xref: /openbmc/linux/net/tls/tls_sw.c (revision 4f48c303)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44 
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48 
49 #include "tls.h"
50 
51 struct tls_decrypt_arg {
52 	struct_group(inargs,
53 	bool zc;
54 	bool async;
55 	u8 tail;
56 	);
57 
58 	struct sk_buff *skb;
59 };
60 
61 struct tls_decrypt_ctx {
62 	struct sock *sk;
63 	u8 iv[MAX_IV_SIZE];
64 	u8 aad[TLS_MAX_AAD_SIZE];
65 	u8 tail;
66 	struct scatterlist sg[];
67 };
68 
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71 	WARN_ON_ONCE(err >= 0);
72 	/* sk->sk_err should contain a positive error code. */
73 	WRITE_ONCE(sk->sk_err, -err);
74 	/* Paired with smp_rmb() in tcp_poll() */
75 	smp_wmb();
76 	sk_error_report(sk);
77 }
78 
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80                      unsigned int recursion_level)
81 {
82         int start = skb_headlen(skb);
83         int i, chunk = start - offset;
84         struct sk_buff *frag_iter;
85         int elt = 0;
86 
87         if (unlikely(recursion_level >= 24))
88                 return -EMSGSIZE;
89 
90         if (chunk > 0) {
91                 if (chunk > len)
92                         chunk = len;
93                 elt++;
94                 len -= chunk;
95                 if (len == 0)
96                         return elt;
97                 offset += chunk;
98         }
99 
100         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101                 int end;
102 
103                 WARN_ON(start > offset + len);
104 
105                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106                 chunk = end - offset;
107                 if (chunk > 0) {
108                         if (chunk > len)
109                                 chunk = len;
110                         elt++;
111                         len -= chunk;
112                         if (len == 0)
113                                 return elt;
114                         offset += chunk;
115                 }
116                 start = end;
117         }
118 
119         if (unlikely(skb_has_frag_list(skb))) {
120                 skb_walk_frags(skb, frag_iter) {
121                         int end, ret;
122 
123                         WARN_ON(start > offset + len);
124 
125                         end = start + frag_iter->len;
126                         chunk = end - offset;
127                         if (chunk > 0) {
128                                 if (chunk > len)
129                                         chunk = len;
130                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
131                                                 recursion_level + 1);
132                                 if (unlikely(ret < 0))
133                                         return ret;
134                                 elt += ret;
135                                 len -= chunk;
136                                 if (len == 0)
137                                         return elt;
138                                 offset += chunk;
139                         }
140                         start = end;
141                 }
142         }
143         BUG_ON(len);
144         return elt;
145 }
146 
147 /* Return the number of scatterlist elements required to completely map the
148  * skb, or -EMSGSIZE if the recursion depth is exceeded.
149  */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152         return __skb_nsg(skb, offset, len, 0);
153 }
154 
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 			      struct tls_decrypt_arg *darg)
157 {
158 	struct strp_msg *rxm = strp_msg(skb);
159 	struct tls_msg *tlm = tls_msg(skb);
160 	int sub = 0;
161 
162 	/* Determine zero-padding length */
163 	if (prot->version == TLS_1_3_VERSION) {
164 		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 		char content_type = darg->zc ? darg->tail : 0;
166 		int err;
167 
168 		while (content_type == 0) {
169 			if (offset < prot->prepend_size)
170 				return -EBADMSG;
171 			err = skb_copy_bits(skb, rxm->offset + offset,
172 					    &content_type, 1);
173 			if (err)
174 				return err;
175 			if (content_type)
176 				break;
177 			sub++;
178 			offset--;
179 		}
180 		tlm->control = content_type;
181 	}
182 	return sub;
183 }
184 
185 static void tls_decrypt_done(void *data, int err)
186 {
187 	struct aead_request *aead_req = data;
188 	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 	struct scatterlist *sgout = aead_req->dst;
190 	struct scatterlist *sgin = aead_req->src;
191 	struct tls_sw_context_rx *ctx;
192 	struct tls_decrypt_ctx *dctx;
193 	struct tls_context *tls_ctx;
194 	struct scatterlist *sg;
195 	unsigned int pages;
196 	struct sock *sk;
197 	int aead_size;
198 
199 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 	dctx = (void *)((u8 *)aead_req + aead_size);
202 
203 	sk = dctx->sk;
204 	tls_ctx = tls_get_ctx(sk);
205 	ctx = tls_sw_ctx_rx(tls_ctx);
206 
207 	/* Propagate if there was an err */
208 	if (err) {
209 		if (err == -EBADMSG)
210 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 		ctx->async_wait.err = err;
212 		tls_err_abort(sk, err);
213 	}
214 
215 	/* Free the destination pages if skb was not decrypted inplace */
216 	if (sgout != sgin) {
217 		/* Skip the first S/G entry as it points to AAD */
218 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219 			if (!sg)
220 				break;
221 			put_page(sg_page(sg));
222 		}
223 	}
224 
225 	kfree(aead_req);
226 
227 	spin_lock_bh(&ctx->decrypt_compl_lock);
228 	if (!atomic_dec_return(&ctx->decrypt_pending))
229 		complete(&ctx->async_wait.completion);
230 	spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232 
233 static int tls_do_decryption(struct sock *sk,
234 			     struct scatterlist *sgin,
235 			     struct scatterlist *sgout,
236 			     char *iv_recv,
237 			     size_t data_len,
238 			     struct aead_request *aead_req,
239 			     struct tls_decrypt_arg *darg)
240 {
241 	struct tls_context *tls_ctx = tls_get_ctx(sk);
242 	struct tls_prot_info *prot = &tls_ctx->prot_info;
243 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244 	int ret;
245 
246 	aead_request_set_tfm(aead_req, ctx->aead_recv);
247 	aead_request_set_ad(aead_req, prot->aad_size);
248 	aead_request_set_crypt(aead_req, sgin, sgout,
249 			       data_len + prot->tag_size,
250 			       (u8 *)iv_recv);
251 
252 	if (darg->async) {
253 		aead_request_set_callback(aead_req,
254 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
255 					  tls_decrypt_done, aead_req);
256 		atomic_inc(&ctx->decrypt_pending);
257 	} else {
258 		aead_request_set_callback(aead_req,
259 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
260 					  crypto_req_done, &ctx->async_wait);
261 	}
262 
263 	ret = crypto_aead_decrypt(aead_req);
264 	if (ret == -EINPROGRESS) {
265 		if (darg->async)
266 			return 0;
267 
268 		ret = crypto_wait_req(ret, &ctx->async_wait);
269 	}
270 	darg->async = false;
271 
272 	return ret;
273 }
274 
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277 	struct tls_context *tls_ctx = tls_get_ctx(sk);
278 	struct tls_prot_info *prot = &tls_ctx->prot_info;
279 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 	struct tls_rec *rec = ctx->open_rec;
281 
282 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283 	if (target_size > 0)
284 		target_size += prot->overhead_size;
285 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287 
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290 	struct tls_context *tls_ctx = tls_get_ctx(sk);
291 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 	struct tls_rec *rec = ctx->open_rec;
293 	struct sk_msg *msg_en = &rec->msg_encrypted;
294 
295 	return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297 
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300 	struct tls_context *tls_ctx = tls_get_ctx(sk);
301 	struct tls_prot_info *prot = &tls_ctx->prot_info;
302 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 	struct tls_rec *rec = ctx->open_rec;
304 	struct sk_msg *msg_pl = &rec->msg_plaintext;
305 	struct sk_msg *msg_en = &rec->msg_encrypted;
306 	int skip, len;
307 
308 	/* We add page references worth len bytes from encrypted sg
309 	 * at the end of plaintext sg. It is guaranteed that msg_en
310 	 * has enough required room (ensured by caller).
311 	 */
312 	len = required - msg_pl->sg.size;
313 
314 	/* Skip initial bytes in msg_en's data to be able to use
315 	 * same offset of both plain and encrypted data.
316 	 */
317 	skip = prot->prepend_size + msg_pl->sg.size;
318 
319 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321 
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324 	struct tls_context *tls_ctx = tls_get_ctx(sk);
325 	struct tls_prot_info *prot = &tls_ctx->prot_info;
326 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 	struct sk_msg *msg_pl, *msg_en;
328 	struct tls_rec *rec;
329 	int mem_size;
330 
331 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332 
333 	rec = kzalloc(mem_size, sk->sk_allocation);
334 	if (!rec)
335 		return NULL;
336 
337 	msg_pl = &rec->msg_plaintext;
338 	msg_en = &rec->msg_encrypted;
339 
340 	sk_msg_init(msg_pl);
341 	sk_msg_init(msg_en);
342 
343 	sg_init_table(rec->sg_aead_in, 2);
344 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 	sg_unmark_end(&rec->sg_aead_in[1]);
346 
347 	sg_init_table(rec->sg_aead_out, 2);
348 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 	sg_unmark_end(&rec->sg_aead_out[1]);
350 
351 	rec->sk = sk;
352 
353 	return rec;
354 }
355 
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358 	sk_msg_free(sk, &rec->msg_encrypted);
359 	sk_msg_free(sk, &rec->msg_plaintext);
360 	kfree(rec);
361 }
362 
363 static void tls_free_open_rec(struct sock *sk)
364 {
365 	struct tls_context *tls_ctx = tls_get_ctx(sk);
366 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 	struct tls_rec *rec = ctx->open_rec;
368 
369 	if (rec) {
370 		tls_free_rec(sk, rec);
371 		ctx->open_rec = NULL;
372 	}
373 }
374 
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377 	struct tls_context *tls_ctx = tls_get_ctx(sk);
378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 	struct tls_rec *rec, *tmp;
380 	struct sk_msg *msg_en;
381 	int tx_flags, rc = 0;
382 
383 	if (tls_is_partially_sent_record(tls_ctx)) {
384 		rec = list_first_entry(&ctx->tx_list,
385 				       struct tls_rec, list);
386 
387 		if (flags == -1)
388 			tx_flags = rec->tx_flags;
389 		else
390 			tx_flags = flags;
391 
392 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393 		if (rc)
394 			goto tx_err;
395 
396 		/* Full record has been transmitted.
397 		 * Remove the head of tx_list
398 		 */
399 		list_del(&rec->list);
400 		sk_msg_free(sk, &rec->msg_plaintext);
401 		kfree(rec);
402 	}
403 
404 	/* Tx all ready records */
405 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 		if (READ_ONCE(rec->tx_ready)) {
407 			if (flags == -1)
408 				tx_flags = rec->tx_flags;
409 			else
410 				tx_flags = flags;
411 
412 			msg_en = &rec->msg_encrypted;
413 			rc = tls_push_sg(sk, tls_ctx,
414 					 &msg_en->sg.data[msg_en->sg.curr],
415 					 0, tx_flags);
416 			if (rc)
417 				goto tx_err;
418 
419 			list_del(&rec->list);
420 			sk_msg_free(sk, &rec->msg_plaintext);
421 			kfree(rec);
422 		} else {
423 			break;
424 		}
425 	}
426 
427 tx_err:
428 	if (rc < 0 && rc != -EAGAIN)
429 		tls_err_abort(sk, -EBADMSG);
430 
431 	return rc;
432 }
433 
434 static void tls_encrypt_done(void *data, int err)
435 {
436 	struct tls_sw_context_tx *ctx;
437 	struct tls_context *tls_ctx;
438 	struct tls_prot_info *prot;
439 	struct tls_rec *rec = data;
440 	struct scatterlist *sge;
441 	struct sk_msg *msg_en;
442 	bool ready = false;
443 	struct sock *sk;
444 	int pending;
445 
446 	msg_en = &rec->msg_encrypted;
447 
448 	sk = rec->sk;
449 	tls_ctx = tls_get_ctx(sk);
450 	prot = &tls_ctx->prot_info;
451 	ctx = tls_sw_ctx_tx(tls_ctx);
452 
453 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 	sge->offset -= prot->prepend_size;
455 	sge->length += prot->prepend_size;
456 
457 	/* Check if error is previously set on socket */
458 	if (err || sk->sk_err) {
459 		rec = NULL;
460 
461 		/* If err is already set on socket, return the same code */
462 		if (sk->sk_err) {
463 			ctx->async_wait.err = -sk->sk_err;
464 		} else {
465 			ctx->async_wait.err = err;
466 			tls_err_abort(sk, err);
467 		}
468 	}
469 
470 	if (rec) {
471 		struct tls_rec *first_rec;
472 
473 		/* Mark the record as ready for transmission */
474 		smp_store_mb(rec->tx_ready, true);
475 
476 		/* If received record is at head of tx_list, schedule tx */
477 		first_rec = list_first_entry(&ctx->tx_list,
478 					     struct tls_rec, list);
479 		if (rec == first_rec)
480 			ready = true;
481 	}
482 
483 	spin_lock_bh(&ctx->encrypt_compl_lock);
484 	pending = atomic_dec_return(&ctx->encrypt_pending);
485 
486 	if (!pending && ctx->async_notify)
487 		complete(&ctx->async_wait.completion);
488 	spin_unlock_bh(&ctx->encrypt_compl_lock);
489 
490 	if (!ready)
491 		return;
492 
493 	/* Schedule the transmission */
494 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 		schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497 
498 static int tls_do_encryption(struct sock *sk,
499 			     struct tls_context *tls_ctx,
500 			     struct tls_sw_context_tx *ctx,
501 			     struct aead_request *aead_req,
502 			     size_t data_len, u32 start)
503 {
504 	struct tls_prot_info *prot = &tls_ctx->prot_info;
505 	struct tls_rec *rec = ctx->open_rec;
506 	struct sk_msg *msg_en = &rec->msg_encrypted;
507 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 	int rc, iv_offset = 0;
509 
510 	/* For CCM based ciphers, first byte of IV is a constant */
511 	switch (prot->cipher_type) {
512 	case TLS_CIPHER_AES_CCM_128:
513 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514 		iv_offset = 1;
515 		break;
516 	case TLS_CIPHER_SM4_CCM:
517 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518 		iv_offset = 1;
519 		break;
520 	}
521 
522 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 	       prot->iv_size + prot->salt_size);
524 
525 	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 			    tls_ctx->tx.rec_seq);
527 
528 	sge->offset += prot->prepend_size;
529 	sge->length -= prot->prepend_size;
530 
531 	msg_en->sg.curr = start;
532 
533 	aead_request_set_tfm(aead_req, ctx->aead_send);
534 	aead_request_set_ad(aead_req, prot->aad_size);
535 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
536 			       rec->sg_aead_out,
537 			       data_len, rec->iv_data);
538 
539 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 				  tls_encrypt_done, rec);
541 
542 	/* Add the record in tx_list */
543 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 	atomic_inc(&ctx->encrypt_pending);
545 
546 	rc = crypto_aead_encrypt(aead_req);
547 	if (!rc || rc != -EINPROGRESS) {
548 		atomic_dec(&ctx->encrypt_pending);
549 		sge->offset -= prot->prepend_size;
550 		sge->length += prot->prepend_size;
551 	}
552 
553 	if (!rc) {
554 		WRITE_ONCE(rec->tx_ready, true);
555 	} else if (rc != -EINPROGRESS) {
556 		list_del(&rec->list);
557 		return rc;
558 	}
559 
560 	/* Unhook the record from context if encryption is not failure */
561 	ctx->open_rec = NULL;
562 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563 	return rc;
564 }
565 
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 				 struct tls_rec **to, struct sk_msg *msg_opl,
568 				 struct sk_msg *msg_oen, u32 split_point,
569 				 u32 tx_overhead_size, u32 *orig_end)
570 {
571 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 	struct scatterlist *sge, *osge, *nsge;
573 	u32 orig_size = msg_opl->sg.size;
574 	struct scatterlist tmp = { };
575 	struct sk_msg *msg_npl;
576 	struct tls_rec *new;
577 	int ret;
578 
579 	new = tls_get_rec(sk);
580 	if (!new)
581 		return -ENOMEM;
582 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 			   tx_overhead_size, 0);
584 	if (ret < 0) {
585 		tls_free_rec(sk, new);
586 		return ret;
587 	}
588 
589 	*orig_end = msg_opl->sg.end;
590 	i = msg_opl->sg.start;
591 	sge = sk_msg_elem(msg_opl, i);
592 	while (apply && sge->length) {
593 		if (sge->length > apply) {
594 			u32 len = sge->length - apply;
595 
596 			get_page(sg_page(sge));
597 			sg_set_page(&tmp, sg_page(sge), len,
598 				    sge->offset + apply);
599 			sge->length = apply;
600 			bytes += apply;
601 			apply = 0;
602 		} else {
603 			apply -= sge->length;
604 			bytes += sge->length;
605 		}
606 
607 		sk_msg_iter_var_next(i);
608 		if (i == msg_opl->sg.end)
609 			break;
610 		sge = sk_msg_elem(msg_opl, i);
611 	}
612 
613 	msg_opl->sg.end = i;
614 	msg_opl->sg.curr = i;
615 	msg_opl->sg.copybreak = 0;
616 	msg_opl->apply_bytes = 0;
617 	msg_opl->sg.size = bytes;
618 
619 	msg_npl = &new->msg_plaintext;
620 	msg_npl->apply_bytes = apply;
621 	msg_npl->sg.size = orig_size - bytes;
622 
623 	j = msg_npl->sg.start;
624 	nsge = sk_msg_elem(msg_npl, j);
625 	if (tmp.length) {
626 		memcpy(nsge, &tmp, sizeof(*nsge));
627 		sk_msg_iter_var_next(j);
628 		nsge = sk_msg_elem(msg_npl, j);
629 	}
630 
631 	osge = sk_msg_elem(msg_opl, i);
632 	while (osge->length) {
633 		memcpy(nsge, osge, sizeof(*nsge));
634 		sg_unmark_end(nsge);
635 		sk_msg_iter_var_next(i);
636 		sk_msg_iter_var_next(j);
637 		if (i == *orig_end)
638 			break;
639 		osge = sk_msg_elem(msg_opl, i);
640 		nsge = sk_msg_elem(msg_npl, j);
641 	}
642 
643 	msg_npl->sg.end = j;
644 	msg_npl->sg.curr = j;
645 	msg_npl->sg.copybreak = 0;
646 
647 	*to = new;
648 	return 0;
649 }
650 
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 				  struct tls_rec *from, u32 orig_end)
653 {
654 	struct sk_msg *msg_npl = &from->msg_plaintext;
655 	struct sk_msg *msg_opl = &to->msg_plaintext;
656 	struct scatterlist *osge, *nsge;
657 	u32 i, j;
658 
659 	i = msg_opl->sg.end;
660 	sk_msg_iter_var_prev(i);
661 	j = msg_npl->sg.start;
662 
663 	osge = sk_msg_elem(msg_opl, i);
664 	nsge = sk_msg_elem(msg_npl, j);
665 
666 	if (sg_page(osge) == sg_page(nsge) &&
667 	    osge->offset + osge->length == nsge->offset) {
668 		osge->length += nsge->length;
669 		put_page(sg_page(nsge));
670 	}
671 
672 	msg_opl->sg.end = orig_end;
673 	msg_opl->sg.curr = orig_end;
674 	msg_opl->sg.copybreak = 0;
675 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 	msg_opl->sg.size += msg_npl->sg.size;
677 
678 	sk_msg_free(sk, &to->msg_encrypted);
679 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680 
681 	kfree(from);
682 }
683 
684 static int tls_push_record(struct sock *sk, int flags,
685 			   unsigned char record_type)
686 {
687 	struct tls_context *tls_ctx = tls_get_ctx(sk);
688 	struct tls_prot_info *prot = &tls_ctx->prot_info;
689 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 	u32 i, split_point, orig_end;
692 	struct sk_msg *msg_pl, *msg_en;
693 	struct aead_request *req;
694 	bool split;
695 	int rc;
696 
697 	if (!rec)
698 		return 0;
699 
700 	msg_pl = &rec->msg_plaintext;
701 	msg_en = &rec->msg_encrypted;
702 
703 	split_point = msg_pl->apply_bytes;
704 	split = split_point && split_point < msg_pl->sg.size;
705 	if (unlikely((!split &&
706 		      msg_pl->sg.size +
707 		      prot->overhead_size > msg_en->sg.size) ||
708 		     (split &&
709 		      split_point +
710 		      prot->overhead_size > msg_en->sg.size))) {
711 		split = true;
712 		split_point = msg_en->sg.size;
713 	}
714 	if (split) {
715 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 					   split_point, prot->overhead_size,
717 					   &orig_end);
718 		if (rc < 0)
719 			return rc;
720 		/* This can happen if above tls_split_open_record allocates
721 		 * a single large encryption buffer instead of two smaller
722 		 * ones. In this case adjust pointers and continue without
723 		 * split.
724 		 */
725 		if (!msg_pl->sg.size) {
726 			tls_merge_open_record(sk, rec, tmp, orig_end);
727 			msg_pl = &rec->msg_plaintext;
728 			msg_en = &rec->msg_encrypted;
729 			split = false;
730 		}
731 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 			    prot->overhead_size);
733 	}
734 
735 	rec->tx_flags = flags;
736 	req = &rec->aead_req;
737 
738 	i = msg_pl->sg.end;
739 	sk_msg_iter_var_prev(i);
740 
741 	rec->content_type = record_type;
742 	if (prot->version == TLS_1_3_VERSION) {
743 		/* Add content type to end of message.  No padding added */
744 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 		sg_mark_end(&rec->sg_content_type);
746 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 			 &rec->sg_content_type);
748 	} else {
749 		sg_mark_end(sk_msg_elem(msg_pl, i));
750 	}
751 
752 	if (msg_pl->sg.end < msg_pl->sg.start) {
753 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755 			 msg_pl->sg.data);
756 	}
757 
758 	i = msg_pl->sg.start;
759 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760 
761 	i = msg_en->sg.end;
762 	sk_msg_iter_var_prev(i);
763 	sg_mark_end(sk_msg_elem(msg_en, i));
764 
765 	i = msg_en->sg.start;
766 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767 
768 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 		     tls_ctx->tx.rec_seq, record_type, prot);
770 
771 	tls_fill_prepend(tls_ctx,
772 			 page_address(sg_page(&msg_en->sg.data[i])) +
773 			 msg_en->sg.data[i].offset,
774 			 msg_pl->sg.size + prot->tail_size,
775 			 record_type);
776 
777 	tls_ctx->pending_open_record_frags = false;
778 
779 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 			       msg_pl->sg.size + prot->tail_size, i);
781 	if (rc < 0) {
782 		if (rc != -EINPROGRESS) {
783 			tls_err_abort(sk, -EBADMSG);
784 			if (split) {
785 				tls_ctx->pending_open_record_frags = true;
786 				tls_merge_open_record(sk, rec, tmp, orig_end);
787 			}
788 		}
789 		ctx->async_capable = 1;
790 		return rc;
791 	} else if (split) {
792 		msg_pl = &tmp->msg_plaintext;
793 		msg_en = &tmp->msg_encrypted;
794 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 		tls_ctx->pending_open_record_frags = true;
796 		ctx->open_rec = tmp;
797 	}
798 
799 	return tls_tx_records(sk, flags);
800 }
801 
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 			       bool full_record, u8 record_type,
804 			       ssize_t *copied, int flags)
805 {
806 	struct tls_context *tls_ctx = tls_get_ctx(sk);
807 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 	struct sk_msg msg_redir = { };
809 	struct sk_psock *psock;
810 	struct sock *sk_redir;
811 	struct tls_rec *rec;
812 	bool enospc, policy, redir_ingress;
813 	int err = 0, send;
814 	u32 delta = 0;
815 
816 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 	psock = sk_psock_get(sk);
818 	if (!psock || !policy) {
819 		err = tls_push_record(sk, flags, record_type);
820 		if (err && sk->sk_err == EBADMSG) {
821 			*copied -= sk_msg_free(sk, msg);
822 			tls_free_open_rec(sk);
823 			err = -sk->sk_err;
824 		}
825 		if (psock)
826 			sk_psock_put(sk, psock);
827 		return err;
828 	}
829 more_data:
830 	enospc = sk_msg_full(msg);
831 	if (psock->eval == __SK_NONE) {
832 		delta = msg->sg.size;
833 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 		delta -= msg->sg.size;
835 	}
836 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 	    !enospc && !full_record) {
838 		err = -ENOSPC;
839 		goto out_err;
840 	}
841 	msg->cork_bytes = 0;
842 	send = msg->sg.size;
843 	if (msg->apply_bytes && msg->apply_bytes < send)
844 		send = msg->apply_bytes;
845 
846 	switch (psock->eval) {
847 	case __SK_PASS:
848 		err = tls_push_record(sk, flags, record_type);
849 		if (err && sk->sk_err == EBADMSG) {
850 			*copied -= sk_msg_free(sk, msg);
851 			tls_free_open_rec(sk);
852 			err = -sk->sk_err;
853 			goto out_err;
854 		}
855 		break;
856 	case __SK_REDIRECT:
857 		redir_ingress = psock->redir_ingress;
858 		sk_redir = psock->sk_redir;
859 		memcpy(&msg_redir, msg, sizeof(*msg));
860 		if (msg->apply_bytes < send)
861 			msg->apply_bytes = 0;
862 		else
863 			msg->apply_bytes -= send;
864 		sk_msg_return_zero(sk, msg, send);
865 		msg->sg.size -= send;
866 		release_sock(sk);
867 		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 					    &msg_redir, send, flags);
869 		lock_sock(sk);
870 		if (err < 0) {
871 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
872 			msg->sg.size = 0;
873 		}
874 		if (msg->sg.size == 0)
875 			tls_free_open_rec(sk);
876 		break;
877 	case __SK_DROP:
878 	default:
879 		sk_msg_free_partial(sk, msg, send);
880 		if (msg->apply_bytes < send)
881 			msg->apply_bytes = 0;
882 		else
883 			msg->apply_bytes -= send;
884 		if (msg->sg.size == 0)
885 			tls_free_open_rec(sk);
886 		*copied -= (send + delta);
887 		err = -EACCES;
888 	}
889 
890 	if (likely(!err)) {
891 		bool reset_eval = !ctx->open_rec;
892 
893 		rec = ctx->open_rec;
894 		if (rec) {
895 			msg = &rec->msg_plaintext;
896 			if (!msg->apply_bytes)
897 				reset_eval = true;
898 		}
899 		if (reset_eval) {
900 			psock->eval = __SK_NONE;
901 			if (psock->sk_redir) {
902 				sock_put(psock->sk_redir);
903 				psock->sk_redir = NULL;
904 			}
905 		}
906 		if (rec)
907 			goto more_data;
908 	}
909  out_err:
910 	sk_psock_put(sk, psock);
911 	return err;
912 }
913 
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916 	struct tls_context *tls_ctx = tls_get_ctx(sk);
917 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 	struct tls_rec *rec = ctx->open_rec;
919 	struct sk_msg *msg_pl;
920 	size_t copied;
921 
922 	if (!rec)
923 		return 0;
924 
925 	msg_pl = &rec->msg_plaintext;
926 	copied = msg_pl->sg.size;
927 	if (!copied)
928 		return 0;
929 
930 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931 				   &copied, flags);
932 }
933 
934 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
935 {
936 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
937 	struct tls_context *tls_ctx = tls_get_ctx(sk);
938 	struct tls_prot_info *prot = &tls_ctx->prot_info;
939 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
940 	bool async_capable = ctx->async_capable;
941 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
942 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
943 	bool eor = !(msg->msg_flags & MSG_MORE);
944 	size_t try_to_copy;
945 	ssize_t copied = 0;
946 	struct sk_msg *msg_pl, *msg_en;
947 	struct tls_rec *rec;
948 	int required_size;
949 	int num_async = 0;
950 	bool full_record;
951 	int record_room;
952 	int num_zc = 0;
953 	int orig_size;
954 	int ret = 0;
955 	int pending;
956 
957 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
958 			       MSG_CMSG_COMPAT))
959 		return -EOPNOTSUPP;
960 
961 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
962 	if (ret)
963 		return ret;
964 	lock_sock(sk);
965 
966 	if (unlikely(msg->msg_controllen)) {
967 		ret = tls_process_cmsg(sk, msg, &record_type);
968 		if (ret) {
969 			if (ret == -EINPROGRESS)
970 				num_async++;
971 			else if (ret != -EAGAIN)
972 				goto send_end;
973 		}
974 	}
975 
976 	while (msg_data_left(msg)) {
977 		if (sk->sk_err) {
978 			ret = -sk->sk_err;
979 			goto send_end;
980 		}
981 
982 		if (ctx->open_rec)
983 			rec = ctx->open_rec;
984 		else
985 			rec = ctx->open_rec = tls_get_rec(sk);
986 		if (!rec) {
987 			ret = -ENOMEM;
988 			goto send_end;
989 		}
990 
991 		msg_pl = &rec->msg_plaintext;
992 		msg_en = &rec->msg_encrypted;
993 
994 		orig_size = msg_pl->sg.size;
995 		full_record = false;
996 		try_to_copy = msg_data_left(msg);
997 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
998 		if (try_to_copy >= record_room) {
999 			try_to_copy = record_room;
1000 			full_record = true;
1001 		}
1002 
1003 		required_size = msg_pl->sg.size + try_to_copy +
1004 				prot->overhead_size;
1005 
1006 		if (!sk_stream_memory_free(sk))
1007 			goto wait_for_sndbuf;
1008 
1009 alloc_encrypted:
1010 		ret = tls_alloc_encrypted_msg(sk, required_size);
1011 		if (ret) {
1012 			if (ret != -ENOSPC)
1013 				goto wait_for_memory;
1014 
1015 			/* Adjust try_to_copy according to the amount that was
1016 			 * actually allocated. The difference is due
1017 			 * to max sg elements limit
1018 			 */
1019 			try_to_copy -= required_size - msg_en->sg.size;
1020 			full_record = true;
1021 		}
1022 
1023 		if (!is_kvec && (full_record || eor) && !async_capable) {
1024 			u32 first = msg_pl->sg.end;
1025 
1026 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1027 							msg_pl, try_to_copy);
1028 			if (ret)
1029 				goto fallback_to_reg_send;
1030 
1031 			num_zc++;
1032 			copied += try_to_copy;
1033 
1034 			sk_msg_sg_copy_set(msg_pl, first);
1035 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1036 						  record_type, &copied,
1037 						  msg->msg_flags);
1038 			if (ret) {
1039 				if (ret == -EINPROGRESS)
1040 					num_async++;
1041 				else if (ret == -ENOMEM)
1042 					goto wait_for_memory;
1043 				else if (ctx->open_rec && ret == -ENOSPC)
1044 					goto rollback_iter;
1045 				else if (ret != -EAGAIN)
1046 					goto send_end;
1047 			}
1048 			continue;
1049 rollback_iter:
1050 			copied -= try_to_copy;
1051 			sk_msg_sg_copy_clear(msg_pl, first);
1052 			iov_iter_revert(&msg->msg_iter,
1053 					msg_pl->sg.size - orig_size);
1054 fallback_to_reg_send:
1055 			sk_msg_trim(sk, msg_pl, orig_size);
1056 		}
1057 
1058 		required_size = msg_pl->sg.size + try_to_copy;
1059 
1060 		ret = tls_clone_plaintext_msg(sk, required_size);
1061 		if (ret) {
1062 			if (ret != -ENOSPC)
1063 				goto send_end;
1064 
1065 			/* Adjust try_to_copy according to the amount that was
1066 			 * actually allocated. The difference is due
1067 			 * to max sg elements limit
1068 			 */
1069 			try_to_copy -= required_size - msg_pl->sg.size;
1070 			full_record = true;
1071 			sk_msg_trim(sk, msg_en,
1072 				    msg_pl->sg.size + prot->overhead_size);
1073 		}
1074 
1075 		if (try_to_copy) {
1076 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1077 						       msg_pl, try_to_copy);
1078 			if (ret < 0)
1079 				goto trim_sgl;
1080 		}
1081 
1082 		/* Open records defined only if successfully copied, otherwise
1083 		 * we would trim the sg but not reset the open record frags.
1084 		 */
1085 		tls_ctx->pending_open_record_frags = true;
1086 		copied += try_to_copy;
1087 		if (full_record || eor) {
1088 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1089 						  record_type, &copied,
1090 						  msg->msg_flags);
1091 			if (ret) {
1092 				if (ret == -EINPROGRESS)
1093 					num_async++;
1094 				else if (ret == -ENOMEM)
1095 					goto wait_for_memory;
1096 				else if (ret != -EAGAIN) {
1097 					if (ret == -ENOSPC)
1098 						ret = 0;
1099 					goto send_end;
1100 				}
1101 			}
1102 		}
1103 
1104 		continue;
1105 
1106 wait_for_sndbuf:
1107 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1108 wait_for_memory:
1109 		ret = sk_stream_wait_memory(sk, &timeo);
1110 		if (ret) {
1111 trim_sgl:
1112 			if (ctx->open_rec)
1113 				tls_trim_both_msgs(sk, orig_size);
1114 			goto send_end;
1115 		}
1116 
1117 		if (ctx->open_rec && msg_en->sg.size < required_size)
1118 			goto alloc_encrypted;
1119 	}
1120 
1121 	if (!num_async) {
1122 		goto send_end;
1123 	} else if (num_zc) {
1124 		/* Wait for pending encryptions to get completed */
1125 		spin_lock_bh(&ctx->encrypt_compl_lock);
1126 		ctx->async_notify = true;
1127 
1128 		pending = atomic_read(&ctx->encrypt_pending);
1129 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1130 		if (pending)
1131 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1132 		else
1133 			reinit_completion(&ctx->async_wait.completion);
1134 
1135 		/* There can be no concurrent accesses, since we have no
1136 		 * pending encrypt operations
1137 		 */
1138 		WRITE_ONCE(ctx->async_notify, false);
1139 
1140 		if (ctx->async_wait.err) {
1141 			ret = ctx->async_wait.err;
1142 			copied = 0;
1143 		}
1144 	}
1145 
1146 	/* Transmit if any encryptions have completed */
1147 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1148 		cancel_delayed_work(&ctx->tx_work.work);
1149 		tls_tx_records(sk, msg->msg_flags);
1150 	}
1151 
1152 send_end:
1153 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1154 
1155 	release_sock(sk);
1156 	mutex_unlock(&tls_ctx->tx_lock);
1157 	return copied > 0 ? copied : ret;
1158 }
1159 
1160 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1161 			      int offset, size_t size, int flags)
1162 {
1163 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1164 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1165 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1166 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1167 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1168 	struct sk_msg *msg_pl;
1169 	struct tls_rec *rec;
1170 	int num_async = 0;
1171 	ssize_t copied = 0;
1172 	bool full_record;
1173 	int record_room;
1174 	int ret = 0;
1175 	bool eor;
1176 
1177 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1178 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1179 
1180 	/* Call the sk_stream functions to manage the sndbuf mem. */
1181 	while (size > 0) {
1182 		size_t copy, required_size;
1183 
1184 		if (sk->sk_err) {
1185 			ret = -sk->sk_err;
1186 			goto sendpage_end;
1187 		}
1188 
1189 		if (ctx->open_rec)
1190 			rec = ctx->open_rec;
1191 		else
1192 			rec = ctx->open_rec = tls_get_rec(sk);
1193 		if (!rec) {
1194 			ret = -ENOMEM;
1195 			goto sendpage_end;
1196 		}
1197 
1198 		msg_pl = &rec->msg_plaintext;
1199 
1200 		full_record = false;
1201 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1202 		copy = size;
1203 		if (copy >= record_room) {
1204 			copy = record_room;
1205 			full_record = true;
1206 		}
1207 
1208 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1209 
1210 		if (!sk_stream_memory_free(sk))
1211 			goto wait_for_sndbuf;
1212 alloc_payload:
1213 		ret = tls_alloc_encrypted_msg(sk, required_size);
1214 		if (ret) {
1215 			if (ret != -ENOSPC)
1216 				goto wait_for_memory;
1217 
1218 			/* Adjust copy according to the amount that was
1219 			 * actually allocated. The difference is due
1220 			 * to max sg elements limit
1221 			 */
1222 			copy -= required_size - msg_pl->sg.size;
1223 			full_record = true;
1224 		}
1225 
1226 		sk_msg_page_add(msg_pl, page, copy, offset);
1227 		sk_mem_charge(sk, copy);
1228 
1229 		offset += copy;
1230 		size -= copy;
1231 		copied += copy;
1232 
1233 		tls_ctx->pending_open_record_frags = true;
1234 		if (full_record || eor || sk_msg_full(msg_pl)) {
1235 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1236 						  record_type, &copied, flags);
1237 			if (ret) {
1238 				if (ret == -EINPROGRESS)
1239 					num_async++;
1240 				else if (ret == -ENOMEM)
1241 					goto wait_for_memory;
1242 				else if (ret != -EAGAIN) {
1243 					if (ret == -ENOSPC)
1244 						ret = 0;
1245 					goto sendpage_end;
1246 				}
1247 			}
1248 		}
1249 		continue;
1250 wait_for_sndbuf:
1251 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1252 wait_for_memory:
1253 		ret = sk_stream_wait_memory(sk, &timeo);
1254 		if (ret) {
1255 			if (ctx->open_rec)
1256 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1257 			goto sendpage_end;
1258 		}
1259 
1260 		if (ctx->open_rec)
1261 			goto alloc_payload;
1262 	}
1263 
1264 	if (num_async) {
1265 		/* Transmit if any encryptions have completed */
1266 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1267 			cancel_delayed_work(&ctx->tx_work.work);
1268 			tls_tx_records(sk, flags);
1269 		}
1270 	}
1271 sendpage_end:
1272 	ret = sk_stream_error(sk, flags, ret);
1273 	return copied > 0 ? copied : ret;
1274 }
1275 
1276 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1277 			   int offset, size_t size, int flags)
1278 {
1279 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1280 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1281 		      MSG_NO_SHARED_FRAGS))
1282 		return -EOPNOTSUPP;
1283 
1284 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1285 }
1286 
1287 int tls_sw_sendpage(struct sock *sk, struct page *page,
1288 		    int offset, size_t size, int flags)
1289 {
1290 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1291 	int ret;
1292 
1293 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1294 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1295 		return -EOPNOTSUPP;
1296 
1297 	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1298 	if (ret)
1299 		return ret;
1300 	lock_sock(sk);
1301 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1302 	release_sock(sk);
1303 	mutex_unlock(&tls_ctx->tx_lock);
1304 	return ret;
1305 }
1306 
1307 static int
1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1309 		bool released)
1310 {
1311 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1312 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1314 	long timeo;
1315 
1316 	timeo = sock_rcvtimeo(sk, nonblock);
1317 
1318 	while (!tls_strp_msg_ready(ctx)) {
1319 		if (!sk_psock_queue_empty(psock))
1320 			return 0;
1321 
1322 		if (sk->sk_err)
1323 			return sock_error(sk);
1324 
1325 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1326 			tls_strp_check_rcv(&ctx->strp);
1327 			if (tls_strp_msg_ready(ctx))
1328 				break;
1329 		}
1330 
1331 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1332 			return 0;
1333 
1334 		if (sock_flag(sk, SOCK_DONE))
1335 			return 0;
1336 
1337 		if (!timeo)
1338 			return -EAGAIN;
1339 
1340 		released = true;
1341 		add_wait_queue(sk_sleep(sk), &wait);
1342 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1343 		sk_wait_event(sk, &timeo,
1344 			      tls_strp_msg_ready(ctx) ||
1345 			      !sk_psock_queue_empty(psock),
1346 			      &wait);
1347 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1348 		remove_wait_queue(sk_sleep(sk), &wait);
1349 
1350 		/* Handle signals */
1351 		if (signal_pending(current))
1352 			return sock_intr_errno(timeo);
1353 	}
1354 
1355 	tls_strp_msg_load(&ctx->strp, released);
1356 
1357 	return 1;
1358 }
1359 
1360 static int tls_setup_from_iter(struct iov_iter *from,
1361 			       int length, int *pages_used,
1362 			       struct scatterlist *to,
1363 			       int to_max_pages)
1364 {
1365 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1366 	struct page *pages[MAX_SKB_FRAGS];
1367 	unsigned int size = 0;
1368 	ssize_t copied, use;
1369 	size_t offset;
1370 
1371 	while (length > 0) {
1372 		i = 0;
1373 		maxpages = to_max_pages - num_elem;
1374 		if (maxpages == 0) {
1375 			rc = -EFAULT;
1376 			goto out;
1377 		}
1378 		copied = iov_iter_get_pages2(from, pages,
1379 					    length,
1380 					    maxpages, &offset);
1381 		if (copied <= 0) {
1382 			rc = -EFAULT;
1383 			goto out;
1384 		}
1385 
1386 		length -= copied;
1387 		size += copied;
1388 		while (copied) {
1389 			use = min_t(int, copied, PAGE_SIZE - offset);
1390 
1391 			sg_set_page(&to[num_elem],
1392 				    pages[i], use, offset);
1393 			sg_unmark_end(&to[num_elem]);
1394 			/* We do not uncharge memory from this API */
1395 
1396 			offset = 0;
1397 			copied -= use;
1398 
1399 			i++;
1400 			num_elem++;
1401 		}
1402 	}
1403 	/* Mark the end in the last sg entry if newly added */
1404 	if (num_elem > *pages_used)
1405 		sg_mark_end(&to[num_elem - 1]);
1406 out:
1407 	if (rc)
1408 		iov_iter_revert(from, size);
1409 	*pages_used = num_elem;
1410 
1411 	return rc;
1412 }
1413 
1414 static struct sk_buff *
1415 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1416 		     unsigned int full_len)
1417 {
1418 	struct strp_msg *clr_rxm;
1419 	struct sk_buff *clr_skb;
1420 	int err;
1421 
1422 	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1423 				       &err, sk->sk_allocation);
1424 	if (!clr_skb)
1425 		return NULL;
1426 
1427 	skb_copy_header(clr_skb, skb);
1428 	clr_skb->len = full_len;
1429 	clr_skb->data_len = full_len;
1430 
1431 	clr_rxm = strp_msg(clr_skb);
1432 	clr_rxm->offset = 0;
1433 
1434 	return clr_skb;
1435 }
1436 
1437 /* Decrypt handlers
1438  *
1439  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1440  * They must transform the darg in/out argument are as follows:
1441  *       |          Input            |         Output
1442  * -------------------------------------------------------------------
1443  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1444  * async | Async decrypt allowed     | Async crypto used / in progress
1445  *   skb |            *              | Output skb
1446  *
1447  * If ZC decryption was performed darg.skb will point to the input skb.
1448  */
1449 
1450 /* This function decrypts the input skb into either out_iov or in out_sg
1451  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1452  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1453  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1454  * NULL, then the decryption happens inside skb buffers itself, i.e.
1455  * zero-copy gets disabled and 'darg->zc' is updated.
1456  */
1457 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1458 			  struct scatterlist *out_sg,
1459 			  struct tls_decrypt_arg *darg)
1460 {
1461 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1462 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1463 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1464 	int n_sgin, n_sgout, aead_size, err, pages = 0;
1465 	struct sk_buff *skb = tls_strp_msg(ctx);
1466 	const struct strp_msg *rxm = strp_msg(skb);
1467 	const struct tls_msg *tlm = tls_msg(skb);
1468 	struct aead_request *aead_req;
1469 	struct scatterlist *sgin = NULL;
1470 	struct scatterlist *sgout = NULL;
1471 	const int data_len = rxm->full_len - prot->overhead_size;
1472 	int tail_pages = !!prot->tail_size;
1473 	struct tls_decrypt_ctx *dctx;
1474 	struct sk_buff *clear_skb;
1475 	int iv_offset = 0;
1476 	u8 *mem;
1477 
1478 	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1479 			 rxm->full_len - prot->prepend_size);
1480 	if (n_sgin < 1)
1481 		return n_sgin ?: -EBADMSG;
1482 
1483 	if (darg->zc && (out_iov || out_sg)) {
1484 		clear_skb = NULL;
1485 
1486 		if (out_iov)
1487 			n_sgout = 1 + tail_pages +
1488 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1489 		else
1490 			n_sgout = sg_nents(out_sg);
1491 	} else {
1492 		darg->zc = false;
1493 
1494 		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1495 		if (!clear_skb)
1496 			return -ENOMEM;
1497 
1498 		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1499 	}
1500 
1501 	/* Increment to accommodate AAD */
1502 	n_sgin = n_sgin + 1;
1503 
1504 	/* Allocate a single block of memory which contains
1505 	 *   aead_req || tls_decrypt_ctx.
1506 	 * Both structs are variable length.
1507 	 */
1508 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1509 	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1510 	mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1511 		      sk->sk_allocation);
1512 	if (!mem) {
1513 		err = -ENOMEM;
1514 		goto exit_free_skb;
1515 	}
1516 
1517 	/* Segment the allocated memory */
1518 	aead_req = (struct aead_request *)mem;
1519 	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1520 	dctx->sk = sk;
1521 	sgin = &dctx->sg[0];
1522 	sgout = &dctx->sg[n_sgin];
1523 
1524 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1525 	switch (prot->cipher_type) {
1526 	case TLS_CIPHER_AES_CCM_128:
1527 		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1528 		iv_offset = 1;
1529 		break;
1530 	case TLS_CIPHER_SM4_CCM:
1531 		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1532 		iv_offset = 1;
1533 		break;
1534 	}
1535 
1536 	/* Prepare IV */
1537 	if (prot->version == TLS_1_3_VERSION ||
1538 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1539 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1540 		       prot->iv_size + prot->salt_size);
1541 	} else {
1542 		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1543 				    &dctx->iv[iv_offset] + prot->salt_size,
1544 				    prot->iv_size);
1545 		if (err < 0)
1546 			goto exit_free;
1547 		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1548 	}
1549 	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1550 
1551 	/* Prepare AAD */
1552 	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1553 		     prot->tail_size,
1554 		     tls_ctx->rx.rec_seq, tlm->control, prot);
1555 
1556 	/* Prepare sgin */
1557 	sg_init_table(sgin, n_sgin);
1558 	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1559 	err = skb_to_sgvec(skb, &sgin[1],
1560 			   rxm->offset + prot->prepend_size,
1561 			   rxm->full_len - prot->prepend_size);
1562 	if (err < 0)
1563 		goto exit_free;
1564 
1565 	if (clear_skb) {
1566 		sg_init_table(sgout, n_sgout);
1567 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1568 
1569 		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1570 				   data_len + prot->tail_size);
1571 		if (err < 0)
1572 			goto exit_free;
1573 	} else if (out_iov) {
1574 		sg_init_table(sgout, n_sgout);
1575 		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1576 
1577 		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1578 					  (n_sgout - 1 - tail_pages));
1579 		if (err < 0)
1580 			goto exit_free_pages;
1581 
1582 		if (prot->tail_size) {
1583 			sg_unmark_end(&sgout[pages]);
1584 			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1585 				   prot->tail_size);
1586 			sg_mark_end(&sgout[pages + 1]);
1587 		}
1588 	} else if (out_sg) {
1589 		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1590 	}
1591 
1592 	/* Prepare and submit AEAD request */
1593 	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1594 				data_len + prot->tail_size, aead_req, darg);
1595 	if (err)
1596 		goto exit_free_pages;
1597 
1598 	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1599 	clear_skb = NULL;
1600 
1601 	if (unlikely(darg->async)) {
1602 		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1603 		if (err)
1604 			__skb_queue_tail(&ctx->async_hold, darg->skb);
1605 		return err;
1606 	}
1607 
1608 	if (prot->tail_size)
1609 		darg->tail = dctx->tail;
1610 
1611 exit_free_pages:
1612 	/* Release the pages in case iov was mapped to pages */
1613 	for (; pages > 0; pages--)
1614 		put_page(sg_page(&sgout[pages]));
1615 exit_free:
1616 	kfree(mem);
1617 exit_free_skb:
1618 	consume_skb(clear_skb);
1619 	return err;
1620 }
1621 
1622 static int
1623 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1624 	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1625 {
1626 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1627 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1628 	struct strp_msg *rxm;
1629 	int pad, err;
1630 
1631 	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1632 	if (err < 0) {
1633 		if (err == -EBADMSG)
1634 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1635 		return err;
1636 	}
1637 	/* keep going even for ->async, the code below is TLS 1.3 */
1638 
1639 	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1640 	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1641 		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1642 		darg->zc = false;
1643 		if (!darg->tail)
1644 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1645 		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1646 		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1647 	}
1648 
1649 	pad = tls_padding_length(prot, darg->skb, darg);
1650 	if (pad < 0) {
1651 		if (darg->skb != tls_strp_msg(ctx))
1652 			consume_skb(darg->skb);
1653 		return pad;
1654 	}
1655 
1656 	rxm = strp_msg(darg->skb);
1657 	rxm->full_len -= pad;
1658 
1659 	return 0;
1660 }
1661 
1662 static int
1663 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1664 		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1665 {
1666 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1667 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1668 	struct strp_msg *rxm;
1669 	int pad, err;
1670 
1671 	if (tls_ctx->rx_conf != TLS_HW)
1672 		return 0;
1673 
1674 	err = tls_device_decrypted(sk, tls_ctx);
1675 	if (err <= 0)
1676 		return err;
1677 
1678 	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1679 	if (pad < 0)
1680 		return pad;
1681 
1682 	darg->async = false;
1683 	darg->skb = tls_strp_msg(ctx);
1684 	/* ->zc downgrade check, in case TLS 1.3 gets here */
1685 	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1686 		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1687 
1688 	rxm = strp_msg(darg->skb);
1689 	rxm->full_len -= pad;
1690 
1691 	if (!darg->zc) {
1692 		/* Non-ZC case needs a real skb */
1693 		darg->skb = tls_strp_msg_detach(ctx);
1694 		if (!darg->skb)
1695 			return -ENOMEM;
1696 	} else {
1697 		unsigned int off, len;
1698 
1699 		/* In ZC case nobody cares about the output skb.
1700 		 * Just copy the data here. Note the skb is not fully trimmed.
1701 		 */
1702 		off = rxm->offset + prot->prepend_size;
1703 		len = rxm->full_len - prot->overhead_size;
1704 
1705 		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1706 		if (err)
1707 			return err;
1708 	}
1709 	return 1;
1710 }
1711 
1712 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1713 			     struct tls_decrypt_arg *darg)
1714 {
1715 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1716 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1717 	struct strp_msg *rxm;
1718 	int err;
1719 
1720 	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1721 	if (!err)
1722 		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1723 	if (err < 0)
1724 		return err;
1725 
1726 	rxm = strp_msg(darg->skb);
1727 	rxm->offset += prot->prepend_size;
1728 	rxm->full_len -= prot->overhead_size;
1729 	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1730 
1731 	return 0;
1732 }
1733 
1734 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1735 {
1736 	struct tls_decrypt_arg darg = { .zc = true, };
1737 
1738 	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1739 }
1740 
1741 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1742 				   u8 *control)
1743 {
1744 	int err;
1745 
1746 	if (!*control) {
1747 		*control = tlm->control;
1748 		if (!*control)
1749 			return -EBADMSG;
1750 
1751 		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1752 			       sizeof(*control), control);
1753 		if (*control != TLS_RECORD_TYPE_DATA) {
1754 			if (err || msg->msg_flags & MSG_CTRUNC)
1755 				return -EIO;
1756 		}
1757 	} else if (*control != tlm->control) {
1758 		return 0;
1759 	}
1760 
1761 	return 1;
1762 }
1763 
1764 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1765 {
1766 	tls_strp_msg_done(&ctx->strp);
1767 }
1768 
1769 /* This function traverses the rx_list in tls receive context to copies the
1770  * decrypted records into the buffer provided by caller zero copy is not
1771  * true. Further, the records are removed from the rx_list if it is not a peek
1772  * case and the record has been consumed completely.
1773  */
1774 static int process_rx_list(struct tls_sw_context_rx *ctx,
1775 			   struct msghdr *msg,
1776 			   u8 *control,
1777 			   size_t skip,
1778 			   size_t len,
1779 			   bool is_peek)
1780 {
1781 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1782 	struct tls_msg *tlm;
1783 	ssize_t copied = 0;
1784 	int err;
1785 
1786 	while (skip && skb) {
1787 		struct strp_msg *rxm = strp_msg(skb);
1788 		tlm = tls_msg(skb);
1789 
1790 		err = tls_record_content_type(msg, tlm, control);
1791 		if (err <= 0)
1792 			goto out;
1793 
1794 		if (skip < rxm->full_len)
1795 			break;
1796 
1797 		skip = skip - rxm->full_len;
1798 		skb = skb_peek_next(skb, &ctx->rx_list);
1799 	}
1800 
1801 	while (len && skb) {
1802 		struct sk_buff *next_skb;
1803 		struct strp_msg *rxm = strp_msg(skb);
1804 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1805 
1806 		tlm = tls_msg(skb);
1807 
1808 		err = tls_record_content_type(msg, tlm, control);
1809 		if (err <= 0)
1810 			goto out;
1811 
1812 		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1813 					    msg, chunk);
1814 		if (err < 0)
1815 			goto out;
1816 
1817 		len = len - chunk;
1818 		copied = copied + chunk;
1819 
1820 		/* Consume the data from record if it is non-peek case*/
1821 		if (!is_peek) {
1822 			rxm->offset = rxm->offset + chunk;
1823 			rxm->full_len = rxm->full_len - chunk;
1824 
1825 			/* Return if there is unconsumed data in the record */
1826 			if (rxm->full_len - skip)
1827 				break;
1828 		}
1829 
1830 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1831 		 * So from the 2nd record, 'skip' should be 0.
1832 		 */
1833 		skip = 0;
1834 
1835 		if (msg)
1836 			msg->msg_flags |= MSG_EOR;
1837 
1838 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1839 
1840 		if (!is_peek) {
1841 			__skb_unlink(skb, &ctx->rx_list);
1842 			consume_skb(skb);
1843 		}
1844 
1845 		skb = next_skb;
1846 	}
1847 	err = 0;
1848 
1849 out:
1850 	return copied ? : err;
1851 }
1852 
1853 static bool
1854 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1855 		       size_t len_left, size_t decrypted, ssize_t done,
1856 		       size_t *flushed_at)
1857 {
1858 	size_t max_rec;
1859 
1860 	if (len_left <= decrypted)
1861 		return false;
1862 
1863 	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1864 	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1865 		return false;
1866 
1867 	*flushed_at = done;
1868 	return sk_flush_backlog(sk);
1869 }
1870 
1871 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1872 			      bool nonblock)
1873 {
1874 	long timeo;
1875 	int err;
1876 
1877 	lock_sock(sk);
1878 
1879 	timeo = sock_rcvtimeo(sk, nonblock);
1880 
1881 	while (unlikely(ctx->reader_present)) {
1882 		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1883 
1884 		ctx->reader_contended = 1;
1885 
1886 		add_wait_queue(&ctx->wq, &wait);
1887 		sk_wait_event(sk, &timeo,
1888 			      !READ_ONCE(ctx->reader_present), &wait);
1889 		remove_wait_queue(&ctx->wq, &wait);
1890 
1891 		if (timeo <= 0) {
1892 			err = -EAGAIN;
1893 			goto err_unlock;
1894 		}
1895 		if (signal_pending(current)) {
1896 			err = sock_intr_errno(timeo);
1897 			goto err_unlock;
1898 		}
1899 	}
1900 
1901 	WRITE_ONCE(ctx->reader_present, 1);
1902 
1903 	return 0;
1904 
1905 err_unlock:
1906 	release_sock(sk);
1907 	return err;
1908 }
1909 
1910 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1911 {
1912 	if (unlikely(ctx->reader_contended)) {
1913 		if (wq_has_sleeper(&ctx->wq))
1914 			wake_up(&ctx->wq);
1915 		else
1916 			ctx->reader_contended = 0;
1917 
1918 		WARN_ON_ONCE(!ctx->reader_present);
1919 	}
1920 
1921 	WRITE_ONCE(ctx->reader_present, 0);
1922 	release_sock(sk);
1923 }
1924 
1925 int tls_sw_recvmsg(struct sock *sk,
1926 		   struct msghdr *msg,
1927 		   size_t len,
1928 		   int flags,
1929 		   int *addr_len)
1930 {
1931 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1932 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1933 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1934 	ssize_t decrypted = 0, async_copy_bytes = 0;
1935 	struct sk_psock *psock;
1936 	unsigned char control = 0;
1937 	size_t flushed_at = 0;
1938 	struct strp_msg *rxm;
1939 	struct tls_msg *tlm;
1940 	ssize_t copied = 0;
1941 	bool async = false;
1942 	int target, err;
1943 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1944 	bool is_peek = flags & MSG_PEEK;
1945 	bool released = true;
1946 	bool bpf_strp_enabled;
1947 	bool zc_capable;
1948 
1949 	if (unlikely(flags & MSG_ERRQUEUE))
1950 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1951 
1952 	psock = sk_psock_get(sk);
1953 	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1954 	if (err < 0)
1955 		return err;
1956 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1957 
1958 	/* If crypto failed the connection is broken */
1959 	err = ctx->async_wait.err;
1960 	if (err)
1961 		goto end;
1962 
1963 	/* Process pending decrypted records. It must be non-zero-copy */
1964 	err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1965 	if (err < 0)
1966 		goto end;
1967 
1968 	copied = err;
1969 	if (len <= copied)
1970 		goto end;
1971 
1972 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1973 	len = len - copied;
1974 
1975 	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1976 		ctx->zc_capable;
1977 	decrypted = 0;
1978 	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1979 		struct tls_decrypt_arg darg;
1980 		int to_decrypt, chunk;
1981 
1982 		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1983 				      released);
1984 		if (err <= 0) {
1985 			if (psock) {
1986 				chunk = sk_msg_recvmsg(sk, psock, msg, len,
1987 						       flags);
1988 				if (chunk > 0) {
1989 					decrypted += chunk;
1990 					len -= chunk;
1991 					continue;
1992 				}
1993 			}
1994 			goto recv_end;
1995 		}
1996 
1997 		memset(&darg.inargs, 0, sizeof(darg.inargs));
1998 
1999 		rxm = strp_msg(tls_strp_msg(ctx));
2000 		tlm = tls_msg(tls_strp_msg(ctx));
2001 
2002 		to_decrypt = rxm->full_len - prot->overhead_size;
2003 
2004 		if (zc_capable && to_decrypt <= len &&
2005 		    tlm->control == TLS_RECORD_TYPE_DATA)
2006 			darg.zc = true;
2007 
2008 		/* Do not use async mode if record is non-data */
2009 		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2010 			darg.async = ctx->async_capable;
2011 		else
2012 			darg.async = false;
2013 
2014 		err = tls_rx_one_record(sk, msg, &darg);
2015 		if (err < 0) {
2016 			tls_err_abort(sk, -EBADMSG);
2017 			goto recv_end;
2018 		}
2019 
2020 		async |= darg.async;
2021 
2022 		/* If the type of records being processed is not known yet,
2023 		 * set it to record type just dequeued. If it is already known,
2024 		 * but does not match the record type just dequeued, go to end.
2025 		 * We always get record type here since for tls1.2, record type
2026 		 * is known just after record is dequeued from stream parser.
2027 		 * For tls1.3, we disable async.
2028 		 */
2029 		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2030 		if (err <= 0) {
2031 			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2032 			tls_rx_rec_done(ctx);
2033 put_on_rx_list_err:
2034 			__skb_queue_tail(&ctx->rx_list, darg.skb);
2035 			goto recv_end;
2036 		}
2037 
2038 		/* periodically flush backlog, and feed strparser */
2039 		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2040 						  decrypted + copied,
2041 						  &flushed_at);
2042 
2043 		/* TLS 1.3 may have updated the length by more than overhead */
2044 		rxm = strp_msg(darg.skb);
2045 		chunk = rxm->full_len;
2046 		tls_rx_rec_done(ctx);
2047 
2048 		if (!darg.zc) {
2049 			bool partially_consumed = chunk > len;
2050 			struct sk_buff *skb = darg.skb;
2051 
2052 			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2053 
2054 			if (async) {
2055 				/* TLS 1.2-only, to_decrypt must be text len */
2056 				chunk = min_t(int, to_decrypt, len);
2057 				async_copy_bytes += chunk;
2058 put_on_rx_list:
2059 				decrypted += chunk;
2060 				len -= chunk;
2061 				__skb_queue_tail(&ctx->rx_list, skb);
2062 				continue;
2063 			}
2064 
2065 			if (bpf_strp_enabled) {
2066 				released = true;
2067 				err = sk_psock_tls_strp_read(psock, skb);
2068 				if (err != __SK_PASS) {
2069 					rxm->offset = rxm->offset + rxm->full_len;
2070 					rxm->full_len = 0;
2071 					if (err == __SK_DROP)
2072 						consume_skb(skb);
2073 					continue;
2074 				}
2075 			}
2076 
2077 			if (partially_consumed)
2078 				chunk = len;
2079 
2080 			err = skb_copy_datagram_msg(skb, rxm->offset,
2081 						    msg, chunk);
2082 			if (err < 0)
2083 				goto put_on_rx_list_err;
2084 
2085 			if (is_peek)
2086 				goto put_on_rx_list;
2087 
2088 			if (partially_consumed) {
2089 				rxm->offset += chunk;
2090 				rxm->full_len -= chunk;
2091 				goto put_on_rx_list;
2092 			}
2093 
2094 			consume_skb(skb);
2095 		}
2096 
2097 		decrypted += chunk;
2098 		len -= chunk;
2099 
2100 		/* Return full control message to userspace before trying
2101 		 * to parse another message type
2102 		 */
2103 		msg->msg_flags |= MSG_EOR;
2104 		if (control != TLS_RECORD_TYPE_DATA)
2105 			break;
2106 	}
2107 
2108 recv_end:
2109 	if (async) {
2110 		int ret, pending;
2111 
2112 		/* Wait for all previously submitted records to be decrypted */
2113 		spin_lock_bh(&ctx->decrypt_compl_lock);
2114 		reinit_completion(&ctx->async_wait.completion);
2115 		pending = atomic_read(&ctx->decrypt_pending);
2116 		spin_unlock_bh(&ctx->decrypt_compl_lock);
2117 		ret = 0;
2118 		if (pending)
2119 			ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2120 		__skb_queue_purge(&ctx->async_hold);
2121 
2122 		if (ret) {
2123 			if (err >= 0 || err == -EINPROGRESS)
2124 				err = ret;
2125 			decrypted = 0;
2126 			goto end;
2127 		}
2128 
2129 		/* Drain records from the rx_list & copy if required */
2130 		if (is_peek || is_kvec)
2131 			err = process_rx_list(ctx, msg, &control, copied,
2132 					      decrypted, is_peek);
2133 		else
2134 			err = process_rx_list(ctx, msg, &control, 0,
2135 					      async_copy_bytes, is_peek);
2136 		decrypted += max(err, 0);
2137 	}
2138 
2139 	copied += decrypted;
2140 
2141 end:
2142 	tls_rx_reader_unlock(sk, ctx);
2143 	if (psock)
2144 		sk_psock_put(sk, psock);
2145 	return copied ? : err;
2146 }
2147 
2148 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2149 			   struct pipe_inode_info *pipe,
2150 			   size_t len, unsigned int flags)
2151 {
2152 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2153 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2154 	struct strp_msg *rxm = NULL;
2155 	struct sock *sk = sock->sk;
2156 	struct tls_msg *tlm;
2157 	struct sk_buff *skb;
2158 	ssize_t copied = 0;
2159 	int chunk;
2160 	int err;
2161 
2162 	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2163 	if (err < 0)
2164 		return err;
2165 
2166 	if (!skb_queue_empty(&ctx->rx_list)) {
2167 		skb = __skb_dequeue(&ctx->rx_list);
2168 	} else {
2169 		struct tls_decrypt_arg darg;
2170 
2171 		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2172 				      true);
2173 		if (err <= 0)
2174 			goto splice_read_end;
2175 
2176 		memset(&darg.inargs, 0, sizeof(darg.inargs));
2177 
2178 		err = tls_rx_one_record(sk, NULL, &darg);
2179 		if (err < 0) {
2180 			tls_err_abort(sk, -EBADMSG);
2181 			goto splice_read_end;
2182 		}
2183 
2184 		tls_rx_rec_done(ctx);
2185 		skb = darg.skb;
2186 	}
2187 
2188 	rxm = strp_msg(skb);
2189 	tlm = tls_msg(skb);
2190 
2191 	/* splice does not support reading control messages */
2192 	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2193 		err = -EINVAL;
2194 		goto splice_requeue;
2195 	}
2196 
2197 	chunk = min_t(unsigned int, rxm->full_len, len);
2198 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2199 	if (copied < 0)
2200 		goto splice_requeue;
2201 
2202 	if (chunk < rxm->full_len) {
2203 		rxm->offset += len;
2204 		rxm->full_len -= len;
2205 		goto splice_requeue;
2206 	}
2207 
2208 	consume_skb(skb);
2209 
2210 splice_read_end:
2211 	tls_rx_reader_unlock(sk, ctx);
2212 	return copied ? : err;
2213 
2214 splice_requeue:
2215 	__skb_queue_head(&ctx->rx_list, skb);
2216 	goto splice_read_end;
2217 }
2218 
2219 bool tls_sw_sock_is_readable(struct sock *sk)
2220 {
2221 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2222 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2223 	bool ingress_empty = true;
2224 	struct sk_psock *psock;
2225 
2226 	rcu_read_lock();
2227 	psock = sk_psock(sk);
2228 	if (psock)
2229 		ingress_empty = list_empty(&psock->ingress_msg);
2230 	rcu_read_unlock();
2231 
2232 	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2233 		!skb_queue_empty(&ctx->rx_list);
2234 }
2235 
2236 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2237 {
2238 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2239 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2240 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2241 	size_t cipher_overhead;
2242 	size_t data_len = 0;
2243 	int ret;
2244 
2245 	/* Verify that we have a full TLS header, or wait for more data */
2246 	if (strp->stm.offset + prot->prepend_size > skb->len)
2247 		return 0;
2248 
2249 	/* Sanity-check size of on-stack buffer. */
2250 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2251 		ret = -EINVAL;
2252 		goto read_failure;
2253 	}
2254 
2255 	/* Linearize header to local buffer */
2256 	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2257 	if (ret < 0)
2258 		goto read_failure;
2259 
2260 	strp->mark = header[0];
2261 
2262 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2263 
2264 	cipher_overhead = prot->tag_size;
2265 	if (prot->version != TLS_1_3_VERSION &&
2266 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2267 		cipher_overhead += prot->iv_size;
2268 
2269 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2270 	    prot->tail_size) {
2271 		ret = -EMSGSIZE;
2272 		goto read_failure;
2273 	}
2274 	if (data_len < cipher_overhead) {
2275 		ret = -EBADMSG;
2276 		goto read_failure;
2277 	}
2278 
2279 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2280 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2281 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2282 		ret = -EINVAL;
2283 		goto read_failure;
2284 	}
2285 
2286 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2287 				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2288 	return data_len + TLS_HEADER_SIZE;
2289 
2290 read_failure:
2291 	tls_err_abort(strp->sk, ret);
2292 
2293 	return ret;
2294 }
2295 
2296 void tls_rx_msg_ready(struct tls_strparser *strp)
2297 {
2298 	struct tls_sw_context_rx *ctx;
2299 
2300 	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2301 	ctx->saved_data_ready(strp->sk);
2302 }
2303 
2304 static void tls_data_ready(struct sock *sk)
2305 {
2306 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2307 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2308 	struct sk_psock *psock;
2309 	gfp_t alloc_save;
2310 
2311 	trace_sk_data_ready(sk);
2312 
2313 	alloc_save = sk->sk_allocation;
2314 	sk->sk_allocation = GFP_ATOMIC;
2315 	tls_strp_data_ready(&ctx->strp);
2316 	sk->sk_allocation = alloc_save;
2317 
2318 	psock = sk_psock_get(sk);
2319 	if (psock) {
2320 		if (!list_empty(&psock->ingress_msg))
2321 			ctx->saved_data_ready(sk);
2322 		sk_psock_put(sk, psock);
2323 	}
2324 }
2325 
2326 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2327 {
2328 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2329 
2330 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2331 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2332 	cancel_delayed_work_sync(&ctx->tx_work.work);
2333 }
2334 
2335 void tls_sw_release_resources_tx(struct sock *sk)
2336 {
2337 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2338 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2339 	struct tls_rec *rec, *tmp;
2340 	int pending;
2341 
2342 	/* Wait for any pending async encryptions to complete */
2343 	spin_lock_bh(&ctx->encrypt_compl_lock);
2344 	ctx->async_notify = true;
2345 	pending = atomic_read(&ctx->encrypt_pending);
2346 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2347 
2348 	if (pending)
2349 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2350 
2351 	tls_tx_records(sk, -1);
2352 
2353 	/* Free up un-sent records in tx_list. First, free
2354 	 * the partially sent record if any at head of tx_list.
2355 	 */
2356 	if (tls_ctx->partially_sent_record) {
2357 		tls_free_partial_record(sk, tls_ctx);
2358 		rec = list_first_entry(&ctx->tx_list,
2359 				       struct tls_rec, list);
2360 		list_del(&rec->list);
2361 		sk_msg_free(sk, &rec->msg_plaintext);
2362 		kfree(rec);
2363 	}
2364 
2365 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2366 		list_del(&rec->list);
2367 		sk_msg_free(sk, &rec->msg_encrypted);
2368 		sk_msg_free(sk, &rec->msg_plaintext);
2369 		kfree(rec);
2370 	}
2371 
2372 	crypto_free_aead(ctx->aead_send);
2373 	tls_free_open_rec(sk);
2374 }
2375 
2376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2377 {
2378 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2379 
2380 	kfree(ctx);
2381 }
2382 
2383 void tls_sw_release_resources_rx(struct sock *sk)
2384 {
2385 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2386 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2387 
2388 	kfree(tls_ctx->rx.rec_seq);
2389 	kfree(tls_ctx->rx.iv);
2390 
2391 	if (ctx->aead_recv) {
2392 		__skb_queue_purge(&ctx->rx_list);
2393 		crypto_free_aead(ctx->aead_recv);
2394 		tls_strp_stop(&ctx->strp);
2395 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2396 		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2397 		 * never swapped.
2398 		 */
2399 		if (ctx->saved_data_ready) {
2400 			write_lock_bh(&sk->sk_callback_lock);
2401 			sk->sk_data_ready = ctx->saved_data_ready;
2402 			write_unlock_bh(&sk->sk_callback_lock);
2403 		}
2404 	}
2405 }
2406 
2407 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2408 {
2409 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2410 
2411 	tls_strp_done(&ctx->strp);
2412 }
2413 
2414 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2415 {
2416 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2417 
2418 	kfree(ctx);
2419 }
2420 
2421 void tls_sw_free_resources_rx(struct sock *sk)
2422 {
2423 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2424 
2425 	tls_sw_release_resources_rx(sk);
2426 	tls_sw_free_ctx_rx(tls_ctx);
2427 }
2428 
2429 /* The work handler to transmitt the encrypted records in tx_list */
2430 static void tx_work_handler(struct work_struct *work)
2431 {
2432 	struct delayed_work *delayed_work = to_delayed_work(work);
2433 	struct tx_work *tx_work = container_of(delayed_work,
2434 					       struct tx_work, work);
2435 	struct sock *sk = tx_work->sk;
2436 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2437 	struct tls_sw_context_tx *ctx;
2438 
2439 	if (unlikely(!tls_ctx))
2440 		return;
2441 
2442 	ctx = tls_sw_ctx_tx(tls_ctx);
2443 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2444 		return;
2445 
2446 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2447 		return;
2448 
2449 	if (mutex_trylock(&tls_ctx->tx_lock)) {
2450 		lock_sock(sk);
2451 		tls_tx_records(sk, -1);
2452 		release_sock(sk);
2453 		mutex_unlock(&tls_ctx->tx_lock);
2454 	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2455 		/* Someone is holding the tx_lock, they will likely run Tx
2456 		 * and cancel the work on their way out of the lock section.
2457 		 * Schedule a long delay just in case.
2458 		 */
2459 		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2460 	}
2461 }
2462 
2463 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2464 {
2465 	struct tls_rec *rec;
2466 
2467 	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2468 	if (!rec)
2469 		return false;
2470 
2471 	return READ_ONCE(rec->tx_ready);
2472 }
2473 
2474 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2475 {
2476 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2477 
2478 	/* Schedule the transmission if tx list is ready */
2479 	if (tls_is_tx_ready(tx_ctx) &&
2480 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2481 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2482 }
2483 
2484 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2485 {
2486 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2487 
2488 	write_lock_bh(&sk->sk_callback_lock);
2489 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2490 	sk->sk_data_ready = tls_data_ready;
2491 	write_unlock_bh(&sk->sk_callback_lock);
2492 }
2493 
2494 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2495 {
2496 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2497 
2498 	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2499 		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2500 }
2501 
2502 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2503 {
2504 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2505 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2506 	struct tls_crypto_info *crypto_info;
2507 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2508 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2509 	struct cipher_context *cctx;
2510 	struct crypto_aead **aead;
2511 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2512 	struct crypto_tfm *tfm;
2513 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2514 	size_t keysize;
2515 	int rc = 0;
2516 
2517 	if (!ctx) {
2518 		rc = -EINVAL;
2519 		goto out;
2520 	}
2521 
2522 	if (tx) {
2523 		if (!ctx->priv_ctx_tx) {
2524 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2525 			if (!sw_ctx_tx) {
2526 				rc = -ENOMEM;
2527 				goto out;
2528 			}
2529 			ctx->priv_ctx_tx = sw_ctx_tx;
2530 		} else {
2531 			sw_ctx_tx =
2532 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2533 		}
2534 	} else {
2535 		if (!ctx->priv_ctx_rx) {
2536 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2537 			if (!sw_ctx_rx) {
2538 				rc = -ENOMEM;
2539 				goto out;
2540 			}
2541 			ctx->priv_ctx_rx = sw_ctx_rx;
2542 		} else {
2543 			sw_ctx_rx =
2544 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2545 		}
2546 	}
2547 
2548 	if (tx) {
2549 		crypto_init_wait(&sw_ctx_tx->async_wait);
2550 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2551 		crypto_info = &ctx->crypto_send.info;
2552 		cctx = &ctx->tx;
2553 		aead = &sw_ctx_tx->aead_send;
2554 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2555 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2556 		sw_ctx_tx->tx_work.sk = sk;
2557 	} else {
2558 		crypto_init_wait(&sw_ctx_rx->async_wait);
2559 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2560 		init_waitqueue_head(&sw_ctx_rx->wq);
2561 		crypto_info = &ctx->crypto_recv.info;
2562 		cctx = &ctx->rx;
2563 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2564 		skb_queue_head_init(&sw_ctx_rx->async_hold);
2565 		aead = &sw_ctx_rx->aead_recv;
2566 	}
2567 
2568 	switch (crypto_info->cipher_type) {
2569 	case TLS_CIPHER_AES_GCM_128: {
2570 		struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2571 
2572 		gcm_128_info = (void *)crypto_info;
2573 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2574 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2575 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2576 		iv = gcm_128_info->iv;
2577 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2578 		rec_seq = gcm_128_info->rec_seq;
2579 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2580 		key = gcm_128_info->key;
2581 		salt = gcm_128_info->salt;
2582 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2583 		cipher_name = "gcm(aes)";
2584 		break;
2585 	}
2586 	case TLS_CIPHER_AES_GCM_256: {
2587 		struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2588 
2589 		gcm_256_info = (void *)crypto_info;
2590 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2591 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2592 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2593 		iv = gcm_256_info->iv;
2594 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2595 		rec_seq = gcm_256_info->rec_seq;
2596 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2597 		key = gcm_256_info->key;
2598 		salt = gcm_256_info->salt;
2599 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2600 		cipher_name = "gcm(aes)";
2601 		break;
2602 	}
2603 	case TLS_CIPHER_AES_CCM_128: {
2604 		struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2605 
2606 		ccm_128_info = (void *)crypto_info;
2607 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2608 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2609 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2610 		iv = ccm_128_info->iv;
2611 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2612 		rec_seq = ccm_128_info->rec_seq;
2613 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2614 		key = ccm_128_info->key;
2615 		salt = ccm_128_info->salt;
2616 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2617 		cipher_name = "ccm(aes)";
2618 		break;
2619 	}
2620 	case TLS_CIPHER_CHACHA20_POLY1305: {
2621 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2622 
2623 		chacha20_poly1305_info = (void *)crypto_info;
2624 		nonce_size = 0;
2625 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2626 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2627 		iv = chacha20_poly1305_info->iv;
2628 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2629 		rec_seq = chacha20_poly1305_info->rec_seq;
2630 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2631 		key = chacha20_poly1305_info->key;
2632 		salt = chacha20_poly1305_info->salt;
2633 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2634 		cipher_name = "rfc7539(chacha20,poly1305)";
2635 		break;
2636 	}
2637 	case TLS_CIPHER_SM4_GCM: {
2638 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2639 
2640 		sm4_gcm_info = (void *)crypto_info;
2641 		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2642 		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2643 		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2644 		iv = sm4_gcm_info->iv;
2645 		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2646 		rec_seq = sm4_gcm_info->rec_seq;
2647 		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2648 		key = sm4_gcm_info->key;
2649 		salt = sm4_gcm_info->salt;
2650 		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2651 		cipher_name = "gcm(sm4)";
2652 		break;
2653 	}
2654 	case TLS_CIPHER_SM4_CCM: {
2655 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2656 
2657 		sm4_ccm_info = (void *)crypto_info;
2658 		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2659 		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2660 		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2661 		iv = sm4_ccm_info->iv;
2662 		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2663 		rec_seq = sm4_ccm_info->rec_seq;
2664 		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2665 		key = sm4_ccm_info->key;
2666 		salt = sm4_ccm_info->salt;
2667 		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2668 		cipher_name = "ccm(sm4)";
2669 		break;
2670 	}
2671 	case TLS_CIPHER_ARIA_GCM_128: {
2672 		struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2673 
2674 		aria_gcm_128_info = (void *)crypto_info;
2675 		nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2676 		tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2677 		iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2678 		iv = aria_gcm_128_info->iv;
2679 		rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2680 		rec_seq = aria_gcm_128_info->rec_seq;
2681 		keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2682 		key = aria_gcm_128_info->key;
2683 		salt = aria_gcm_128_info->salt;
2684 		salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2685 		cipher_name = "gcm(aria)";
2686 		break;
2687 	}
2688 	case TLS_CIPHER_ARIA_GCM_256: {
2689 		struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2690 
2691 		gcm_256_info = (void *)crypto_info;
2692 		nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2693 		tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2694 		iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2695 		iv = gcm_256_info->iv;
2696 		rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2697 		rec_seq = gcm_256_info->rec_seq;
2698 		keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2699 		key = gcm_256_info->key;
2700 		salt = gcm_256_info->salt;
2701 		salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2702 		cipher_name = "gcm(aria)";
2703 		break;
2704 	}
2705 	default:
2706 		rc = -EINVAL;
2707 		goto free_priv;
2708 	}
2709 
2710 	if (crypto_info->version == TLS_1_3_VERSION) {
2711 		nonce_size = 0;
2712 		prot->aad_size = TLS_HEADER_SIZE;
2713 		prot->tail_size = 1;
2714 	} else {
2715 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2716 		prot->tail_size = 0;
2717 	}
2718 
2719 	/* Sanity-check the sizes for stack allocations. */
2720 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2721 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2722 	    prot->aad_size > TLS_MAX_AAD_SIZE) {
2723 		rc = -EINVAL;
2724 		goto free_priv;
2725 	}
2726 
2727 	prot->version = crypto_info->version;
2728 	prot->cipher_type = crypto_info->cipher_type;
2729 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2730 	prot->tag_size = tag_size;
2731 	prot->overhead_size = prot->prepend_size +
2732 			      prot->tag_size + prot->tail_size;
2733 	prot->iv_size = iv_size;
2734 	prot->salt_size = salt_size;
2735 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2736 	if (!cctx->iv) {
2737 		rc = -ENOMEM;
2738 		goto free_priv;
2739 	}
2740 	/* Note: 128 & 256 bit salt are the same size */
2741 	prot->rec_seq_size = rec_seq_size;
2742 	memcpy(cctx->iv, salt, salt_size);
2743 	memcpy(cctx->iv + salt_size, iv, iv_size);
2744 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2745 	if (!cctx->rec_seq) {
2746 		rc = -ENOMEM;
2747 		goto free_iv;
2748 	}
2749 
2750 	if (!*aead) {
2751 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2752 		if (IS_ERR(*aead)) {
2753 			rc = PTR_ERR(*aead);
2754 			*aead = NULL;
2755 			goto free_rec_seq;
2756 		}
2757 	}
2758 
2759 	ctx->push_pending_record = tls_sw_push_pending_record;
2760 
2761 	rc = crypto_aead_setkey(*aead, key, keysize);
2762 
2763 	if (rc)
2764 		goto free_aead;
2765 
2766 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2767 	if (rc)
2768 		goto free_aead;
2769 
2770 	if (sw_ctx_rx) {
2771 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2772 
2773 		tls_update_rx_zc_capable(ctx);
2774 		sw_ctx_rx->async_capable =
2775 			crypto_info->version != TLS_1_3_VERSION &&
2776 			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2777 
2778 		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2779 		if (rc)
2780 			goto free_aead;
2781 	}
2782 
2783 	goto out;
2784 
2785 free_aead:
2786 	crypto_free_aead(*aead);
2787 	*aead = NULL;
2788 free_rec_seq:
2789 	kfree(cctx->rec_seq);
2790 	cctx->rec_seq = NULL;
2791 free_iv:
2792 	kfree(cctx->iv);
2793 	cctx->iv = NULL;
2794 free_priv:
2795 	if (tx) {
2796 		kfree(ctx->priv_ctx_tx);
2797 		ctx->priv_ctx_tx = NULL;
2798 	} else {
2799 		kfree(ctx->priv_ctx_rx);
2800 		ctx->priv_ctx_rx = NULL;
2801 	}
2802 out:
2803 	return rc;
2804 }
2805