;
1661 
1662 	rcu_read_lock();
1663 	psock = sk_psock(sk);
1664 	if (psock)
1665 		ingress_empty = list_empty(&psock->ingress_msg);
1666 	rcu_read_unlock();
1667 
1668 	return !ingress_empty || ctx->recv_pkt;
1669 }
1670 
1671 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1672 {
1673 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1674 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1675 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1676 	struct strp_msg *rxm = strp_msg(skb);
1677 	size_t cipher_overhead;
1678 	size_t data_len = 0;
1679 	int ret;
1680 
1681 	/* Verify that we have a full TLS header, or wait for more data */
1682 	if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1683 		return 0;
1684 
1685 	/* Sanity-check size of on-stack buffer. */
1686 	if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1687 		ret = -EINVAL;
1688 		goto read_failure;
1689 	}
1690 
1691 	/* Linearize header to local buffer */
1692 	ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1693 
1694 	if (ret < 0)
1695 		goto read_failure;
1696 
1697 	ctx->control = header[0];
1698 
1699 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
1700 
1701 	cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1702 
1703 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1704 		ret = -EMSGSIZE;
1705 		goto read_failure;
1706 	}
1707 	if (data_len < cipher_overhead) {
1708 		ret = -EBADMSG;
1709 		goto read_failure;
1710 	}
1711 
1712 	if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1713 	    header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1714 		ret = -EINVAL;
1715 		goto read_failure;
1716 	}
1717 
1718 #ifdef CONFIG_TLS_DEVICE
1719 	handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1720 			     *(u64*)tls_ctx->rx.rec_seq);
1721 #endif
1722 	return data_len + TLS_HEADER_SIZE;
1723 
1724 read_failure:
1725 	tls_err_abort(strp->sk, ret);
1726 
1727 	return ret;
1728 }
1729 
1730 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1731 {
1732 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1733 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1734 
1735 	ctx->decrypted = false;
1736 
1737 	ctx->recv_pkt = skb;
1738 	strp_pause(strp);
1739 
1740 	ctx->saved_data_ready(strp->sk);
1741 }
1742 
1743 static void tls_data_ready(struct sock *sk)
1744 {
1745 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1746 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1747 	struct sk_psock *psock;
1748 
1749 	strp_data_ready(&ctx->strp);
1750 
1751 	psock = sk_psock_get(sk);
1752 	if (psock && !list_empty(&psock->ingress_msg)) {
1753 		ctx->saved_data_ready(sk);
1754 		sk_psock_put(sk, psock);
1755 	}
1756 }
1757 
1758 void tls_sw_free_resources_tx(struct sock *sk)
1759 {
1760 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1761 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1762 	struct tls_rec *rec, *tmp;
1763 
1764 	/* Wait for any pending async encryptions to complete */
1765 	smp_store_mb(ctx->async_notify, true);
1766 	if (atomic_read(&ctx->encrypt_pending))
1767 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1768 
1769 	cancel_delayed_work_sync(&ctx->tx_work.work);
1770 
1771 	/* Tx whatever records we can transmit and abandon the rest */
1772 	tls_tx_records(sk, -1);
1773 
1774 	/* Free up un-sent records in tx_list. First, free
1775 	 * the partially sent record if any at head of tx_list.
1776 	 */
1777 	if (tls_ctx->partially_sent_record) {
1778 		struct scatterlist *sg = tls_ctx->partially_sent_record;
1779 
1780 		while (1) {
1781 			put_page(sg_page(sg));
1782 			sk_mem_uncharge(sk, sg->length);
1783 
1784 			if (sg_is_last(sg))
1785 				break;
1786 			sg++;
1787 		}
1788 
1789 		tls_ctx->partially_sent_record = NULL;
1790 
1791 		rec = list_first_entry(&ctx->tx_list,
1792 				       struct tls_rec, list);
1793 		list_del(&rec->list);
1794 		sk_msg_free(sk, &rec->msg_plaintext);
1795 		kfree(rec);
1796 	}
1797 
1798 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1799 		list_del(&rec->list);
1800 		sk_msg_free(sk, &rec->msg_encrypted);
1801 		sk_msg_free(sk, &rec->msg_plaintext);
1802 		kfree(rec);
1803 	}
1804 
1805 	crypto_free_aead(ctx->aead_send);
1806 	tls_free_open_rec(sk);
1807 
1808 	kfree(ctx);
1809 }
1810 
1811 void tls_sw_release_resources_rx(struct sock *sk)
1812 {
1813 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1814 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1815 
1816 	if (ctx->aead_recv) {
1817 		kfree_skb(ctx->recv_pkt);
1818 		ctx->recv_pkt = NULL;
1819 		crypto_free_aead(ctx->aead_recv);
1820 		strp_stop(&ctx->strp);
1821 		write_lock_bh(&sk->sk_callback_lock);
1822 		sk->sk_data_ready = ctx->saved_data_ready;
1823 		write_unlock_bh(&sk->sk_callback_lock);
1824 		release_sock(sk);
1825 		strp_done(&ctx->strp);
1826 		lock_sock(sk);
1827 	}
1828 }
1829 
1830 void tls_sw_free_resources_rx(struct sock *sk)
1831 {
1832 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1833 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1834 
1835 	tls_sw_release_resources_rx(sk);
1836 
1837 	kfree(ctx);
1838 }
1839 
1840 /* The work handler to transmitt the encrypted records in tx_list */
1841 static void tx_work_handler(struct work_struct *work)
1842 {
1843 	struct delayed_work *delayed_work = to_delayed_work(work);
1844 	struct tx_work *tx_work = container_of(delayed_work,
1845 					       struct tx_work, work);
1846 	struct sock *sk = tx_work->sk;
1847 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1848 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1849 
1850 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1851 		return;
1852 
1853 	lock_sock(sk);
1854 	tls_tx_records(sk, -1);
1855 	release_sock(sk);
1856 }
1857 
1858 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1859 {
1860 	struct tls_crypto_info *crypto_info;
1861 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1862 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
1863 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
1864 	struct cipher_context *cctx;
1865 	struct crypto_aead **aead;
1866 	struct strp_callbacks cb;
1867 	u16 nonce_size, tag_size, iv_size, rec_seq_size;
1868 	char *iv, *rec_seq;
1869 	int rc = 0;
1870 
1871 	if (!ctx) {
1872 		rc = -EINVAL;
1873 		goto out;
1874 	}
1875 
1876 	if (tx) {
1877 		if (!ctx->priv_ctx_tx) {
1878 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1879 			if (!sw_ctx_tx) {
1880 				rc = -ENOMEM;
1881 				goto out;
1882 			}
1883 			ctx->priv_ctx_tx = sw_ctx_tx;
1884 		} else {
1885 			sw_ctx_tx =
1886 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1887 		}
1888 	} else {
1889 		if (!ctx->priv_ctx_rx) {
1890 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1891 			if (!sw_ctx_rx) {
1892 				rc = -ENOMEM;
1893 				goto out;
1894 			}
1895 			ctx->priv_ctx_rx = sw_ctx_rx;
1896 		} else {
1897 			sw_ctx_rx =
1898 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1899 		}
1900 	}
1901 
1902 	if (tx) {
1903 		crypto_init_wait(&sw_ctx_tx->async_wait);
1904 		crypto_info = &ctx->crypto_send.info;
1905 		cctx = &ctx->tx;
1906 		aead = &sw_ctx_tx->aead_send;
1907 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1908 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1909 		sw_ctx_tx->tx_work.sk = sk;
1910 	} else {
1911 		crypto_init_wait(&sw_ctx_rx->async_wait);
1912 		crypto_info = &ctx->crypto_recv.info;
1913 		cctx = &ctx->rx;
1914 		aead = &sw_ctx_rx->aead_recv;
1915 	}
1916 
1917 	switch (crypto_info->cipher_type) {
1918 	case TLS_CIPHER_AES_GCM_128: {
1919 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1920 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1921 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1922 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1923 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1924 		rec_seq =
1925 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1926 		gcm_128_info =
1927 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1928 		break;
1929 	}
1930 	default:
1931 		rc = -EINVAL;
1932 		goto free_priv;
1933 	}
1934 
1935 	/* Sanity-check the IV size for stack allocations. */
1936 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1937 		rc = -EINVAL;
1938 		goto free_priv;
1939 	}
1940 
1941 	cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1942 	cctx->tag_size = tag_size;
1943 	cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1944 	cctx->iv_size = iv_size;
1945 	cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1946 			   GFP_KERNEL);
1947 	if (!cctx->iv) {
1948 		rc = -ENOMEM;
1949 		goto free_priv;
1950 	}
1951 	memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1952 	memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1953 	cctx->rec_seq_size = rec_seq_size;
1954 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1955 	if (!cctx->rec_seq) {
1956 		rc = -ENOMEM;
1957 		goto free_iv;
1958 	}
1959 
1960 	if (!*aead) {
1961 		*aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1962 		if (IS_ERR(*aead)) {
1963 			rc = PTR_ERR(*aead);
1964 			*aead = NULL;
1965 			goto free_rec_seq;
1966 		}
1967 	}
1968 
1969 	ctx->push_pending_record = tls_sw_push_pending_record;
1970 
1971 	rc = crypto_aead_setkey(*aead, gcm_128_info->key,
1972 				TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1973 	if (rc)
1974 		goto free_aead;
1975 
1976 	rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1977 	if (rc)
1978 		goto free_aead;
1979 
1980 	if (sw_ctx_rx) {
1981 		/* Set up strparser */
1982 		memset(&cb, 0, sizeof(cb));
1983 		cb.rcv_msg = tls_queue;
1984 		cb.parse_msg = tls_read_size;
1985 
1986 		strp_init(&sw_ctx_rx->strp, sk, &cb);
1987 
1988 		write_lock_bh(&sk->sk_callback_lock);
1989 		sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1990 		sk->sk_data_ready = tls_data_ready;
1991 		write_unlock_bh(&sk->sk_callback_lock);
1992 
1993 		strp_check_rcv(&sw_ctx_rx->strp);
1994 	}
1995 
1996 	goto out;
1997 
1998 free_aead:
1999 	crypto_free_aead(*aead);
2000 	*aead = NULL;
2001 free_rec_seq:
2002 	kfree(cctx->rec_seq);
2003 	cctx->rec_seq = NULL;
2004 free_iv:
2005 	kfree(cctx->iv);
2006 	cctx->iv = NULL;
2007 free_priv:
2008 	if (tx) {
2009 		kfree(ctx->priv_ctx_tx);
2010 		ctx->priv_ctx_tx = NULL;
2011 	} else {
2012 		kfree(ctx->priv_ctx_rx);
2013 		ctx->priv_ctx_rx = NULL;
2014 	}
2015 out:
2016 	return rc;
2017 }
2018