xref: /openbmc/linux/net/tls/tls_sw.c (revision 3a2699cf)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43 
44 #include <net/strparser.h>
45 #include <net/tls.h>
46 
47 noinline void tls_err_abort(struct sock *sk, int err)
48 {
49 	WARN_ON_ONCE(err >= 0);
50 	/* sk->sk_err should contain a positive error code. */
51 	sk->sk_err = -err;
52 	sk_error_report(sk);
53 }
54 
55 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56                      unsigned int recursion_level)
57 {
58         int start = skb_headlen(skb);
59         int i, chunk = start - offset;
60         struct sk_buff *frag_iter;
61         int elt = 0;
62 
63         if (unlikely(recursion_level >= 24))
64                 return -EMSGSIZE;
65 
66         if (chunk > 0) {
67                 if (chunk > len)
68                         chunk = len;
69                 elt++;
70                 len -= chunk;
71                 if (len == 0)
72                         return elt;
73                 offset += chunk;
74         }
75 
76         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77                 int end;
78 
79                 WARN_ON(start > offset + len);
80 
81                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82                 chunk = end - offset;
83                 if (chunk > 0) {
84                         if (chunk > len)
85                                 chunk = len;
86                         elt++;
87                         len -= chunk;
88                         if (len == 0)
89                                 return elt;
90                         offset += chunk;
91                 }
92                 start = end;
93         }
94 
95         if (unlikely(skb_has_frag_list(skb))) {
96                 skb_walk_frags(skb, frag_iter) {
97                         int end, ret;
98 
99                         WARN_ON(start > offset + len);
100 
101                         end = start + frag_iter->len;
102                         chunk = end - offset;
103                         if (chunk > 0) {
104                                 if (chunk > len)
105                                         chunk = len;
106                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
107                                                 recursion_level + 1);
108                                 if (unlikely(ret < 0))
109                                         return ret;
110                                 elt += ret;
111                                 len -= chunk;
112                                 if (len == 0)
113                                         return elt;
114                                 offset += chunk;
115                         }
116                         start = end;
117                 }
118         }
119         BUG_ON(len);
120         return elt;
121 }
122 
123 /* Return the number of scatterlist elements required to completely map the
124  * skb, or -EMSGSIZE if the recursion depth is exceeded.
125  */
126 static int skb_nsg(struct sk_buff *skb, int offset, int len)
127 {
128         return __skb_nsg(skb, offset, len, 0);
129 }
130 
131 static int padding_length(struct tls_sw_context_rx *ctx,
132 			  struct tls_prot_info *prot, struct sk_buff *skb)
133 {
134 	struct strp_msg *rxm = strp_msg(skb);
135 	int sub = 0;
136 
137 	/* Determine zero-padding length */
138 	if (prot->version == TLS_1_3_VERSION) {
139 		char content_type = 0;
140 		int err;
141 		int back = 17;
142 
143 		while (content_type == 0) {
144 			if (back > rxm->full_len - prot->prepend_size)
145 				return -EBADMSG;
146 			err = skb_copy_bits(skb,
147 					    rxm->offset + rxm->full_len - back,
148 					    &content_type, 1);
149 			if (err)
150 				return err;
151 			if (content_type)
152 				break;
153 			sub++;
154 			back++;
155 		}
156 		ctx->control = content_type;
157 	}
158 	return sub;
159 }
160 
161 static void tls_decrypt_done(struct crypto_async_request *req, int err)
162 {
163 	struct aead_request *aead_req = (struct aead_request *)req;
164 	struct scatterlist *sgout = aead_req->dst;
165 	struct scatterlist *sgin = aead_req->src;
166 	struct tls_sw_context_rx *ctx;
167 	struct tls_context *tls_ctx;
168 	struct tls_prot_info *prot;
169 	struct scatterlist *sg;
170 	struct sk_buff *skb;
171 	unsigned int pages;
172 	int pending;
173 
174 	skb = (struct sk_buff *)req->data;
175 	tls_ctx = tls_get_ctx(skb->sk);
176 	ctx = tls_sw_ctx_rx(tls_ctx);
177 	prot = &tls_ctx->prot_info;
178 
179 	/* Propagate if there was an err */
180 	if (err) {
181 		if (err == -EBADMSG)
182 			TLS_INC_STATS(sock_net(skb->sk),
183 				      LINUX_MIB_TLSDECRYPTERROR);
184 		ctx->async_wait.err = err;
185 		tls_err_abort(skb->sk, err);
186 	} else {
187 		struct strp_msg *rxm = strp_msg(skb);
188 		int pad;
189 
190 		pad = padding_length(ctx, prot, skb);
191 		if (pad < 0) {
192 			ctx->async_wait.err = pad;
193 			tls_err_abort(skb->sk, pad);
194 		} else {
195 			rxm->full_len -= pad;
196 			rxm->offset += prot->prepend_size;
197 			rxm->full_len -= prot->overhead_size;
198 		}
199 	}
200 
201 	/* After using skb->sk to propagate sk through crypto async callback
202 	 * we need to NULL it again.
203 	 */
204 	skb->sk = NULL;
205 
206 
207 	/* Free the destination pages if skb was not decrypted inplace */
208 	if (sgout != sgin) {
209 		/* Skip the first S/G entry as it points to AAD */
210 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
211 			if (!sg)
212 				break;
213 			put_page(sg_page(sg));
214 		}
215 	}
216 
217 	kfree(aead_req);
218 
219 	spin_lock_bh(&ctx->decrypt_compl_lock);
220 	pending = atomic_dec_return(&ctx->decrypt_pending);
221 
222 	if (!pending && ctx->async_notify)
223 		complete(&ctx->async_wait.completion);
224 	spin_unlock_bh(&ctx->decrypt_compl_lock);
225 }
226 
227 static int tls_do_decryption(struct sock *sk,
228 			     struct sk_buff *skb,
229 			     struct scatterlist *sgin,
230 			     struct scatterlist *sgout,
231 			     char *iv_recv,
232 			     size_t data_len,
233 			     struct aead_request *aead_req,
234 			     bool async)
235 {
236 	struct tls_context *tls_ctx = tls_get_ctx(sk);
237 	struct tls_prot_info *prot = &tls_ctx->prot_info;
238 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
239 	int ret;
240 
241 	aead_request_set_tfm(aead_req, ctx->aead_recv);
242 	aead_request_set_ad(aead_req, prot->aad_size);
243 	aead_request_set_crypt(aead_req, sgin, sgout,
244 			       data_len + prot->tag_size,
245 			       (u8 *)iv_recv);
246 
247 	if (async) {
248 		/* Using skb->sk to push sk through to crypto async callback
249 		 * handler. This allows propagating errors up to the socket
250 		 * if needed. It _must_ be cleared in the async handler
251 		 * before consume_skb is called. We _know_ skb->sk is NULL
252 		 * because it is a clone from strparser.
253 		 */
254 		skb->sk = sk;
255 		aead_request_set_callback(aead_req,
256 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
257 					  tls_decrypt_done, skb);
258 		atomic_inc(&ctx->decrypt_pending);
259 	} else {
260 		aead_request_set_callback(aead_req,
261 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
262 					  crypto_req_done, &ctx->async_wait);
263 	}
264 
265 	ret = crypto_aead_decrypt(aead_req);
266 	if (ret == -EINPROGRESS) {
267 		if (async)
268 			return ret;
269 
270 		ret = crypto_wait_req(ret, &ctx->async_wait);
271 	}
272 
273 	if (async)
274 		atomic_dec(&ctx->decrypt_pending);
275 
276 	return ret;
277 }
278 
279 static void tls_trim_both_msgs(struct sock *sk, int target_size)
280 {
281 	struct tls_context *tls_ctx = tls_get_ctx(sk);
282 	struct tls_prot_info *prot = &tls_ctx->prot_info;
283 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284 	struct tls_rec *rec = ctx->open_rec;
285 
286 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
287 	if (target_size > 0)
288 		target_size += prot->overhead_size;
289 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
290 }
291 
292 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
293 {
294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
295 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
296 	struct tls_rec *rec = ctx->open_rec;
297 	struct sk_msg *msg_en = &rec->msg_encrypted;
298 
299 	return sk_msg_alloc(sk, msg_en, len, 0);
300 }
301 
302 static int tls_clone_plaintext_msg(struct sock *sk, int required)
303 {
304 	struct tls_context *tls_ctx = tls_get_ctx(sk);
305 	struct tls_prot_info *prot = &tls_ctx->prot_info;
306 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
307 	struct tls_rec *rec = ctx->open_rec;
308 	struct sk_msg *msg_pl = &rec->msg_plaintext;
309 	struct sk_msg *msg_en = &rec->msg_encrypted;
310 	int skip, len;
311 
312 	/* We add page references worth len bytes from encrypted sg
313 	 * at the end of plaintext sg. It is guaranteed that msg_en
314 	 * has enough required room (ensured by caller).
315 	 */
316 	len = required - msg_pl->sg.size;
317 
318 	/* Skip initial bytes in msg_en's data to be able to use
319 	 * same offset of both plain and encrypted data.
320 	 */
321 	skip = prot->prepend_size + msg_pl->sg.size;
322 
323 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
324 }
325 
326 static struct tls_rec *tls_get_rec(struct sock *sk)
327 {
328 	struct tls_context *tls_ctx = tls_get_ctx(sk);
329 	struct tls_prot_info *prot = &tls_ctx->prot_info;
330 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
331 	struct sk_msg *msg_pl, *msg_en;
332 	struct tls_rec *rec;
333 	int mem_size;
334 
335 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
336 
337 	rec = kzalloc(mem_size, sk->sk_allocation);
338 	if (!rec)
339 		return NULL;
340 
341 	msg_pl = &rec->msg_plaintext;
342 	msg_en = &rec->msg_encrypted;
343 
344 	sk_msg_init(msg_pl);
345 	sk_msg_init(msg_en);
346 
347 	sg_init_table(rec->sg_aead_in, 2);
348 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
349 	sg_unmark_end(&rec->sg_aead_in[1]);
350 
351 	sg_init_table(rec->sg_aead_out, 2);
352 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
353 	sg_unmark_end(&rec->sg_aead_out[1]);
354 
355 	return rec;
356 }
357 
358 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
359 {
360 	sk_msg_free(sk, &rec->msg_encrypted);
361 	sk_msg_free(sk, &rec->msg_plaintext);
362 	kfree(rec);
363 }
364 
365 static void tls_free_open_rec(struct sock *sk)
366 {
367 	struct tls_context *tls_ctx = tls_get_ctx(sk);
368 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369 	struct tls_rec *rec = ctx->open_rec;
370 
371 	if (rec) {
372 		tls_free_rec(sk, rec);
373 		ctx->open_rec = NULL;
374 	}
375 }
376 
377 int tls_tx_records(struct sock *sk, int flags)
378 {
379 	struct tls_context *tls_ctx = tls_get_ctx(sk);
380 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
381 	struct tls_rec *rec, *tmp;
382 	struct sk_msg *msg_en;
383 	int tx_flags, rc = 0;
384 
385 	if (tls_is_partially_sent_record(tls_ctx)) {
386 		rec = list_first_entry(&ctx->tx_list,
387 				       struct tls_rec, list);
388 
389 		if (flags == -1)
390 			tx_flags = rec->tx_flags;
391 		else
392 			tx_flags = flags;
393 
394 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
395 		if (rc)
396 			goto tx_err;
397 
398 		/* Full record has been transmitted.
399 		 * Remove the head of tx_list
400 		 */
401 		list_del(&rec->list);
402 		sk_msg_free(sk, &rec->msg_plaintext);
403 		kfree(rec);
404 	}
405 
406 	/* Tx all ready records */
407 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
408 		if (READ_ONCE(rec->tx_ready)) {
409 			if (flags == -1)
410 				tx_flags = rec->tx_flags;
411 			else
412 				tx_flags = flags;
413 
414 			msg_en = &rec->msg_encrypted;
415 			rc = tls_push_sg(sk, tls_ctx,
416 					 &msg_en->sg.data[msg_en->sg.curr],
417 					 0, tx_flags);
418 			if (rc)
419 				goto tx_err;
420 
421 			list_del(&rec->list);
422 			sk_msg_free(sk, &rec->msg_plaintext);
423 			kfree(rec);
424 		} else {
425 			break;
426 		}
427 	}
428 
429 tx_err:
430 	if (rc < 0 && rc != -EAGAIN)
431 		tls_err_abort(sk, -EBADMSG);
432 
433 	return rc;
434 }
435 
436 static void tls_encrypt_done(struct crypto_async_request *req, int err)
437 {
438 	struct aead_request *aead_req = (struct aead_request *)req;
439 	struct sock *sk = req->data;
440 	struct tls_context *tls_ctx = tls_get_ctx(sk);
441 	struct tls_prot_info *prot = &tls_ctx->prot_info;
442 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
443 	struct scatterlist *sge;
444 	struct sk_msg *msg_en;
445 	struct tls_rec *rec;
446 	bool ready = false;
447 	int pending;
448 
449 	rec = container_of(aead_req, struct tls_rec, aead_req);
450 	msg_en = &rec->msg_encrypted;
451 
452 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
453 	sge->offset -= prot->prepend_size;
454 	sge->length += prot->prepend_size;
455 
456 	/* Check if error is previously set on socket */
457 	if (err || sk->sk_err) {
458 		rec = NULL;
459 
460 		/* If err is already set on socket, return the same code */
461 		if (sk->sk_err) {
462 			ctx->async_wait.err = -sk->sk_err;
463 		} else {
464 			ctx->async_wait.err = err;
465 			tls_err_abort(sk, err);
466 		}
467 	}
468 
469 	if (rec) {
470 		struct tls_rec *first_rec;
471 
472 		/* Mark the record as ready for transmission */
473 		smp_store_mb(rec->tx_ready, true);
474 
475 		/* If received record is at head of tx_list, schedule tx */
476 		first_rec = list_first_entry(&ctx->tx_list,
477 					     struct tls_rec, list);
478 		if (rec == first_rec)
479 			ready = true;
480 	}
481 
482 	spin_lock_bh(&ctx->encrypt_compl_lock);
483 	pending = atomic_dec_return(&ctx->encrypt_pending);
484 
485 	if (!pending && ctx->async_notify)
486 		complete(&ctx->async_wait.completion);
487 	spin_unlock_bh(&ctx->encrypt_compl_lock);
488 
489 	if (!ready)
490 		return;
491 
492 	/* Schedule the transmission */
493 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
494 		schedule_delayed_work(&ctx->tx_work.work, 1);
495 }
496 
497 static int tls_do_encryption(struct sock *sk,
498 			     struct tls_context *tls_ctx,
499 			     struct tls_sw_context_tx *ctx,
500 			     struct aead_request *aead_req,
501 			     size_t data_len, u32 start)
502 {
503 	struct tls_prot_info *prot = &tls_ctx->prot_info;
504 	struct tls_rec *rec = ctx->open_rec;
505 	struct sk_msg *msg_en = &rec->msg_encrypted;
506 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
507 	int rc, iv_offset = 0;
508 
509 	/* For CCM based ciphers, first byte of IV is a constant */
510 	switch (prot->cipher_type) {
511 	case TLS_CIPHER_AES_CCM_128:
512 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
513 		iv_offset = 1;
514 		break;
515 	case TLS_CIPHER_SM4_CCM:
516 		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
517 		iv_offset = 1;
518 		break;
519 	}
520 
521 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
522 	       prot->iv_size + prot->salt_size);
523 
524 	xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
525 
526 	sge->offset += prot->prepend_size;
527 	sge->length -= prot->prepend_size;
528 
529 	msg_en->sg.curr = start;
530 
531 	aead_request_set_tfm(aead_req, ctx->aead_send);
532 	aead_request_set_ad(aead_req, prot->aad_size);
533 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
534 			       rec->sg_aead_out,
535 			       data_len, rec->iv_data);
536 
537 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
538 				  tls_encrypt_done, sk);
539 
540 	/* Add the record in tx_list */
541 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
542 	atomic_inc(&ctx->encrypt_pending);
543 
544 	rc = crypto_aead_encrypt(aead_req);
545 	if (!rc || rc != -EINPROGRESS) {
546 		atomic_dec(&ctx->encrypt_pending);
547 		sge->offset -= prot->prepend_size;
548 		sge->length += prot->prepend_size;
549 	}
550 
551 	if (!rc) {
552 		WRITE_ONCE(rec->tx_ready, true);
553 	} else if (rc != -EINPROGRESS) {
554 		list_del(&rec->list);
555 		return rc;
556 	}
557 
558 	/* Unhook the record from context if encryption is not failure */
559 	ctx->open_rec = NULL;
560 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
561 	return rc;
562 }
563 
564 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
565 				 struct tls_rec **to, struct sk_msg *msg_opl,
566 				 struct sk_msg *msg_oen, u32 split_point,
567 				 u32 tx_overhead_size, u32 *orig_end)
568 {
569 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
570 	struct scatterlist *sge, *osge, *nsge;
571 	u32 orig_size = msg_opl->sg.size;
572 	struct scatterlist tmp = { };
573 	struct sk_msg *msg_npl;
574 	struct tls_rec *new;
575 	int ret;
576 
577 	new = tls_get_rec(sk);
578 	if (!new)
579 		return -ENOMEM;
580 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
581 			   tx_overhead_size, 0);
582 	if (ret < 0) {
583 		tls_free_rec(sk, new);
584 		return ret;
585 	}
586 
587 	*orig_end = msg_opl->sg.end;
588 	i = msg_opl->sg.start;
589 	sge = sk_msg_elem(msg_opl, i);
590 	while (apply && sge->length) {
591 		if (sge->length > apply) {
592 			u32 len = sge->length - apply;
593 
594 			get_page(sg_page(sge));
595 			sg_set_page(&tmp, sg_page(sge), len,
596 				    sge->offset + apply);
597 			sge->length = apply;
598 			bytes += apply;
599 			apply = 0;
600 		} else {
601 			apply -= sge->length;
602 			bytes += sge->length;
603 		}
604 
605 		sk_msg_iter_var_next(i);
606 		if (i == msg_opl->sg.end)
607 			break;
608 		sge = sk_msg_elem(msg_opl, i);
609 	}
610 
611 	msg_opl->sg.end = i;
612 	msg_opl->sg.curr = i;
613 	msg_opl->sg.copybreak = 0;
614 	msg_opl->apply_bytes = 0;
615 	msg_opl->sg.size = bytes;
616 
617 	msg_npl = &new->msg_plaintext;
618 	msg_npl->apply_bytes = apply;
619 	msg_npl->sg.size = orig_size - bytes;
620 
621 	j = msg_npl->sg.start;
622 	nsge = sk_msg_elem(msg_npl, j);
623 	if (tmp.length) {
624 		memcpy(nsge, &tmp, sizeof(*nsge));
625 		sk_msg_iter_var_next(j);
626 		nsge = sk_msg_elem(msg_npl, j);
627 	}
628 
629 	osge = sk_msg_elem(msg_opl, i);
630 	while (osge->length) {
631 		memcpy(nsge, osge, sizeof(*nsge));
632 		sg_unmark_end(nsge);
633 		sk_msg_iter_var_next(i);
634 		sk_msg_iter_var_next(j);
635 		if (i == *orig_end)
636 			break;
637 		osge = sk_msg_elem(msg_opl, i);
638 		nsge = sk_msg_elem(msg_npl, j);
639 	}
640 
641 	msg_npl->sg.end = j;
642 	msg_npl->sg.curr = j;
643 	msg_npl->sg.copybreak = 0;
644 
645 	*to = new;
646 	return 0;
647 }
648 
649 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
650 				  struct tls_rec *from, u32 orig_end)
651 {
652 	struct sk_msg *msg_npl = &from->msg_plaintext;
653 	struct sk_msg *msg_opl = &to->msg_plaintext;
654 	struct scatterlist *osge, *nsge;
655 	u32 i, j;
656 
657 	i = msg_opl->sg.end;
658 	sk_msg_iter_var_prev(i);
659 	j = msg_npl->sg.start;
660 
661 	osge = sk_msg_elem(msg_opl, i);
662 	nsge = sk_msg_elem(msg_npl, j);
663 
664 	if (sg_page(osge) == sg_page(nsge) &&
665 	    osge->offset + osge->length == nsge->offset) {
666 		osge->length += nsge->length;
667 		put_page(sg_page(nsge));
668 	}
669 
670 	msg_opl->sg.end = orig_end;
671 	msg_opl->sg.curr = orig_end;
672 	msg_opl->sg.copybreak = 0;
673 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
674 	msg_opl->sg.size += msg_npl->sg.size;
675 
676 	sk_msg_free(sk, &to->msg_encrypted);
677 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
678 
679 	kfree(from);
680 }
681 
682 static int tls_push_record(struct sock *sk, int flags,
683 			   unsigned char record_type)
684 {
685 	struct tls_context *tls_ctx = tls_get_ctx(sk);
686 	struct tls_prot_info *prot = &tls_ctx->prot_info;
687 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
688 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
689 	u32 i, split_point, orig_end;
690 	struct sk_msg *msg_pl, *msg_en;
691 	struct aead_request *req;
692 	bool split;
693 	int rc;
694 
695 	if (!rec)
696 		return 0;
697 
698 	msg_pl = &rec->msg_plaintext;
699 	msg_en = &rec->msg_encrypted;
700 
701 	split_point = msg_pl->apply_bytes;
702 	split = split_point && split_point < msg_pl->sg.size;
703 	if (unlikely((!split &&
704 		      msg_pl->sg.size +
705 		      prot->overhead_size > msg_en->sg.size) ||
706 		     (split &&
707 		      split_point +
708 		      prot->overhead_size > msg_en->sg.size))) {
709 		split = true;
710 		split_point = msg_en->sg.size;
711 	}
712 	if (split) {
713 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
714 					   split_point, prot->overhead_size,
715 					   &orig_end);
716 		if (rc < 0)
717 			return rc;
718 		/* This can happen if above tls_split_open_record allocates
719 		 * a single large encryption buffer instead of two smaller
720 		 * ones. In this case adjust pointers and continue without
721 		 * split.
722 		 */
723 		if (!msg_pl->sg.size) {
724 			tls_merge_open_record(sk, rec, tmp, orig_end);
725 			msg_pl = &rec->msg_plaintext;
726 			msg_en = &rec->msg_encrypted;
727 			split = false;
728 		}
729 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
730 			    prot->overhead_size);
731 	}
732 
733 	rec->tx_flags = flags;
734 	req = &rec->aead_req;
735 
736 	i = msg_pl->sg.end;
737 	sk_msg_iter_var_prev(i);
738 
739 	rec->content_type = record_type;
740 	if (prot->version == TLS_1_3_VERSION) {
741 		/* Add content type to end of message.  No padding added */
742 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
743 		sg_mark_end(&rec->sg_content_type);
744 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
745 			 &rec->sg_content_type);
746 	} else {
747 		sg_mark_end(sk_msg_elem(msg_pl, i));
748 	}
749 
750 	if (msg_pl->sg.end < msg_pl->sg.start) {
751 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
752 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
753 			 msg_pl->sg.data);
754 	}
755 
756 	i = msg_pl->sg.start;
757 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
758 
759 	i = msg_en->sg.end;
760 	sk_msg_iter_var_prev(i);
761 	sg_mark_end(sk_msg_elem(msg_en, i));
762 
763 	i = msg_en->sg.start;
764 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
765 
766 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
767 		     tls_ctx->tx.rec_seq, record_type, prot);
768 
769 	tls_fill_prepend(tls_ctx,
770 			 page_address(sg_page(&msg_en->sg.data[i])) +
771 			 msg_en->sg.data[i].offset,
772 			 msg_pl->sg.size + prot->tail_size,
773 			 record_type);
774 
775 	tls_ctx->pending_open_record_frags = false;
776 
777 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
778 			       msg_pl->sg.size + prot->tail_size, i);
779 	if (rc < 0) {
780 		if (rc != -EINPROGRESS) {
781 			tls_err_abort(sk, -EBADMSG);
782 			if (split) {
783 				tls_ctx->pending_open_record_frags = true;
784 				tls_merge_open_record(sk, rec, tmp, orig_end);
785 			}
786 		}
787 		ctx->async_capable = 1;
788 		return rc;
789 	} else if (split) {
790 		msg_pl = &tmp->msg_plaintext;
791 		msg_en = &tmp->msg_encrypted;
792 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
793 		tls_ctx->pending_open_record_frags = true;
794 		ctx->open_rec = tmp;
795 	}
796 
797 	return tls_tx_records(sk, flags);
798 }
799 
800 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
801 			       bool full_record, u8 record_type,
802 			       ssize_t *copied, int flags)
803 {
804 	struct tls_context *tls_ctx = tls_get_ctx(sk);
805 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
806 	struct sk_msg msg_redir = { };
807 	struct sk_psock *psock;
808 	struct sock *sk_redir;
809 	struct tls_rec *rec;
810 	bool enospc, policy;
811 	int err = 0, send;
812 	u32 delta = 0;
813 
814 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
815 	psock = sk_psock_get(sk);
816 	if (!psock || !policy) {
817 		err = tls_push_record(sk, flags, record_type);
818 		if (err && sk->sk_err == EBADMSG) {
819 			*copied -= sk_msg_free(sk, msg);
820 			tls_free_open_rec(sk);
821 			err = -sk->sk_err;
822 		}
823 		if (psock)
824 			sk_psock_put(sk, psock);
825 		return err;
826 	}
827 more_data:
828 	enospc = sk_msg_full(msg);
829 	if (psock->eval == __SK_NONE) {
830 		delta = msg->sg.size;
831 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
832 		delta -= msg->sg.size;
833 	}
834 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
835 	    !enospc && !full_record) {
836 		err = -ENOSPC;
837 		goto out_err;
838 	}
839 	msg->cork_bytes = 0;
840 	send = msg->sg.size;
841 	if (msg->apply_bytes && msg->apply_bytes < send)
842 		send = msg->apply_bytes;
843 
844 	switch (psock->eval) {
845 	case __SK_PASS:
846 		err = tls_push_record(sk, flags, record_type);
847 		if (err && sk->sk_err == EBADMSG) {
848 			*copied -= sk_msg_free(sk, msg);
849 			tls_free_open_rec(sk);
850 			err = -sk->sk_err;
851 			goto out_err;
852 		}
853 		break;
854 	case __SK_REDIRECT:
855 		sk_redir = psock->sk_redir;
856 		memcpy(&msg_redir, msg, sizeof(*msg));
857 		if (msg->apply_bytes < send)
858 			msg->apply_bytes = 0;
859 		else
860 			msg->apply_bytes -= send;
861 		sk_msg_return_zero(sk, msg, send);
862 		msg->sg.size -= send;
863 		release_sock(sk);
864 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
865 		lock_sock(sk);
866 		if (err < 0) {
867 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
868 			msg->sg.size = 0;
869 		}
870 		if (msg->sg.size == 0)
871 			tls_free_open_rec(sk);
872 		break;
873 	case __SK_DROP:
874 	default:
875 		sk_msg_free_partial(sk, msg, send);
876 		if (msg->apply_bytes < send)
877 			msg->apply_bytes = 0;
878 		else
879 			msg->apply_bytes -= send;
880 		if (msg->sg.size == 0)
881 			tls_free_open_rec(sk);
882 		*copied -= (send + delta);
883 		err = -EACCES;
884 	}
885 
886 	if (likely(!err)) {
887 		bool reset_eval = !ctx->open_rec;
888 
889 		rec = ctx->open_rec;
890 		if (rec) {
891 			msg = &rec->msg_plaintext;
892 			if (!msg->apply_bytes)
893 				reset_eval = true;
894 		}
895 		if (reset_eval) {
896 			psock->eval = __SK_NONE;
897 			if (psock->sk_redir) {
898 				sock_put(psock->sk_redir);
899 				psock->sk_redir = NULL;
900 			}
901 		}
902 		if (rec)
903 			goto more_data;
904 	}
905  out_err:
906 	sk_psock_put(sk, psock);
907 	return err;
908 }
909 
910 static int tls_sw_push_pending_record(struct sock *sk, int flags)
911 {
912 	struct tls_context *tls_ctx = tls_get_ctx(sk);
913 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
914 	struct tls_rec *rec = ctx->open_rec;
915 	struct sk_msg *msg_pl;
916 	size_t copied;
917 
918 	if (!rec)
919 		return 0;
920 
921 	msg_pl = &rec->msg_plaintext;
922 	copied = msg_pl->sg.size;
923 	if (!copied)
924 		return 0;
925 
926 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
927 				   &copied, flags);
928 }
929 
930 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
931 {
932 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
933 	struct tls_context *tls_ctx = tls_get_ctx(sk);
934 	struct tls_prot_info *prot = &tls_ctx->prot_info;
935 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
936 	bool async_capable = ctx->async_capable;
937 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
938 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
939 	bool eor = !(msg->msg_flags & MSG_MORE);
940 	size_t try_to_copy;
941 	ssize_t copied = 0;
942 	struct sk_msg *msg_pl, *msg_en;
943 	struct tls_rec *rec;
944 	int required_size;
945 	int num_async = 0;
946 	bool full_record;
947 	int record_room;
948 	int num_zc = 0;
949 	int orig_size;
950 	int ret = 0;
951 	int pending;
952 
953 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
954 			       MSG_CMSG_COMPAT))
955 		return -EOPNOTSUPP;
956 
957 	mutex_lock(&tls_ctx->tx_lock);
958 	lock_sock(sk);
959 
960 	if (unlikely(msg->msg_controllen)) {
961 		ret = tls_proccess_cmsg(sk, msg, &record_type);
962 		if (ret) {
963 			if (ret == -EINPROGRESS)
964 				num_async++;
965 			else if (ret != -EAGAIN)
966 				goto send_end;
967 		}
968 	}
969 
970 	while (msg_data_left(msg)) {
971 		if (sk->sk_err) {
972 			ret = -sk->sk_err;
973 			goto send_end;
974 		}
975 
976 		if (ctx->open_rec)
977 			rec = ctx->open_rec;
978 		else
979 			rec = ctx->open_rec = tls_get_rec(sk);
980 		if (!rec) {
981 			ret = -ENOMEM;
982 			goto send_end;
983 		}
984 
985 		msg_pl = &rec->msg_plaintext;
986 		msg_en = &rec->msg_encrypted;
987 
988 		orig_size = msg_pl->sg.size;
989 		full_record = false;
990 		try_to_copy = msg_data_left(msg);
991 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
992 		if (try_to_copy >= record_room) {
993 			try_to_copy = record_room;
994 			full_record = true;
995 		}
996 
997 		required_size = msg_pl->sg.size + try_to_copy +
998 				prot->overhead_size;
999 
1000 		if (!sk_stream_memory_free(sk))
1001 			goto wait_for_sndbuf;
1002 
1003 alloc_encrypted:
1004 		ret = tls_alloc_encrypted_msg(sk, required_size);
1005 		if (ret) {
1006 			if (ret != -ENOSPC)
1007 				goto wait_for_memory;
1008 
1009 			/* Adjust try_to_copy according to the amount that was
1010 			 * actually allocated. The difference is due
1011 			 * to max sg elements limit
1012 			 */
1013 			try_to_copy -= required_size - msg_en->sg.size;
1014 			full_record = true;
1015 		}
1016 
1017 		if (!is_kvec && (full_record || eor) && !async_capable) {
1018 			u32 first = msg_pl->sg.end;
1019 
1020 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1021 							msg_pl, try_to_copy);
1022 			if (ret)
1023 				goto fallback_to_reg_send;
1024 
1025 			num_zc++;
1026 			copied += try_to_copy;
1027 
1028 			sk_msg_sg_copy_set(msg_pl, first);
1029 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1030 						  record_type, &copied,
1031 						  msg->msg_flags);
1032 			if (ret) {
1033 				if (ret == -EINPROGRESS)
1034 					num_async++;
1035 				else if (ret == -ENOMEM)
1036 					goto wait_for_memory;
1037 				else if (ctx->open_rec && ret == -ENOSPC)
1038 					goto rollback_iter;
1039 				else if (ret != -EAGAIN)
1040 					goto send_end;
1041 			}
1042 			continue;
1043 rollback_iter:
1044 			copied -= try_to_copy;
1045 			sk_msg_sg_copy_clear(msg_pl, first);
1046 			iov_iter_revert(&msg->msg_iter,
1047 					msg_pl->sg.size - orig_size);
1048 fallback_to_reg_send:
1049 			sk_msg_trim(sk, msg_pl, orig_size);
1050 		}
1051 
1052 		required_size = msg_pl->sg.size + try_to_copy;
1053 
1054 		ret = tls_clone_plaintext_msg(sk, required_size);
1055 		if (ret) {
1056 			if (ret != -ENOSPC)
1057 				goto send_end;
1058 
1059 			/* Adjust try_to_copy according to the amount that was
1060 			 * actually allocated. The difference is due
1061 			 * to max sg elements limit
1062 			 */
1063 			try_to_copy -= required_size - msg_pl->sg.size;
1064 			full_record = true;
1065 			sk_msg_trim(sk, msg_en,
1066 				    msg_pl->sg.size + prot->overhead_size);
1067 		}
1068 
1069 		if (try_to_copy) {
1070 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1071 						       msg_pl, try_to_copy);
1072 			if (ret < 0)
1073 				goto trim_sgl;
1074 		}
1075 
1076 		/* Open records defined only if successfully copied, otherwise
1077 		 * we would trim the sg but not reset the open record frags.
1078 		 */
1079 		tls_ctx->pending_open_record_frags = true;
1080 		copied += try_to_copy;
1081 		if (full_record || eor) {
1082 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1083 						  record_type, &copied,
1084 						  msg->msg_flags);
1085 			if (ret) {
1086 				if (ret == -EINPROGRESS)
1087 					num_async++;
1088 				else if (ret == -ENOMEM)
1089 					goto wait_for_memory;
1090 				else if (ret != -EAGAIN) {
1091 					if (ret == -ENOSPC)
1092 						ret = 0;
1093 					goto send_end;
1094 				}
1095 			}
1096 		}
1097 
1098 		continue;
1099 
1100 wait_for_sndbuf:
1101 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102 wait_for_memory:
1103 		ret = sk_stream_wait_memory(sk, &timeo);
1104 		if (ret) {
1105 trim_sgl:
1106 			if (ctx->open_rec)
1107 				tls_trim_both_msgs(sk, orig_size);
1108 			goto send_end;
1109 		}
1110 
1111 		if (ctx->open_rec && msg_en->sg.size < required_size)
1112 			goto alloc_encrypted;
1113 	}
1114 
1115 	if (!num_async) {
1116 		goto send_end;
1117 	} else if (num_zc) {
1118 		/* Wait for pending encryptions to get completed */
1119 		spin_lock_bh(&ctx->encrypt_compl_lock);
1120 		ctx->async_notify = true;
1121 
1122 		pending = atomic_read(&ctx->encrypt_pending);
1123 		spin_unlock_bh(&ctx->encrypt_compl_lock);
1124 		if (pending)
1125 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1126 		else
1127 			reinit_completion(&ctx->async_wait.completion);
1128 
1129 		/* There can be no concurrent accesses, since we have no
1130 		 * pending encrypt operations
1131 		 */
1132 		WRITE_ONCE(ctx->async_notify, false);
1133 
1134 		if (ctx->async_wait.err) {
1135 			ret = ctx->async_wait.err;
1136 			copied = 0;
1137 		}
1138 	}
1139 
1140 	/* Transmit if any encryptions have completed */
1141 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1142 		cancel_delayed_work(&ctx->tx_work.work);
1143 		tls_tx_records(sk, msg->msg_flags);
1144 	}
1145 
1146 send_end:
1147 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1148 
1149 	release_sock(sk);
1150 	mutex_unlock(&tls_ctx->tx_lock);
1151 	return copied > 0 ? copied : ret;
1152 }
1153 
1154 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1155 			      int offset, size_t size, int flags)
1156 {
1157 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1158 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1159 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1160 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1161 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1162 	struct sk_msg *msg_pl;
1163 	struct tls_rec *rec;
1164 	int num_async = 0;
1165 	ssize_t copied = 0;
1166 	bool full_record;
1167 	int record_room;
1168 	int ret = 0;
1169 	bool eor;
1170 
1171 	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1172 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1173 
1174 	/* Call the sk_stream functions to manage the sndbuf mem. */
1175 	while (size > 0) {
1176 		size_t copy, required_size;
1177 
1178 		if (sk->sk_err) {
1179 			ret = -sk->sk_err;
1180 			goto sendpage_end;
1181 		}
1182 
1183 		if (ctx->open_rec)
1184 			rec = ctx->open_rec;
1185 		else
1186 			rec = ctx->open_rec = tls_get_rec(sk);
1187 		if (!rec) {
1188 			ret = -ENOMEM;
1189 			goto sendpage_end;
1190 		}
1191 
1192 		msg_pl = &rec->msg_plaintext;
1193 
1194 		full_record = false;
1195 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1196 		copy = size;
1197 		if (copy >= record_room) {
1198 			copy = record_room;
1199 			full_record = true;
1200 		}
1201 
1202 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1203 
1204 		if (!sk_stream_memory_free(sk))
1205 			goto wait_for_sndbuf;
1206 alloc_payload:
1207 		ret = tls_alloc_encrypted_msg(sk, required_size);
1208 		if (ret) {
1209 			if (ret != -ENOSPC)
1210 				goto wait_for_memory;
1211 
1212 			/* Adjust copy according to the amount that was
1213 			 * actually allocated. The difference is due
1214 			 * to max sg elements limit
1215 			 */
1216 			copy -= required_size - msg_pl->sg.size;
1217 			full_record = true;
1218 		}
1219 
1220 		sk_msg_page_add(msg_pl, page, copy, offset);
1221 		sk_mem_charge(sk, copy);
1222 
1223 		offset += copy;
1224 		size -= copy;
1225 		copied += copy;
1226 
1227 		tls_ctx->pending_open_record_frags = true;
1228 		if (full_record || eor || sk_msg_full(msg_pl)) {
1229 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1230 						  record_type, &copied, flags);
1231 			if (ret) {
1232 				if (ret == -EINPROGRESS)
1233 					num_async++;
1234 				else if (ret == -ENOMEM)
1235 					goto wait_for_memory;
1236 				else if (ret != -EAGAIN) {
1237 					if (ret == -ENOSPC)
1238 						ret = 0;
1239 					goto sendpage_end;
1240 				}
1241 			}
1242 		}
1243 		continue;
1244 wait_for_sndbuf:
1245 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1246 wait_for_memory:
1247 		ret = sk_stream_wait_memory(sk, &timeo);
1248 		if (ret) {
1249 			if (ctx->open_rec)
1250 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1251 			goto sendpage_end;
1252 		}
1253 
1254 		if (ctx->open_rec)
1255 			goto alloc_payload;
1256 	}
1257 
1258 	if (num_async) {
1259 		/* Transmit if any encryptions have completed */
1260 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1261 			cancel_delayed_work(&ctx->tx_work.work);
1262 			tls_tx_records(sk, flags);
1263 		}
1264 	}
1265 sendpage_end:
1266 	ret = sk_stream_error(sk, flags, ret);
1267 	return copied > 0 ? copied : ret;
1268 }
1269 
1270 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1271 			   int offset, size_t size, int flags)
1272 {
1273 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1274 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1275 		      MSG_NO_SHARED_FRAGS))
1276 		return -EOPNOTSUPP;
1277 
1278 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1279 }
1280 
1281 int tls_sw_sendpage(struct sock *sk, struct page *page,
1282 		    int offset, size_t size, int flags)
1283 {
1284 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1285 	int ret;
1286 
1287 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1288 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1289 		return -EOPNOTSUPP;
1290 
1291 	mutex_lock(&tls_ctx->tx_lock);
1292 	lock_sock(sk);
1293 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1294 	release_sock(sk);
1295 	mutex_unlock(&tls_ctx->tx_lock);
1296 	return ret;
1297 }
1298 
1299 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1300 				     bool nonblock, long timeo, int *err)
1301 {
1302 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1303 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1304 	struct sk_buff *skb;
1305 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1306 
1307 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1308 		if (sk->sk_err) {
1309 			*err = sock_error(sk);
1310 			return NULL;
1311 		}
1312 
1313 		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1314 			__strp_unpause(&ctx->strp);
1315 			if (ctx->recv_pkt)
1316 				return ctx->recv_pkt;
1317 		}
1318 
1319 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1320 			return NULL;
1321 
1322 		if (sock_flag(sk, SOCK_DONE))
1323 			return NULL;
1324 
1325 		if (nonblock || !timeo) {
1326 			*err = -EAGAIN;
1327 			return NULL;
1328 		}
1329 
1330 		add_wait_queue(sk_sleep(sk), &wait);
1331 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1332 		sk_wait_event(sk, &timeo,
1333 			      ctx->recv_pkt != skb ||
1334 			      !sk_psock_queue_empty(psock),
1335 			      &wait);
1336 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1337 		remove_wait_queue(sk_sleep(sk), &wait);
1338 
1339 		/* Handle signals */
1340 		if (signal_pending(current)) {
1341 			*err = sock_intr_errno(timeo);
1342 			return NULL;
1343 		}
1344 	}
1345 
1346 	return skb;
1347 }
1348 
1349 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1350 			       int length, int *pages_used,
1351 			       unsigned int *size_used,
1352 			       struct scatterlist *to,
1353 			       int to_max_pages)
1354 {
1355 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1356 	struct page *pages[MAX_SKB_FRAGS];
1357 	unsigned int size = *size_used;
1358 	ssize_t copied, use;
1359 	size_t offset;
1360 
1361 	while (length > 0) {
1362 		i = 0;
1363 		maxpages = to_max_pages - num_elem;
1364 		if (maxpages == 0) {
1365 			rc = -EFAULT;
1366 			goto out;
1367 		}
1368 		copied = iov_iter_get_pages(from, pages,
1369 					    length,
1370 					    maxpages, &offset);
1371 		if (copied <= 0) {
1372 			rc = -EFAULT;
1373 			goto out;
1374 		}
1375 
1376 		iov_iter_advance(from, copied);
1377 
1378 		length -= copied;
1379 		size += copied;
1380 		while (copied) {
1381 			use = min_t(int, copied, PAGE_SIZE - offset);
1382 
1383 			sg_set_page(&to[num_elem],
1384 				    pages[i], use, offset);
1385 			sg_unmark_end(&to[num_elem]);
1386 			/* We do not uncharge memory from this API */
1387 
1388 			offset = 0;
1389 			copied -= use;
1390 
1391 			i++;
1392 			num_elem++;
1393 		}
1394 	}
1395 	/* Mark the end in the last sg entry if newly added */
1396 	if (num_elem > *pages_used)
1397 		sg_mark_end(&to[num_elem - 1]);
1398 out:
1399 	if (rc)
1400 		iov_iter_revert(from, size - *size_used);
1401 	*size_used = size;
1402 	*pages_used = num_elem;
1403 
1404 	return rc;
1405 }
1406 
1407 /* This function decrypts the input skb into either out_iov or in out_sg
1408  * or in skb buffers itself. The input parameter 'zc' indicates if
1409  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1410  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1411  * NULL, then the decryption happens inside skb buffers itself, i.e.
1412  * zero-copy gets disabled and 'zc' is updated.
1413  */
1414 
1415 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1416 			    struct iov_iter *out_iov,
1417 			    struct scatterlist *out_sg,
1418 			    int *chunk, bool *zc, bool async)
1419 {
1420 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1421 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1422 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1423 	struct strp_msg *rxm = strp_msg(skb);
1424 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1425 	struct aead_request *aead_req;
1426 	struct sk_buff *unused;
1427 	u8 *aad, *iv, *mem = NULL;
1428 	struct scatterlist *sgin = NULL;
1429 	struct scatterlist *sgout = NULL;
1430 	const int data_len = rxm->full_len - prot->overhead_size +
1431 			     prot->tail_size;
1432 	int iv_offset = 0;
1433 
1434 	if (*zc && (out_iov || out_sg)) {
1435 		if (out_iov)
1436 			n_sgout = 1 +
1437 				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1438 		else
1439 			n_sgout = sg_nents(out_sg);
1440 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1441 				 rxm->full_len - prot->prepend_size);
1442 	} else {
1443 		n_sgout = 0;
1444 		*zc = false;
1445 		n_sgin = skb_cow_data(skb, 0, &unused);
1446 	}
1447 
1448 	if (n_sgin < 1)
1449 		return -EBADMSG;
1450 
1451 	/* Increment to accommodate AAD */
1452 	n_sgin = n_sgin + 1;
1453 
1454 	nsg = n_sgin + n_sgout;
1455 
1456 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1457 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1458 	mem_size = mem_size + prot->aad_size;
1459 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1460 
1461 	/* Allocate a single block of memory which contains
1462 	 * aead_req || sgin[] || sgout[] || aad || iv.
1463 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1464 	 */
1465 	mem = kmalloc(mem_size, sk->sk_allocation);
1466 	if (!mem)
1467 		return -ENOMEM;
1468 
1469 	/* Segment the allocated memory */
1470 	aead_req = (struct aead_request *)mem;
1471 	sgin = (struct scatterlist *)(mem + aead_size);
1472 	sgout = sgin + n_sgin;
1473 	aad = (u8 *)(sgout + n_sgout);
1474 	iv = aad + prot->aad_size;
1475 
1476 	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1477 	switch (prot->cipher_type) {
1478 	case TLS_CIPHER_AES_CCM_128:
1479 		iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1480 		iv_offset = 1;
1481 		break;
1482 	case TLS_CIPHER_SM4_CCM:
1483 		iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1484 		iv_offset = 1;
1485 		break;
1486 	}
1487 
1488 	/* Prepare IV */
1489 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1490 			    iv + iv_offset + prot->salt_size,
1491 			    prot->iv_size);
1492 	if (err < 0) {
1493 		kfree(mem);
1494 		return err;
1495 	}
1496 	if (prot->version == TLS_1_3_VERSION ||
1497 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1498 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1499 		       prot->iv_size + prot->salt_size);
1500 	else
1501 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1502 
1503 	xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1504 
1505 	/* Prepare AAD */
1506 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1507 		     prot->tail_size,
1508 		     tls_ctx->rx.rec_seq, ctx->control, prot);
1509 
1510 	/* Prepare sgin */
1511 	sg_init_table(sgin, n_sgin);
1512 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1513 	err = skb_to_sgvec(skb, &sgin[1],
1514 			   rxm->offset + prot->prepend_size,
1515 			   rxm->full_len - prot->prepend_size);
1516 	if (err < 0) {
1517 		kfree(mem);
1518 		return err;
1519 	}
1520 
1521 	if (n_sgout) {
1522 		if (out_iov) {
1523 			sg_init_table(sgout, n_sgout);
1524 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1525 
1526 			*chunk = 0;
1527 			err = tls_setup_from_iter(sk, out_iov, data_len,
1528 						  &pages, chunk, &sgout[1],
1529 						  (n_sgout - 1));
1530 			if (err < 0)
1531 				goto fallback_to_reg_recv;
1532 		} else if (out_sg) {
1533 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1534 		} else {
1535 			goto fallback_to_reg_recv;
1536 		}
1537 	} else {
1538 fallback_to_reg_recv:
1539 		sgout = sgin;
1540 		pages = 0;
1541 		*chunk = data_len;
1542 		*zc = false;
1543 	}
1544 
1545 	/* Prepare and submit AEAD request */
1546 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1547 				data_len, aead_req, async);
1548 	if (err == -EINPROGRESS)
1549 		return err;
1550 
1551 	/* Release the pages in case iov was mapped to pages */
1552 	for (; pages > 0; pages--)
1553 		put_page(sg_page(&sgout[pages]));
1554 
1555 	kfree(mem);
1556 	return err;
1557 }
1558 
1559 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1560 			      struct iov_iter *dest, int *chunk, bool *zc,
1561 			      bool async)
1562 {
1563 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1564 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1565 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1566 	struct strp_msg *rxm = strp_msg(skb);
1567 	int pad, err = 0;
1568 
1569 	if (!ctx->decrypted) {
1570 		if (tls_ctx->rx_conf == TLS_HW) {
1571 			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1572 			if (err < 0)
1573 				return err;
1574 		}
1575 
1576 		/* Still not decrypted after tls_device */
1577 		if (!ctx->decrypted) {
1578 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1579 					       async);
1580 			if (err < 0) {
1581 				if (err == -EINPROGRESS)
1582 					tls_advance_record_sn(sk, prot,
1583 							      &tls_ctx->rx);
1584 				else if (err == -EBADMSG)
1585 					TLS_INC_STATS(sock_net(sk),
1586 						      LINUX_MIB_TLSDECRYPTERROR);
1587 				return err;
1588 			}
1589 		} else {
1590 			*zc = false;
1591 		}
1592 
1593 		pad = padding_length(ctx, prot, skb);
1594 		if (pad < 0)
1595 			return pad;
1596 
1597 		rxm->full_len -= pad;
1598 		rxm->offset += prot->prepend_size;
1599 		rxm->full_len -= prot->overhead_size;
1600 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1601 		ctx->decrypted = 1;
1602 		ctx->saved_data_ready(sk);
1603 	} else {
1604 		*zc = false;
1605 	}
1606 
1607 	return err;
1608 }
1609 
1610 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1611 		struct scatterlist *sgout)
1612 {
1613 	bool zc = true;
1614 	int chunk;
1615 
1616 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1617 }
1618 
1619 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1620 			       unsigned int len)
1621 {
1622 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1623 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1624 
1625 	if (skb) {
1626 		struct strp_msg *rxm = strp_msg(skb);
1627 
1628 		if (len < rxm->full_len) {
1629 			rxm->offset += len;
1630 			rxm->full_len -= len;
1631 			return false;
1632 		}
1633 		consume_skb(skb);
1634 	}
1635 
1636 	/* Finished with message */
1637 	ctx->recv_pkt = NULL;
1638 	__strp_unpause(&ctx->strp);
1639 
1640 	return true;
1641 }
1642 
1643 /* This function traverses the rx_list in tls receive context to copies the
1644  * decrypted records into the buffer provided by caller zero copy is not
1645  * true. Further, the records are removed from the rx_list if it is not a peek
1646  * case and the record has been consumed completely.
1647  */
1648 static int process_rx_list(struct tls_sw_context_rx *ctx,
1649 			   struct msghdr *msg,
1650 			   u8 *control,
1651 			   bool *cmsg,
1652 			   size_t skip,
1653 			   size_t len,
1654 			   bool zc,
1655 			   bool is_peek)
1656 {
1657 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1658 	u8 ctrl = *control;
1659 	u8 msgc = *cmsg;
1660 	struct tls_msg *tlm;
1661 	ssize_t copied = 0;
1662 
1663 	/* Set the record type in 'control' if caller didn't pass it */
1664 	if (!ctrl && skb) {
1665 		tlm = tls_msg(skb);
1666 		ctrl = tlm->control;
1667 	}
1668 
1669 	while (skip && skb) {
1670 		struct strp_msg *rxm = strp_msg(skb);
1671 		tlm = tls_msg(skb);
1672 
1673 		/* Cannot process a record of different type */
1674 		if (ctrl != tlm->control)
1675 			return 0;
1676 
1677 		if (skip < rxm->full_len)
1678 			break;
1679 
1680 		skip = skip - rxm->full_len;
1681 		skb = skb_peek_next(skb, &ctx->rx_list);
1682 	}
1683 
1684 	while (len && skb) {
1685 		struct sk_buff *next_skb;
1686 		struct strp_msg *rxm = strp_msg(skb);
1687 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1688 
1689 		tlm = tls_msg(skb);
1690 
1691 		/* Cannot process a record of different type */
1692 		if (ctrl != tlm->control)
1693 			return 0;
1694 
1695 		/* Set record type if not already done. For a non-data record,
1696 		 * do not proceed if record type could not be copied.
1697 		 */
1698 		if (!msgc) {
1699 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1700 					    sizeof(ctrl), &ctrl);
1701 			msgc = true;
1702 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1703 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1704 					return -EIO;
1705 
1706 				*cmsg = msgc;
1707 			}
1708 		}
1709 
1710 		if (!zc || (rxm->full_len - skip) > len) {
1711 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1712 						    msg, chunk);
1713 			if (err < 0)
1714 				return err;
1715 		}
1716 
1717 		len = len - chunk;
1718 		copied = copied + chunk;
1719 
1720 		/* Consume the data from record if it is non-peek case*/
1721 		if (!is_peek) {
1722 			rxm->offset = rxm->offset + chunk;
1723 			rxm->full_len = rxm->full_len - chunk;
1724 
1725 			/* Return if there is unconsumed data in the record */
1726 			if (rxm->full_len - skip)
1727 				break;
1728 		}
1729 
1730 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1731 		 * So from the 2nd record, 'skip' should be 0.
1732 		 */
1733 		skip = 0;
1734 
1735 		if (msg)
1736 			msg->msg_flags |= MSG_EOR;
1737 
1738 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1739 
1740 		if (!is_peek) {
1741 			skb_unlink(skb, &ctx->rx_list);
1742 			consume_skb(skb);
1743 		}
1744 
1745 		skb = next_skb;
1746 	}
1747 
1748 	*control = ctrl;
1749 	return copied;
1750 }
1751 
1752 int tls_sw_recvmsg(struct sock *sk,
1753 		   struct msghdr *msg,
1754 		   size_t len,
1755 		   int nonblock,
1756 		   int flags,
1757 		   int *addr_len)
1758 {
1759 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1760 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1761 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1762 	struct sk_psock *psock;
1763 	unsigned char control = 0;
1764 	ssize_t decrypted = 0;
1765 	struct strp_msg *rxm;
1766 	struct tls_msg *tlm;
1767 	struct sk_buff *skb;
1768 	ssize_t copied = 0;
1769 	bool cmsg = false;
1770 	int target, err = 0;
1771 	long timeo;
1772 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1773 	bool is_peek = flags & MSG_PEEK;
1774 	bool bpf_strp_enabled;
1775 	int num_async = 0;
1776 	int pending;
1777 
1778 	flags |= nonblock;
1779 
1780 	if (unlikely(flags & MSG_ERRQUEUE))
1781 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1782 
1783 	psock = sk_psock_get(sk);
1784 	lock_sock(sk);
1785 	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1786 
1787 	/* Process pending decrypted records. It must be non-zero-copy */
1788 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1789 			      is_peek);
1790 	if (err < 0) {
1791 		tls_err_abort(sk, err);
1792 		goto end;
1793 	} else {
1794 		copied = err;
1795 	}
1796 
1797 	if (len <= copied)
1798 		goto recv_end;
1799 
1800 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1801 	len = len - copied;
1802 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1803 
1804 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1805 		bool retain_skb = false;
1806 		bool zc = false;
1807 		int to_decrypt;
1808 		int chunk = 0;
1809 		bool async_capable;
1810 		bool async = false;
1811 
1812 		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1813 		if (!skb) {
1814 			if (psock) {
1815 				int ret = sk_msg_recvmsg(sk, psock, msg, len,
1816 							 flags);
1817 
1818 				if (ret > 0) {
1819 					decrypted += ret;
1820 					len -= ret;
1821 					continue;
1822 				}
1823 			}
1824 			goto recv_end;
1825 		} else {
1826 			tlm = tls_msg(skb);
1827 			if (prot->version == TLS_1_3_VERSION)
1828 				tlm->control = 0;
1829 			else
1830 				tlm->control = ctx->control;
1831 		}
1832 
1833 		rxm = strp_msg(skb);
1834 
1835 		to_decrypt = rxm->full_len - prot->overhead_size;
1836 
1837 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1838 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1839 		    prot->version != TLS_1_3_VERSION &&
1840 		    !bpf_strp_enabled)
1841 			zc = true;
1842 
1843 		/* Do not use async mode if record is non-data */
1844 		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1845 			async_capable = ctx->async_capable;
1846 		else
1847 			async_capable = false;
1848 
1849 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1850 					 &chunk, &zc, async_capable);
1851 		if (err < 0 && err != -EINPROGRESS) {
1852 			tls_err_abort(sk, -EBADMSG);
1853 			goto recv_end;
1854 		}
1855 
1856 		if (err == -EINPROGRESS) {
1857 			async = true;
1858 			num_async++;
1859 		} else if (prot->version == TLS_1_3_VERSION) {
1860 			tlm->control = ctx->control;
1861 		}
1862 
1863 		/* If the type of records being processed is not known yet,
1864 		 * set it to record type just dequeued. If it is already known,
1865 		 * but does not match the record type just dequeued, go to end.
1866 		 * We always get record type here since for tls1.2, record type
1867 		 * is known just after record is dequeued from stream parser.
1868 		 * For tls1.3, we disable async.
1869 		 */
1870 
1871 		if (!control)
1872 			control = tlm->control;
1873 		else if (control != tlm->control)
1874 			goto recv_end;
1875 
1876 		if (!cmsg) {
1877 			int cerr;
1878 
1879 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1880 					sizeof(control), &control);
1881 			cmsg = true;
1882 			if (control != TLS_RECORD_TYPE_DATA) {
1883 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1884 					err = -EIO;
1885 					goto recv_end;
1886 				}
1887 			}
1888 		}
1889 
1890 		if (async)
1891 			goto pick_next_record;
1892 
1893 		if (!zc) {
1894 			if (bpf_strp_enabled) {
1895 				err = sk_psock_tls_strp_read(psock, skb);
1896 				if (err != __SK_PASS) {
1897 					rxm->offset = rxm->offset + rxm->full_len;
1898 					rxm->full_len = 0;
1899 					if (err == __SK_DROP)
1900 						consume_skb(skb);
1901 					ctx->recv_pkt = NULL;
1902 					__strp_unpause(&ctx->strp);
1903 					continue;
1904 				}
1905 			}
1906 
1907 			if (rxm->full_len > len) {
1908 				retain_skb = true;
1909 				chunk = len;
1910 			} else {
1911 				chunk = rxm->full_len;
1912 			}
1913 
1914 			err = skb_copy_datagram_msg(skb, rxm->offset,
1915 						    msg, chunk);
1916 			if (err < 0)
1917 				goto recv_end;
1918 
1919 			if (!is_peek) {
1920 				rxm->offset = rxm->offset + chunk;
1921 				rxm->full_len = rxm->full_len - chunk;
1922 			}
1923 		}
1924 
1925 pick_next_record:
1926 		if (chunk > len)
1927 			chunk = len;
1928 
1929 		decrypted += chunk;
1930 		len -= chunk;
1931 
1932 		/* For async or peek case, queue the current skb */
1933 		if (async || is_peek || retain_skb) {
1934 			skb_queue_tail(&ctx->rx_list, skb);
1935 			skb = NULL;
1936 		}
1937 
1938 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1939 			/* Return full control message to
1940 			 * userspace before trying to parse
1941 			 * another message type
1942 			 */
1943 			msg->msg_flags |= MSG_EOR;
1944 			if (control != TLS_RECORD_TYPE_DATA)
1945 				goto recv_end;
1946 		} else {
1947 			break;
1948 		}
1949 	}
1950 
1951 recv_end:
1952 	if (num_async) {
1953 		/* Wait for all previously submitted records to be decrypted */
1954 		spin_lock_bh(&ctx->decrypt_compl_lock);
1955 		ctx->async_notify = true;
1956 		pending = atomic_read(&ctx->decrypt_pending);
1957 		spin_unlock_bh(&ctx->decrypt_compl_lock);
1958 		if (pending) {
1959 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1960 			if (err) {
1961 				/* one of async decrypt failed */
1962 				tls_err_abort(sk, err);
1963 				copied = 0;
1964 				decrypted = 0;
1965 				goto end;
1966 			}
1967 		} else {
1968 			reinit_completion(&ctx->async_wait.completion);
1969 		}
1970 
1971 		/* There can be no concurrent accesses, since we have no
1972 		 * pending decrypt operations
1973 		 */
1974 		WRITE_ONCE(ctx->async_notify, false);
1975 
1976 		/* Drain records from the rx_list & copy if required */
1977 		if (is_peek || is_kvec)
1978 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1979 					      decrypted, false, is_peek);
1980 		else
1981 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1982 					      decrypted, true, is_peek);
1983 		if (err < 0) {
1984 			tls_err_abort(sk, err);
1985 			copied = 0;
1986 			goto end;
1987 		}
1988 	}
1989 
1990 	copied += decrypted;
1991 
1992 end:
1993 	release_sock(sk);
1994 	sk_defer_free_flush(sk);
1995 	if (psock)
1996 		sk_psock_put(sk, psock);
1997 	return copied ? : err;
1998 }
1999 
2000 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2001 			   struct pipe_inode_info *pipe,
2002 			   size_t len, unsigned int flags)
2003 {
2004 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2005 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2006 	struct strp_msg *rxm = NULL;
2007 	struct sock *sk = sock->sk;
2008 	struct sk_buff *skb;
2009 	ssize_t copied = 0;
2010 	bool from_queue;
2011 	int err = 0;
2012 	long timeo;
2013 	int chunk;
2014 	bool zc = false;
2015 
2016 	lock_sock(sk);
2017 
2018 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2019 
2020 	from_queue = !skb_queue_empty(&ctx->rx_list);
2021 	if (from_queue) {
2022 		skb = __skb_dequeue(&ctx->rx_list);
2023 	} else {
2024 		skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
2025 				    &err);
2026 		if (!skb)
2027 			goto splice_read_end;
2028 
2029 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2030 		if (err < 0) {
2031 			tls_err_abort(sk, -EBADMSG);
2032 			goto splice_read_end;
2033 		}
2034 	}
2035 
2036 	/* splice does not support reading control messages */
2037 	if (ctx->control != TLS_RECORD_TYPE_DATA) {
2038 		err = -EINVAL;
2039 		goto splice_read_end;
2040 	}
2041 
2042 	rxm = strp_msg(skb);
2043 
2044 	chunk = min_t(unsigned int, rxm->full_len, len);
2045 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2046 	if (copied < 0)
2047 		goto splice_read_end;
2048 
2049 	if (!from_queue) {
2050 		ctx->recv_pkt = NULL;
2051 		__strp_unpause(&ctx->strp);
2052 	}
2053 	if (chunk < rxm->full_len) {
2054 		__skb_queue_head(&ctx->rx_list, skb);
2055 		rxm->offset += len;
2056 		rxm->full_len -= len;
2057 	} else {
2058 		consume_skb(skb);
2059 	}
2060 
2061 splice_read_end:
2062 	release_sock(sk);
2063 	sk_defer_free_flush(sk);
2064 	return copied ? : err;
2065 }
2066 
2067 bool tls_sw_sock_is_readable(struct sock *sk)
2068 {
2069 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2070 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2071 	bool ingress_empty = true;
2072 	struct sk_psock *psock;
2073 
2074 	rcu_read_lock();
2075 	psock = sk_psock(sk);
2076 	if (psock)
2077 		ingress_empty = list_empty(&psock->ingress_msg);
2078 	rcu_read_unlock();
2079 
2080 	return !ingress_empty || ctx->recv_pkt ||
2081 		!skb_queue_empty(&ctx->rx_list);
2082 }
2083 
2084 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2085 {
2086 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2087 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2088 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2089 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2090 	struct strp_msg *rxm = strp_msg(skb);
2091 	size_t cipher_overhead;
2092 	size_t data_len = 0;
2093 	int ret;
2094 
2095 	/* Verify that we have a full TLS header, or wait for more data */
2096 	if (rxm->offset + prot->prepend_size > skb->len)
2097 		return 0;
2098 
2099 	/* Sanity-check size of on-stack buffer. */
2100 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2101 		ret = -EINVAL;
2102 		goto read_failure;
2103 	}
2104 
2105 	/* Linearize header to local buffer */
2106 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2107 
2108 	if (ret < 0)
2109 		goto read_failure;
2110 
2111 	ctx->control = header[0];
2112 
2113 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2114 
2115 	cipher_overhead = prot->tag_size;
2116 	if (prot->version != TLS_1_3_VERSION &&
2117 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2118 		cipher_overhead += prot->iv_size;
2119 
2120 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2121 	    prot->tail_size) {
2122 		ret = -EMSGSIZE;
2123 		goto read_failure;
2124 	}
2125 	if (data_len < cipher_overhead) {
2126 		ret = -EBADMSG;
2127 		goto read_failure;
2128 	}
2129 
2130 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2131 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2132 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2133 		ret = -EINVAL;
2134 		goto read_failure;
2135 	}
2136 
2137 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2138 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2139 	return data_len + TLS_HEADER_SIZE;
2140 
2141 read_failure:
2142 	tls_err_abort(strp->sk, ret);
2143 
2144 	return ret;
2145 }
2146 
2147 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2148 {
2149 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2150 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2151 
2152 	ctx->decrypted = 0;
2153 
2154 	ctx->recv_pkt = skb;
2155 	strp_pause(strp);
2156 
2157 	ctx->saved_data_ready(strp->sk);
2158 }
2159 
2160 static void tls_data_ready(struct sock *sk)
2161 {
2162 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2163 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2164 	struct sk_psock *psock;
2165 
2166 	strp_data_ready(&ctx->strp);
2167 
2168 	psock = sk_psock_get(sk);
2169 	if (psock) {
2170 		if (!list_empty(&psock->ingress_msg))
2171 			ctx->saved_data_ready(sk);
2172 		sk_psock_put(sk, psock);
2173 	}
2174 }
2175 
2176 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2177 {
2178 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2179 
2180 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2181 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2182 	cancel_delayed_work_sync(&ctx->tx_work.work);
2183 }
2184 
2185 void tls_sw_release_resources_tx(struct sock *sk)
2186 {
2187 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2188 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2189 	struct tls_rec *rec, *tmp;
2190 	int pending;
2191 
2192 	/* Wait for any pending async encryptions to complete */
2193 	spin_lock_bh(&ctx->encrypt_compl_lock);
2194 	ctx->async_notify = true;
2195 	pending = atomic_read(&ctx->encrypt_pending);
2196 	spin_unlock_bh(&ctx->encrypt_compl_lock);
2197 
2198 	if (pending)
2199 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2200 
2201 	tls_tx_records(sk, -1);
2202 
2203 	/* Free up un-sent records in tx_list. First, free
2204 	 * the partially sent record if any at head of tx_list.
2205 	 */
2206 	if (tls_ctx->partially_sent_record) {
2207 		tls_free_partial_record(sk, tls_ctx);
2208 		rec = list_first_entry(&ctx->tx_list,
2209 				       struct tls_rec, list);
2210 		list_del(&rec->list);
2211 		sk_msg_free(sk, &rec->msg_plaintext);
2212 		kfree(rec);
2213 	}
2214 
2215 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2216 		list_del(&rec->list);
2217 		sk_msg_free(sk, &rec->msg_encrypted);
2218 		sk_msg_free(sk, &rec->msg_plaintext);
2219 		kfree(rec);
2220 	}
2221 
2222 	crypto_free_aead(ctx->aead_send);
2223 	tls_free_open_rec(sk);
2224 }
2225 
2226 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2227 {
2228 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2229 
2230 	kfree(ctx);
2231 }
2232 
2233 void tls_sw_release_resources_rx(struct sock *sk)
2234 {
2235 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2236 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2237 
2238 	kfree(tls_ctx->rx.rec_seq);
2239 	kfree(tls_ctx->rx.iv);
2240 
2241 	if (ctx->aead_recv) {
2242 		kfree_skb(ctx->recv_pkt);
2243 		ctx->recv_pkt = NULL;
2244 		skb_queue_purge(&ctx->rx_list);
2245 		crypto_free_aead(ctx->aead_recv);
2246 		strp_stop(&ctx->strp);
2247 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2248 		 * we still want to strp_stop(), but sk->sk_data_ready was
2249 		 * never swapped.
2250 		 */
2251 		if (ctx->saved_data_ready) {
2252 			write_lock_bh(&sk->sk_callback_lock);
2253 			sk->sk_data_ready = ctx->saved_data_ready;
2254 			write_unlock_bh(&sk->sk_callback_lock);
2255 		}
2256 	}
2257 }
2258 
2259 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2260 {
2261 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2262 
2263 	strp_done(&ctx->strp);
2264 }
2265 
2266 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2267 {
2268 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2269 
2270 	kfree(ctx);
2271 }
2272 
2273 void tls_sw_free_resources_rx(struct sock *sk)
2274 {
2275 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2276 
2277 	tls_sw_release_resources_rx(sk);
2278 	tls_sw_free_ctx_rx(tls_ctx);
2279 }
2280 
2281 /* The work handler to transmitt the encrypted records in tx_list */
2282 static void tx_work_handler(struct work_struct *work)
2283 {
2284 	struct delayed_work *delayed_work = to_delayed_work(work);
2285 	struct tx_work *tx_work = container_of(delayed_work,
2286 					       struct tx_work, work);
2287 	struct sock *sk = tx_work->sk;
2288 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2289 	struct tls_sw_context_tx *ctx;
2290 
2291 	if (unlikely(!tls_ctx))
2292 		return;
2293 
2294 	ctx = tls_sw_ctx_tx(tls_ctx);
2295 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2296 		return;
2297 
2298 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2299 		return;
2300 	mutex_lock(&tls_ctx->tx_lock);
2301 	lock_sock(sk);
2302 	tls_tx_records(sk, -1);
2303 	release_sock(sk);
2304 	mutex_unlock(&tls_ctx->tx_lock);
2305 }
2306 
2307 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2308 {
2309 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2310 
2311 	/* Schedule the transmission if tx list is ready */
2312 	if (is_tx_ready(tx_ctx) &&
2313 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2314 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2315 }
2316 
2317 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2318 {
2319 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2320 
2321 	write_lock_bh(&sk->sk_callback_lock);
2322 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2323 	sk->sk_data_ready = tls_data_ready;
2324 	write_unlock_bh(&sk->sk_callback_lock);
2325 
2326 	strp_check_rcv(&rx_ctx->strp);
2327 }
2328 
2329 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2330 {
2331 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2332 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2333 	struct tls_crypto_info *crypto_info;
2334 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2335 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2336 	struct cipher_context *cctx;
2337 	struct crypto_aead **aead;
2338 	struct strp_callbacks cb;
2339 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2340 	struct crypto_tfm *tfm;
2341 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2342 	size_t keysize;
2343 	int rc = 0;
2344 
2345 	if (!ctx) {
2346 		rc = -EINVAL;
2347 		goto out;
2348 	}
2349 
2350 	if (tx) {
2351 		if (!ctx->priv_ctx_tx) {
2352 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2353 			if (!sw_ctx_tx) {
2354 				rc = -ENOMEM;
2355 				goto out;
2356 			}
2357 			ctx->priv_ctx_tx = sw_ctx_tx;
2358 		} else {
2359 			sw_ctx_tx =
2360 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2361 		}
2362 	} else {
2363 		if (!ctx->priv_ctx_rx) {
2364 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2365 			if (!sw_ctx_rx) {
2366 				rc = -ENOMEM;
2367 				goto out;
2368 			}
2369 			ctx->priv_ctx_rx = sw_ctx_rx;
2370 		} else {
2371 			sw_ctx_rx =
2372 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2373 		}
2374 	}
2375 
2376 	if (tx) {
2377 		crypto_init_wait(&sw_ctx_tx->async_wait);
2378 		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2379 		crypto_info = &ctx->crypto_send.info;
2380 		cctx = &ctx->tx;
2381 		aead = &sw_ctx_tx->aead_send;
2382 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2383 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2384 		sw_ctx_tx->tx_work.sk = sk;
2385 	} else {
2386 		crypto_init_wait(&sw_ctx_rx->async_wait);
2387 		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2388 		crypto_info = &ctx->crypto_recv.info;
2389 		cctx = &ctx->rx;
2390 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2391 		aead = &sw_ctx_rx->aead_recv;
2392 	}
2393 
2394 	switch (crypto_info->cipher_type) {
2395 	case TLS_CIPHER_AES_GCM_128: {
2396 		struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2397 
2398 		gcm_128_info = (void *)crypto_info;
2399 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2400 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2401 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2402 		iv = gcm_128_info->iv;
2403 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2404 		rec_seq = gcm_128_info->rec_seq;
2405 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2406 		key = gcm_128_info->key;
2407 		salt = gcm_128_info->salt;
2408 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2409 		cipher_name = "gcm(aes)";
2410 		break;
2411 	}
2412 	case TLS_CIPHER_AES_GCM_256: {
2413 		struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2414 
2415 		gcm_256_info = (void *)crypto_info;
2416 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2417 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2418 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2419 		iv = gcm_256_info->iv;
2420 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2421 		rec_seq = gcm_256_info->rec_seq;
2422 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2423 		key = gcm_256_info->key;
2424 		salt = gcm_256_info->salt;
2425 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2426 		cipher_name = "gcm(aes)";
2427 		break;
2428 	}
2429 	case TLS_CIPHER_AES_CCM_128: {
2430 		struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2431 
2432 		ccm_128_info = (void *)crypto_info;
2433 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2434 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2435 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2436 		iv = ccm_128_info->iv;
2437 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2438 		rec_seq = ccm_128_info->rec_seq;
2439 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2440 		key = ccm_128_info->key;
2441 		salt = ccm_128_info->salt;
2442 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2443 		cipher_name = "ccm(aes)";
2444 		break;
2445 	}
2446 	case TLS_CIPHER_CHACHA20_POLY1305: {
2447 		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2448 
2449 		chacha20_poly1305_info = (void *)crypto_info;
2450 		nonce_size = 0;
2451 		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2452 		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2453 		iv = chacha20_poly1305_info->iv;
2454 		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2455 		rec_seq = chacha20_poly1305_info->rec_seq;
2456 		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2457 		key = chacha20_poly1305_info->key;
2458 		salt = chacha20_poly1305_info->salt;
2459 		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2460 		cipher_name = "rfc7539(chacha20,poly1305)";
2461 		break;
2462 	}
2463 	case TLS_CIPHER_SM4_GCM: {
2464 		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2465 
2466 		sm4_gcm_info = (void *)crypto_info;
2467 		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2468 		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2469 		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2470 		iv = sm4_gcm_info->iv;
2471 		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2472 		rec_seq = sm4_gcm_info->rec_seq;
2473 		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2474 		key = sm4_gcm_info->key;
2475 		salt = sm4_gcm_info->salt;
2476 		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2477 		cipher_name = "gcm(sm4)";
2478 		break;
2479 	}
2480 	case TLS_CIPHER_SM4_CCM: {
2481 		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2482 
2483 		sm4_ccm_info = (void *)crypto_info;
2484 		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2485 		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2486 		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2487 		iv = sm4_ccm_info->iv;
2488 		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2489 		rec_seq = sm4_ccm_info->rec_seq;
2490 		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2491 		key = sm4_ccm_info->key;
2492 		salt = sm4_ccm_info->salt;
2493 		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2494 		cipher_name = "ccm(sm4)";
2495 		break;
2496 	}
2497 	default:
2498 		rc = -EINVAL;
2499 		goto free_priv;
2500 	}
2501 
2502 	/* Sanity-check the sizes for stack allocations. */
2503 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2504 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2505 		rc = -EINVAL;
2506 		goto free_priv;
2507 	}
2508 
2509 	if (crypto_info->version == TLS_1_3_VERSION) {
2510 		nonce_size = 0;
2511 		prot->aad_size = TLS_HEADER_SIZE;
2512 		prot->tail_size = 1;
2513 	} else {
2514 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2515 		prot->tail_size = 0;
2516 	}
2517 
2518 	prot->version = crypto_info->version;
2519 	prot->cipher_type = crypto_info->cipher_type;
2520 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2521 	prot->tag_size = tag_size;
2522 	prot->overhead_size = prot->prepend_size +
2523 			      prot->tag_size + prot->tail_size;
2524 	prot->iv_size = iv_size;
2525 	prot->salt_size = salt_size;
2526 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2527 	if (!cctx->iv) {
2528 		rc = -ENOMEM;
2529 		goto free_priv;
2530 	}
2531 	/* Note: 128 & 256 bit salt are the same size */
2532 	prot->rec_seq_size = rec_seq_size;
2533 	memcpy(cctx->iv, salt, salt_size);
2534 	memcpy(cctx->iv + salt_size, iv, iv_size);
2535 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2536 	if (!cctx->rec_seq) {
2537 		rc = -ENOMEM;
2538 		goto free_iv;
2539 	}
2540 
2541 	if (!*aead) {
2542 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2543 		if (IS_ERR(*aead)) {
2544 			rc = PTR_ERR(*aead);
2545 			*aead = NULL;
2546 			goto free_rec_seq;
2547 		}
2548 	}
2549 
2550 	ctx->push_pending_record = tls_sw_push_pending_record;
2551 
2552 	rc = crypto_aead_setkey(*aead, key, keysize);
2553 
2554 	if (rc)
2555 		goto free_aead;
2556 
2557 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2558 	if (rc)
2559 		goto free_aead;
2560 
2561 	if (sw_ctx_rx) {
2562 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2563 
2564 		if (crypto_info->version == TLS_1_3_VERSION)
2565 			sw_ctx_rx->async_capable = 0;
2566 		else
2567 			sw_ctx_rx->async_capable =
2568 				!!(tfm->__crt_alg->cra_flags &
2569 				   CRYPTO_ALG_ASYNC);
2570 
2571 		/* Set up strparser */
2572 		memset(&cb, 0, sizeof(cb));
2573 		cb.rcv_msg = tls_queue;
2574 		cb.parse_msg = tls_read_size;
2575 
2576 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2577 	}
2578 
2579 	goto out;
2580 
2581 free_aead:
2582 	crypto_free_aead(*aead);
2583 	*aead = NULL;
2584 free_rec_seq:
2585 	kfree(cctx->rec_seq);
2586 	cctx->rec_seq = NULL;
2587 free_iv:
2588 	kfree(cctx->iv);
2589 	cctx->iv = NULL;
2590 free_priv:
2591 	if (tx) {
2592 		kfree(ctx->priv_ctx_tx);
2593 		ctx->priv_ctx_tx = NULL;
2594 	} else {
2595 		kfree(ctx->priv_ctx_rx);
2596 		ctx->priv_ctx_rx = NULL;
2597 	}
2598 out:
2599 	return rc;
2600 }
2601