1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 u8 tail; 56 ); 57 58 struct sk_buff *skb; 59 }; 60 61 struct tls_decrypt_ctx { 62 struct sock *sk; 63 u8 iv[MAX_IV_SIZE]; 64 u8 aad[TLS_MAX_AAD_SIZE]; 65 u8 tail; 66 struct scatterlist sg[]; 67 }; 68 69 noinline void tls_err_abort(struct sock *sk, int err) 70 { 71 WARN_ON_ONCE(err >= 0); 72 /* sk->sk_err should contain a positive error code. */ 73 sk->sk_err = -err; 74 sk_error_report(sk); 75 } 76 77 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 78 unsigned int recursion_level) 79 { 80 int start = skb_headlen(skb); 81 int i, chunk = start - offset; 82 struct sk_buff *frag_iter; 83 int elt = 0; 84 85 if (unlikely(recursion_level >= 24)) 86 return -EMSGSIZE; 87 88 if (chunk > 0) { 89 if (chunk > len) 90 chunk = len; 91 elt++; 92 len -= chunk; 93 if (len == 0) 94 return elt; 95 offset += chunk; 96 } 97 98 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 99 int end; 100 101 WARN_ON(start > offset + len); 102 103 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 104 chunk = end - offset; 105 if (chunk > 0) { 106 if (chunk > len) 107 chunk = len; 108 elt++; 109 len -= chunk; 110 if (len == 0) 111 return elt; 112 offset += chunk; 113 } 114 start = end; 115 } 116 117 if (unlikely(skb_has_frag_list(skb))) { 118 skb_walk_frags(skb, frag_iter) { 119 int end, ret; 120 121 WARN_ON(start > offset + len); 122 123 end = start + frag_iter->len; 124 chunk = end - offset; 125 if (chunk > 0) { 126 if (chunk > len) 127 chunk = len; 128 ret = __skb_nsg(frag_iter, offset - start, chunk, 129 recursion_level + 1); 130 if (unlikely(ret < 0)) 131 return ret; 132 elt += ret; 133 len -= chunk; 134 if (len == 0) 135 return elt; 136 offset += chunk; 137 } 138 start = end; 139 } 140 } 141 BUG_ON(len); 142 return elt; 143 } 144 145 /* Return the number of scatterlist elements required to completely map the 146 * skb, or -EMSGSIZE if the recursion depth is exceeded. 147 */ 148 static int skb_nsg(struct sk_buff *skb, int offset, int len) 149 { 150 return __skb_nsg(skb, offset, len, 0); 151 } 152 153 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 154 struct tls_decrypt_arg *darg) 155 { 156 struct strp_msg *rxm = strp_msg(skb); 157 struct tls_msg *tlm = tls_msg(skb); 158 int sub = 0; 159 160 /* Determine zero-padding length */ 161 if (prot->version == TLS_1_3_VERSION) { 162 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 163 char content_type = darg->zc ? darg->tail : 0; 164 int err; 165 166 while (content_type == 0) { 167 if (offset < prot->prepend_size) 168 return -EBADMSG; 169 err = skb_copy_bits(skb, rxm->offset + offset, 170 &content_type, 1); 171 if (err) 172 return err; 173 if (content_type) 174 break; 175 sub++; 176 offset--; 177 } 178 tlm->control = content_type; 179 } 180 return sub; 181 } 182 183 static void tls_decrypt_done(void *data, int err) 184 { 185 struct aead_request *aead_req = data; 186 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 187 struct scatterlist *sgout = aead_req->dst; 188 struct scatterlist *sgin = aead_req->src; 189 struct tls_sw_context_rx *ctx; 190 struct tls_decrypt_ctx *dctx; 191 struct tls_context *tls_ctx; 192 struct scatterlist *sg; 193 unsigned int pages; 194 struct sock *sk; 195 int aead_size; 196 197 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 198 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 199 dctx = (void *)((u8 *)aead_req + aead_size); 200 201 sk = dctx->sk; 202 tls_ctx = tls_get_ctx(sk); 203 ctx = tls_sw_ctx_rx(tls_ctx); 204 205 /* Propagate if there was an err */ 206 if (err) { 207 if (err == -EBADMSG) 208 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 209 ctx->async_wait.err = err; 210 tls_err_abort(sk, err); 211 } 212 213 /* Free the destination pages if skb was not decrypted inplace */ 214 if (sgout != sgin) { 215 /* Skip the first S/G entry as it points to AAD */ 216 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 217 if (!sg) 218 break; 219 put_page(sg_page(sg)); 220 } 221 } 222 223 kfree(aead_req); 224 225 spin_lock_bh(&ctx->decrypt_compl_lock); 226 if (!atomic_dec_return(&ctx->decrypt_pending)) 227 complete(&ctx->async_wait.completion); 228 spin_unlock_bh(&ctx->decrypt_compl_lock); 229 } 230 231 static int tls_do_decryption(struct sock *sk, 232 struct scatterlist *sgin, 233 struct scatterlist *sgout, 234 char *iv_recv, 235 size_t data_len, 236 struct aead_request *aead_req, 237 struct tls_decrypt_arg *darg) 238 { 239 struct tls_context *tls_ctx = tls_get_ctx(sk); 240 struct tls_prot_info *prot = &tls_ctx->prot_info; 241 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 242 int ret; 243 244 aead_request_set_tfm(aead_req, ctx->aead_recv); 245 aead_request_set_ad(aead_req, prot->aad_size); 246 aead_request_set_crypt(aead_req, sgin, sgout, 247 data_len + prot->tag_size, 248 (u8 *)iv_recv); 249 250 if (darg->async) { 251 aead_request_set_callback(aead_req, 252 CRYPTO_TFM_REQ_MAY_BACKLOG, 253 tls_decrypt_done, aead_req); 254 atomic_inc(&ctx->decrypt_pending); 255 } else { 256 aead_request_set_callback(aead_req, 257 CRYPTO_TFM_REQ_MAY_BACKLOG, 258 crypto_req_done, &ctx->async_wait); 259 } 260 261 ret = crypto_aead_decrypt(aead_req); 262 if (ret == -EINPROGRESS) { 263 if (darg->async) 264 return 0; 265 266 ret = crypto_wait_req(ret, &ctx->async_wait); 267 } 268 darg->async = false; 269 270 return ret; 271 } 272 273 static void tls_trim_both_msgs(struct sock *sk, int target_size) 274 { 275 struct tls_context *tls_ctx = tls_get_ctx(sk); 276 struct tls_prot_info *prot = &tls_ctx->prot_info; 277 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 278 struct tls_rec *rec = ctx->open_rec; 279 280 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 281 if (target_size > 0) 282 target_size += prot->overhead_size; 283 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 284 } 285 286 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 287 { 288 struct tls_context *tls_ctx = tls_get_ctx(sk); 289 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 290 struct tls_rec *rec = ctx->open_rec; 291 struct sk_msg *msg_en = &rec->msg_encrypted; 292 293 return sk_msg_alloc(sk, msg_en, len, 0); 294 } 295 296 static int tls_clone_plaintext_msg(struct sock *sk, int required) 297 { 298 struct tls_context *tls_ctx = tls_get_ctx(sk); 299 struct tls_prot_info *prot = &tls_ctx->prot_info; 300 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 301 struct tls_rec *rec = ctx->open_rec; 302 struct sk_msg *msg_pl = &rec->msg_plaintext; 303 struct sk_msg *msg_en = &rec->msg_encrypted; 304 int skip, len; 305 306 /* We add page references worth len bytes from encrypted sg 307 * at the end of plaintext sg. It is guaranteed that msg_en 308 * has enough required room (ensured by caller). 309 */ 310 len = required - msg_pl->sg.size; 311 312 /* Skip initial bytes in msg_en's data to be able to use 313 * same offset of both plain and encrypted data. 314 */ 315 skip = prot->prepend_size + msg_pl->sg.size; 316 317 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 318 } 319 320 static struct tls_rec *tls_get_rec(struct sock *sk) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_prot_info *prot = &tls_ctx->prot_info; 324 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 325 struct sk_msg *msg_pl, *msg_en; 326 struct tls_rec *rec; 327 int mem_size; 328 329 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 330 331 rec = kzalloc(mem_size, sk->sk_allocation); 332 if (!rec) 333 return NULL; 334 335 msg_pl = &rec->msg_plaintext; 336 msg_en = &rec->msg_encrypted; 337 338 sk_msg_init(msg_pl); 339 sk_msg_init(msg_en); 340 341 sg_init_table(rec->sg_aead_in, 2); 342 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 343 sg_unmark_end(&rec->sg_aead_in[1]); 344 345 sg_init_table(rec->sg_aead_out, 2); 346 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 347 sg_unmark_end(&rec->sg_aead_out[1]); 348 349 rec->sk = sk; 350 351 return rec; 352 } 353 354 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 355 { 356 sk_msg_free(sk, &rec->msg_encrypted); 357 sk_msg_free(sk, &rec->msg_plaintext); 358 kfree(rec); 359 } 360 361 static void tls_free_open_rec(struct sock *sk) 362 { 363 struct tls_context *tls_ctx = tls_get_ctx(sk); 364 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 365 struct tls_rec *rec = ctx->open_rec; 366 367 if (rec) { 368 tls_free_rec(sk, rec); 369 ctx->open_rec = NULL; 370 } 371 } 372 373 int tls_tx_records(struct sock *sk, int flags) 374 { 375 struct tls_context *tls_ctx = tls_get_ctx(sk); 376 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 377 struct tls_rec *rec, *tmp; 378 struct sk_msg *msg_en; 379 int tx_flags, rc = 0; 380 381 if (tls_is_partially_sent_record(tls_ctx)) { 382 rec = list_first_entry(&ctx->tx_list, 383 struct tls_rec, list); 384 385 if (flags == -1) 386 tx_flags = rec->tx_flags; 387 else 388 tx_flags = flags; 389 390 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 391 if (rc) 392 goto tx_err; 393 394 /* Full record has been transmitted. 395 * Remove the head of tx_list 396 */ 397 list_del(&rec->list); 398 sk_msg_free(sk, &rec->msg_plaintext); 399 kfree(rec); 400 } 401 402 /* Tx all ready records */ 403 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 404 if (READ_ONCE(rec->tx_ready)) { 405 if (flags == -1) 406 tx_flags = rec->tx_flags; 407 else 408 tx_flags = flags; 409 410 msg_en = &rec->msg_encrypted; 411 rc = tls_push_sg(sk, tls_ctx, 412 &msg_en->sg.data[msg_en->sg.curr], 413 0, tx_flags); 414 if (rc) 415 goto tx_err; 416 417 list_del(&rec->list); 418 sk_msg_free(sk, &rec->msg_plaintext); 419 kfree(rec); 420 } else { 421 break; 422 } 423 } 424 425 tx_err: 426 if (rc < 0 && rc != -EAGAIN) 427 tls_err_abort(sk, -EBADMSG); 428 429 return rc; 430 } 431 432 static void tls_encrypt_done(void *data, int err) 433 { 434 struct tls_sw_context_tx *ctx; 435 struct tls_context *tls_ctx; 436 struct tls_prot_info *prot; 437 struct tls_rec *rec = data; 438 struct scatterlist *sge; 439 struct sk_msg *msg_en; 440 bool ready = false; 441 struct sock *sk; 442 int pending; 443 444 msg_en = &rec->msg_encrypted; 445 446 sk = rec->sk; 447 tls_ctx = tls_get_ctx(sk); 448 prot = &tls_ctx->prot_info; 449 ctx = tls_sw_ctx_tx(tls_ctx); 450 451 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 452 sge->offset -= prot->prepend_size; 453 sge->length += prot->prepend_size; 454 455 /* Check if error is previously set on socket */ 456 if (err || sk->sk_err) { 457 rec = NULL; 458 459 /* If err is already set on socket, return the same code */ 460 if (sk->sk_err) { 461 ctx->async_wait.err = -sk->sk_err; 462 } else { 463 ctx->async_wait.err = err; 464 tls_err_abort(sk, err); 465 } 466 } 467 468 if (rec) { 469 struct tls_rec *first_rec; 470 471 /* Mark the record as ready for transmission */ 472 smp_store_mb(rec->tx_ready, true); 473 474 /* If received record is at head of tx_list, schedule tx */ 475 first_rec = list_first_entry(&ctx->tx_list, 476 struct tls_rec, list); 477 if (rec == first_rec) 478 ready = true; 479 } 480 481 spin_lock_bh(&ctx->encrypt_compl_lock); 482 pending = atomic_dec_return(&ctx->encrypt_pending); 483 484 if (!pending && ctx->async_notify) 485 complete(&ctx->async_wait.completion); 486 spin_unlock_bh(&ctx->encrypt_compl_lock); 487 488 if (!ready) 489 return; 490 491 /* Schedule the transmission */ 492 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 493 schedule_delayed_work(&ctx->tx_work.work, 1); 494 } 495 496 static int tls_do_encryption(struct sock *sk, 497 struct tls_context *tls_ctx, 498 struct tls_sw_context_tx *ctx, 499 struct aead_request *aead_req, 500 size_t data_len, u32 start) 501 { 502 struct tls_prot_info *prot = &tls_ctx->prot_info; 503 struct tls_rec *rec = ctx->open_rec; 504 struct sk_msg *msg_en = &rec->msg_encrypted; 505 struct scatterlist *sge = sk_msg_elem(msg_en, start); 506 int rc, iv_offset = 0; 507 508 /* For CCM based ciphers, first byte of IV is a constant */ 509 switch (prot->cipher_type) { 510 case TLS_CIPHER_AES_CCM_128: 511 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 512 iv_offset = 1; 513 break; 514 case TLS_CIPHER_SM4_CCM: 515 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 516 iv_offset = 1; 517 break; 518 } 519 520 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 521 prot->iv_size + prot->salt_size); 522 523 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 524 tls_ctx->tx.rec_seq); 525 526 sge->offset += prot->prepend_size; 527 sge->length -= prot->prepend_size; 528 529 msg_en->sg.curr = start; 530 531 aead_request_set_tfm(aead_req, ctx->aead_send); 532 aead_request_set_ad(aead_req, prot->aad_size); 533 aead_request_set_crypt(aead_req, rec->sg_aead_in, 534 rec->sg_aead_out, 535 data_len, rec->iv_data); 536 537 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 538 tls_encrypt_done, rec); 539 540 /* Add the record in tx_list */ 541 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 542 atomic_inc(&ctx->encrypt_pending); 543 544 rc = crypto_aead_encrypt(aead_req); 545 if (!rc || rc != -EINPROGRESS) { 546 atomic_dec(&ctx->encrypt_pending); 547 sge->offset -= prot->prepend_size; 548 sge->length += prot->prepend_size; 549 } 550 551 if (!rc) { 552 WRITE_ONCE(rec->tx_ready, true); 553 } else if (rc != -EINPROGRESS) { 554 list_del(&rec->list); 555 return rc; 556 } 557 558 /* Unhook the record from context if encryption is not failure */ 559 ctx->open_rec = NULL; 560 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 561 return rc; 562 } 563 564 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 565 struct tls_rec **to, struct sk_msg *msg_opl, 566 struct sk_msg *msg_oen, u32 split_point, 567 u32 tx_overhead_size, u32 *orig_end) 568 { 569 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 570 struct scatterlist *sge, *osge, *nsge; 571 u32 orig_size = msg_opl->sg.size; 572 struct scatterlist tmp = { }; 573 struct sk_msg *msg_npl; 574 struct tls_rec *new; 575 int ret; 576 577 new = tls_get_rec(sk); 578 if (!new) 579 return -ENOMEM; 580 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 581 tx_overhead_size, 0); 582 if (ret < 0) { 583 tls_free_rec(sk, new); 584 return ret; 585 } 586 587 *orig_end = msg_opl->sg.end; 588 i = msg_opl->sg.start; 589 sge = sk_msg_elem(msg_opl, i); 590 while (apply && sge->length) { 591 if (sge->length > apply) { 592 u32 len = sge->length - apply; 593 594 get_page(sg_page(sge)); 595 sg_set_page(&tmp, sg_page(sge), len, 596 sge->offset + apply); 597 sge->length = apply; 598 bytes += apply; 599 apply = 0; 600 } else { 601 apply -= sge->length; 602 bytes += sge->length; 603 } 604 605 sk_msg_iter_var_next(i); 606 if (i == msg_opl->sg.end) 607 break; 608 sge = sk_msg_elem(msg_opl, i); 609 } 610 611 msg_opl->sg.end = i; 612 msg_opl->sg.curr = i; 613 msg_opl->sg.copybreak = 0; 614 msg_opl->apply_bytes = 0; 615 msg_opl->sg.size = bytes; 616 617 msg_npl = &new->msg_plaintext; 618 msg_npl->apply_bytes = apply; 619 msg_npl->sg.size = orig_size - bytes; 620 621 j = msg_npl->sg.start; 622 nsge = sk_msg_elem(msg_npl, j); 623 if (tmp.length) { 624 memcpy(nsge, &tmp, sizeof(*nsge)); 625 sk_msg_iter_var_next(j); 626 nsge = sk_msg_elem(msg_npl, j); 627 } 628 629 osge = sk_msg_elem(msg_opl, i); 630 while (osge->length) { 631 memcpy(nsge, osge, sizeof(*nsge)); 632 sg_unmark_end(nsge); 633 sk_msg_iter_var_next(i); 634 sk_msg_iter_var_next(j); 635 if (i == *orig_end) 636 break; 637 osge = sk_msg_elem(msg_opl, i); 638 nsge = sk_msg_elem(msg_npl, j); 639 } 640 641 msg_npl->sg.end = j; 642 msg_npl->sg.curr = j; 643 msg_npl->sg.copybreak = 0; 644 645 *to = new; 646 return 0; 647 } 648 649 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 650 struct tls_rec *from, u32 orig_end) 651 { 652 struct sk_msg *msg_npl = &from->msg_plaintext; 653 struct sk_msg *msg_opl = &to->msg_plaintext; 654 struct scatterlist *osge, *nsge; 655 u32 i, j; 656 657 i = msg_opl->sg.end; 658 sk_msg_iter_var_prev(i); 659 j = msg_npl->sg.start; 660 661 osge = sk_msg_elem(msg_opl, i); 662 nsge = sk_msg_elem(msg_npl, j); 663 664 if (sg_page(osge) == sg_page(nsge) && 665 osge->offset + osge->length == nsge->offset) { 666 osge->length += nsge->length; 667 put_page(sg_page(nsge)); 668 } 669 670 msg_opl->sg.end = orig_end; 671 msg_opl->sg.curr = orig_end; 672 msg_opl->sg.copybreak = 0; 673 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 674 msg_opl->sg.size += msg_npl->sg.size; 675 676 sk_msg_free(sk, &to->msg_encrypted); 677 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 678 679 kfree(from); 680 } 681 682 static int tls_push_record(struct sock *sk, int flags, 683 unsigned char record_type) 684 { 685 struct tls_context *tls_ctx = tls_get_ctx(sk); 686 struct tls_prot_info *prot = &tls_ctx->prot_info; 687 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 688 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 689 u32 i, split_point, orig_end; 690 struct sk_msg *msg_pl, *msg_en; 691 struct aead_request *req; 692 bool split; 693 int rc; 694 695 if (!rec) 696 return 0; 697 698 msg_pl = &rec->msg_plaintext; 699 msg_en = &rec->msg_encrypted; 700 701 split_point = msg_pl->apply_bytes; 702 split = split_point && split_point < msg_pl->sg.size; 703 if (unlikely((!split && 704 msg_pl->sg.size + 705 prot->overhead_size > msg_en->sg.size) || 706 (split && 707 split_point + 708 prot->overhead_size > msg_en->sg.size))) { 709 split = true; 710 split_point = msg_en->sg.size; 711 } 712 if (split) { 713 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 714 split_point, prot->overhead_size, 715 &orig_end); 716 if (rc < 0) 717 return rc; 718 /* This can happen if above tls_split_open_record allocates 719 * a single large encryption buffer instead of two smaller 720 * ones. In this case adjust pointers and continue without 721 * split. 722 */ 723 if (!msg_pl->sg.size) { 724 tls_merge_open_record(sk, rec, tmp, orig_end); 725 msg_pl = &rec->msg_plaintext; 726 msg_en = &rec->msg_encrypted; 727 split = false; 728 } 729 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 730 prot->overhead_size); 731 } 732 733 rec->tx_flags = flags; 734 req = &rec->aead_req; 735 736 i = msg_pl->sg.end; 737 sk_msg_iter_var_prev(i); 738 739 rec->content_type = record_type; 740 if (prot->version == TLS_1_3_VERSION) { 741 /* Add content type to end of message. No padding added */ 742 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 743 sg_mark_end(&rec->sg_content_type); 744 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 745 &rec->sg_content_type); 746 } else { 747 sg_mark_end(sk_msg_elem(msg_pl, i)); 748 } 749 750 if (msg_pl->sg.end < msg_pl->sg.start) { 751 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 752 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 753 msg_pl->sg.data); 754 } 755 756 i = msg_pl->sg.start; 757 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 758 759 i = msg_en->sg.end; 760 sk_msg_iter_var_prev(i); 761 sg_mark_end(sk_msg_elem(msg_en, i)); 762 763 i = msg_en->sg.start; 764 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 765 766 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 767 tls_ctx->tx.rec_seq, record_type, prot); 768 769 tls_fill_prepend(tls_ctx, 770 page_address(sg_page(&msg_en->sg.data[i])) + 771 msg_en->sg.data[i].offset, 772 msg_pl->sg.size + prot->tail_size, 773 record_type); 774 775 tls_ctx->pending_open_record_frags = false; 776 777 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 778 msg_pl->sg.size + prot->tail_size, i); 779 if (rc < 0) { 780 if (rc != -EINPROGRESS) { 781 tls_err_abort(sk, -EBADMSG); 782 if (split) { 783 tls_ctx->pending_open_record_frags = true; 784 tls_merge_open_record(sk, rec, tmp, orig_end); 785 } 786 } 787 ctx->async_capable = 1; 788 return rc; 789 } else if (split) { 790 msg_pl = &tmp->msg_plaintext; 791 msg_en = &tmp->msg_encrypted; 792 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 793 tls_ctx->pending_open_record_frags = true; 794 ctx->open_rec = tmp; 795 } 796 797 return tls_tx_records(sk, flags); 798 } 799 800 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 801 bool full_record, u8 record_type, 802 ssize_t *copied, int flags) 803 { 804 struct tls_context *tls_ctx = tls_get_ctx(sk); 805 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 806 struct sk_msg msg_redir = { }; 807 struct sk_psock *psock; 808 struct sock *sk_redir; 809 struct tls_rec *rec; 810 bool enospc, policy, redir_ingress; 811 int err = 0, send; 812 u32 delta = 0; 813 814 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 815 psock = sk_psock_get(sk); 816 if (!psock || !policy) { 817 err = tls_push_record(sk, flags, record_type); 818 if (err && sk->sk_err == EBADMSG) { 819 *copied -= sk_msg_free(sk, msg); 820 tls_free_open_rec(sk); 821 err = -sk->sk_err; 822 } 823 if (psock) 824 sk_psock_put(sk, psock); 825 return err; 826 } 827 more_data: 828 enospc = sk_msg_full(msg); 829 if (psock->eval == __SK_NONE) { 830 delta = msg->sg.size; 831 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 832 delta -= msg->sg.size; 833 } 834 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 835 !enospc && !full_record) { 836 err = -ENOSPC; 837 goto out_err; 838 } 839 msg->cork_bytes = 0; 840 send = msg->sg.size; 841 if (msg->apply_bytes && msg->apply_bytes < send) 842 send = msg->apply_bytes; 843 844 switch (psock->eval) { 845 case __SK_PASS: 846 err = tls_push_record(sk, flags, record_type); 847 if (err && sk->sk_err == EBADMSG) { 848 *copied -= sk_msg_free(sk, msg); 849 tls_free_open_rec(sk); 850 err = -sk->sk_err; 851 goto out_err; 852 } 853 break; 854 case __SK_REDIRECT: 855 redir_ingress = psock->redir_ingress; 856 sk_redir = psock->sk_redir; 857 memcpy(&msg_redir, msg, sizeof(*msg)); 858 if (msg->apply_bytes < send) 859 msg->apply_bytes = 0; 860 else 861 msg->apply_bytes -= send; 862 sk_msg_return_zero(sk, msg, send); 863 msg->sg.size -= send; 864 release_sock(sk); 865 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 866 &msg_redir, send, flags); 867 lock_sock(sk); 868 if (err < 0) { 869 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 870 msg->sg.size = 0; 871 } 872 if (msg->sg.size == 0) 873 tls_free_open_rec(sk); 874 break; 875 case __SK_DROP: 876 default: 877 sk_msg_free_partial(sk, msg, send); 878 if (msg->apply_bytes < send) 879 msg->apply_bytes = 0; 880 else 881 msg->apply_bytes -= send; 882 if (msg->sg.size == 0) 883 tls_free_open_rec(sk); 884 *copied -= (send + delta); 885 err = -EACCES; 886 } 887 888 if (likely(!err)) { 889 bool reset_eval = !ctx->open_rec; 890 891 rec = ctx->open_rec; 892 if (rec) { 893 msg = &rec->msg_plaintext; 894 if (!msg->apply_bytes) 895 reset_eval = true; 896 } 897 if (reset_eval) { 898 psock->eval = __SK_NONE; 899 if (psock->sk_redir) { 900 sock_put(psock->sk_redir); 901 psock->sk_redir = NULL; 902 } 903 } 904 if (rec) 905 goto more_data; 906 } 907 out_err: 908 sk_psock_put(sk, psock); 909 return err; 910 } 911 912 static int tls_sw_push_pending_record(struct sock *sk, int flags) 913 { 914 struct tls_context *tls_ctx = tls_get_ctx(sk); 915 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 916 struct tls_rec *rec = ctx->open_rec; 917 struct sk_msg *msg_pl; 918 size_t copied; 919 920 if (!rec) 921 return 0; 922 923 msg_pl = &rec->msg_plaintext; 924 copied = msg_pl->sg.size; 925 if (!copied) 926 return 0; 927 928 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 929 &copied, flags); 930 } 931 932 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 933 { 934 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 935 struct tls_context *tls_ctx = tls_get_ctx(sk); 936 struct tls_prot_info *prot = &tls_ctx->prot_info; 937 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 938 bool async_capable = ctx->async_capable; 939 unsigned char record_type = TLS_RECORD_TYPE_DATA; 940 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 941 bool eor = !(msg->msg_flags & MSG_MORE); 942 size_t try_to_copy; 943 ssize_t copied = 0; 944 struct sk_msg *msg_pl, *msg_en; 945 struct tls_rec *rec; 946 int required_size; 947 int num_async = 0; 948 bool full_record; 949 int record_room; 950 int num_zc = 0; 951 int orig_size; 952 int ret = 0; 953 int pending; 954 955 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 956 MSG_CMSG_COMPAT)) 957 return -EOPNOTSUPP; 958 959 mutex_lock(&tls_ctx->tx_lock); 960 lock_sock(sk); 961 962 if (unlikely(msg->msg_controllen)) { 963 ret = tls_process_cmsg(sk, msg, &record_type); 964 if (ret) { 965 if (ret == -EINPROGRESS) 966 num_async++; 967 else if (ret != -EAGAIN) 968 goto send_end; 969 } 970 } 971 972 while (msg_data_left(msg)) { 973 if (sk->sk_err) { 974 ret = -sk->sk_err; 975 goto send_end; 976 } 977 978 if (ctx->open_rec) 979 rec = ctx->open_rec; 980 else 981 rec = ctx->open_rec = tls_get_rec(sk); 982 if (!rec) { 983 ret = -ENOMEM; 984 goto send_end; 985 } 986 987 msg_pl = &rec->msg_plaintext; 988 msg_en = &rec->msg_encrypted; 989 990 orig_size = msg_pl->sg.size; 991 full_record = false; 992 try_to_copy = msg_data_left(msg); 993 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 994 if (try_to_copy >= record_room) { 995 try_to_copy = record_room; 996 full_record = true; 997 } 998 999 required_size = msg_pl->sg.size + try_to_copy + 1000 prot->overhead_size; 1001 1002 if (!sk_stream_memory_free(sk)) 1003 goto wait_for_sndbuf; 1004 1005 alloc_encrypted: 1006 ret = tls_alloc_encrypted_msg(sk, required_size); 1007 if (ret) { 1008 if (ret != -ENOSPC) 1009 goto wait_for_memory; 1010 1011 /* Adjust try_to_copy according to the amount that was 1012 * actually allocated. The difference is due 1013 * to max sg elements limit 1014 */ 1015 try_to_copy -= required_size - msg_en->sg.size; 1016 full_record = true; 1017 } 1018 1019 if (!is_kvec && (full_record || eor) && !async_capable) { 1020 u32 first = msg_pl->sg.end; 1021 1022 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1023 msg_pl, try_to_copy); 1024 if (ret) 1025 goto fallback_to_reg_send; 1026 1027 num_zc++; 1028 copied += try_to_copy; 1029 1030 sk_msg_sg_copy_set(msg_pl, first); 1031 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1032 record_type, &copied, 1033 msg->msg_flags); 1034 if (ret) { 1035 if (ret == -EINPROGRESS) 1036 num_async++; 1037 else if (ret == -ENOMEM) 1038 goto wait_for_memory; 1039 else if (ctx->open_rec && ret == -ENOSPC) 1040 goto rollback_iter; 1041 else if (ret != -EAGAIN) 1042 goto send_end; 1043 } 1044 continue; 1045 rollback_iter: 1046 copied -= try_to_copy; 1047 sk_msg_sg_copy_clear(msg_pl, first); 1048 iov_iter_revert(&msg->msg_iter, 1049 msg_pl->sg.size - orig_size); 1050 fallback_to_reg_send: 1051 sk_msg_trim(sk, msg_pl, orig_size); 1052 } 1053 1054 required_size = msg_pl->sg.size + try_to_copy; 1055 1056 ret = tls_clone_plaintext_msg(sk, required_size); 1057 if (ret) { 1058 if (ret != -ENOSPC) 1059 goto send_end; 1060 1061 /* Adjust try_to_copy according to the amount that was 1062 * actually allocated. The difference is due 1063 * to max sg elements limit 1064 */ 1065 try_to_copy -= required_size - msg_pl->sg.size; 1066 full_record = true; 1067 sk_msg_trim(sk, msg_en, 1068 msg_pl->sg.size + prot->overhead_size); 1069 } 1070 1071 if (try_to_copy) { 1072 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1073 msg_pl, try_to_copy); 1074 if (ret < 0) 1075 goto trim_sgl; 1076 } 1077 1078 /* Open records defined only if successfully copied, otherwise 1079 * we would trim the sg but not reset the open record frags. 1080 */ 1081 tls_ctx->pending_open_record_frags = true; 1082 copied += try_to_copy; 1083 if (full_record || eor) { 1084 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1085 record_type, &copied, 1086 msg->msg_flags); 1087 if (ret) { 1088 if (ret == -EINPROGRESS) 1089 num_async++; 1090 else if (ret == -ENOMEM) 1091 goto wait_for_memory; 1092 else if (ret != -EAGAIN) { 1093 if (ret == -ENOSPC) 1094 ret = 0; 1095 goto send_end; 1096 } 1097 } 1098 } 1099 1100 continue; 1101 1102 wait_for_sndbuf: 1103 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1104 wait_for_memory: 1105 ret = sk_stream_wait_memory(sk, &timeo); 1106 if (ret) { 1107 trim_sgl: 1108 if (ctx->open_rec) 1109 tls_trim_both_msgs(sk, orig_size); 1110 goto send_end; 1111 } 1112 1113 if (ctx->open_rec && msg_en->sg.size < required_size) 1114 goto alloc_encrypted; 1115 } 1116 1117 if (!num_async) { 1118 goto send_end; 1119 } else if (num_zc) { 1120 /* Wait for pending encryptions to get completed */ 1121 spin_lock_bh(&ctx->encrypt_compl_lock); 1122 ctx->async_notify = true; 1123 1124 pending = atomic_read(&ctx->encrypt_pending); 1125 spin_unlock_bh(&ctx->encrypt_compl_lock); 1126 if (pending) 1127 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 1128 else 1129 reinit_completion(&ctx->async_wait.completion); 1130 1131 /* There can be no concurrent accesses, since we have no 1132 * pending encrypt operations 1133 */ 1134 WRITE_ONCE(ctx->async_notify, false); 1135 1136 if (ctx->async_wait.err) { 1137 ret = ctx->async_wait.err; 1138 copied = 0; 1139 } 1140 } 1141 1142 /* Transmit if any encryptions have completed */ 1143 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1144 cancel_delayed_work(&ctx->tx_work.work); 1145 tls_tx_records(sk, msg->msg_flags); 1146 } 1147 1148 send_end: 1149 ret = sk_stream_error(sk, msg->msg_flags, ret); 1150 1151 release_sock(sk); 1152 mutex_unlock(&tls_ctx->tx_lock); 1153 return copied > 0 ? copied : ret; 1154 } 1155 1156 static int tls_sw_do_sendpage(struct sock *sk, struct page *page, 1157 int offset, size_t size, int flags) 1158 { 1159 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1160 struct tls_context *tls_ctx = tls_get_ctx(sk); 1161 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1162 struct tls_prot_info *prot = &tls_ctx->prot_info; 1163 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1164 struct sk_msg *msg_pl; 1165 struct tls_rec *rec; 1166 int num_async = 0; 1167 ssize_t copied = 0; 1168 bool full_record; 1169 int record_room; 1170 int ret = 0; 1171 bool eor; 1172 1173 eor = !(flags & MSG_SENDPAGE_NOTLAST); 1174 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1175 1176 /* Call the sk_stream functions to manage the sndbuf mem. */ 1177 while (size > 0) { 1178 size_t copy, required_size; 1179 1180 if (sk->sk_err) { 1181 ret = -sk->sk_err; 1182 goto sendpage_end; 1183 } 1184 1185 if (ctx->open_rec) 1186 rec = ctx->open_rec; 1187 else 1188 rec = ctx->open_rec = tls_get_rec(sk); 1189 if (!rec) { 1190 ret = -ENOMEM; 1191 goto sendpage_end; 1192 } 1193 1194 msg_pl = &rec->msg_plaintext; 1195 1196 full_record = false; 1197 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1198 copy = size; 1199 if (copy >= record_room) { 1200 copy = record_room; 1201 full_record = true; 1202 } 1203 1204 required_size = msg_pl->sg.size + copy + prot->overhead_size; 1205 1206 if (!sk_stream_memory_free(sk)) 1207 goto wait_for_sndbuf; 1208 alloc_payload: 1209 ret = tls_alloc_encrypted_msg(sk, required_size); 1210 if (ret) { 1211 if (ret != -ENOSPC) 1212 goto wait_for_memory; 1213 1214 /* Adjust copy according to the amount that was 1215 * actually allocated. The difference is due 1216 * to max sg elements limit 1217 */ 1218 copy -= required_size - msg_pl->sg.size; 1219 full_record = true; 1220 } 1221 1222 sk_msg_page_add(msg_pl, page, copy, offset); 1223 sk_mem_charge(sk, copy); 1224 1225 offset += copy; 1226 size -= copy; 1227 copied += copy; 1228 1229 tls_ctx->pending_open_record_frags = true; 1230 if (full_record || eor || sk_msg_full(msg_pl)) { 1231 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1232 record_type, &copied, flags); 1233 if (ret) { 1234 if (ret == -EINPROGRESS) 1235 num_async++; 1236 else if (ret == -ENOMEM) 1237 goto wait_for_memory; 1238 else if (ret != -EAGAIN) { 1239 if (ret == -ENOSPC) 1240 ret = 0; 1241 goto sendpage_end; 1242 } 1243 } 1244 } 1245 continue; 1246 wait_for_sndbuf: 1247 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1248 wait_for_memory: 1249 ret = sk_stream_wait_memory(sk, &timeo); 1250 if (ret) { 1251 if (ctx->open_rec) 1252 tls_trim_both_msgs(sk, msg_pl->sg.size); 1253 goto sendpage_end; 1254 } 1255 1256 if (ctx->open_rec) 1257 goto alloc_payload; 1258 } 1259 1260 if (num_async) { 1261 /* Transmit if any encryptions have completed */ 1262 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1263 cancel_delayed_work(&ctx->tx_work.work); 1264 tls_tx_records(sk, flags); 1265 } 1266 } 1267 sendpage_end: 1268 ret = sk_stream_error(sk, flags, ret); 1269 return copied > 0 ? copied : ret; 1270 } 1271 1272 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 1273 int offset, size_t size, int flags) 1274 { 1275 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1276 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | 1277 MSG_NO_SHARED_FRAGS)) 1278 return -EOPNOTSUPP; 1279 1280 return tls_sw_do_sendpage(sk, page, offset, size, flags); 1281 } 1282 1283 int tls_sw_sendpage(struct sock *sk, struct page *page, 1284 int offset, size_t size, int flags) 1285 { 1286 struct tls_context *tls_ctx = tls_get_ctx(sk); 1287 int ret; 1288 1289 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1290 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) 1291 return -EOPNOTSUPP; 1292 1293 mutex_lock(&tls_ctx->tx_lock); 1294 lock_sock(sk); 1295 ret = tls_sw_do_sendpage(sk, page, offset, size, flags); 1296 release_sock(sk); 1297 mutex_unlock(&tls_ctx->tx_lock); 1298 return ret; 1299 } 1300 1301 static int 1302 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1303 bool released) 1304 { 1305 struct tls_context *tls_ctx = tls_get_ctx(sk); 1306 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1307 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1308 long timeo; 1309 1310 timeo = sock_rcvtimeo(sk, nonblock); 1311 1312 while (!tls_strp_msg_ready(ctx)) { 1313 if (!sk_psock_queue_empty(psock)) 1314 return 0; 1315 1316 if (sk->sk_err) 1317 return sock_error(sk); 1318 1319 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1320 tls_strp_check_rcv(&ctx->strp); 1321 if (tls_strp_msg_ready(ctx)) 1322 break; 1323 } 1324 1325 if (sk->sk_shutdown & RCV_SHUTDOWN) 1326 return 0; 1327 1328 if (sock_flag(sk, SOCK_DONE)) 1329 return 0; 1330 1331 if (!timeo) 1332 return -EAGAIN; 1333 1334 released = true; 1335 add_wait_queue(sk_sleep(sk), &wait); 1336 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1337 sk_wait_event(sk, &timeo, 1338 tls_strp_msg_ready(ctx) || 1339 !sk_psock_queue_empty(psock), 1340 &wait); 1341 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1342 remove_wait_queue(sk_sleep(sk), &wait); 1343 1344 /* Handle signals */ 1345 if (signal_pending(current)) 1346 return sock_intr_errno(timeo); 1347 } 1348 1349 tls_strp_msg_load(&ctx->strp, released); 1350 1351 return 1; 1352 } 1353 1354 static int tls_setup_from_iter(struct iov_iter *from, 1355 int length, int *pages_used, 1356 struct scatterlist *to, 1357 int to_max_pages) 1358 { 1359 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1360 struct page *pages[MAX_SKB_FRAGS]; 1361 unsigned int size = 0; 1362 ssize_t copied, use; 1363 size_t offset; 1364 1365 while (length > 0) { 1366 i = 0; 1367 maxpages = to_max_pages - num_elem; 1368 if (maxpages == 0) { 1369 rc = -EFAULT; 1370 goto out; 1371 } 1372 copied = iov_iter_get_pages2(from, pages, 1373 length, 1374 maxpages, &offset); 1375 if (copied <= 0) { 1376 rc = -EFAULT; 1377 goto out; 1378 } 1379 1380 length -= copied; 1381 size += copied; 1382 while (copied) { 1383 use = min_t(int, copied, PAGE_SIZE - offset); 1384 1385 sg_set_page(&to[num_elem], 1386 pages[i], use, offset); 1387 sg_unmark_end(&to[num_elem]); 1388 /* We do not uncharge memory from this API */ 1389 1390 offset = 0; 1391 copied -= use; 1392 1393 i++; 1394 num_elem++; 1395 } 1396 } 1397 /* Mark the end in the last sg entry if newly added */ 1398 if (num_elem > *pages_used) 1399 sg_mark_end(&to[num_elem - 1]); 1400 out: 1401 if (rc) 1402 iov_iter_revert(from, size); 1403 *pages_used = num_elem; 1404 1405 return rc; 1406 } 1407 1408 static struct sk_buff * 1409 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1410 unsigned int full_len) 1411 { 1412 struct strp_msg *clr_rxm; 1413 struct sk_buff *clr_skb; 1414 int err; 1415 1416 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1417 &err, sk->sk_allocation); 1418 if (!clr_skb) 1419 return NULL; 1420 1421 skb_copy_header(clr_skb, skb); 1422 clr_skb->len = full_len; 1423 clr_skb->data_len = full_len; 1424 1425 clr_rxm = strp_msg(clr_skb); 1426 clr_rxm->offset = 0; 1427 1428 return clr_skb; 1429 } 1430 1431 /* Decrypt handlers 1432 * 1433 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1434 * They must transform the darg in/out argument are as follows: 1435 * | Input | Output 1436 * ------------------------------------------------------------------- 1437 * zc | Zero-copy decrypt allowed | Zero-copy performed 1438 * async | Async decrypt allowed | Async crypto used / in progress 1439 * skb | * | Output skb 1440 * 1441 * If ZC decryption was performed darg.skb will point to the input skb. 1442 */ 1443 1444 /* This function decrypts the input skb into either out_iov or in out_sg 1445 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1446 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1447 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1448 * NULL, then the decryption happens inside skb buffers itself, i.e. 1449 * zero-copy gets disabled and 'darg->zc' is updated. 1450 */ 1451 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1452 struct scatterlist *out_sg, 1453 struct tls_decrypt_arg *darg) 1454 { 1455 struct tls_context *tls_ctx = tls_get_ctx(sk); 1456 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1457 struct tls_prot_info *prot = &tls_ctx->prot_info; 1458 int n_sgin, n_sgout, aead_size, err, pages = 0; 1459 struct sk_buff *skb = tls_strp_msg(ctx); 1460 const struct strp_msg *rxm = strp_msg(skb); 1461 const struct tls_msg *tlm = tls_msg(skb); 1462 struct aead_request *aead_req; 1463 struct scatterlist *sgin = NULL; 1464 struct scatterlist *sgout = NULL; 1465 const int data_len = rxm->full_len - prot->overhead_size; 1466 int tail_pages = !!prot->tail_size; 1467 struct tls_decrypt_ctx *dctx; 1468 struct sk_buff *clear_skb; 1469 int iv_offset = 0; 1470 u8 *mem; 1471 1472 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1473 rxm->full_len - prot->prepend_size); 1474 if (n_sgin < 1) 1475 return n_sgin ?: -EBADMSG; 1476 1477 if (darg->zc && (out_iov || out_sg)) { 1478 clear_skb = NULL; 1479 1480 if (out_iov) 1481 n_sgout = 1 + tail_pages + 1482 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1483 else 1484 n_sgout = sg_nents(out_sg); 1485 } else { 1486 darg->zc = false; 1487 1488 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1489 if (!clear_skb) 1490 return -ENOMEM; 1491 1492 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1493 } 1494 1495 /* Increment to accommodate AAD */ 1496 n_sgin = n_sgin + 1; 1497 1498 /* Allocate a single block of memory which contains 1499 * aead_req || tls_decrypt_ctx. 1500 * Both structs are variable length. 1501 */ 1502 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1503 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1504 mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), 1505 sk->sk_allocation); 1506 if (!mem) { 1507 err = -ENOMEM; 1508 goto exit_free_skb; 1509 } 1510 1511 /* Segment the allocated memory */ 1512 aead_req = (struct aead_request *)mem; 1513 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1514 dctx->sk = sk; 1515 sgin = &dctx->sg[0]; 1516 sgout = &dctx->sg[n_sgin]; 1517 1518 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1519 switch (prot->cipher_type) { 1520 case TLS_CIPHER_AES_CCM_128: 1521 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1522 iv_offset = 1; 1523 break; 1524 case TLS_CIPHER_SM4_CCM: 1525 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1526 iv_offset = 1; 1527 break; 1528 } 1529 1530 /* Prepare IV */ 1531 if (prot->version == TLS_1_3_VERSION || 1532 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1533 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1534 prot->iv_size + prot->salt_size); 1535 } else { 1536 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1537 &dctx->iv[iv_offset] + prot->salt_size, 1538 prot->iv_size); 1539 if (err < 0) 1540 goto exit_free; 1541 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1542 } 1543 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1544 1545 /* Prepare AAD */ 1546 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1547 prot->tail_size, 1548 tls_ctx->rx.rec_seq, tlm->control, prot); 1549 1550 /* Prepare sgin */ 1551 sg_init_table(sgin, n_sgin); 1552 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1553 err = skb_to_sgvec(skb, &sgin[1], 1554 rxm->offset + prot->prepend_size, 1555 rxm->full_len - prot->prepend_size); 1556 if (err < 0) 1557 goto exit_free; 1558 1559 if (clear_skb) { 1560 sg_init_table(sgout, n_sgout); 1561 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1562 1563 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1564 data_len + prot->tail_size); 1565 if (err < 0) 1566 goto exit_free; 1567 } else if (out_iov) { 1568 sg_init_table(sgout, n_sgout); 1569 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1570 1571 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1572 (n_sgout - 1 - tail_pages)); 1573 if (err < 0) 1574 goto exit_free_pages; 1575 1576 if (prot->tail_size) { 1577 sg_unmark_end(&sgout[pages]); 1578 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1579 prot->tail_size); 1580 sg_mark_end(&sgout[pages + 1]); 1581 } 1582 } else if (out_sg) { 1583 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1584 } 1585 1586 /* Prepare and submit AEAD request */ 1587 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1588 data_len + prot->tail_size, aead_req, darg); 1589 if (err) 1590 goto exit_free_pages; 1591 1592 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1593 clear_skb = NULL; 1594 1595 if (unlikely(darg->async)) { 1596 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1597 if (err) 1598 __skb_queue_tail(&ctx->async_hold, darg->skb); 1599 return err; 1600 } 1601 1602 if (prot->tail_size) 1603 darg->tail = dctx->tail; 1604 1605 exit_free_pages: 1606 /* Release the pages in case iov was mapped to pages */ 1607 for (; pages > 0; pages--) 1608 put_page(sg_page(&sgout[pages])); 1609 exit_free: 1610 kfree(mem); 1611 exit_free_skb: 1612 consume_skb(clear_skb); 1613 return err; 1614 } 1615 1616 static int 1617 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1618 struct msghdr *msg, struct tls_decrypt_arg *darg) 1619 { 1620 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1621 struct tls_prot_info *prot = &tls_ctx->prot_info; 1622 struct strp_msg *rxm; 1623 int pad, err; 1624 1625 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1626 if (err < 0) { 1627 if (err == -EBADMSG) 1628 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1629 return err; 1630 } 1631 /* keep going even for ->async, the code below is TLS 1.3 */ 1632 1633 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1634 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1635 darg->tail != TLS_RECORD_TYPE_DATA)) { 1636 darg->zc = false; 1637 if (!darg->tail) 1638 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1639 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1640 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1641 } 1642 1643 pad = tls_padding_length(prot, darg->skb, darg); 1644 if (pad < 0) { 1645 if (darg->skb != tls_strp_msg(ctx)) 1646 consume_skb(darg->skb); 1647 return pad; 1648 } 1649 1650 rxm = strp_msg(darg->skb); 1651 rxm->full_len -= pad; 1652 1653 return 0; 1654 } 1655 1656 static int 1657 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1658 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1659 { 1660 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1661 struct tls_prot_info *prot = &tls_ctx->prot_info; 1662 struct strp_msg *rxm; 1663 int pad, err; 1664 1665 if (tls_ctx->rx_conf != TLS_HW) 1666 return 0; 1667 1668 err = tls_device_decrypted(sk, tls_ctx); 1669 if (err <= 0) 1670 return err; 1671 1672 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1673 if (pad < 0) 1674 return pad; 1675 1676 darg->async = false; 1677 darg->skb = tls_strp_msg(ctx); 1678 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1679 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1680 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1681 1682 rxm = strp_msg(darg->skb); 1683 rxm->full_len -= pad; 1684 1685 if (!darg->zc) { 1686 /* Non-ZC case needs a real skb */ 1687 darg->skb = tls_strp_msg_detach(ctx); 1688 if (!darg->skb) 1689 return -ENOMEM; 1690 } else { 1691 unsigned int off, len; 1692 1693 /* In ZC case nobody cares about the output skb. 1694 * Just copy the data here. Note the skb is not fully trimmed. 1695 */ 1696 off = rxm->offset + prot->prepend_size; 1697 len = rxm->full_len - prot->overhead_size; 1698 1699 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1700 if (err) 1701 return err; 1702 } 1703 return 1; 1704 } 1705 1706 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1707 struct tls_decrypt_arg *darg) 1708 { 1709 struct tls_context *tls_ctx = tls_get_ctx(sk); 1710 struct tls_prot_info *prot = &tls_ctx->prot_info; 1711 struct strp_msg *rxm; 1712 int err; 1713 1714 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1715 if (!err) 1716 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1717 if (err < 0) 1718 return err; 1719 1720 rxm = strp_msg(darg->skb); 1721 rxm->offset += prot->prepend_size; 1722 rxm->full_len -= prot->overhead_size; 1723 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1724 1725 return 0; 1726 } 1727 1728 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1729 { 1730 struct tls_decrypt_arg darg = { .zc = true, }; 1731 1732 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1733 } 1734 1735 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1736 u8 *control) 1737 { 1738 int err; 1739 1740 if (!*control) { 1741 *control = tlm->control; 1742 if (!*control) 1743 return -EBADMSG; 1744 1745 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1746 sizeof(*control), control); 1747 if (*control != TLS_RECORD_TYPE_DATA) { 1748 if (err || msg->msg_flags & MSG_CTRUNC) 1749 return -EIO; 1750 } 1751 } else if (*control != tlm->control) { 1752 return 0; 1753 } 1754 1755 return 1; 1756 } 1757 1758 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1759 { 1760 tls_strp_msg_done(&ctx->strp); 1761 } 1762 1763 /* This function traverses the rx_list in tls receive context to copies the 1764 * decrypted records into the buffer provided by caller zero copy is not 1765 * true. Further, the records are removed from the rx_list if it is not a peek 1766 * case and the record has been consumed completely. 1767 */ 1768 static int process_rx_list(struct tls_sw_context_rx *ctx, 1769 struct msghdr *msg, 1770 u8 *control, 1771 size_t skip, 1772 size_t len, 1773 bool is_peek) 1774 { 1775 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1776 struct tls_msg *tlm; 1777 ssize_t copied = 0; 1778 int err; 1779 1780 while (skip && skb) { 1781 struct strp_msg *rxm = strp_msg(skb); 1782 tlm = tls_msg(skb); 1783 1784 err = tls_record_content_type(msg, tlm, control); 1785 if (err <= 0) 1786 goto out; 1787 1788 if (skip < rxm->full_len) 1789 break; 1790 1791 skip = skip - rxm->full_len; 1792 skb = skb_peek_next(skb, &ctx->rx_list); 1793 } 1794 1795 while (len && skb) { 1796 struct sk_buff *next_skb; 1797 struct strp_msg *rxm = strp_msg(skb); 1798 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1799 1800 tlm = tls_msg(skb); 1801 1802 err = tls_record_content_type(msg, tlm, control); 1803 if (err <= 0) 1804 goto out; 1805 1806 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1807 msg, chunk); 1808 if (err < 0) 1809 goto out; 1810 1811 len = len - chunk; 1812 copied = copied + chunk; 1813 1814 /* Consume the data from record if it is non-peek case*/ 1815 if (!is_peek) { 1816 rxm->offset = rxm->offset + chunk; 1817 rxm->full_len = rxm->full_len - chunk; 1818 1819 /* Return if there is unconsumed data in the record */ 1820 if (rxm->full_len - skip) 1821 break; 1822 } 1823 1824 /* The remaining skip-bytes must lie in 1st record in rx_list. 1825 * So from the 2nd record, 'skip' should be 0. 1826 */ 1827 skip = 0; 1828 1829 if (msg) 1830 msg->msg_flags |= MSG_EOR; 1831 1832 next_skb = skb_peek_next(skb, &ctx->rx_list); 1833 1834 if (!is_peek) { 1835 __skb_unlink(skb, &ctx->rx_list); 1836 consume_skb(skb); 1837 } 1838 1839 skb = next_skb; 1840 } 1841 err = 0; 1842 1843 out: 1844 return copied ? : err; 1845 } 1846 1847 static bool 1848 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1849 size_t len_left, size_t decrypted, ssize_t done, 1850 size_t *flushed_at) 1851 { 1852 size_t max_rec; 1853 1854 if (len_left <= decrypted) 1855 return false; 1856 1857 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1858 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1859 return false; 1860 1861 *flushed_at = done; 1862 return sk_flush_backlog(sk); 1863 } 1864 1865 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1866 bool nonblock) 1867 { 1868 long timeo; 1869 int err; 1870 1871 lock_sock(sk); 1872 1873 timeo = sock_rcvtimeo(sk, nonblock); 1874 1875 while (unlikely(ctx->reader_present)) { 1876 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1877 1878 ctx->reader_contended = 1; 1879 1880 add_wait_queue(&ctx->wq, &wait); 1881 sk_wait_event(sk, &timeo, 1882 !READ_ONCE(ctx->reader_present), &wait); 1883 remove_wait_queue(&ctx->wq, &wait); 1884 1885 if (timeo <= 0) { 1886 err = -EAGAIN; 1887 goto err_unlock; 1888 } 1889 if (signal_pending(current)) { 1890 err = sock_intr_errno(timeo); 1891 goto err_unlock; 1892 } 1893 } 1894 1895 WRITE_ONCE(ctx->reader_present, 1); 1896 1897 return 0; 1898 1899 err_unlock: 1900 release_sock(sk); 1901 return err; 1902 } 1903 1904 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1905 { 1906 if (unlikely(ctx->reader_contended)) { 1907 if (wq_has_sleeper(&ctx->wq)) 1908 wake_up(&ctx->wq); 1909 else 1910 ctx->reader_contended = 0; 1911 1912 WARN_ON_ONCE(!ctx->reader_present); 1913 } 1914 1915 WRITE_ONCE(ctx->reader_present, 0); 1916 release_sock(sk); 1917 } 1918 1919 int tls_sw_recvmsg(struct sock *sk, 1920 struct msghdr *msg, 1921 size_t len, 1922 int flags, 1923 int *addr_len) 1924 { 1925 struct tls_context *tls_ctx = tls_get_ctx(sk); 1926 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1927 struct tls_prot_info *prot = &tls_ctx->prot_info; 1928 ssize_t decrypted = 0, async_copy_bytes = 0; 1929 struct sk_psock *psock; 1930 unsigned char control = 0; 1931 size_t flushed_at = 0; 1932 struct strp_msg *rxm; 1933 struct tls_msg *tlm; 1934 ssize_t copied = 0; 1935 bool async = false; 1936 int target, err; 1937 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1938 bool is_peek = flags & MSG_PEEK; 1939 bool released = true; 1940 bool bpf_strp_enabled; 1941 bool zc_capable; 1942 1943 if (unlikely(flags & MSG_ERRQUEUE)) 1944 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1945 1946 psock = sk_psock_get(sk); 1947 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1948 if (err < 0) 1949 return err; 1950 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1951 1952 /* If crypto failed the connection is broken */ 1953 err = ctx->async_wait.err; 1954 if (err) 1955 goto end; 1956 1957 /* Process pending decrypted records. It must be non-zero-copy */ 1958 err = process_rx_list(ctx, msg, &control, 0, len, is_peek); 1959 if (err < 0) 1960 goto end; 1961 1962 copied = err; 1963 if (len <= copied) 1964 goto end; 1965 1966 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1967 len = len - copied; 1968 1969 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 1970 ctx->zc_capable; 1971 decrypted = 0; 1972 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 1973 struct tls_decrypt_arg darg; 1974 int to_decrypt, chunk; 1975 1976 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 1977 released); 1978 if (err <= 0) { 1979 if (psock) { 1980 chunk = sk_msg_recvmsg(sk, psock, msg, len, 1981 flags); 1982 if (chunk > 0) { 1983 decrypted += chunk; 1984 len -= chunk; 1985 continue; 1986 } 1987 } 1988 goto recv_end; 1989 } 1990 1991 memset(&darg.inargs, 0, sizeof(darg.inargs)); 1992 1993 rxm = strp_msg(tls_strp_msg(ctx)); 1994 tlm = tls_msg(tls_strp_msg(ctx)); 1995 1996 to_decrypt = rxm->full_len - prot->overhead_size; 1997 1998 if (zc_capable && to_decrypt <= len && 1999 tlm->control == TLS_RECORD_TYPE_DATA) 2000 darg.zc = true; 2001 2002 /* Do not use async mode if record is non-data */ 2003 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2004 darg.async = ctx->async_capable; 2005 else 2006 darg.async = false; 2007 2008 err = tls_rx_one_record(sk, msg, &darg); 2009 if (err < 0) { 2010 tls_err_abort(sk, -EBADMSG); 2011 goto recv_end; 2012 } 2013 2014 async |= darg.async; 2015 2016 /* If the type of records being processed is not known yet, 2017 * set it to record type just dequeued. If it is already known, 2018 * but does not match the record type just dequeued, go to end. 2019 * We always get record type here since for tls1.2, record type 2020 * is known just after record is dequeued from stream parser. 2021 * For tls1.3, we disable async. 2022 */ 2023 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2024 if (err <= 0) { 2025 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2026 tls_rx_rec_done(ctx); 2027 put_on_rx_list_err: 2028 __skb_queue_tail(&ctx->rx_list, darg.skb); 2029 goto recv_end; 2030 } 2031 2032 /* periodically flush backlog, and feed strparser */ 2033 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2034 decrypted + copied, 2035 &flushed_at); 2036 2037 /* TLS 1.3 may have updated the length by more than overhead */ 2038 rxm = strp_msg(darg.skb); 2039 chunk = rxm->full_len; 2040 tls_rx_rec_done(ctx); 2041 2042 if (!darg.zc) { 2043 bool partially_consumed = chunk > len; 2044 struct sk_buff *skb = darg.skb; 2045 2046 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2047 2048 if (async) { 2049 /* TLS 1.2-only, to_decrypt must be text len */ 2050 chunk = min_t(int, to_decrypt, len); 2051 async_copy_bytes += chunk; 2052 put_on_rx_list: 2053 decrypted += chunk; 2054 len -= chunk; 2055 __skb_queue_tail(&ctx->rx_list, skb); 2056 continue; 2057 } 2058 2059 if (bpf_strp_enabled) { 2060 released = true; 2061 err = sk_psock_tls_strp_read(psock, skb); 2062 if (err != __SK_PASS) { 2063 rxm->offset = rxm->offset + rxm->full_len; 2064 rxm->full_len = 0; 2065 if (err == __SK_DROP) 2066 consume_skb(skb); 2067 continue; 2068 } 2069 } 2070 2071 if (partially_consumed) 2072 chunk = len; 2073 2074 err = skb_copy_datagram_msg(skb, rxm->offset, 2075 msg, chunk); 2076 if (err < 0) 2077 goto put_on_rx_list_err; 2078 2079 if (is_peek) 2080 goto put_on_rx_list; 2081 2082 if (partially_consumed) { 2083 rxm->offset += chunk; 2084 rxm->full_len -= chunk; 2085 goto put_on_rx_list; 2086 } 2087 2088 consume_skb(skb); 2089 } 2090 2091 decrypted += chunk; 2092 len -= chunk; 2093 2094 /* Return full control message to userspace before trying 2095 * to parse another message type 2096 */ 2097 msg->msg_flags |= MSG_EOR; 2098 if (control != TLS_RECORD_TYPE_DATA) 2099 break; 2100 } 2101 2102 recv_end: 2103 if (async) { 2104 int ret, pending; 2105 2106 /* Wait for all previously submitted records to be decrypted */ 2107 spin_lock_bh(&ctx->decrypt_compl_lock); 2108 reinit_completion(&ctx->async_wait.completion); 2109 pending = atomic_read(&ctx->decrypt_pending); 2110 spin_unlock_bh(&ctx->decrypt_compl_lock); 2111 ret = 0; 2112 if (pending) 2113 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2114 __skb_queue_purge(&ctx->async_hold); 2115 2116 if (ret) { 2117 if (err >= 0 || err == -EINPROGRESS) 2118 err = ret; 2119 decrypted = 0; 2120 goto end; 2121 } 2122 2123 /* Drain records from the rx_list & copy if required */ 2124 if (is_peek || is_kvec) 2125 err = process_rx_list(ctx, msg, &control, copied, 2126 decrypted, is_peek); 2127 else 2128 err = process_rx_list(ctx, msg, &control, 0, 2129 async_copy_bytes, is_peek); 2130 decrypted = max(err, 0); 2131 } 2132 2133 copied += decrypted; 2134 2135 end: 2136 tls_rx_reader_unlock(sk, ctx); 2137 if (psock) 2138 sk_psock_put(sk, psock); 2139 return copied ? : err; 2140 } 2141 2142 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2143 struct pipe_inode_info *pipe, 2144 size_t len, unsigned int flags) 2145 { 2146 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2147 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2148 struct strp_msg *rxm = NULL; 2149 struct sock *sk = sock->sk; 2150 struct tls_msg *tlm; 2151 struct sk_buff *skb; 2152 ssize_t copied = 0; 2153 int chunk; 2154 int err; 2155 2156 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2157 if (err < 0) 2158 return err; 2159 2160 if (!skb_queue_empty(&ctx->rx_list)) { 2161 skb = __skb_dequeue(&ctx->rx_list); 2162 } else { 2163 struct tls_decrypt_arg darg; 2164 2165 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2166 true); 2167 if (err <= 0) 2168 goto splice_read_end; 2169 2170 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2171 2172 err = tls_rx_one_record(sk, NULL, &darg); 2173 if (err < 0) { 2174 tls_err_abort(sk, -EBADMSG); 2175 goto splice_read_end; 2176 } 2177 2178 tls_rx_rec_done(ctx); 2179 skb = darg.skb; 2180 } 2181 2182 rxm = strp_msg(skb); 2183 tlm = tls_msg(skb); 2184 2185 /* splice does not support reading control messages */ 2186 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2187 err = -EINVAL; 2188 goto splice_requeue; 2189 } 2190 2191 chunk = min_t(unsigned int, rxm->full_len, len); 2192 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2193 if (copied < 0) 2194 goto splice_requeue; 2195 2196 if (chunk < rxm->full_len) { 2197 rxm->offset += len; 2198 rxm->full_len -= len; 2199 goto splice_requeue; 2200 } 2201 2202 consume_skb(skb); 2203 2204 splice_read_end: 2205 tls_rx_reader_unlock(sk, ctx); 2206 return copied ? : err; 2207 2208 splice_requeue: 2209 __skb_queue_head(&ctx->rx_list, skb); 2210 goto splice_read_end; 2211 } 2212 2213 bool tls_sw_sock_is_readable(struct sock *sk) 2214 { 2215 struct tls_context *tls_ctx = tls_get_ctx(sk); 2216 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2217 bool ingress_empty = true; 2218 struct sk_psock *psock; 2219 2220 rcu_read_lock(); 2221 psock = sk_psock(sk); 2222 if (psock) 2223 ingress_empty = list_empty(&psock->ingress_msg); 2224 rcu_read_unlock(); 2225 2226 return !ingress_empty || tls_strp_msg_ready(ctx) || 2227 !skb_queue_empty(&ctx->rx_list); 2228 } 2229 2230 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2231 { 2232 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2233 struct tls_prot_info *prot = &tls_ctx->prot_info; 2234 char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; 2235 size_t cipher_overhead; 2236 size_t data_len = 0; 2237 int ret; 2238 2239 /* Verify that we have a full TLS header, or wait for more data */ 2240 if (strp->stm.offset + prot->prepend_size > skb->len) 2241 return 0; 2242 2243 /* Sanity-check size of on-stack buffer. */ 2244 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2245 ret = -EINVAL; 2246 goto read_failure; 2247 } 2248 2249 /* Linearize header to local buffer */ 2250 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2251 if (ret < 0) 2252 goto read_failure; 2253 2254 strp->mark = header[0]; 2255 2256 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2257 2258 cipher_overhead = prot->tag_size; 2259 if (prot->version != TLS_1_3_VERSION && 2260 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2261 cipher_overhead += prot->iv_size; 2262 2263 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2264 prot->tail_size) { 2265 ret = -EMSGSIZE; 2266 goto read_failure; 2267 } 2268 if (data_len < cipher_overhead) { 2269 ret = -EBADMSG; 2270 goto read_failure; 2271 } 2272 2273 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2274 if (header[1] != TLS_1_2_VERSION_MINOR || 2275 header[2] != TLS_1_2_VERSION_MAJOR) { 2276 ret = -EINVAL; 2277 goto read_failure; 2278 } 2279 2280 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2281 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2282 return data_len + TLS_HEADER_SIZE; 2283 2284 read_failure: 2285 tls_err_abort(strp->sk, ret); 2286 2287 return ret; 2288 } 2289 2290 void tls_rx_msg_ready(struct tls_strparser *strp) 2291 { 2292 struct tls_sw_context_rx *ctx; 2293 2294 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2295 ctx->saved_data_ready(strp->sk); 2296 } 2297 2298 static void tls_data_ready(struct sock *sk) 2299 { 2300 struct tls_context *tls_ctx = tls_get_ctx(sk); 2301 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2302 struct sk_psock *psock; 2303 2304 trace_sk_data_ready(sk); 2305 2306 tls_strp_data_ready(&ctx->strp); 2307 2308 psock = sk_psock_get(sk); 2309 if (psock) { 2310 if (!list_empty(&psock->ingress_msg)) 2311 ctx->saved_data_ready(sk); 2312 sk_psock_put(sk, psock); 2313 } 2314 } 2315 2316 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2317 { 2318 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2319 2320 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2321 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2322 cancel_delayed_work_sync(&ctx->tx_work.work); 2323 } 2324 2325 void tls_sw_release_resources_tx(struct sock *sk) 2326 { 2327 struct tls_context *tls_ctx = tls_get_ctx(sk); 2328 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2329 struct tls_rec *rec, *tmp; 2330 int pending; 2331 2332 /* Wait for any pending async encryptions to complete */ 2333 spin_lock_bh(&ctx->encrypt_compl_lock); 2334 ctx->async_notify = true; 2335 pending = atomic_read(&ctx->encrypt_pending); 2336 spin_unlock_bh(&ctx->encrypt_compl_lock); 2337 2338 if (pending) 2339 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 2340 2341 tls_tx_records(sk, -1); 2342 2343 /* Free up un-sent records in tx_list. First, free 2344 * the partially sent record if any at head of tx_list. 2345 */ 2346 if (tls_ctx->partially_sent_record) { 2347 tls_free_partial_record(sk, tls_ctx); 2348 rec = list_first_entry(&ctx->tx_list, 2349 struct tls_rec, list); 2350 list_del(&rec->list); 2351 sk_msg_free(sk, &rec->msg_plaintext); 2352 kfree(rec); 2353 } 2354 2355 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2356 list_del(&rec->list); 2357 sk_msg_free(sk, &rec->msg_encrypted); 2358 sk_msg_free(sk, &rec->msg_plaintext); 2359 kfree(rec); 2360 } 2361 2362 crypto_free_aead(ctx->aead_send); 2363 tls_free_open_rec(sk); 2364 } 2365 2366 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2367 { 2368 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2369 2370 kfree(ctx); 2371 } 2372 2373 void tls_sw_release_resources_rx(struct sock *sk) 2374 { 2375 struct tls_context *tls_ctx = tls_get_ctx(sk); 2376 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2377 2378 kfree(tls_ctx->rx.rec_seq); 2379 kfree(tls_ctx->rx.iv); 2380 2381 if (ctx->aead_recv) { 2382 __skb_queue_purge(&ctx->rx_list); 2383 crypto_free_aead(ctx->aead_recv); 2384 tls_strp_stop(&ctx->strp); 2385 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2386 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2387 * never swapped. 2388 */ 2389 if (ctx->saved_data_ready) { 2390 write_lock_bh(&sk->sk_callback_lock); 2391 sk->sk_data_ready = ctx->saved_data_ready; 2392 write_unlock_bh(&sk->sk_callback_lock); 2393 } 2394 } 2395 } 2396 2397 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2398 { 2399 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2400 2401 tls_strp_done(&ctx->strp); 2402 } 2403 2404 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2405 { 2406 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2407 2408 kfree(ctx); 2409 } 2410 2411 void tls_sw_free_resources_rx(struct sock *sk) 2412 { 2413 struct tls_context *tls_ctx = tls_get_ctx(sk); 2414 2415 tls_sw_release_resources_rx(sk); 2416 tls_sw_free_ctx_rx(tls_ctx); 2417 } 2418 2419 /* The work handler to transmitt the encrypted records in tx_list */ 2420 static void tx_work_handler(struct work_struct *work) 2421 { 2422 struct delayed_work *delayed_work = to_delayed_work(work); 2423 struct tx_work *tx_work = container_of(delayed_work, 2424 struct tx_work, work); 2425 struct sock *sk = tx_work->sk; 2426 struct tls_context *tls_ctx = tls_get_ctx(sk); 2427 struct tls_sw_context_tx *ctx; 2428 2429 if (unlikely(!tls_ctx)) 2430 return; 2431 2432 ctx = tls_sw_ctx_tx(tls_ctx); 2433 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2434 return; 2435 2436 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2437 return; 2438 mutex_lock(&tls_ctx->tx_lock); 2439 lock_sock(sk); 2440 tls_tx_records(sk, -1); 2441 release_sock(sk); 2442 mutex_unlock(&tls_ctx->tx_lock); 2443 } 2444 2445 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2446 { 2447 struct tls_rec *rec; 2448 2449 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2450 if (!rec) 2451 return false; 2452 2453 return READ_ONCE(rec->tx_ready); 2454 } 2455 2456 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2457 { 2458 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2459 2460 /* Schedule the transmission if tx list is ready */ 2461 if (tls_is_tx_ready(tx_ctx) && 2462 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2463 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2464 } 2465 2466 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2467 { 2468 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2469 2470 write_lock_bh(&sk->sk_callback_lock); 2471 rx_ctx->saved_data_ready = sk->sk_data_ready; 2472 sk->sk_data_ready = tls_data_ready; 2473 write_unlock_bh(&sk->sk_callback_lock); 2474 } 2475 2476 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2477 { 2478 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2479 2480 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2481 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2482 } 2483 2484 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) 2485 { 2486 struct tls_context *tls_ctx = tls_get_ctx(sk); 2487 struct tls_prot_info *prot = &tls_ctx->prot_info; 2488 struct tls_crypto_info *crypto_info; 2489 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2490 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2491 struct cipher_context *cctx; 2492 struct crypto_aead **aead; 2493 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; 2494 struct crypto_tfm *tfm; 2495 char *iv, *rec_seq, *key, *salt, *cipher_name; 2496 size_t keysize; 2497 int rc = 0; 2498 2499 if (!ctx) { 2500 rc = -EINVAL; 2501 goto out; 2502 } 2503 2504 if (tx) { 2505 if (!ctx->priv_ctx_tx) { 2506 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2507 if (!sw_ctx_tx) { 2508 rc = -ENOMEM; 2509 goto out; 2510 } 2511 ctx->priv_ctx_tx = sw_ctx_tx; 2512 } else { 2513 sw_ctx_tx = 2514 (struct tls_sw_context_tx *)ctx->priv_ctx_tx; 2515 } 2516 } else { 2517 if (!ctx->priv_ctx_rx) { 2518 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2519 if (!sw_ctx_rx) { 2520 rc = -ENOMEM; 2521 goto out; 2522 } 2523 ctx->priv_ctx_rx = sw_ctx_rx; 2524 } else { 2525 sw_ctx_rx = 2526 (struct tls_sw_context_rx *)ctx->priv_ctx_rx; 2527 } 2528 } 2529 2530 if (tx) { 2531 crypto_init_wait(&sw_ctx_tx->async_wait); 2532 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); 2533 crypto_info = &ctx->crypto_send.info; 2534 cctx = &ctx->tx; 2535 aead = &sw_ctx_tx->aead_send; 2536 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2537 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2538 sw_ctx_tx->tx_work.sk = sk; 2539 } else { 2540 crypto_init_wait(&sw_ctx_rx->async_wait); 2541 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); 2542 init_waitqueue_head(&sw_ctx_rx->wq); 2543 crypto_info = &ctx->crypto_recv.info; 2544 cctx = &ctx->rx; 2545 skb_queue_head_init(&sw_ctx_rx->rx_list); 2546 skb_queue_head_init(&sw_ctx_rx->async_hold); 2547 aead = &sw_ctx_rx->aead_recv; 2548 } 2549 2550 switch (crypto_info->cipher_type) { 2551 case TLS_CIPHER_AES_GCM_128: { 2552 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; 2553 2554 gcm_128_info = (void *)crypto_info; 2555 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2556 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; 2557 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; 2558 iv = gcm_128_info->iv; 2559 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; 2560 rec_seq = gcm_128_info->rec_seq; 2561 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; 2562 key = gcm_128_info->key; 2563 salt = gcm_128_info->salt; 2564 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; 2565 cipher_name = "gcm(aes)"; 2566 break; 2567 } 2568 case TLS_CIPHER_AES_GCM_256: { 2569 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; 2570 2571 gcm_256_info = (void *)crypto_info; 2572 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2573 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; 2574 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; 2575 iv = gcm_256_info->iv; 2576 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; 2577 rec_seq = gcm_256_info->rec_seq; 2578 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; 2579 key = gcm_256_info->key; 2580 salt = gcm_256_info->salt; 2581 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; 2582 cipher_name = "gcm(aes)"; 2583 break; 2584 } 2585 case TLS_CIPHER_AES_CCM_128: { 2586 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; 2587 2588 ccm_128_info = (void *)crypto_info; 2589 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2590 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; 2591 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; 2592 iv = ccm_128_info->iv; 2593 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; 2594 rec_seq = ccm_128_info->rec_seq; 2595 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; 2596 key = ccm_128_info->key; 2597 salt = ccm_128_info->salt; 2598 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; 2599 cipher_name = "ccm(aes)"; 2600 break; 2601 } 2602 case TLS_CIPHER_CHACHA20_POLY1305: { 2603 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; 2604 2605 chacha20_poly1305_info = (void *)crypto_info; 2606 nonce_size = 0; 2607 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; 2608 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; 2609 iv = chacha20_poly1305_info->iv; 2610 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; 2611 rec_seq = chacha20_poly1305_info->rec_seq; 2612 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; 2613 key = chacha20_poly1305_info->key; 2614 salt = chacha20_poly1305_info->salt; 2615 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; 2616 cipher_name = "rfc7539(chacha20,poly1305)"; 2617 break; 2618 } 2619 case TLS_CIPHER_SM4_GCM: { 2620 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; 2621 2622 sm4_gcm_info = (void *)crypto_info; 2623 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2624 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; 2625 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; 2626 iv = sm4_gcm_info->iv; 2627 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; 2628 rec_seq = sm4_gcm_info->rec_seq; 2629 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; 2630 key = sm4_gcm_info->key; 2631 salt = sm4_gcm_info->salt; 2632 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; 2633 cipher_name = "gcm(sm4)"; 2634 break; 2635 } 2636 case TLS_CIPHER_SM4_CCM: { 2637 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; 2638 2639 sm4_ccm_info = (void *)crypto_info; 2640 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2641 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; 2642 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; 2643 iv = sm4_ccm_info->iv; 2644 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; 2645 rec_seq = sm4_ccm_info->rec_seq; 2646 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; 2647 key = sm4_ccm_info->key; 2648 salt = sm4_ccm_info->salt; 2649 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; 2650 cipher_name = "ccm(sm4)"; 2651 break; 2652 } 2653 case TLS_CIPHER_ARIA_GCM_128: { 2654 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; 2655 2656 aria_gcm_128_info = (void *)crypto_info; 2657 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2658 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; 2659 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; 2660 iv = aria_gcm_128_info->iv; 2661 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; 2662 rec_seq = aria_gcm_128_info->rec_seq; 2663 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; 2664 key = aria_gcm_128_info->key; 2665 salt = aria_gcm_128_info->salt; 2666 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; 2667 cipher_name = "gcm(aria)"; 2668 break; 2669 } 2670 case TLS_CIPHER_ARIA_GCM_256: { 2671 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; 2672 2673 gcm_256_info = (void *)crypto_info; 2674 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2675 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; 2676 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; 2677 iv = gcm_256_info->iv; 2678 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; 2679 rec_seq = gcm_256_info->rec_seq; 2680 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; 2681 key = gcm_256_info->key; 2682 salt = gcm_256_info->salt; 2683 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; 2684 cipher_name = "gcm(aria)"; 2685 break; 2686 } 2687 default: 2688 rc = -EINVAL; 2689 goto free_priv; 2690 } 2691 2692 if (crypto_info->version == TLS_1_3_VERSION) { 2693 nonce_size = 0; 2694 prot->aad_size = TLS_HEADER_SIZE; 2695 prot->tail_size = 1; 2696 } else { 2697 prot->aad_size = TLS_AAD_SPACE_SIZE; 2698 prot->tail_size = 0; 2699 } 2700 2701 /* Sanity-check the sizes for stack allocations. */ 2702 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || 2703 rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || 2704 prot->aad_size > TLS_MAX_AAD_SIZE) { 2705 rc = -EINVAL; 2706 goto free_priv; 2707 } 2708 2709 prot->version = crypto_info->version; 2710 prot->cipher_type = crypto_info->cipher_type; 2711 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2712 prot->tag_size = tag_size; 2713 prot->overhead_size = prot->prepend_size + 2714 prot->tag_size + prot->tail_size; 2715 prot->iv_size = iv_size; 2716 prot->salt_size = salt_size; 2717 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); 2718 if (!cctx->iv) { 2719 rc = -ENOMEM; 2720 goto free_priv; 2721 } 2722 /* Note: 128 & 256 bit salt are the same size */ 2723 prot->rec_seq_size = rec_seq_size; 2724 memcpy(cctx->iv, salt, salt_size); 2725 memcpy(cctx->iv + salt_size, iv, iv_size); 2726 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); 2727 if (!cctx->rec_seq) { 2728 rc = -ENOMEM; 2729 goto free_iv; 2730 } 2731 2732 if (!*aead) { 2733 *aead = crypto_alloc_aead(cipher_name, 0, 0); 2734 if (IS_ERR(*aead)) { 2735 rc = PTR_ERR(*aead); 2736 *aead = NULL; 2737 goto free_rec_seq; 2738 } 2739 } 2740 2741 ctx->push_pending_record = tls_sw_push_pending_record; 2742 2743 rc = crypto_aead_setkey(*aead, key, keysize); 2744 2745 if (rc) 2746 goto free_aead; 2747 2748 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2749 if (rc) 2750 goto free_aead; 2751 2752 if (sw_ctx_rx) { 2753 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2754 2755 tls_update_rx_zc_capable(ctx); 2756 sw_ctx_rx->async_capable = 2757 crypto_info->version != TLS_1_3_VERSION && 2758 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2759 2760 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2761 if (rc) 2762 goto free_aead; 2763 } 2764 2765 goto out; 2766 2767 free_aead: 2768 crypto_free_aead(*aead); 2769 *aead = NULL; 2770 free_rec_seq: 2771 kfree(cctx->rec_seq); 2772 cctx->rec_seq = NULL; 2773 free_iv: 2774 kfree(cctx->iv); 2775 cctx->iv = NULL; 2776 free_priv: 2777 if (tx) { 2778 kfree(ctx->priv_ctx_tx); 2779 ctx->priv_ctx_tx = NULL; 2780 } else { 2781 kfree(ctx->priv_ctx_rx); 2782 ctx->priv_ctx_rx = NULL; 2783 } 2784 out: 2785 return rc; 2786 } 2787